FCC Test Report

Report No.: AGC00119141102FE08

FCC ID : BRCPC8018

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: tablet pc

BRAND NAME : Kinwei, Titan

TEST MODEL : Refer to page 4.

CLIENT: Kintech Co., Ltd.

DATE OF ISSUE : Dec.21, 2014

STANDARD(S) : FCC Part 15 Rules

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

S ALGC S

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 27

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Dec.21, 2014	Valid	Original Report

Page 3 of 27

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE					
2. PRODUCT INFORMATION					
3. TEST FACILITY	6				
4. SUPPORT EQUIPMENT LIST					
5. SYSTEM DESCRIPTION	7				
6 SUMMARY OF TEST RESULTS	8				
7. FCC LINE CONDUCTED EMISSION TEST	9				
7.1. TEST EQUIPMENT OF LINE CONDUCTED EMISSION TEST	9				
7.2 .LIMITS OF LINE CONDUCTED EMISSION TEST					
7.3. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST					
7.4. PROCEDURE OF LINE CONDUCTED EMISSION TEST	10				
7.5 TEST RESULT OF LINE CONDUCTED EMISSION TEST					
8. FCC RADIATED EMISSION TEST	13				
8.1. TEST EQUIPMENT OF RADIATED EMISSION	13				
8.2. LIMITS OF RADIATED EMISSION TEST					
8.3 BLOCK DIAGRAM OF RADIATED EMISSION TEST	14				
8.4 PROCEDURE OF RADIATED EMISSION TEST	14				
8.4 PROCEDURE OF RADIATED EMISSION TEST					
8.5 TEST RESULT OF RADIATED EMISSION TEST	16				
APPENDIX 1	20				
PHOTOGRAPHS OF TEST SETUP					
APPENDIX 2					
BUOTOGRAPHS OF FUT	24				

Page 4 of 27

1. VERIFICATION OF COMPLIANCE

Applicant	Kintech Co., Ltd.
Address	1F-5F, Bldg 22, Chen Tian Industral Zone, Xi Xiang Bao An District, Shenzhen, Guang Dong, China
Manufacturer	Kintech Co., Ltd.
Address	1F-5F, Bldg 22, Chen Tian Industral Zone, Xi Xiang Bao An District, Shenzhen, Guang Dong, China
Product Designation	tablet pc
Brand name:	Kinwei, Titan
Test Model	PC8018
Series Model	PC8018ME, PC8018B, PC80XX(XX represents00~99), PC80XXME(XX represents00~99), PC80XXB(XX represents00~99), KW-PC8018U,KW-PC8018,KW-PC80XXU(XX represents00~99), KW-PC80XX(XX represents00~99).
Difference description	All the same except for the model name.
Date of test:	Dec.15, 2014 to Dec.19, 2014
Deviation:	None
Condition of Test Sample	Normal

The above equipment was tested by Attestation Of Global Compliance Co., Ltd. for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, the measurement procedure according to ANSI C63.4:2003. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Max Zhang Dec.21, 2014 Prepared By killer try Checked By Kidd Yang Dec.21, 2014 Authorized By Solger Zhang Dec.21, 2014

Page 5 of 27

2. PRODUCT INFORMATION

Housing Type: Plastic

EUT Rating Voltage: DC 3.7V by battery or USB Operated

I/O Port Information (⊠Applicable ☐Not Applicable)

I/O Port of EUT						
I/O Port Type	Q'TY	Cable	Tested with			
USB	1	N/A	1			
Headset Port	1	N/A	1			

Page 6 of 27

3. TEST FACILITY

Facility Attestation of Global Compliance (Shenzhen) Co., Ltd

Location: B112-B113, Building 12, Baoan Building Materials Center, No.1 of Xixiang Inner

Ring Road, Baoan District, Shenzhen, Guangdong, P.R.China

Description: The test site is constructed and calibrated to meet the FCC requirements in

documents ANSI C63.4:2003.

Site Filing: The FCC Registration Number is 259865

Instrument Tolerance: All measuring equipment is in accord with ANSI C63.4 requirements that meet

industry regulatory agency and accreditation agency requirement.

Page 7 of 27

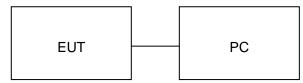
4. SUPPORT EQUIPMENT LIST

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	Power Cable
PC	Dell	INSPIRON	N/A	N/A	1.5m unshielded

^{**}Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

5. SYSTEM DESCRIPTION

EUT test procedure:


- 1. Connect EUT and peripheral devices.
- 2. Power on the EUT, the EUT begins to work.
- 3. Running data transmission and make sure the EUT normal working.

Test Mode

1. USB (Data transmitting)

NOTE: Other modes have reflected in VOC program.

Configure:

Page 8 of 27

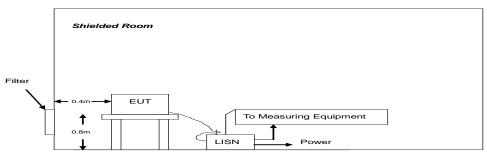
6. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.107	Conduction Emission	Compliant
§15.109	Radiated Emission	Compliant

Page 9 of 27

7. FCC LINE CONDUCTED EMISSION TEST

7.1. TEST EQUIPMENT OF LINE CONDUCTED EMISSION TEST


Description	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	Rohde & Schwarz	ESHS 30	2014.07.30	2015.07.30
LISN	Rohde & Schwarz	ESH2-Z5	2014.09.05	2015.09.04

7.2 .LIMITS OF LINE CONDUCTED EMISSION TEST

_	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

^{**}Note: 1. The lower limit shall apply at the transition frequency.

7.3. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

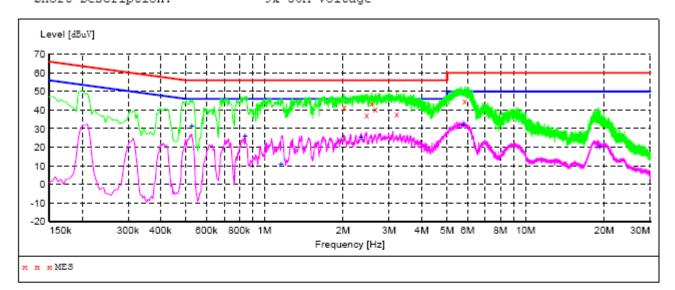
A: Powered through filter

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

Page 10 of 27

7.4. PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.4.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4) The EUT received DC 5V power by PC. All support equipments received AC 120V/60Hz power from socket under the turntable, if any.
- 5) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 6) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 7) During the above scans, the emissions were maximized by cable manipulation.
- 8) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions.
- 9) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.


The test data of the worst case condition(mode 1) was reported on the following Data page.

Report No.: AGC00119141102FE08 Page 11 of 27

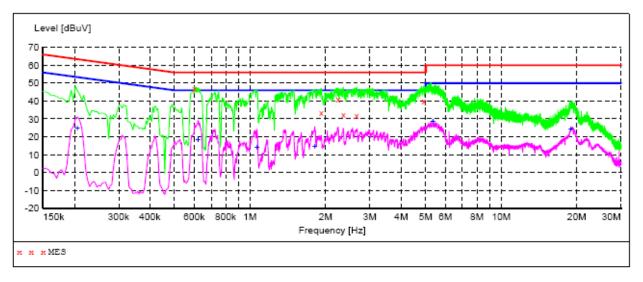
7.5 TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION - L

SCAN TABLE: "Voltage (150K-30M) PR1"
Short Description: 9k-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
2.018000	41.30	0.3	56	14.7	PK	L1	GND
2.462000	37.40	0.3	56	18.6	PK	L1	GND
2.574000	44.00	0.3	56	12.0	PK	L1	GND
2.658000	40.50	0.3	56	15.5	PK	L1	GND
3.210000	37.70	0.3	56	18.3	PK	L1	GND
5.850000	45.00	0.4	60	15.0	PK	L1	GND


MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.526000	31.20	0.2	46	14.8	AV	L1	GND
0.842000	26.20	0.2	46	19.8	AV	L1	GND
1.158000	10.80	0.2	46	35.2	AV	L1	GND
2.342000	25.50	0.3	46	20.5	AV	L1	GND
5.778000	32.00	0.4	50	18.0	AV	L1	GND
19.174000	20.20	0.8	50	29.8	AV	L1	GND

Page 12 of 27

LINE CONDUCTED EMISSION - N

SCAN TABLE: "Voltage (150K-30M) PR1"
Short Description: 9k-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.602000	46.80	0.2	56	9.2	PK	N	GND
1.926000	33.60	0.3	56		PK	N	GND
2.246000	41.10	0.3	56	14.9	PK	N	GND
2.354000	32.60	0.3	56	23.4	PK	N	GND
2.662000	31.70	0.3	56	24.3	PK	N	GND
4.926000	40.10	0.3	56	15.9	PK	N	GND

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.206000	24.90	0.2	53	28.5	AV	N	GND
0.622000	18.20	0.2	46	27.8	AV	N	GND
1.066000	13.90	0.2	46	32.1	AV	N	GND
1.810000	14.90	0.3	46	31.1	AV	N	GND
5.350000	28.90	0.4	50	21.1	AV	N	GND
18.926000	24.30	0.8	50	25.7	AV	N	GND

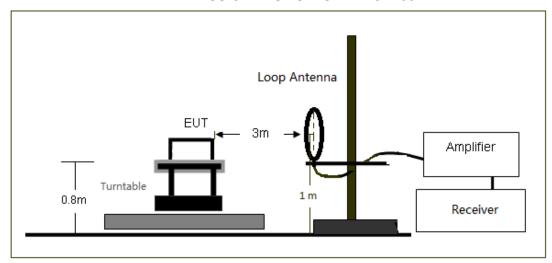
Page 13 of 27

8. FCC RADIATED EMISSION TEST

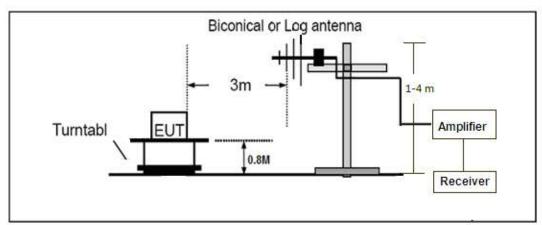
8.1. TEST EQUIPMENT OF RADIATED EMISSION

Description	Manufacturer	Model	Cal. Date	Cal. Due	
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	2014.02.17	2015.02.16	
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	2014.08.17	2015.08.16	
WIDEBAND REQUENCY ANTENNA	SCHWARZBECK	VULB9168	07/21/2014	07/20/2015	
Broadband Preamplifier	SCHWARZBECK	BBV 9718	07/26/2014	07/26/2015	
Multi-Device Controller	EMCO	2090	07/30/2014	07/30/2015	
RF CABLE	SUIRONG	30MHZ-18GHZ	07/18/2014	07/18/2015	
RF CABLE	SAT	9KHZ-30MHZ	06/04/2014	06/03/2015	

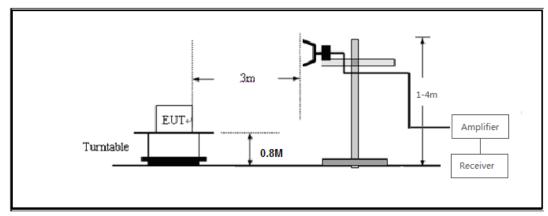
8.2. LIMITS OF RADIATED EMISSION TEST


Frequency (MHz)	Distance (m)	Maximum Field Strength Limit (dBuV/m/ Q.P.)
30~88	3	40.0
88~216	3	43.5
216~960	3	46.0
Above 960	3	54.0

^{**}Note: The lower limit shall apply at the transition frequency.


Page 14 of 27

8.3 BLOCK DIAGRAM OF RADIATED EMISSION TEST


System Diagram of Connections between EUT and Simulators RADIATED EMISSION TEST SETUP BELOW 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

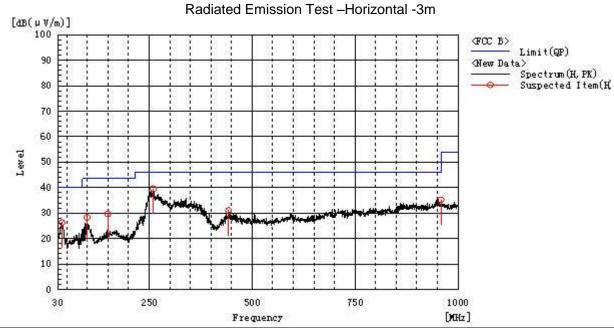
RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 15 of 27

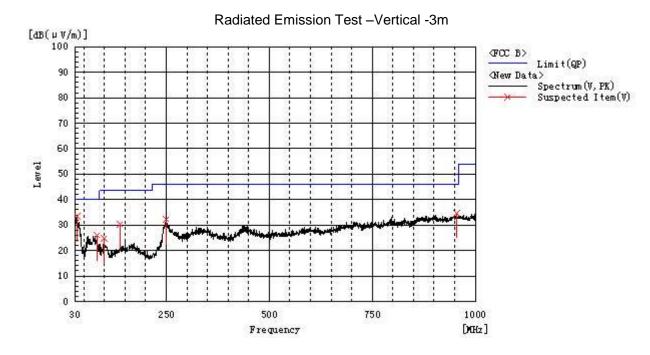
8.4 PROCEDURE OF RADIATED EMISSION TEST

1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2) Support equipment, if needed, was placed as per ANSI C63.4.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4) The EUT received DC 5V by PC. All support equipments received AC 120V/60Hz power from socket under the turntable, if any.
- 5) The antenna was placed at 3 meter away from the EUT as stated in FCC Part 15. The antenna connected to the Analyzer via a cable and at times a pre-amplifier would be used.
- 6) The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7) The test mode(s) were scanned during the test:
- 8) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P./Peak reading is presented.

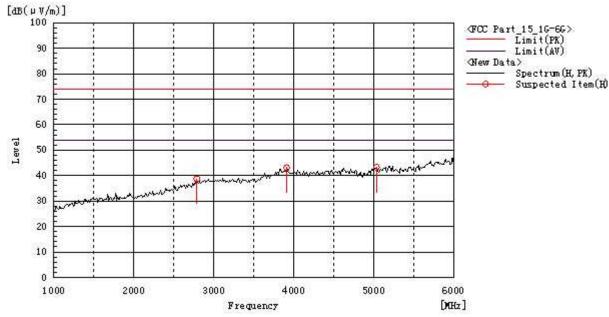

The test data of the worst case condition(mode 1) was reported on the following Data page

Page 16 of 27


8.5 TEST RESULT OF RADIATED EMISSION TEST

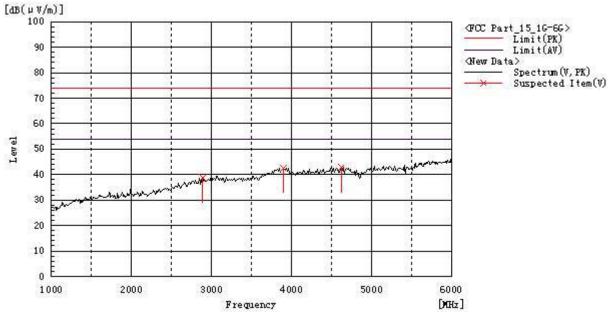
RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz


Frequency	Polarization	Reading	Factor dB	Level dB(uV/m)	Limit dB(uV/m)	Margin	Pass/Fail	Height	Angle
MHz	. 0.0200	dB(uV)	(1/m)	PK	QP	dB	. 400,1 4.1	cm	deg
38.730	Н	5.3	21.0	26.3	40.0	13.7	Pass	200.0	181.7
99.355	Н	18.0	10.3	28.3	43.5	15.2	Pass	200.0	313.9
149.795	Н	14.8	14.9	29.7	43.5	13.8	Pass	200.0	326.2
260.375	Н	25.8	13.8	39.6	46.0	6.4	Pass	100.0	290.7
442.735	Н	10.9	20.1	31.0	46.0	15.0	Pass	100.0	60.5
958.775	Н	6.5	28.7	35.2	46.0	10.8	Pass	200.0	154.8

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
34.365	V	15.4	17.9	33.3	40.0	6.7	Pass	100.0	277.6
82.380	V	16.1	9.7	25.8	40.0	14.2	Pass	100.0	270.4
99.840	V	14.3	10.4	24.7	43.5	18.8	Pass	100.0	95.9
139.125	V	15.4	14.9	30.3	43.5	13.2	Pass	100.0	356.4
250.675	V	18.8	13.5	32.3	46.0	13.7	Pass	100.0	28.5
954.895	V	6.0	28.7	34.7	46.0	11.3	Pass	200.0	141.5

Page 18 of 27


RADIATED EMISSION ABOVE 1GHZ - HORIZONTAL

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB PK	Pass/Fail	Height cm	Angle deg
2787.500	Н	36.3	2.5	38.8	74.0	35.2	Pass	100.0	180.6
3912.500	Н	36.7	6.4	43.1	74.0	30.9	Pass	100.0	109.9
5037.500	Н	34.1	9.2	43.3	74.0	30.7	Pass	100.0	38.5

Page 19 of 27

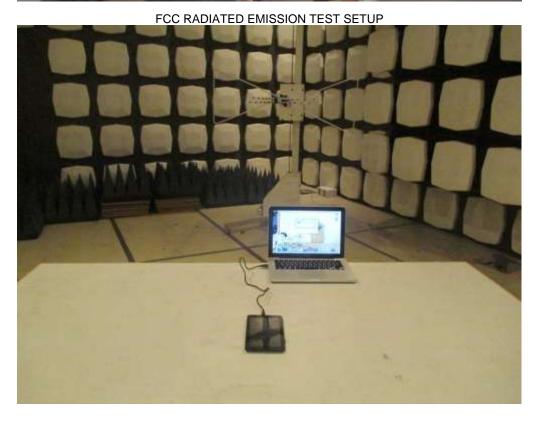
RADIATED EMISSION ABOVE 1GHZ - VERTICAL

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB PK	Pass/Fail	Height cm	Angle deg
2887.500	V	35.6	3.2	38.8	74.0	35.2	Pass	200.0	320.6
3900.000	V	36.3	6.4	42.7	74.0	31.3	Pass	200.0	356.3
4625.000	V	35.1	7.7	42.8	74.0	31.2	Pass	200.0	356.3

RESULT: PASS

Note: 6~12.38GHz at least have 20dB margin. No recording in the test report.

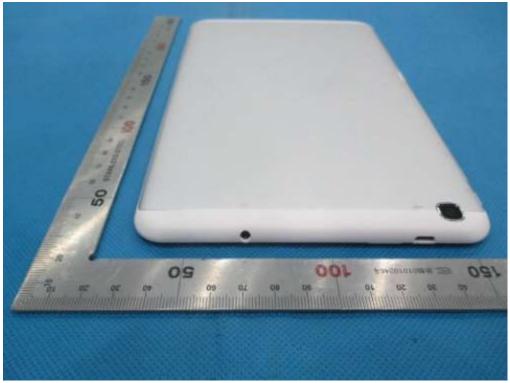
Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.


The "Factor" value can be calculated automatically by software of measurement system.

Page 20 of 27

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

FCC LINE CONDUCTED EMISSION TEST SETUP


Page 21 of 27

APPENDIX 2 PHOTOGRAPHS OF EUT

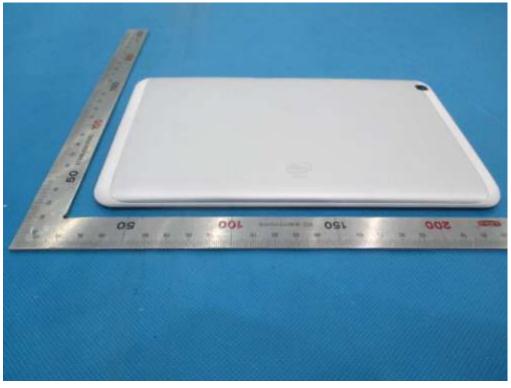
TOTAL VIEW OF EUT

TOP VIEW OF EUT

Report No.: AGC00119141102FE08 Page 22 of 27

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT



Report No.: AGC00119141102FE08 Page 23 of 27

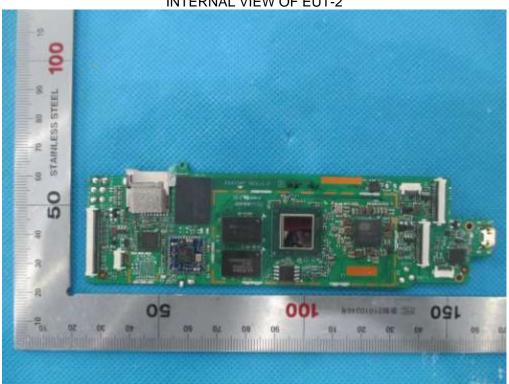
BACK VIEW OF EUT

LEFT VIEW OF EUT

Page 24 of 27

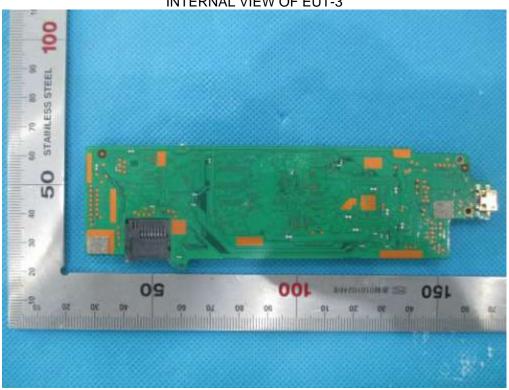
RIGHT VIEW OF EUT

OPEN VIEW OF EUT-1


Report No.: AGC00119141102FE08 Page 25 of 27

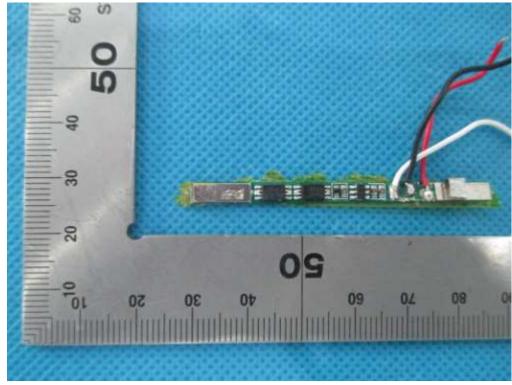
Antenna

INTERNAL VIEW OF EUT-1



INTERNAL VIEW OF EUT-2

Report No.: AGC00119141102FE08 Page 26 of 27



Report No.: AGC00119141102FE08 Page 27 of 27

----END OF REPORT----