

Test report No.

: 27LE0221-HO-A-R1 : 1 of 24

Page

Issued date Revised date : September 12, 2007

Revised date FCC ID : October 12, 2007 : BSFFC-N21S

EMI TEST REPORT

Test Report No.: 27LE0221-HO-A-R1

Applicant

: NEC Corporation

Type of Equipment

Factory Computer FC-NOTE series

Model No.

ě

FC-N21S/BY5SS

FCC ID

•

BSFFC-N21S

Test standard

FCC Part 15 Subpart E: 2007

Section 15.407(DFS test only)

Test Result

Complied

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. Original test report number of this report is 27LE0221-HO-A.

Date of test :

September 4 and October 10, 2007

Tested by

Takahiro Hatakeda EMC Services

Approved by:

Tetsuo Maeno

Site manager of EMC Services

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.

*As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://uljapan.co.jp/emc/nvlap.htm

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone Facsimile : +81 596 24 8116

: +81 596 24 8124

MF060b (18.06.07)

Page : 2 of 24

CONTENTS	PAGE
SECTION 1: Client information	3
SECTION 2: Equipment under test (E.U.T.)	3
SECTION 3: Scope of Report	
SECTION 4: Test specification, procedures & results	
SECTION 5: Operation of E.U.T. during testing	
SECTION 6: In-Service Monitoring for Channel Move Time, Channel Closing	
Transmission Time	
SECTION 7: In-Service Monitoring for Non-Occupancy Period	
APPENDIX 1: Photographs of test setup	
APPENDIX 2: Data of DFS test	
Parameter Data for Radar Type 5	
APPENDIX 3:Test instruments	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

SECTION 1: Client information

Company Name : NEC Corporation

Address : 10 Nissin-cho 1-chome, Fuchu-shi, Tokyo, 183-8501 Japan

Telephone Number : +81-43-333-1031 Facsimile Number : +81-43-333-1054 Contact Person : Aya Igarashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Factory Computer FC-NOTE series

Model No. : FC-N21S/BY5SS

Serial No.

Rating : DC16V/3A

AC Adaptor: AC100-240V, 50/60Hz

Country of Manufacture : Japan

Receipt Date of Sample : August 1, 2007 Condition of EUT : Production model

Modification of EUT : No modification by the test lab.

2.2 Product Description

FC-N21S/BY5SS is Factory Computer FC-NOTE series.

EUT's Clock frequencies are 1.2GHz (CPU), 40MHz (Wireless LAN port).

FCC/IC granted RF module (model No.: WM3945ABG, FCC ID: FD9WM3945ABG / IC Number: 1000M-3945ABG) is installed in the EUT.

The EUT has variant models as follows:

[Example]

FC-N21S/ u v w x y z :

u= Keyboard :

B: Standard keyboard, C: Keyboard with backlight, E: Standard keyborad with cover,

F: Keyboard with backlight with cover

v = OS:

Y: Windows XP Professional SP2 English version, X: Windows XP Professional SP2 Japanese version

w= Memory capacities:

5: 2GBytes, 2: 256Mbytes, 3: 512Mbytes, 4: 1Gbytes

y= HDD / Battery:

S: Standard HDD(60GB) & Standard Battery,

W: Wide range Temperature HDD(40GB) & Wide range Temperature Battery,

F: Silicon Disk (IDE 8GB) & Standard Battery,

L: Silicon Disk (IDE 8GB) & Light Battery

z=WLAN / Security :

S: With Wireless LAN

W: With Wireless LAN & fingerprint authentication

F: With fingerprint authentication

Z: -

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 4 of 24 Page

Issued date : September 12, 2007 : October 12, 2007 Revised date FCC ID : BSFFC-N21S

IEEE802.11b / 11g / 11a WLAN

Equipment Type	Transceiver			
Frequency of Operation	11b/11g	2412MHz - 2462MHz *1)		
	11a	Low 5180MHz - 5240MHz *2)		
		Mid 5260MHz - 5320MHz *2)		
		Upper 5745MHz - 5805MHz *2)		
		5825MHz *1)		
Channel Support	11b/11g	2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457,		
	(11Channels)	2462MHz		
	11a	5180, 5200, 5220, 5240, 5260, 5280, 5300, 5320MHz		
	(13 Channels)	5745, 5765, 5785, 5805, 5825MHz		
Type of Modulation	11b	DSSS (DBPSK, DQPSK, CCK)		
	11g/a	OFDM (BPSK, QPSK, 16QAM, 64QAM)		
Channel spacing	11b/11g	5MHz		
	11a	20MHz		
ITU code	D1D, G1D			
Antenna Type	Monopole			
Antenna Connector Type	U.FL R-SMT			
Antenna Gain	11b/11g	Main: max +0.81dBi		
		Aux: max +0.22dBi		
	11a	Main: max +0.41dBi(5180-5320MHz),		
		-0.82dBi(5745MHz-5820MHz)		
		Aux: max -1.12dBi(5180-5320MHz),		
		-1.46dBi(5745MHz-5820MHz)		

^{*1)} Refer to 27LE0180-YK-A (FCC part15C (Section 15.247) report).
*2) Refer to 27LE0180-YK-B (FCC part15E (Section 15.407) report).

Remarks: This Wireless Module consists of one chip each of 2.4GHz band and 5GHz band.

FCC 15.31 (e)

This EUT provides stable voltage(DC3.3V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116 : +81 596 24 8124 Facsimile

Page : 5 of 24

Revised date : September 12, 2007
Revised date : October 12, 2007
FCC ID : BSFFC-N21S

SECTION 3: Scope of Report

The EUT has the channels from 5180 to 5825MHz.

This report only covers DFS requirement subject to 5250-5350MHz bands, as specified by the following referenced procedures.

SECTION 4: Test specification, procedures & results

4.1 Test Specification

Test Specification : FCC Part15 Subpart E : 2007

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart E Unlicensed National Information Infrastructure Devices

Section 15.407 General technical requirements

Test Specification : FCC 06-96 APPENDIX

Title : COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-

NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725MHz BANDS

INCORPORATING DYNAMIC FREQUENCY SELECTION

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 24

Revised date : September 12, 2007
Revised date : October 12, 2007
FCC ID : BSFFC-N21S

4.2 Procedures and results

Table 1: Applicability of DFS Requirements

Requirement	Operating Mode Client without Radar Detection	Test Procedures & Limits	Deviation	Results
U-NII Detection Bandwidth	Not required	FCC 06-96 Appendix 7.8.1	N/A	N/A
Initial Channel Availability Check Time	Not required	FCC 15.407 (h) FCC 06-96 Appendix 7.8.2.1	N/A	N/A
Radar Burst at the Beginning of the Channel Availability Check Time	Not required	FCC 15.407 (h) FCC 06-96 Appendix 7.8.2.2	N/A	N/A
Radar Burst at the End of the Channel Availability Check Time	Not required	FCC 15.407 (h) FCC 06-96 Appendix 7.8.2.3	N/A	N/A
In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time	Yes	FCC 15.407 (h) FCC 06-96 Appendix 7.8.3	N/A	Complied
In-Service Monitoring for Non-Occupancy period	Yes *	FCC 15.407 (h) FCC 06-96 Appendix 7.8.3	N/A	Complied
Statistical Performance Check	Not required	FCC15.407 (h) FCC 06-96 Appendix 7.8.4	N/A	N/A

^{*} Although this test was not required in FCC06-96, it was performed as additional test.

Table 2: DFS Detection Thresholds for Master Devices and Client Devices With Radar

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

Table 3 DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 80% of the U-NII 99% transmission
	power bandwidth
	See Note 3

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the *Burst*.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the *Radar Waveform*.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signal will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 24

Issued date : September 12, 2007 : October 12, 2007 Revised date FCC ID : BSFFC-N21S

Table 4 Short Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Traials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Rader T	ypes 1-4)	80%	120		

Table 5 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	Chip Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Burst	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 6 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (μsec)	Pulse per Hop (kHz)	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

4.3 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

	FCC Registration Number	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	313583	IC4247	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	IC4247-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	IC4247-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	IC4247-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

4.4 Test set up and Test instruments of DFS

Refer to APPENDIX 1 to 3.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 27LE0221-HO-A-R1
Page : 10 of 24
Issued date : September 12, 2007
Revised date : October 12, 2007
FCC ID : BSFFC-N21S

SECTION 5: Operation of E.U.T. during testing

5.1 Operating Modes

The EUT, which is a Client Device without Radar detection capability, operates over the 5250-5350MHz band.

The highest power level is 15.67dBm EIRP in the 5250-5350MHz band.

Power level(EIRP) of the EUT[dBm]

	Antenna	5250-5350MHz Band
Antenna Type	Gain [dBi]	Output Power*1)
Monopole	0.41	15.67

^{*1)} Refer to 27LE0180-YK-B, FCC Part 15E (FCC 15.407) report for other parts than DFS.

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Both antenna ports are connected to the test system via a power divider to perform conducted tests.

WLAN traffic is generated by streaming the MPEG Test file "6 ½ Magic Hours" from the Master to the Client in full motion video mode using the media player with the V2.61 Codec package.

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 18MHz.

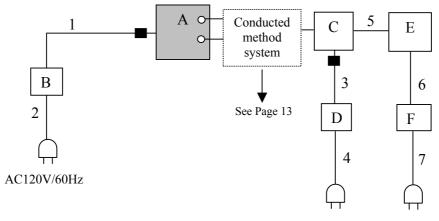
The FCC ID for the Master Device used with EUT for DFS testing is LDK102056.

The rated output power of the Master unit is >200mW(23dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 3.5 = -59.5 dBm (threshold level + additional 1dB + antenna gain).

The calibrated conducted DFS detection Threshold level is set to -59.5dBm.

PRO/Wireless3945ABG Network Connection Model WM3945ABG is manufactured for the global market but when labeled for marketing in North America (FCC ID: PD9WM3945ABG) the Intel PRO/Wireless3945ABG Network Connection Model WM3945ABG EEPROM will be flashed at the factory to only operate on these specific channels:

Channels 1-11, 2412-2462MHz 802.11b mode Channels 1-11, 2412-2462MHz 802.11g mode Channels 36-64, 5180-5320MHz 802.11a mode Channels 149-165, 5745-5825MHz 802.11a mode


UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

5.2 Configuration and peripherals

AC120V/60Hz AC100V/60Hz

: Standard Ferrite Core

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Factory Computer FC-NOTE series	FC-N21S/BY5SS	1	NEC Corporation	EUT
В	AC Adapter	AD7216N2L	F663A603PK01F	NEC Corporation	-
С	Wireless LAN access point	AIR-AP1242AG- A-K9	FTX1045B9L0	Cisco Systems	FCC ID : LDK102056
D	AC Adapter	ADP-18PB	PZT0639562214	Cisco Systems	-
Е	Note PC	T30	97-99D4L	IBM	-
F	AC Adapter	02K6750	11S02K6750Z1Z2UP 29A0TJ	IBM	-

List of cables used

No.	Name	Length (m)	Shield	
			Cable	Connector
1	DC Cable	1.8	Unshielded	Unshielded
2	AC Cable	2.0	Unshielded	Unshielded
3	DC Cable	1.8	Unshielded	Unshielded
4	AC Cable	2.0	Unshielded	Unshielded
5	LAN Cable	1.0	Unshielded	Unshielded
6	DC Cable	1.8	Unshielded	Unshielded
7	AC Cable	1.0	Unshielded	Unshielded

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 27LE0221-HO-A-R1 Page : 12 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

5.3 Test and Measurement System

SYSTEM OVERVIEW

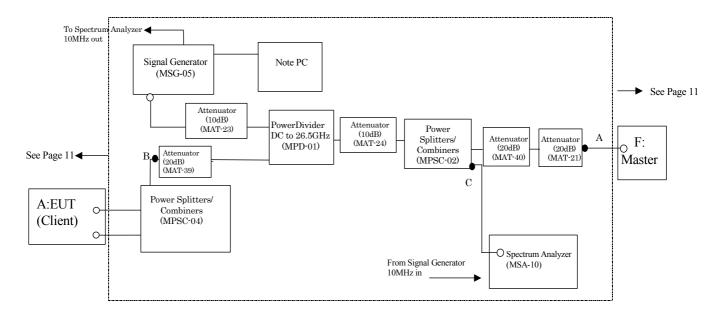
The measurement system is based on a conducted test method.

The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 2, 3, and 4, the long pulse type 5, and the frequency hopping type 6 parameters are randomized at run-time.

The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8192 bins on the horizontal axis. A time-domain resolution of 2 msec/bin is achievable with a 16 second sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection. A time-domain resolution of 3 msec/bin is achievable with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

FREQUENCY HOPPING RADAR WAVEFORM GENERATING SUBSYSTEM

The first 100 frequencies are selected out of the hopping sequence of the randomized 475 hop frequencies. Only a *Burst* that has the frequency falling within the receiver bandwidth of the tested U-NII device is selected among those frequencies. (Frequency-domain simulation). The radar waveform generated at the start time of the selected *Burst* (Time-domain simulation) is download to the Signal Generator.


If all of the randomly selected 100 frequencies do not fall within the receiver bandwidth of the U-NII device, the radar waveform is not used for the test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 13 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

CONDUCTED METHODS SYSTEM BLOCK DIAGRM

MEASUREMENT SYSTEM FREQUENCY REFERENCE

Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the 10MHz OUT on the signal generator to the 10MHz IN on the spectrum analyzer and set the spectrum analyzer 10MHz In to On.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 27LE0221-HO-A-R1 Page : 14 of 24

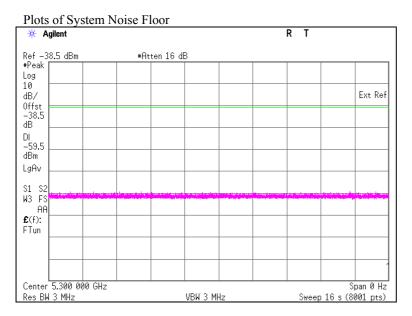
Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

SYSTEM CALIBRATION

Step 1: Set the system as shown in Figure 3 of FCC 06-96 7.2.1.

Step 2: Adjust each attenuator to fulfill the following three conditions:

- WLAN can be communicated, and
- Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and
- Master Device traffic level is not displayed on the spectrum analyzer.


Step 3: Terminate 50 ohm at B and C points, and connect the spectrum analyzer to the point A. (See the figure on page 13) At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured. Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3.

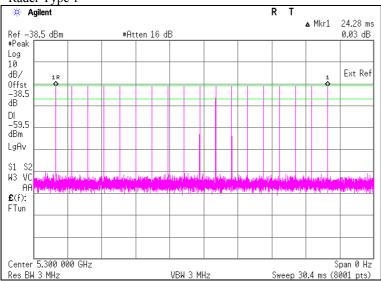
By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device.

See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals.

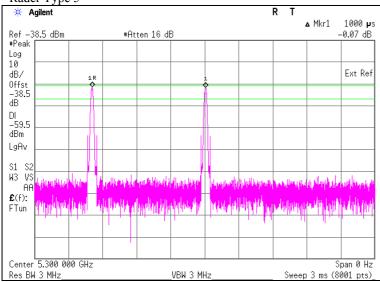
5.4 Plots of Noise, Rader Waveforms, and WLAN signals

It was confirmed that the EUT did not transmit before having received appropriate control signals from a Master Device.

UL Japan, Inc. Head Office EMC Lab.

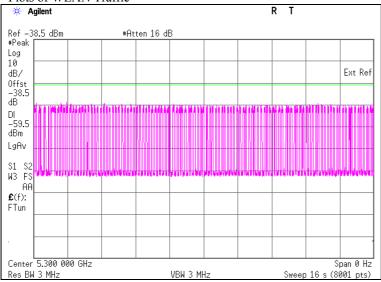

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 15 of 24


Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

Plots of Radar Waveforms

UL Japan, Inc.


Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 16 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

Plots of WLAN Traffic

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 27LE0221-HO-A-R1
Page : 17 of 24
Issued date : September 12, 2007

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

SECTION 6: In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time

6.1 Operating environment

Test place : No.7 shielded room

Temperature : 24deg.C. Humidity : 53%

6.2 Test Procedure

Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 1-4 at levels defined, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

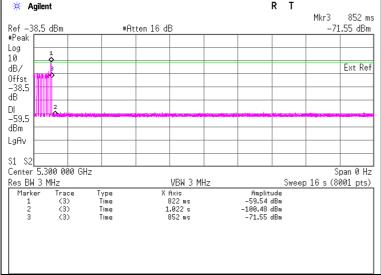
Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds.

6.3 Test data

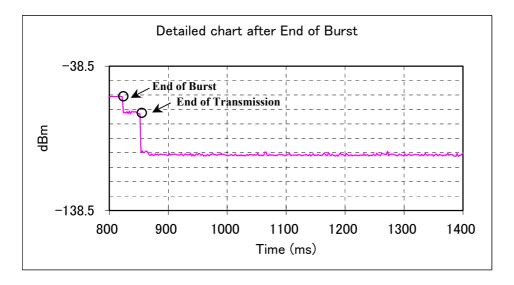
Test Item	Unit	Measurement Time	Limit	Results
Channel Move Time *1)	[sec]	0.030	10.000	Pass
Channel Closing				
Transmission Time *2)	[msec]	0	60	Pass

^{*1)} Channel Move Time is calculated as follows:

(Channel Move Time) = (End of Transmission) - (End of Burst) = 0.852-0.822


*2). Channel Closing Transmission Time is calculated from (End of Burst + 200msec) to (End of Burst + 10sec) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) * (dwell time per bin) = 0 * 2(msec)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

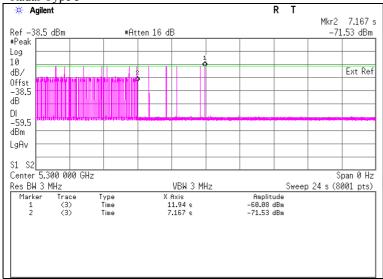

Test report No. : 27LE0221-HO-A-R1 : 18 of 24 Page **Issued date** : September 12, 2007

: October 12, 2007 Revised date FCC ID : BSFFC-N21S

Marker 1: End of Burst : 822 ms Marker 2: End of Burst + 200 msec : 1022 ms Marker 3: End of Transmission : 852 ms

UL Japan, Inc.

Head Office EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116 : +81 596 24 8124 **Facsimile**

Test report No. : 27LE0221-HO-A-R1 Page : 19 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

Radar Type 5

Marker 1 : End of Burst : 11940 ms Marker 2 : End of Transmission : 7167 ms

6.4 Test result

Test result: Pass

Date: 09 / 04 / 2007 Test engineer: Takahiro Hatakeda

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 27LE0221-HO-A-R1
Page : 20 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

SECTION 7: In-Service Monitoring for Non-Occupancy Period

7.1 Operating environment

Test place : No.7 Shielded room , No.6 measurement room

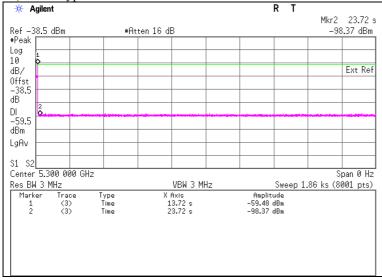
Temperature : 24deg.C. , 26deg.C. Humidity : 53% , 59%

7.2 Test Procedure

The following two tests are performed:

1). Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 1-6 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.


Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than 30 minutes.

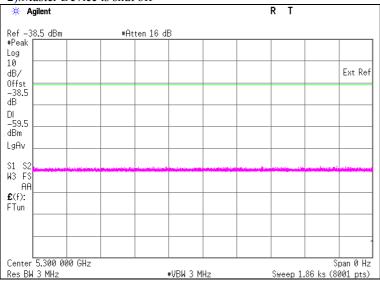
2). Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

Observe the transmissions of the EUT on the Operating Channel for duration greater than 30 minutes after the Master Device is shut off.

7.3 Test data

Marker 1 : End of Burst : 13720 ms Marker 2 : End of Burst +10sec : 23720 ms

UL Japan, Inc.


Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 21 of 24

Issued date : September 12, 2007 Revised date : October 12, 2007 FCC ID : BSFFC-N21S

2). Master Device is shut off

7.4 Test result

Test result: Pass

Date: 10 / 10 / 2007 Test engineer: Takahiro Hatakeda

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN