

# Meteorcomm LLC.

## TEST REPORT FOR

### 45MHz 100W GMSK Packet Data Transceiver, MCC-545C

#### Tested To The Following Standards:

#### FCC Part 90I

Report No.: 92688-7

Date of issue: February 14, 2012



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

## TABLE OF CONTENTS

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| Administrative Information .....                                             | 3  |
| Test Report Information .....                                                | 3  |
| Report Authorization .....                                                   | 3  |
| Test Facility Information .....                                              | 4  |
| Site Registration & Accreditation Information .....                          | 4  |
| Summary of Results .....                                                     | 5  |
| Conditions During Testing.....                                               | 5  |
| Equipment Under Test.....                                                    | 6  |
| Peripheral Devices .....                                                     | 6  |
| FCC Part 90I .....                                                           | 7  |
| 2.1033(c)(14)/2.1046/90.205 - RF Power Output.....                           | 7  |
| 2.1033(c)(14)/2.1049/90.209 - Occupied Bandwidth.....                        | 9  |
| 2.1033(c)(14)/2.1051/90.210(c) - Spurious Emissions at Antenna Terminal..... | 13 |
| 2.1033(c)(14)/2.1053/90.210(c) - Field Strength of Spurious Radiation .....  | 20 |
| 2.1033(c)(14)/2.1055/90.213- Frequency Stability .....                       | 24 |
| Supplemental Information .....                                               | 27 |
| Measurement Uncertainty .....                                                | 27 |
| Emissions Test Details.....                                                  | 27 |

## ADMINISTRATIVE INFORMATION

### Test Report Information

**REPORT PREPARED FOR:**

Meteorcomm LLC.  
1201 SW 7th Street  
Renton, WA 98057

Representative: Fred Cleveland  
Customer Reference Number: 11283

**REPORT PREPARED BY:**

Dianne Dudley  
CKC Laboratories, Inc.  
5046 Sierra Pines Drive  
Mariposa, CA 95338

Project Number: 92688

**DATE OF EQUIPMENT RECEIPT:**  
**DATE(S) OF TESTING:**

January 30, 2012  
January 30-31, 2012

### Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.



*Steve Behm*  
*Director of Quality Assurance & Engineering Services*  
*CKC Laboratories, Inc.*

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):  
CKC Laboratories, Inc.  
22116 23rd Drive S.E., Suite A  
Bothell, WA 98021-4413

## Site Registration & Accreditation Information

| Location | CB #   | Japan                          | Canada  | FCC    |
|----------|--------|--------------------------------|---------|--------|
| Bothell  | US0081 | R-2296, C-2506, T-1489 & G-284 | 3082C-1 | 318736 |

## SUMMARY OF RESULTS

### Standard / Specification: FCC Part 90I

| Description                                                | Test Procedure/Method                         | Results |
|------------------------------------------------------------|-----------------------------------------------|---------|
| RF Power Output                                            | FCC 2.1033(c)(14)/2.1046/90.205 / TIA- 603    | Pass    |
| Modulation Characteristics<br>Audio Frequency Response     | FCC 2.1033(c)(14)/2.1047(a)                   | NA      |
| Modulation Characteristics<br>Modulation Limiting Response | FCC 2.1033(c)(14)/2.1047(b)                   | NA      |
| Occupied Bandwidth                                         | FCC 2.1033(c)(14)/2.1049/90.209 / TIA- 603    | Pass    |
| Spurious Emissions at Antenna Terminal                     | FCC 2.1033(c)(14)/2.1051/90.210(c) / TIA- 603 | Pass    |
| Field Strength of Spurious Radiation                       | FCC 2.1033(c)(14)/2.1053/90.210(c) / TIA- 603 | Pass    |
| Frequency Stability                                        | FCC 2.1033(c)(14)/2.1055/90.213 / TIA- 603    | Pass    |

NA = Not applicable.

## Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

| Summary of Conditions |
|-----------------------|
| None                  |
|                       |

## EQUIPMENT UNDER TEST (EUT)

### EQUIPMENT UNDER TEST

#### 45MHz 100W GMSK Packet Data Transceiver

Manuf: Meteorcomm LLC.  
Model: MCC-545C  
Serial: 545308059

### PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

#### Heatsink

Manuf: Meteorcomm LLC.  
Model: NA  
Serial: NA

#### DC Power Supply

Manuf: Astron  
Model: VS-35M  
Serial: NA

#### GPS Antenna

Manuf: Synergy Systems, LLC.  
Model: SMA-35 3-5V  
Serial: 10001339

#### 50ohm Load

Manuf: Bird  
Model: 100-A-MFN-30  
Serial: NA

#### Laptop

Manuf: HP  
Model: NA  
Serial: NA

## FCC PART 90I

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) requirements for licensed devices.

### 2.1033(c)(14)/2.1046/90.205 - RF Power Output

#### Test Conditions / Setup

The EUT is located on a table. The EUT is connected to a support laptop through a serial cable. 45MHz antenna port is connected to the Power meter through 36dB of attenuation. A heatsink is bolted to the unit for testing purposes ONLY, and a 6" fan is aimed at the heat sink to keep the temperature down. The EUT is connected to a DC power supply. The EUT is in transmit mode.

Temp: 23°C, Humidity: 31%, Pressure: 102.3kPa

Frequency: 43MHz - 44.5MHz - 46MHz

Operating Voltage: 12VDC

Testing performed per TIA-603C

Engineer Name: A. Del Angel

#### Test Equipment

| Asset/Serial # | Description | Model                | Manufacturer | Cal Date  | Cal Due   |
|----------------|-------------|----------------------|--------------|-----------|-----------|
| ANP05759       | Attenuator  | PE7010-20            | Pasternack   | 2/16/2010 | 2/16/2012 |
| ANP05979       | Attenuator  | 40-6-34              | Weinschel    | 2/9/2010  | 2/9/2012  |
| AN03227        | Cable       | 32026-29080-29080-84 | Astrolab     | 5/2/2011  | 5/2/2013  |
| AN02378        | Power Meter | 438A                 | HP           | 3/28/2011 | 3/28/2013 |
| ANP05389       | Attenuator  | NA                   | Narda        | 1/27/2012 | 1/27/2014 |

#### Test Data

#### Results Table

| Channel | Frequency | Power (dBm) | Result |
|---------|-----------|-------------|--------|
| Low     | 43MHz     | 50.9        | PASS   |
| Mid     | 44.5MHz   | 50.55       | PASS   |
| High    | 46MHz     | 50.21       | PASS   |

**Test Setup Photos**



## 2.1033(c)(14)/2.1049/90.209 - Occupied Bandwidth

### Test Conditions / Setup

The EUT is located on a table. The EUT is connected to a support laptop through a serial cable. 45MHz antenna port is connected to the Spectrum Analyzer through 36dB of attenuation. A heatsink is bolted to the unit for testing purposes ONLY, and a 6" fan is aimed at the heat sink to keep the temperature down. The EUT is connected to a DC power supply. The EUT is in transmit mode.

Temp: 23°C

Humidity: 31%

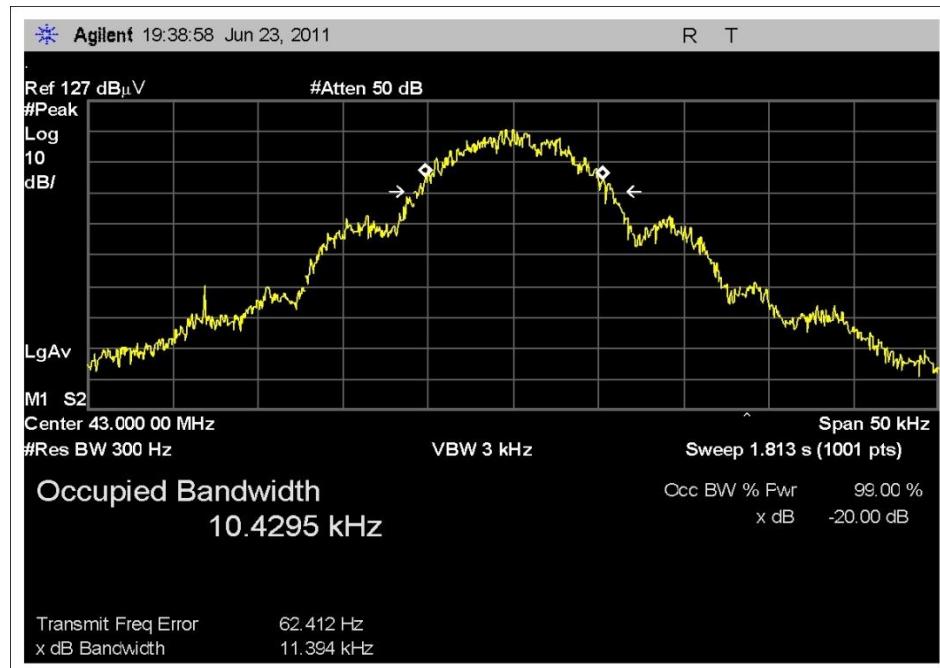
Pressure: 102.3kPa

Frequency: 43MHz - 44.5MHz - 46MHz

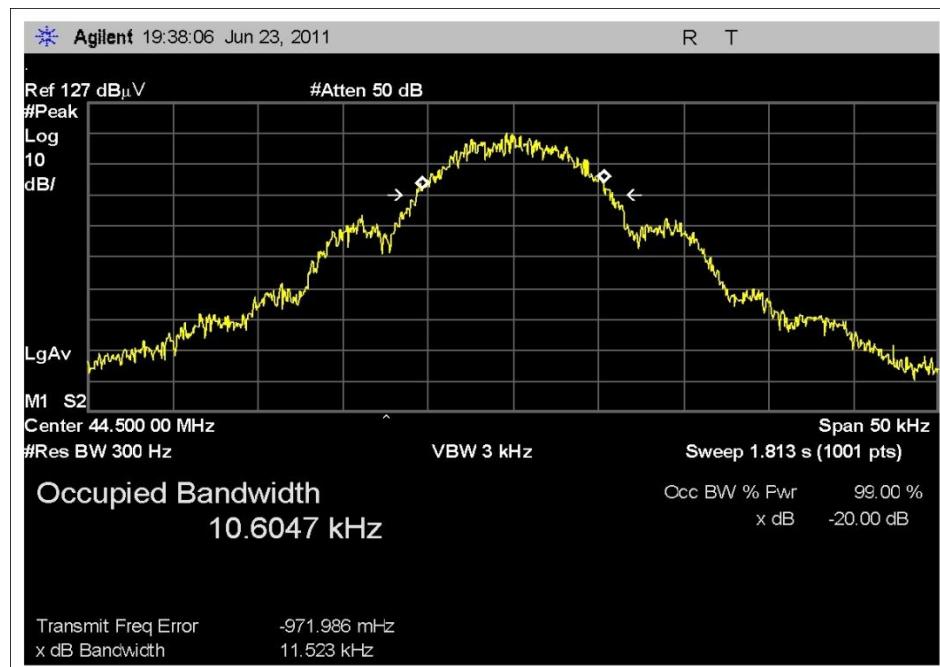
Operating Voltage: 12VDC

Testing performed per TIA-603C

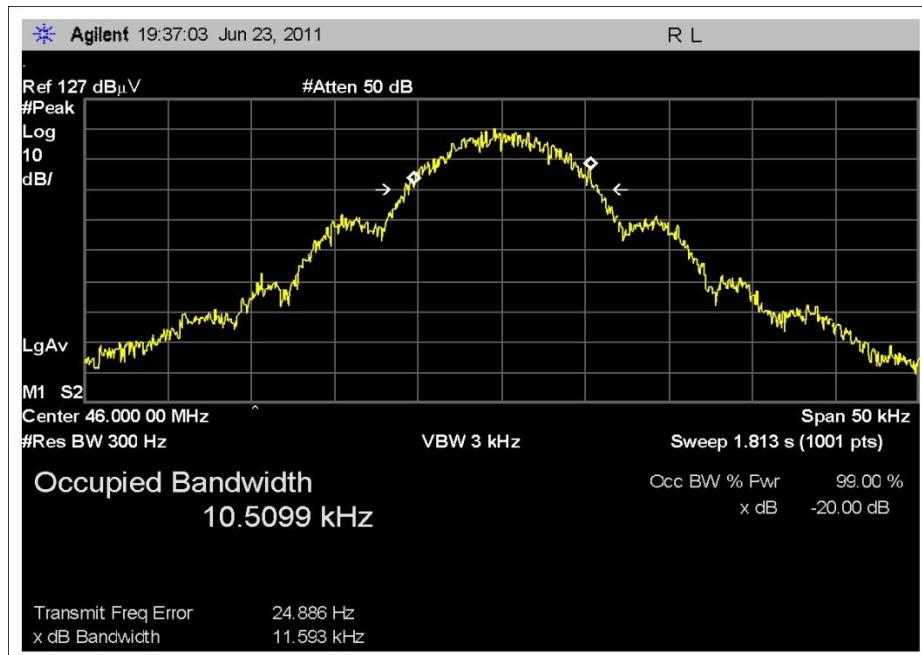
Engineer Name: A. Del Angel


### **Test Equipment**

| Asset/Serial # | Description       | Model                | Manufacturer | Cal Date  | Cal Due   |
|----------------|-------------------|----------------------|--------------|-----------|-----------|
| ANP05759       | Attenuator        | PE7010-20            | Pasternack   | 2/16/2010 | 2/16/2012 |
| ANP05979       | Attenuator        | 40-6-34              | Weinschel    | 2/9/2010  | 2/9/2012  |
| AN03227        | Cable             | 32026-29080-29080-84 | Astrolab     | 5/2/2011  | 5/2/2013  |
| 02871          | Spectrum Analyzer | E4440A               | Agilent      | 4/22/2011 | 4/22/2013 |
| ANP05389       | Attenuator        | NA                   | Narda        | 1/27/2012 | 1/27/2014 |


### Test Data

#### **Results Table**


| Channel | Frequency | OBW (kHz) | Results |
|---------|-----------|-----------|---------|
| Low     | 43MHz     | 10.43     | Pass    |
| Mid     | 44.5MHz   | 10.6      | Pass    |
| High    | 46MHz     | 10.51     | Pass    |



LOW



MID



HIGH

**Test Setup Photos**





## **2.1033(c)(14)/2.1051/90.210(c) - Spurious Emissions at Antenna Terminal**

### **Test Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Meteorcomm LLC.**  
 Specification: **47 CFR §90.210(c) Spurious Emissions**  
 Work Order #: **92688** Date: **1/30/2012**  
 Test Type: **Conducted Emissions** Time: **16:34:34**  
 Equipment: **45MHz 100W GMSK packet data transceiver.** Sequence#: **1**  
 Manufacturer: Meteorcomm LLC. Tested By: Armando Del Angel  
 Model: MCC-545C 12VDC  
 S/N: 545308059

***Test Equipment:***

| ID | Asset #  | Description       | Model                | Calibration Date | Cal Due Date |
|----|----------|-------------------|----------------------|------------------|--------------|
| T1 | ANP05759 | Attenuator        | PE7010-20            | 2/16/2010        | 2/16/2012    |
| T2 | ANP05979 | Attenuator        | 40-6-34              | 2/9/2010         | 2/9/2012     |
| T3 | AN03227  | Cable             | 32026-29080-29080-84 | 5/2/2011         | 5/2/2013     |
| T4 | AN02871  | Spectrum Analyzer | E4440A               | 4/22/2011        | 4/22/2013    |
| T5 | ANP05389 | Attenuator        |                      | 1/27/2012        | 1/27/2014    |

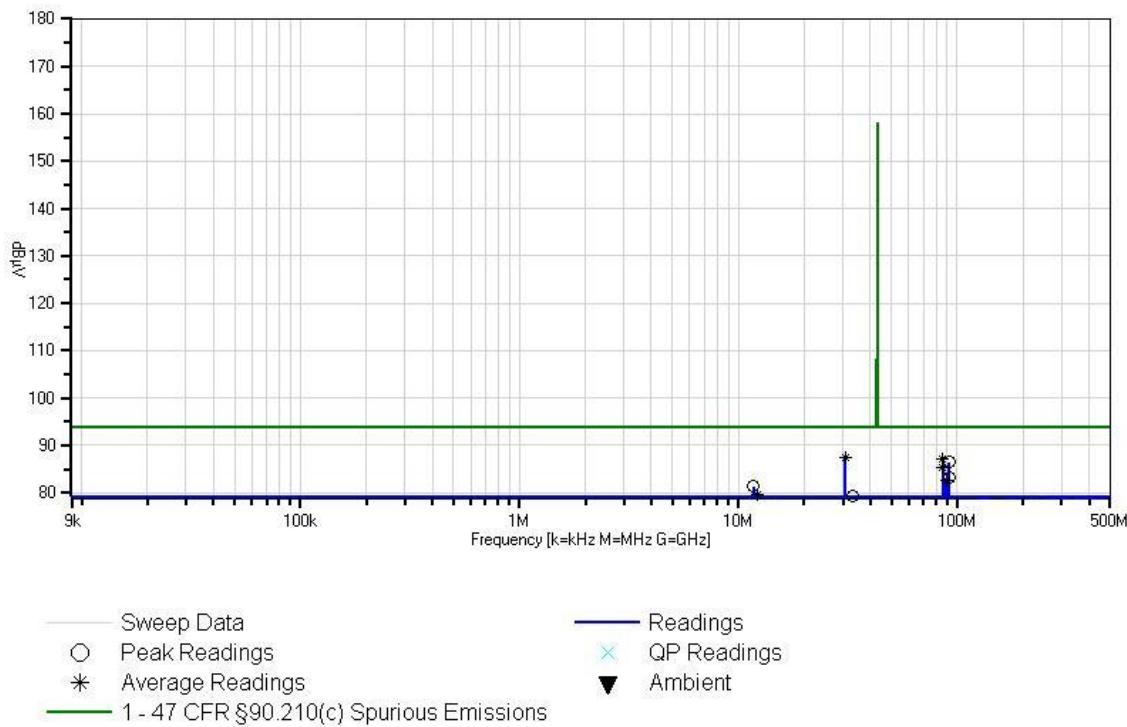
***Equipment Under Test (\* = EUT):***

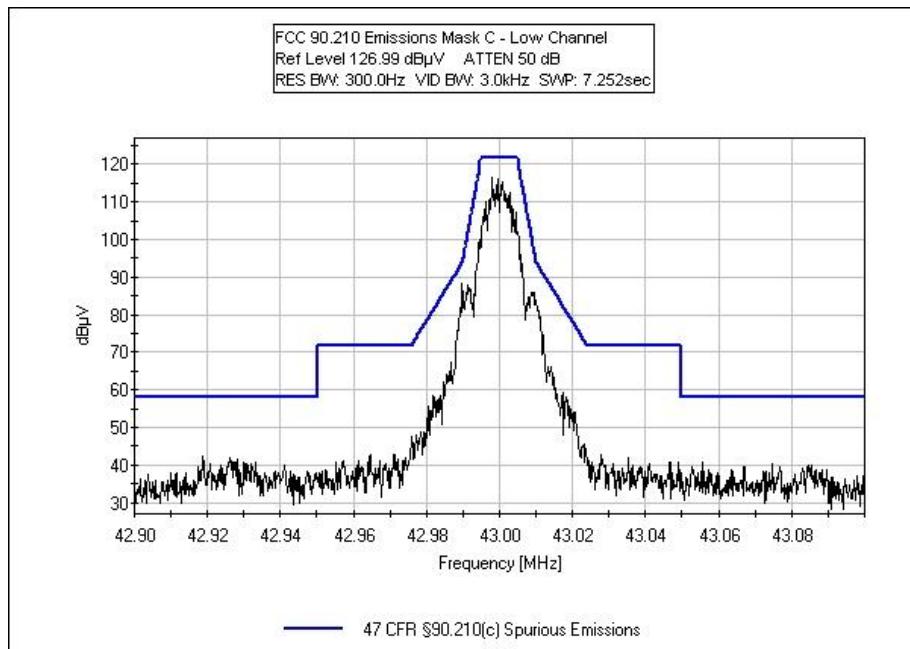
| Function                                  | Manufacturer    | Model #  | S/N       |
|-------------------------------------------|-----------------|----------|-----------|
| 45MHz 100W GMSK packet data transceiver.* | Meteorcomm LLC. | MCC-545C | 545308059 |

***Support Devices:***

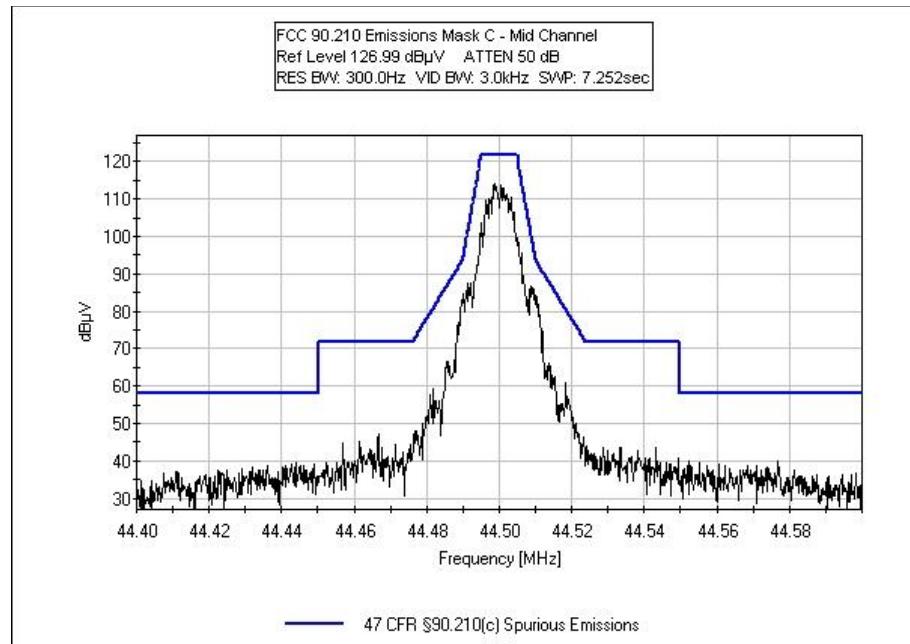
| Function        | Manufacturer          | Model #      | S/N      |
|-----------------|-----------------------|--------------|----------|
| Heatsink        | Meteorcomm LLC.       | NA           | NA       |
| DC power Supply | Astron                | VS-35M       | NA       |
| GPS Antenna     | Synergy Systems, LLC. | SMA-35 3-5V  | 10001339 |
| 50ohm Load      | Bird                  | 100-A-MFN-30 | NA       |
| Laptop          | HP                    | NA           | NA       |

**Test Conditions / Notes:**

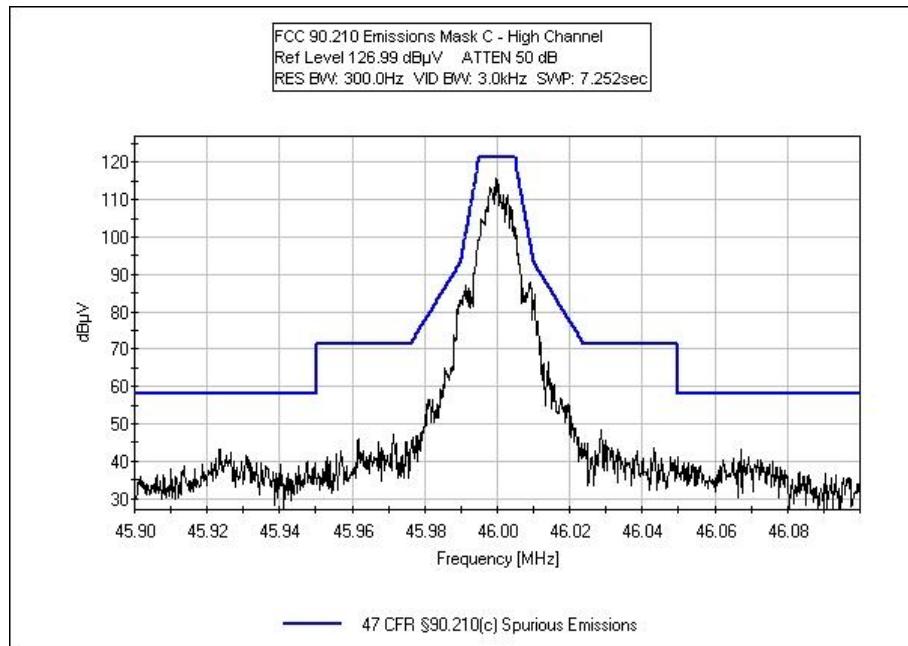

Temp: 23°C  
 Humidity: 31%  
 Pressure: 102.3kPa  
 Frequency: 0.009-500MHz  
 EUT is located on a table.  
 EUT is connected to a support laptop through a serial cable.  
 45MHz antenna port is connected to the spectrum analyzer through 36dB of attenuation.  
 A heatsink is bolted to the unit for testing purposes ONLY, and a 6" fan is aimed at the heat sink to keep the temperature down. EUT is connected to a DC power supply.  
 EUT will be transmitting for 110ms and will stop for 630ms (15%DC)  
 Testing performed per TIA-603C


Ext Attn: 0 dB

| #  | Freq<br>MHz    | Rdng<br>dB $\mu$ V | Reading listed by margin. |          |          |          | Test Lead: Antenna Port |                    |                      |                |
|----|----------------|--------------------|---------------------------|----------|----------|----------|-------------------------|--------------------|----------------------|----------------|
|    |                |                    | T1<br>dB                  | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table           | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V   | Margin<br>dB   |
| 1  | 30.820M<br>Ave | 51.3<br>+10.0      | +20.2                     | +5.6     | +0.2     | +0.0     | +0.0                    | 87.3               | 94.0<br>LOW Channel  | -6.7<br>Anten  |
| ^  | 30.819M        | 60.8<br>+10.0      | +20.2                     | +5.6     | +0.2     | +0.0     | +0.0                    | 96.8               | 94.0<br>LOW Channel  | +2.8<br>Anten  |
| 3  | 86.000M<br>Ave | 51.1<br>+10.0      | +20.2                     | +5.6     | +0.3     | +0.0     | +0.0                    | 87.2               | 94.0<br>LOW Channel  | -6.8<br>Anten  |
| 4  | 91.995M        | 50.4<br>+10.0      | +20.2                     | +5.6     | +0.3     | +0.0     | +0.0                    | 86.5               | 94.0<br>HIGH Channel | -7.5<br>Anten  |
| 5  | 86.000M<br>Ave | 49.2<br>+10.0      | +20.2                     | +5.6     | +0.3     | +0.0     | +0.0                    | 85.3               | 94.0<br>LOW Channel  | -8.7<br>Anten  |
| 6  | 92.000M        | 47.2<br>+10.0      | +20.2                     | +5.6     | +0.3     | +0.0     | +0.0                    | 83.3               | 94.0<br>HIGH Channel | -10.7<br>Anten |
| 7  | 89.001M<br>Ave | 46.5<br>+10.0      | +20.2                     | +5.6     | +0.3     | +0.0     | +0.0                    | 82.6               | 94.0<br>MID Channel  | -11.4<br>Anten |
| ^  | 88.996M        | 49.4<br>+10.0      | +20.2                     | +5.6     | +0.3     | +0.0     | +0.0                    | 85.5               | 94.0<br>MID Channel  | -8.5<br>Anten  |
| 9  | 11.710M        | 45.5<br>+10.0      | +20.2                     | +5.6     | +0.1     | +0.0     | +0.0                    | 81.4               | 94.0<br>HIGH Channel | -12.6<br>Anten |
| 10 | 12.181M<br>Ave | 43.6<br>+10.0      | +20.2                     | +5.6     | +0.1     | +0.0     | +0.0                    | 79.5               | 94.0<br>LOW Channel  | -14.5<br>Anten |
| ^  | 12.181M        | 52.8<br>+10.0      | +20.2                     | +5.6     | +0.1     | +0.0     | +0.0                    | 88.7               | 94.0<br>LOW Channel  | -5.3<br>Anten  |
| 12 | 33.180M        | 43.3<br>+10.0      | +20.2                     | +5.6     | +0.2     | +0.0     | +0.0                    | 79.3               | 94.0<br>MID Channel  | -14.7<br>Anten |
| 13 | 129.006M       | 41.8<br>+10.0      | +20.3                     | +5.6     | +0.3     | +0.0     | +0.0                    | 78.0               | 94.0<br>LOW Channel  | -16.0<br>Anten |
| 14 | 133.493M       | 41.0<br>+10.0      | +20.3                     | +5.6     | +0.3     | +0.0     | +0.0                    | 77.2               | 94.0<br>MID Channel  | -16.8<br>Anten |
| 15 | 11.330M        | 40.8<br>+10.0      | +20.2                     | +5.6     | +0.1     | +0.0     | +0.0                    | 76.7               | 94.0<br>MID Channel  | -17.3<br>Anten |
| 16 | 14.820M        | 39.5<br>+10.0      | +20.2                     | +5.6     | +0.1     | +0.0     | +0.0                    | 75.4               | 94.0<br>MID Channel  | -18.6<br>Anten |
| 17 | 178.010M       | 38.4<br>+10.0      | +20.3                     | +5.6     | +0.4     | +0.0     | +0.0                    | 74.7               | 94.0<br>MID Channel  | -19.3<br>Anten |


|    |                     |      |                |      |      |      |      |      |      |       |       |
|----|---------------------|------|----------------|------|------|------|------|------|------|-------|-------|
| 18 | 137.992M            | 38.3 | +20.2<br>+10.0 | +5.6 | +0.3 | +0.0 | +0.0 | 74.4 | 94.0 | -19.6 | Anten |
| 19 | 184.005M            | 35.7 | +20.3<br>+10.0 | +5.6 | +0.4 | +0.0 | +0.0 | 72.0 | 94.0 | -22.0 | Anten |
| 20 | 214.989M            | 34.5 | +20.3<br>+10.0 | +5.6 | +0.4 | +0.0 | +0.0 | 70.8 | 94.0 | -23.2 | Anten |
| 21 | 171.995M            | 34.4 | +20.3<br>+10.0 | +5.6 | +0.4 | +0.0 | +0.0 | 70.7 | 94.0 | -23.3 | Anten |
| 22 | 257.999M<br>Ambient | 31.2 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 67.6 | 94.0 | -26.4 | Anten |
| 23 | 400.500M<br>Ambient | 30.9 | +20.3<br>+10.0 | +5.6 | +0.6 | +0.0 | +0.0 | 67.4 | 94.0 | -26.6 | Anten |
| 24 | 230.000M<br>Ambient | 30.5 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 66.9 | 94.0 | -27.1 | Anten |
| 25 | 222.500M<br>Ambient | 30.5 | +20.3<br>+10.0 | +5.6 | +0.4 | +0.0 | +0.0 | 66.8 | 94.0 | -27.2 | Anten |
| 26 | 386.999M<br>Ambient | 30.2 | +20.3<br>+10.0 | +5.6 | +0.6 | +0.0 | +0.0 | 66.7 | 94.0 | -27.3 | Anten |
| 27 | 322.000M<br>Ambient | 30.1 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 66.5 | 94.0 | -27.5 | Anten |
| 28 | 460.000M<br>Ambient | 29.0 | +20.3<br>+10.0 | +5.7 | +0.6 | +0.0 | +0.0 | 65.6 | 94.0 | -28.4 | Anten |
| 29 | 445.000M<br>Ambient | 28.9 | +20.3<br>+10.0 | +5.7 | +0.6 | +0.0 | +0.0 | 65.5 | 94.0 | -28.5 | Anten |
| 30 | 356.000M<br>Ambient | 28.9 | +20.3<br>+10.0 | +5.6 | +0.6 | +0.0 | +0.0 | 65.4 | 94.0 | -28.6 | Anten |
| 31 | 429.999M<br>Ambient | 28.8 | +20.3<br>+10.0 | +5.7 | +0.6 | +0.0 | +0.0 | 65.4 | 94.0 | -28.6 | Anten |
| 32 | 311.500M<br>Ambient | 28.7 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 65.1 | 94.0 | -28.9 | Anten |
| 33 | 300.999M<br>Ambient | 28.7 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 65.1 | 94.0 | -28.9 | Anten |
| 34 | 267.000M<br>Ambient | 28.6 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 65.0 | 94.0 | -29.0 | Anten |
| 35 | 414.000M<br>Ambient | 28.0 | +20.3<br>+10.0 | +5.6 | +0.6 | +0.0 | +0.0 | 64.5 | 94.0 | -29.5 | Anten |
| 36 | 343.999M<br>Ambient | 27.3 | +20.3<br>+10.0 | +5.6 | +0.6 | +0.0 | +0.0 | 63.8 | 94.0 | -30.2 | Anten |
| 37 | 368.000M<br>Ambient | 27.2 | +20.3<br>+10.0 | +5.6 | +0.6 | +0.0 | +0.0 | 63.7 | 94.0 | -30.3 | Anten |
| 38 | 276.000M<br>Ambient | 27.2 | +20.3<br>+10.0 | +5.6 | +0.5 | +0.0 | +0.0 | 63.6 | 94.0 | -30.4 | Anten |

CKC Laboratories, Inc. Date: 1/30/2012 Time: 16:34:34 Meteorcomm LLC, WO#: 92688  
47 CFR §90.210(c) Spurious Emissions Test Lead: Antenna Port Antenna Port Sequence#: 1 Ext ATTN: 0 dB






LOW



MID



HIGH

Test Setup Photos





## **2.1033(c)(14)/2.1053/90.210(c) - Field Strength of Spurious Radiation**

### **Test Conditions / Setup**

The EUT is located on the back of the test table, on the center of the turn table. The EUT is connected to a support laptop located on the outside of the test chamber through a serial cable. GPS port is terminated with a GPS antenna. 45MHz antenna port is terminated with a 50ohm load. A heatsink is bolted to the unit for testing purposes ONLY, and a 6" fan is aimed at the heat sink to keep the temperature down. DC power supply is located under the test table. For testing purposes the EUT will be transmitting for 110ms and will stop for 630ms (15%DC).

Temp: 23°C

Humidity: 31%

Pressure: 102.3kPa

Frequency: 0.009-500MHz

Testing performed per TIA-603C

Engineer Name: A. Del Angel

### **Test Equipment**

| Asset/Serial # | Description       | Model                | Manufacturer | Cal Date   | Cal Due    |
|----------------|-------------------|----------------------|--------------|------------|------------|
| AN01316        | Preamp            | 8447D                | HP           | 5/21/2010  | 5/21/2012  |
| AN01994        | Biconilog Antenna | CBL6111C             | Chase        | 3/8/2010   | 3/8/2012   |
| AN03227        | Cable             | 32026-29080-29080-84 | AstroLab     | 5/2/2011   | 5/2/2013   |
| ANP05360       | Cable             | RG214                | Belden       | 11/8/2010  | 11/8/2012  |
| ANP05366       | Cable             | RG-214               | Belden       | 10/14/2011 | 10/14/2013 |
| AN02871        | Spectrum Analyzer | E4440A               | Agilent      | 4/22/2011  | 4/22/2013  |
| AN00052        | Loop Antenna      | 6502                 | EMCO         | 6/8/2010   | 6/8/2012   |
| ANP05547       | Cable             | Heliax               | Andrews      | 7/26/2011  | 7/26/2013  |

**Test Data**

Operating Frequency: 43-46 MHz  
                           Low, Mid and  
                           Channels: High  
                           Highest Measured Output  
                           Power: 50.90 (dBm)= 123.027 (Watts)  
                           Distance: 3 meters  
                           Limit: 43+10Log(P)= 63.90 dBc

| Freq. (MHz) | Reference Level (dBm) | Antenna Polarity (H/V) | dBc    |
|-------------|-----------------------|------------------------|--------|
| 172.00      | -36.50000434          | Vert                   | 87.40  |
| 178.00      | -38.90000434          | Vert                   | 89.80  |
| 184.00      | -42.30000434          | Vert                   | 93.20  |
| 89.00       | -43.00000434          | Horiz                  | 93.90  |
| 92.00       | -45.20000434          | Horiz                  | 96.10  |
| 171.99      | -45.50000434          | Horiz                  | 96.40  |
| 133.50      | -45.80000434          | Vert                   | 96.70  |
| 86.00       | -45.80000434          | Vert                   | 96.70  |
| 92.00       | -45.90000434          | Vert                   | 96.80  |
| 311.50      | -45.90000434          | Horiz                  | 96.80  |
| 138.00      | -46.00000434          | Vert                   | 96.90  |
| 129.00      | -46.50000434          | Vert                   | 97.40  |
| 89.00       | -46.80000434          | Vert                   | 97.70  |
| 230.00      | -47.10000434          | Vert                   | 98.00  |
| 178.00      | -47.20000434          | Horiz                  | 98.10  |
| 129.00      | -48.60000434          | Horiz                  | 99.50  |
| 184.00      | -49.90000434          | Horiz                  | 100.80 |
| 86.00       | -49.90000434          | Horiz                  | 100.80 |
| 133.50      | -50.00000434          | Horiz                  | 100.90 |
| 322.00      | -50.50000434          | Horiz                  | 101.40 |
| 230.00      | -50.50000434          | Horiz                  | 101.40 |
| 344.00      | -50.90000434          | Horiz                  | 101.80 |
| 301.00      | -51.10000434          | Horiz                  | 102.00 |
| 222.50      | -51.40000434          | Vert                   | 102.30 |
| 138.00      | -52.10000434          | Horiz                  | 103.00 |
| 258.00      | -52.40000434          | Vert                   | 103.30 |
| 368.00      | -53.50000434          | Horiz                  | 104.40 |
| 356.00      | -54.20000434          | Horiz                  | 105.10 |
| 215.00      | -54.50000434          | Vert                   | 105.40 |
| 222.50      | -55.00000434          | Horiz                  | 105.90 |
| 387.00      | -55.70000434          | Horiz                  | 106.60 |
| 400.50      | -55.90000434          | Horiz                  | 106.80 |

|        |              |       |        |
|--------|--------------|-------|--------|
| 276.00 | -56.20000434 | Horiz | 107.10 |
| 258.00 | -57.00000434 | Horiz | 107.90 |
| 301.00 | -57.70000434 | Vert  | 108.60 |
| 414.00 | -57.80000434 | Horiz | 108.70 |
| 215.00 | -58.20000434 | Horiz | 109.10 |
| 400.50 | -59.20000434 | Vert  | 110.10 |
| 311.50 | -59.20000434 | Vert  | 110.10 |
| 276.00 | -59.40000434 | Vert  | 110.30 |
| 445.00 | -59.50000434 | Horiz | 110.40 |
| 344.00 | -59.50000434 | Vert  | 110.40 |
| 430.00 | -59.60000434 | Horiz | 110.50 |
| 267.00 | -60.30000434 | Vert  | 111.20 |
| 430.00 | -60.90000434 | Vert  | 111.80 |
| 445.00 | -61.40000434 | Vert  | 112.30 |
| 267.00 | -61.70000434 | Horiz | 112.60 |
| 460.00 | -61.90000434 | Horiz | 112.80 |
| 414.00 | -61.90000434 | Vert  | 112.80 |
| 356.00 | -61.90000434 | Vert  | 112.80 |
| 322.00 | -62.20000434 | Vert  | 113.10 |
| 368.00 | -64.20000434 | Vert  | 115.10 |
| 460.00 | -64.60000434 | Vert  | 115.50 |
| 387.00 | -65.30000434 | Vert  | 116.20 |

**Test Setup Photos**





## 2.1033(c)(14)/2.1055/90.213 - Frequency Stability

### Test Conditions / Setup

The EUT is located inside the temperature chamber. The EUT is connected to a support laptop through a serial cable. 45MHz antenna port is connected to the Spectrum Analyzer through 36dB of attenuation. A heatsink is bolted to the unit for testing purposes ONLY, and a 6" fan is aimed at the heat sink to keep the temperature down. The EUT is connected to a DC power supply. The EUT in transmit mode. Measurements will be taken at 10°C intervals between -30°C to +50°C. Frequency: 43MHz - 44.5MHz - 46MHz.

Testing performed per TIA-603C

Engineer Name: A. Del Angel

| Test Equipment |                     |                      |              |           |           |
|----------------|---------------------|----------------------|--------------|-----------|-----------|
| Asset/Serial # | Description         | Model                | Manufacturer | Cal Date  | Cal Due   |
| ANP05759       | Attenuator          | PE7010-20            | HP           | 2/16/2010 | 2/16/2012 |
| ANP05979       | Attenuator          | 40-6-34              | Weinschel    | 2/9/2010  | 2/9/2012  |
| AN03227        | Cable               | 32026-29080-29080-84 | AstroLab     | 5/2/2011  | 5/2/2013  |
| AN02871        | Spectrum Analyzer   | E4440A               | Agilent      | 4/22/2011 | 4/22/2013 |
| ANP05389       | Attenuator          | NA                   | Narda        | 1/27/2012 | 1/27/2014 |
| AN02757        | Temperature Chamber | F100/350-8           | Bemco        | 1/6/2011  | 1/6/2013  |

### **Test Data**

**Device Model #:**
**MCC-545C**
**Operating Voltage:**
**12 VDC**
**Frequency Limit:**
**20 PPM**

#### **Temperature Variations**

|                    |         | Channel 1 (MHz) | Dev. (PPM) | Channel 2 (MHz) | Dev. (PPM) | Channel 3 (MHz) | Dev. (PPM) |
|--------------------|---------|-----------------|------------|-----------------|------------|-----------------|------------|
| Channel Frequency: |         | 43.000000       |            | 44.500000       |            | 46.000000       |            |
| Temp (C)           | Voltage |                 |            |                 |            |                 |            |
|                    |         | 12              | 42.999962  | 0.88372         | 44.499968  | 0.71910         | 45.999966  |
|                    |         | 12              | 42.999969  | 0.72093         | 44.499968  | 0.71910         | 45.999967  |
|                    |         | 12              | 42.999987  | 0.30233         | 44.499988  | 0.26966         | 45.999989  |
|                    |         | 12              | 43.000001  | 0.02326         | 44.500000  | 0.00000         | 46.000001  |
|                    |         | 12              | 43.000004  | 0.09302         | 44.500004  | 0.08989         | 46.000005  |
|                    |         | 12              | 43.000000  | 0.00000         | 44.499998  | 0.04494         | 45.999998  |
|                    |         | 12              | 43.000003  | 0.06977         | 44.500004  | 0.08989         | 46.000004  |
|                    |         | 12              | 43.000002  | 0.04651         | 44.500002  | 0.04494         | 46.000002  |
|                    |         | 12              | 43.000004  | 0.09302         | 44.500004  | 0.08989         | 46.000004  |

#### **Voltage Variations ( $\pm 15\%$ )**

|    |      |           |         |  |           |         |           |         |
|----|------|-----------|---------|--|-----------|---------|-----------|---------|
| 20 | 10.2 | 42.999998 | 0.04651 |  | 44.499999 | 0.02247 | 45.999998 | 0.04348 |
| 20 | 12   | 43.000000 | 0.00000 |  | 44.499998 | 0.04494 | 45.999998 | 0.04348 |
| 20 | 13.8 | 42.999998 | 0.04651 |  | 44.499998 | 0.04494 | 45.999999 | 0.02174 |

|                            |  |                |  |  |                |  |                |
|----------------------------|--|----------------|--|--|----------------|--|----------------|
| <b>Max Deviation (PPM)</b> |  | <b>0.88372</b> |  |  | <b>0.71910</b> |  | <b>0.73913</b> |
|                            |  | <b>PASS</b>    |  |  | <b>PASS</b>    |  | <b>PASS</b>    |

**Test Setup Photos**



## SUPPLEMENTAL INFORMATION

### Measurement Uncertainty

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ . Compliance is deemed to occur provided measurements are below the specified limits.

### Emissions Test Details

#### TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $\text{dB}\mu\text{V}/\text{m}$ , the spectrum analyzer reading in  $\text{dB}\mu\text{V}$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

| <b>SAMPLE CALCULATIONS</b> |                |
|----------------------------|----------------|
| Meter reading              | (dB $\mu$ V)   |
| + Antenna Factor           | (dB)           |
| + Cable Loss               | (dB)           |
| - Distance Correction      | (dB)           |
| - Preamplifier Gain        | (dB)           |
| = Corrected Reading        | (dB $\mu$ V/m) |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| <b>MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE</b> |                     |                  |                   |
|-------------------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                              | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS                                               | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                                | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                                | 1000 MHz            | >1 GHz           | 1 MHz             |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

##### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

##### Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

##### Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.