

Engineering and Testing for EMC and Safety Compliance

Certification Report

M/A-Com, Inc.
221 Jefferson Ridge Parkway
Lynchburg, VA 24501
Daryl Popowitch
Phone: (434) 455-9527

E-Mail: popowitda@tycoelectronics.com

Model: OpenSky® 800 MHz Cell Site

FCC ID: BV8CS800 IC: 3670A-CS800

September 29, 2006

Standards Referenced for th	is Report
Part 2: 2005	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
Part 90: 2005	Private Land Mobile Radio Services
ANSI/TIA-603-C-2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
ANSI/TIA/EIA – 102.CAAA; 2002	Digital C4FM/CQPSK Transceiver Measurement Methods
Industry Canada RS-119 Issue 7 April 2006	Land Mobile and Fixed Radio Transmitters and Receivers Operating in the Frequency Range 27.41- 960 MHz

Frequency Range (MHz)	Rated Transmit Power (W) Conducted	Frequency Tolerance (ppm)	Emission Designator
851-869	31.5 (non-duplex mode)	0.06	11K3F1D
851-869	31.5 (non-duplex mode)	0.06	11K3F9W
851-869	31.5 (non-duplex mode)	0.06	12K1F9W
851-869	31.5 (non-duplex mode)	0.06	13K1F9W
851-869	25.0 (duplex mode)	0.06	11K3F1D
851-869	25.0 (duplex mode)	0.06	11K3F9W
851-869	25.0 (duplex mode)	0.06	12K1F9W
851-869	25.0 (duplex mode)	0.06	13K1F9W

Report Prepared by Test Engineer: Daniel Biggs

Document Number: 2006133

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc.

Test results relate only to the product tested.

Table of Contents

1	General Information	5
	1.1 Test Facility	
	1.2 Related Submittal(s)/Grant(s)	
2	Tested System Details	
3	FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage.	
4		
٠	4.1 Test Procedure	
	4.2 Test Data	
5	FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210:	
•	Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions	10
	5.1 Test Procedure	
	5.2 Test Data	
6		
Ŭ	119 §5.8: Transmitter Unwanted Emissions	
	6.1 Test Procedure	
	6.2 Test Data	
7		
•	RSS-119 §5.8: Transmitter Unwanted Emissions	20
	7.1 Test Procedure	
	7.2 Test Data	
	7.2.1 CFR 47 Part 90.210 Requirements	
8		
_	8.1 Test Procedure	
	8.2 Test Data	23
	8.2.1 Frequency Stability/Temperature Variation	23
	8.2.2 Frequency Stability/Voltage Variation	24
9	FCC Rules and Regulations Part 2 §2.202: Necessary Bandwidth and Emission Bandwidth	25
1(0 Conclusion	26

Table of Tables

		_
	Test System Details	
Table 2-2:	Equipment Under Test (EUT)	
Table 2-3:	Ports and Cabling (EUT)	
Table 2-4:	Support Equipment	
Table 4-1:	RF Power Output: Carrier Output Power – Duplex Mode	
Table 4-2:	RF Power Output: Carrier Output Power – Non-Duplex Mode	
Table 4-3:	RF Power Output (Rated Power)	8
Table 4-4:	Test Equipment for Testing RF Power Output - Conducted	9
Table 5-1:	Conducted Spurious Emissions – 851.0125 MHz; Wide Band; OTP	
Table 5-2:	Conducted Spurious Emissions – 853.9875 MHz; Wide Band; OTP	
Table 5-3:	Conducted Spurious Emissions – 854.0125 MHz; Wide Band; OTP	
Table 5-4:	Conducted Spurious Emissions – 861.5000 MHz; Wide Band; OTP	
Table 5-5:	Conducted Spurious Emissions – 868.9875 MHz; Wide Band; OTP	
Table 5-6:	Test Equipment for Testing Conducted Spurious Emissions	
	Test Equipment for Testing Occupied Bandwidth	
	Field Strength of Spurious Radiation: 861.5000 MHz (High Power) – (Duplex Mode)	
Table 7-2:		21
Table 7-3:	Test Equipment for Testing Field Strength of Spurious Radiation	
Table 8-1:	Frequency Stability/Temperature Variation – 861.5000 MHz	
Table 8-2:	Test Equipment for Testing Frequency Stability/Temperature	
	Frequency Stability/Voltage Variation – 861.5000 MHz	
Table 8-4:	Test Equipment for Testing Frequency Stability/Voltage	24
	Table of Plots	
Plot 6-1:	Occupied Bandwidth – 861.5000 MHz; Mask G; Bn - 11.3 KHz; Wideband; OTP	1.1
Plot 6-1.	Occupied Bandwidth – 851.0125 MHz; Mask H; Bn - 11.3 KHz; Wideband; OTP	14 15
Plot 6-3:	Occupied Bandwidth – 861.5000 MHz; Mask G; Bn - 12.1 KHz; Wideband; OTP	
Plot 6-3.	Occupied Bandwidth – 851.0125 MHz; Mask H; Bn - 12.1 KHz; Wideband; OTP	
Plot 6-5:	Occupied Bandwidth – 851.5123 MHz; Mask G; Bn - 13.1 KHz; Wideband; OTP	
Plot 6-6:	Occupied Bandwidth – 868.9875 MHz; Mask G; Bn - 13.1 KHz; Wideband; OTP	
F101 6-6.	Occupied Bandwidth - 606.9673 MHz, Mask G, Bit - 13.1 KHz, Wideband, OTF	19
	Table of Figures	
	-	
Figure 2-1:	Configuration of Tested System	7

Table of Appendixes

Appendix B: Appendix C: Appendix D: Appendix E: Appendix F: Appendix G: Appendix H: Appendix I: Appendix J: Appendix K: Appendix K: Appendix L:	RF Exposure Compliance Agency Authorization Letter Confidentiality Request Letter Label Information Operational Description Parts List Tune Up/Alignment Procedure Schematics Block Diagram Manual Test Configuration Photographs External Photographs Internal Photographs	
	Table of Photographs	
Photograph 1:	FCC/IC Label Sample	
Photograph 2:	ID Label Location	
Photograph 3:	Radiated Emissions - Front View	
Photograph 4:	Radiated Emissions - Rear View	
Photograph 5:	Front ViewLeft Side	
Photograph 6: Photograph 7:	Right Side	
Photograph 8:	Cell Site Interior – Front View	
Photograph 9:	Cell Site Interior – Front View	
Photograph 10:		
Photograph 11:		
Photograph 12:		46
Photograph 13:		
Photograph 14:	DCX Rear View	
Photograph 15:	BSC in DCX Chassis	49
Photograph 16:		50
Photograph 17:		
Photograph 18:		
Photograph 19:		
Photograph 20:		
Photograph 21:		
Photograph 22:		
Photograph 23:		
Photograph 24:		
Photograph 25:		
Photograph 26:		
Photograph 27: Photograph 28:		
FIIOLOGIAPII 20.	FIFA WILLIOUL NE COVEL	0∠

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: M/A-Com, Inc. Model: 800 MHz Cell Site Standards: FCC Part 90/RSS-119 ID's: BV8CS800/3670A-CS800 Report Number: 2006133

1 General Information

The following Certification Report is prepared on behalf of **M/A-COM**, **Inc**. in accordance with the Federal Communications Commission and Industry Canada. The Equipment Under Test (EUT) was the **OpenSky Cell Site**, **FCC ID**: **BV8CS800**, **IC**: **3670A-CS800**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with the applicable FCC Rules and Regulations in CFR 47. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia, 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

1.2 Related Submittal(s)/Grant(s)

This is an original application report.

2 Tested System Details

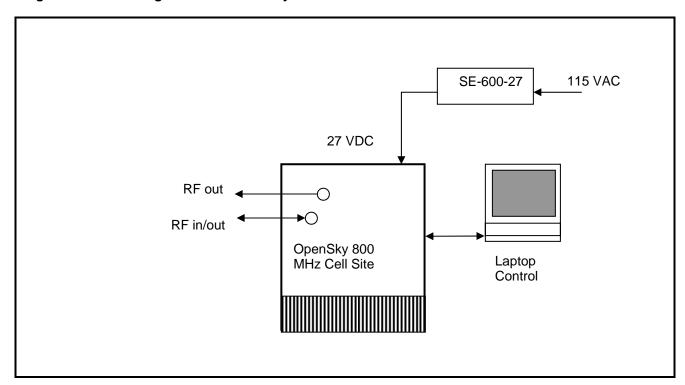
The test sample was received on September 8, 2006. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable. The cell site station is offered in duplex and non-duplex versions, allowing one or two antennas to be used. The duplex version has conducted power of 5 to 25 W. The non-duplex version has conducted power of 5 to 31.5 W.

Table 2-1: Test System Details

Model Tested	OpenSky Cell Site
Frequency Band	851-869 MHz
Modulation Type	4-level Gaussian Frequency Shift Keying (GFSK)
Channel Step Size	12.5 KHz
Channel Bandwidth	25 KHz
Primary Power	27 VDC
Rated Transmitter Output Power	Continually variable 5-25 W in duplex configuration, 5-31.5W non-
Rated Transmitter Output Power	duplex configuration
Duty Cycle	100% maximum

Table 2-2: Equipment Under Test (EUT)

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Cell Site	M/A-Com, Inc.	OpenSky	MACS-CS800	BV8CS800	17510


Table 2-3: Ports and Cabling (EUT)

Port	Cable Type	Quantity	Length (feet)	Shield
RF In/Out	N type	1	N/A	Yes
RF Out	N type	1	N/A	Yes
Terminal	DB-9	1	N/A	No

Table 2-4: Support Equipment

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Notebook Computer	Compaq	Armada M700	N/A	N/A	N/A
Serial Interface Cable	N/A	DB-9	N/A	N/A	N/A
Power Supply	Mean Well	SE-600-27	N/A	N/A	N/A

Figure 2-1: Configuration of Tested System

FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage

Nominal DC Voltage: 27 VDC

Current: 5 AMPS

4 FCC Rules and Regulations Part 90 §90.1215(a) and Part 2 §2.1046(a): Peak Output Power

4.1 Test Procedure

ANSI TIA-603-2004, section 2.2.1.

The EUT was connected to a coaxial attenuator having a 50 Ω load impedance.

4.2 Test Data

Table 4-1: RF Power Output: Carrier Output Power – Duplex Mode

Frequency (MHz)	Mode	High Power RF Power Measured (W)*
851.0125	OTP	25.1
853.9875	OTP	25.0
854.0125	OTP	25.0
861.5000	OTP	25.1
868.9875	OTP	25.1

^{*}Measurement accuracy: +/-.3 dB

Table 4-2: RF Power Output: Carrier Output Power – Non-Duplex Mode

Frequency (MHz)	Mode	High Power RF Power Measured (W)*
851.0125	OTP	31.3
853.9875	OTP	31.3
854.0125	OTP	31.3
861.5000	OTP	31.3
868.9875	OTP	31.2

^{*}Measurement accuracy: +/-.3 dB

Table 4-3: RF Power Output (Rated Power)

Rated Power - Duplex Mode
25.0 W

Ra	ted Power - Non-Duplex Mode
	31.5 W

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: M/A-Com, Inc. Model: 800 MHz Cell Site Standards: FCC Part 90/RSS-119 ID's: BV8CS800/3670A-CS800 Report Number: 2006133

Table 4-4: Test Equipment for Testing RF Power Output - Conducted

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901184	Agilent	E4416A	Power Meter	GB41050573	9/21/06
901356	Agilent	E9323A	Power Sensor	31764-264	9/21/06
901396	MCE Weinschel	48-40-34	Attenuator, 40 dB, DC-18 GHz, 100 W	93453	12/02/08

Daniel Biggs	Daniel Begg-	September 14, 2006
Test Engineer	Signature	Date Of Tests

FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions

5.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.13.

The transmitter is terminated with a 50 Ω load and interfaced with a spectrum analyzer. The EUT was tested in non-duplex configuration with a conducted power rating of 31.5 W. The device uses digital modulation modulated to its maximum extent using a pseudo random data sequence of 19200 bps for OTP (OpenSky Trunking Protocol) mode.

5.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10xFc.

Limit: P(dBm) - (43 + 10xLOG P(W))

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Table 5-1: Conducted Spurious Emissions – 851.0125 MHz; Wide Band; OTP

Limit = $43 + 10 \log (31.3) = 58 dBc$

Frequency (MHz)	Level (dBc)	Limit (dBc)	Margin(dB)
1702.0250	92.5	58.0	-34.6
2553.0375	86.4	58.0	-28.4
3404.0500	98.9	58.0	-40.9
4255.0625	109.7	58.0	-51.7
5106.0750	114.0	58.0	-56.0
5957.0875	110.6	58.0	-52.6
6808.1000	99.3	58.0	-41.3
7659.1125	105.4	58.0	-47.4
8510.1250	101.4	58.0	-43.4

Table 5-2: Conducted Spurious Emissions – 853.9875 MHz; Wide Band; OTP

Limit = 43 + 10 log (31.3) = 58 dBc

Frequency (MHz)	Level (dBc)	Limit (dBc)	Margin(dB)
1707.9750	93.2	58.0	-35.3
2561.9625	87.4	58.0	-29.4
3415.9500	106.4	58.0	-48.4
4269.9375	109.0	58.0	-51.0
5123.9250	113.3	58.0	-55.3
5977.9125	110.6	58.0	-52.6
6831.9000	99.8	58.0	-41.8
7685.8875	106.3	58.0	-48.3
8539.8750	101.5	58.0	-43.5

Table 5-3: Conducted Spurious Emissions – 854.0125 MHz; Wide Band; OTP

Limit = 43 + 10 log (31.3) = 58 dBc

Frequency (MHz)	Level (dBc)	Limit (dBc)	Margin(dB)
1708.0250	92.1	58.0	-34.2
2562.0375	87.3	58.0	-29.3
3416.0500	107.9	58.0	-49.9
4270.0625	109.1	58.0	-51.1
5124.0750	113.3	58.0	-55.3
5978.0875	106.2	58.0	-48.2
6832.1000	95.5	58.0	-37.5
7686.1125	105.5	58.0	-47.5
8540.1250	101.3	58.0	-43.3

Table 5-4: Conducted Spurious Emissions – 861.5000 MHz; Wide Band; OTP

Limit = 43 + 10 log (31.3) = 58 dBc

Frequency (MHz)	Level (dBc)	Limit (dBc)	Margin(dB)
1723.0000	94.1	58.0	-36.1
2584.5000	92.1	58.0	-34.1
3446.0000	104.0	58.0	-46.0
4307.5000	109.8	58.0	-51.8
5169.0000	114.5	58.0	-56.5
6030.5000	110.5	58.0	-52.5
6892.0000	101.2	58.0	-43.2
7753.5000	104.4	58.0	-46.4
8615.0000	100.0	58.0	-42.0

Table 5-5: Conducted Spurious Emissions – 868.9875 MHz; Wide Band; OTP

Limit = $43 + 10 \log (31.2) = 57.9 dBc$

Frequency (MHz)	Level (dBc)	Limit (dBc)	Margin(dB)
1737.9750	94.2	57.9	-36.3
2606.9625	96.0	57.9	-38.1
3475.9500	108.5	57.9	-50.6
4344.9375	111.5	57.9	-53.6
5213.9250	113.9	57.9	-56.0
6082.9125	111.5	57.9	-53.6
6951.9000	104.6	57.9	-46.7
7820.8875	105.3	57.9	-47.4
8689.8750	93.6	57.9	-35.7

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: M/A-Com, Inc. Model: 800 MHz Cell Site Standards: FCC Part 90/RSS-119 ID's: BV8CS800/3670A-CS800 Report Number: 2006133

Table 5-6: Test Equipment for Testing Conducted Spurious Emissions

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz – 12.8 GHz)	3826A00144	09/22/06
901396	MCE Weinschel	48-40-34	Attenuator, 40 dB, DC-18 GHz, 100 W	93453	12/02/08
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	12/12/06

Daniel Biggs	Daniel Bigg	September 15, 2006
Test Engineer	Signature	Date Of Tests

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: M/A-Com, Inc. Model: 800 MHz Cell Site Standards: FCC Part 90/RSS-119 ID's: BV8CS800/3670A-CS800 Report Number: 2006133

FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(g): Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions

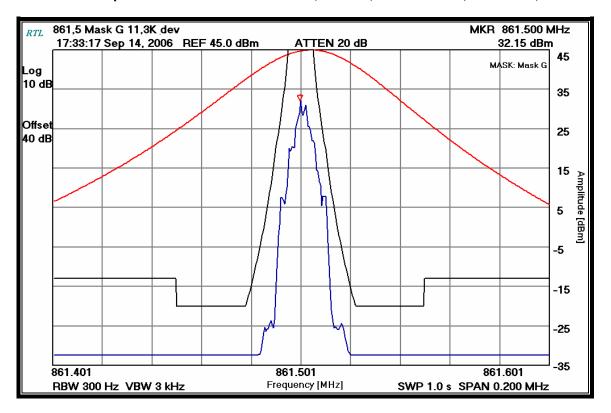
6.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

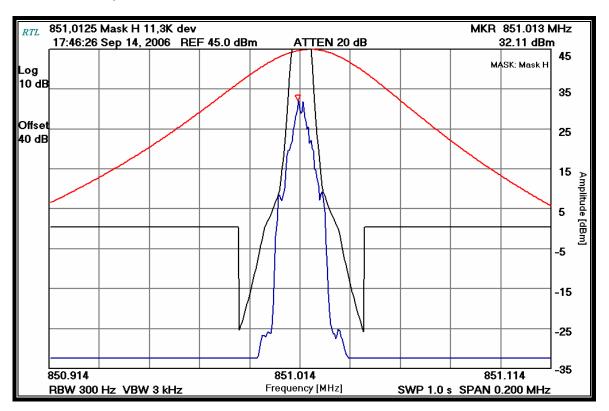
The EUT was tested in non-duplex configuration with a conducted power rating of 31.5 W.

The device uses digital modulation modulated to its maximum extent using a pseudo-random data sequence of 19200 bps for OTP (OpenSky Trunking Protocol) mode.

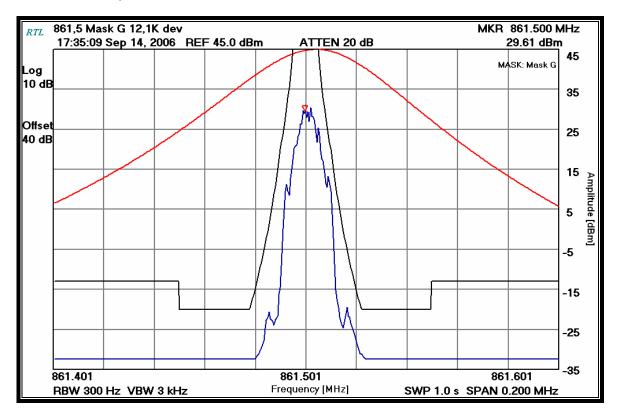
Limit Mask G:

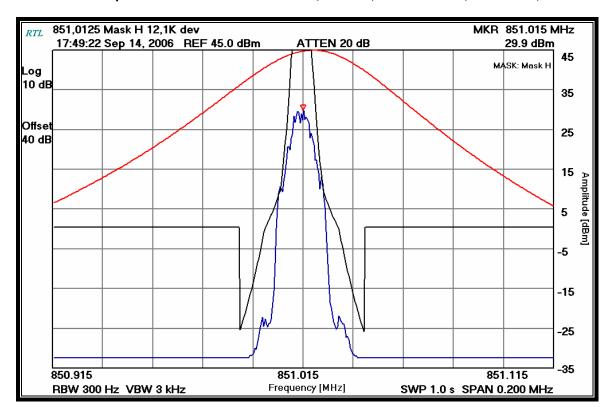

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: at least **83 log (fd/5) dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: at least 116 (fd/6.1) dB, or 50 + 10 log (P) dB, or 70 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: at least **43 + 10 log (P) dB**.

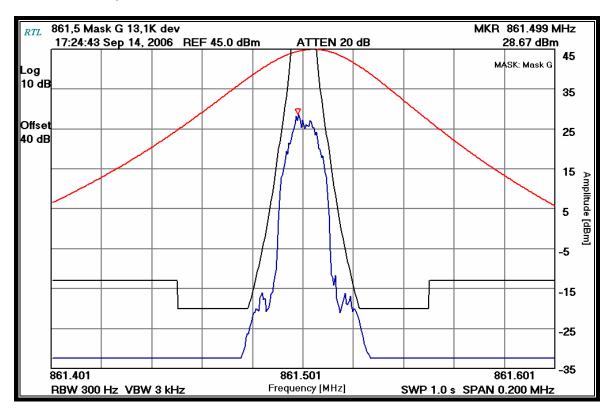
Limit Mask H:


- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of 4 kHz or less: **zero dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 4 kHz, but not more than 8.5 kHz: At least **107 log (fd/4) dB**;
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 8 kHz, but not more than 15 kHz: At least 40.5 log (fd/1.16) (P) dB.
- (4) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 15 kHz, but not more than 25 kHz: At least 116 log (fd/6.1) (P) dB.
- (5) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 25 kHz: at least **43 + log (P) dB**.

6.2 Test Data


Plot 6-1: Occupied Bandwidth – 861.5000 MHz; Mask G; Bn - 11.3 KHz; Wideband; OTP


Plot 6-2: Occupied Bandwidth – 851.0125 MHz; Mask H; Bn - 11.3 KHz; Wideband; OTP


Plot 6-3: Occupied Bandwidth – 861.5000 MHz; Mask G; Bn - 12.1 KHz; Wideband; OTP

Plot 6-4: Occupied Bandwidth – 851.0125 MHz; Mask H; Bn - 12.1 KHz; Wideband; OTP

Plot 6-5: Occupied Bandwidth – 861.5000 MHz; Mask G; Bn - 13.1 KHz; Wideband; OTP

Plot 6-6: Occupied Bandwidth – 868.9875 MHz; Mask G; Bn - 13.1 KHz; Wideband; OTP

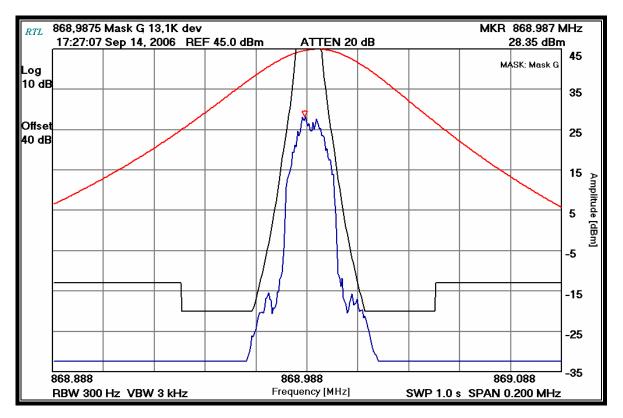


Table 6-1: Test Equipment for Testing Occupied Bandwidth

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz – 12.8 GHz)	3826A00144	09/22/06
901396	MCE Weinschel	48-40-34	Attenuator, 40 dB, DC-18 GHz, 100 W	93453	12/02/08

Daniel Biggs	Daniel Begg-	September 14, 2006
Test Technician/Engineer	Signature	Date of Tests

FCC Rules and Regulations Part 90 §90.210(g) and Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8: Transmitter Unwanted Emissions

7.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.12.

The EUT was tested in non-duplex configuration with a conducted power rating of 31.5 W.

The device uses digital modulation modulated to its maximum extent using a pseudo-random data sequence of 19200 bps for OTP (OpenSky Trunking Protocol) mode.

The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

7.2 Test Data

7.2.1 CFR 47 Part 90.210 Requirements

The worst-case emissions test data are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Limit: P(dBm) - (43 + 10xLOG P(W))

Table 7-1: Field Strength of Spurious Radiation: 861.5000 MHz (High Power) – (Duplex Mode)

Limit = 43 + 10 log (31.3) = 58 dBc

Little = 45 + 10 log (51.5) = 36 dbc								
Frequency (MHz)	Polarization (H/V)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss* (dB)	Antenna Gain (dBd)	EIRP (dBm)	Limit	Margin (dB)
1723.0	V	38.5	-65.0	4.6	6.5	108.1	58.0	-50.2
2584.5	Н	31.7	-72.8	5.8	7.3	116.3	58.0	-58.4
3446.0	V	24.2	-76.6	6.0	7.5	120.1	58.0	-62.2
4307.5	-	SNF	-	-	-	-	-	-
5169.0	-	SNF	-	-	-	-	-	-
6030.5	-	SNF	-	-	-	-	-	-
6892.0	-	SNF	-	-	-	-	-	-
7753.5	-	SNF	-	-	-	-	-	-
8615.0	-	SNF	-	-	-	-	-	-

^{*}This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Note: SNF = Spectrum analyzer noise floor

Table 7-2: Field Strength of Spurious Radiation: 861.5000 MHz (High Power) – (Non-Duplex Mode)

Limit = 43 + 10 log (31.3) = 58 dBc

	Polarization (H/V)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss* (dB)	Antenna Gain (dBd)	EIRP (dBm)	Limit	Margin (dB)
1723.0	V	68.7	-34.8	4.6	6.5	77.9	58.0	-19.9
2584.5	V	69.2	-35.0	5.8	7.5	78.3	58.0	-20.3
3446.0	V	64.3	-36.5	6.0	7.5	80.0	58.0	-22.0
4307.5	V	25.3	-72.2	6.0	7.8	115.4	58.0	-57.4
5169.0	-	SNF	-	-	-	-	-	-
6030.5	-	SNF	-	-	-	-	-	-
6892.0	-	SNF	-	-	-	-	-	-
7753.5	-	SNF	-	-	-	-	-	-
8615.0	-	SNF	-	-	-	-	-	-

^{*}This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Note: SNF = Spectrum analyzer noise floor

Table 7-3: Test Equipment for Testing Field Strength of Spurious Radiation

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901413	Agilent	E4448	Spectrum Analyzer	US44020346	11/2/06
900928	Hewlett Packard	HP 83752A	Synthesized Sweeper (.01 – 20 GHz)	3610A00866	11/10/06
901053	Schaffner- Chase	CBL6112	Antenna (25 MHz – 2 GHz)	2648	11/1/06
901413	Agilent	E4448	Spectrum Analyzer	US44020346	11/2/06
900928	Hewlett Packard	HP 83752A	Synthesized Sweeper (.01 – 20 GHz)	3610A00866	11/10/06
900321	EMCO	3161-03	Horn Antennas (4 – 8 GHz)	9508-1020	5/20/07
901262	ETS	3115	Double ridge horn (1 – 26 GHz)	6748	4/19/08
901422	Insulated Wire, Inc.	KPS-1503- 2400-KPS	RF cable, 20'	NA	12/12/06
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	12/12/06

Daniel Biggs	Daniel Begg-	September 25, 2006
Test Engineer	Signature	Date Of Tests

8 FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability

8.1 Test Procedure

ANSI/TIA-603-C-2004, section 2.2.2.

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30°C to +60°C.

The temperature was initially set to -30°C and a 2-hour period was observed for stabilization of the EUT. The EUT was then operated in standby mode for 15 minutes before proceeding. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10°C through the range. A ½ hour period was observed to stabilize the EUT at each measurement step, and the frequency stability was measured within one minute after application of primary power to the transmitter. Additionally, the power supply voltage of the EUT was varied +/-15% nominal input voltage.

Limit for frequency block 851 - 854 MHz: 1.0 ppm

Limit for frequency block 854 - 869 MHz: 1.5 ppm

The worst case test data are shown below in Table 8-1 and Table 8-3.

8.2 Test Data

8.2.1 Frequency Stability/Temperature Variation

Table 8-1: Frequency Stability/Temperature Variation – 861.5000 MHz

Temperature °C	Channel Frequency	Measured Frequency (MHz)	ppm
-30	861.4993	861.499260	-0.05
-20	861.4993	861.499258	-0.05
-10	861.4993	861.499257	-0.05
0	861.4993	861.499255	-0.05
10	861.4993	861.499254	-0.05
20	861.4993	861.499253	-0.05
30	861.4993	861.499251	-0.06
40	861.4993	861.499250	-0.06
50	861.4993	861.499250	-0.06
60	861.4993	861.499249	-0.06

Table 8-2: Test Equipment for Testing Frequency Stability/Temperature

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900946	Tenney Engineering, Inc.	TH65	Temperature Chamber with Humidity	11380	01/20/07
901300	Agilent	53131A	Frequency Counter	MY40001345	11/23/06
901396	MCE Weinschel	48-40-34	Attenuator, 40 dB, DC-18 GHz, 100 W	93453	12/2/08
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	12/12/06

Daniel Biggs	Daniel Begg	September 18, 2006
Test Engineer	Signature	Date Of Test

8.2.2 Frequency Stability/Voltage Variation

Table 8-3: Frequency Stability/Voltage Variation – 861.5000 MHz

Voltage (VDC)	Channel Frequency	Measured Frequency (MHz)	ppm
22.95	861.4993	861.499247	-0.06
27.0	861.4993	861.499248	-0.06
35.1	861.4993	861.499250	-0.06

Table 8-4: Test Equipment for Testing Frequency Stability/Voltage

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901300	Agilent	53131A	Frequency Counter	MY40001345	11/23/06
901396	MCE Weinschel	48-40-34	Attenuator, 40 dB, DC-18 GHz, 100 W	93453	12/2/08
901424	Insulated Wire Inc.	KPS-1503-360- KPS	RF cable 36"	N/A	12/12/06
901247	Wavetek	DM25XT	Digital Multimeter	40804098	12/7/06

Daniel Biggs	Daniel Begg	September 18, 2006
Test Engineer	Signature	Date Of Test

9 FCC Rules and Regulations Part 2 §2.202: Necessary Bandwidth and Emission Bandwidth

FCC Mask 90.210(g):

Type of Emission: F9W, F1D

Digital Voice and Data: 19,200 BPS

Calculations:

 $B(n) = (R/Log\{2\}S + 2KD)$, where $Log\{2\}$ is Log base 2

11K3F1D:

where

R = 19.2 kilobits per second [raw data rate]

S = 4 [4-level FSK]

D = 3.2 [FM Deviation]

K = 0.266

B(n) = 11,302 or 11K3

FCC Emission Designator: 11K3F1D

11K3F9W:

where

R = 19.2 kilobits per second [raw data rate]

S = 4 [4-level FSK]

D = 3.2 [FM Deviation]

K = 0.266

B(n) = 11,302 or 11K3

FCC Emission Designator: 11K3F9W

12K1F9W:

where

R = 19.2 kilobits per second [raw data rate]

S = 4 [4-level FSK]

D = 3.75 [FM Deviation]

K = 0.334

B(n) = 12,105 or 12K1

FCC Emission Designator: 12K1F9W

13K1F9W:

where

R = 19.2 kilobits per second [raw data rate]

S = 4 [4-level FSK]

D = 4.2 [FM Deviation]

K = 0.415

B(n) = 13,086 or 13K1

FCC Emission Designator: 13K1F9W

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: M/A-Com, Inc. Model: 800 MHz Cell Site Standards: FCC Part 90/RSS-119 ID's: BV8CS800/3670A-CS800 Report Number: 2006133

10 Conclusion

The data in this measurement report shows that the **M/A-COM**, **Inc**. Model **OpensSky Cell Site**, **FCC ID**: **BV8CS800**, **IC**: **3670A-CS800**, complies with all the applicable requirements of FCC Parts 90, 15 and 2 and Industry Canada RSS-119.