Page : 1 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

EMI TEST REPORT

Test Report No.: 24AE0055-HO-1

Applicant: Mitsubishi Electric Corporation

Type of Equipment: Digital Color Printer

Model No.: CP9000DW* and CP9500DW* series

FCC ID BGBCP9000DW

Test standard: FCC Part 15 Subpart C Section 15.225

Test Result: Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Apex Co., Ltd.
- 2. The results in this report apply only to the sample tested.
- 3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the EMC profile.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report does not constitute an endorsement by NIST/NVLAP or U.S. Government.

Date of test: September 26, 27 and 28, 2003

Naoki Sakamoto

Leader of EMC Head Office Division

Approved by:_

Tested by:

Hironobu Shimoji

Group Leader of EMC Head Office Division

Page : 2 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

CONTENTS

	PAGE
SECTION 1: Client information	3
SECTION 2: Equipment under test (E.U.T.)	3
SECTION 3: Test specification, methods & procedures	5
SECTION 4: Operation of E.U.T. during testing	6
SECTION 5: Summary of test results	7
SECTION 6: Conducted emissions	8
SECTION 7: Radiated emissions	9
SECTION 8: Frequency stability	10
APPENDIX 1: Photographs of test setup	11
APPENDIX 2: Test instruments	11
APPENDIX 3: Data of EMI test	11

Page : 3 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 1: Client information

Company name : Mitsubishi Electric Corporation

Address : 1 Zusho Baba Nagaokakyo-City, Kyoto-Pref., 617-8550 Japan

Telephone Number : +81-75-958-3249 Facsimile Number : +81-75-958-3709 Contact Person : Shoji Yasui

SECTION 2: Equipment under test (E.U.T.)

Type of Equipment : RFIID Built-in Printer

Model No. : CP9000DW Sample No. : Transceiver

Number of Channel : 1

Frequency Characteristics : 13.56MHz Modulation : ASK

Information antenna : Internal / Loop antenna Rating : AC100V - 240V 50/60Hz *RF ID Module DC3.3V

Country of Manufacture : Japan

Receipt Date of Sample : September 24, 2002 Condition of EUT : Engineering prototype

Page : 4 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

2.2 Product Description

Model CP9000DW* and CP9500DW* series(referred to as the EUT in this report) are RFID built-in Printer. The RFID is used for getting Ink-Ribbon information from RFID-Tag built in the Ink-Ribbon.

CP9000DW* series

image size

L size 1212*1730pixels (89*127mm) KG size 1388*2077pixels (102*152mm)

<u>Interface</u>

SCSI- & USB 2.0(High Speed)

RAM

SDRAM x 1(IC7200)

CP9500DW* series

image size

L size 1212*1730pixels (89*127mm) KG size 1388*2077pixels (102*152mm)

2L size 1730*2424pixels (127*178mm)

W size 2070*3118pixels (152*229mm)

Interface

USB 2.0(High Speed)

RAM

SDRAM x 2(IC7200 & IC7201)

Remarks: These series models have the same specifications on radio parts.

The testing by the "FCC15C Intentional Radiators" standard is performed on the CP9000DW out of these series models. These series model were applied to the Class A and verified in addition since it is not used in the residential environment according to the "FCC15B Unintentional Radiators" standard. Furthermore, the '* mark at the end of the model name is applicable to the appropriate letters or numbers when the similar models which have different print sizes or functions is developed in the future. In that case, the testing by the "FCC15B Unintentional Radiators" standard is performed again if necessary.

Page : 5 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 3: Test specification, methods & procedures

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart C Intentional Radiators

Section 15.225 Operation within the band 13.553MHz – 13.567MHz

3.2 Methods & Procedures

No.	Item	Test Procedure	Specification	Remarks	
1	Electric Field Strength of Fundamental Emission	ANSI C63.4:2000	FCC Section 15.225(a)	Radiated	
2	Electric Field Strength of Spurious Emission	ANSI C63.4:2000	FCC Section 15.225(b) FCC Section 15.205 FCC Section 15.209	Radiated	
3	Frequency stability vs. temperature vs. input voltage	ANSI C63.4:2000	FCC Section 15.225(c)	-	
4	Conducted Emission	ANSI C63.4:2000	FCC Section 15.207	AC Mains only	

3.3 FCC Part 15.203 Antenna requirement

Since type of Equipment uses a transmitting antenna that is an integral part of the equipment. it is impossible for end Users to replace the antenna without use of a special tool.

Therefore the equipment complies with the requirement of 15.203.

3.4 Addition from standard

No addition, deviation nor exclusion have been made from standards.

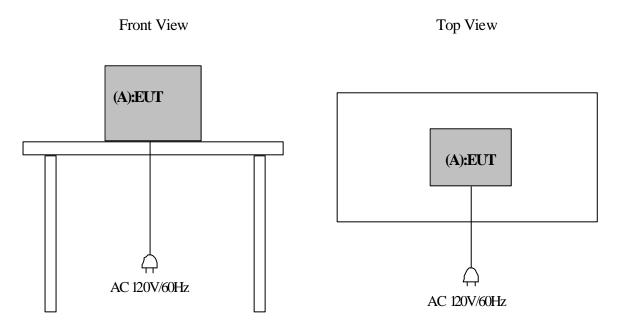
Page : 6 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to typical use.


The operating mode/system were as follows:

Operation mode is as follows;

Transmitting mode

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

4.2 Configuration and peripherals

Test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	S/N	Manufacturer	Remark
A	Printer	CP9000DW	M022	Mitsubishi Corporation	EUT

UL Apex Co., Ltd. EMC Head Office Division.

Page : 7 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 5: Summary of test results

5.1 Test results

No.	Item	Test Procedure	Specification	Remarks	Result
1	Electric Field Strength of Fundamental Emission	ANSI C63.4:2000	FCC Section 15.225(a)	Radiated	Complied
2	Electric Field Strength of Spurious Emission	ANSI C63.4:2000	FCC Section 15.225(b) FCC Section 15.205 FCC Section 15.209	Radiated	Complied
3	Frequency stability vs. temperature vs. input voltage	ANSI C63.4:2000	FCC Section 15.225(c)	Antenna terminal Conducted	Complied
4	Conducted Emission	ANSI C63.4:2000	FCC Section 15.207	AC Mains only	Complied

UL Apex Co., Ltd hereby confirms that E.U.T., in the configuration tested, complies with the specifications FCC Part 15 Subpart C Section 15.225.

5.2 Uncertainty

Conducted emission test

The measurement uncertainty (with a 95% confidence level) for this test was ± 1.3 dB.

? The data listed in this test report may exceed the test limit because it does not have enough margin.

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test

The measurement uncertainty (with a 95% confidence level) for this test using Loop antenna (3m) is ± 1.9 dB.

The measurement uncertainty (with a 95% confidence level) for this test using Biconical antenna (3m) is ±4.5dB.

The measurement uncertainty (with a 95% confidence level) for this test using Logperiodic antenna (3m) is $\pm 5.2 dB$.

? The data listed in this test report may exceed the test limit because it does not have enough margin.

† The data listed in this test report has enough margin, more than the site margin.

5.3 Test location

UL Apex Co., Ltd. EMC Head Office Division. No.2 semi Anechoic Chamber, 7.5 x 5.8 x 5.2 m.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

This semi anechoic chamber has been fully described in a report submitted to FCC office, and listed on June 05,2002

(Registration number: 846015). *NVLAP Lab. code: 200572-0

5.4 Photographs of test setup

Refer to Appendix 1.

5.5 Test instruments

Refer to Appendix 2.

5.6 Data of EMI Test

Refer to Appendix 3.

UL Apex Co., Ltd. EMC Head Office Division.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Page : 8 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 6: Conducted emission

6.1 Operating environment

The test was carried out on a reference ground plane 4.0 x 4.0m in No.2 semi Anechoic Chamber, 7.5 x 5.8 x 5.2m.

Temperature : See data Humidity : See data

6.2 Test procedure

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT and its peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from AMN (Artificial Mains Network) and excess AC cable was bundled in center. I/O cable that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane. Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the input power source. All unused 50 ohm connectors of the LISN were resistively terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT within a screened room. The EUT was connected to an AMN. An overview sweep with peak detection has been performed. The measurements have been performed with a quasi-peak detector and if required, with an average detector.

The conducted emission measurements were made with the following detector function of the test receiver.

6.3 Test conditions

Frequency range : 0.15MHz-30MHz

Detector Type : Quasi-Peak and Average

IF Bandwidth : 9 kHz EUT position : Table top

EUT operation mode: Transmitting Mode

6.4 Results

Summary of the test results: Pass

Date: August 27, 2003 Test engineer: Naoki Sakamoto

Page : 9 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 7: Radiated emissions

7.1 Operating environment

The test was carried out in an open site.

Temperature : See data

Humidity : See data

7.2 Test Procedure

9kHz - 30MHz

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane. In the frequency range of 9kHz to 30MHz, the measurement was performed with the loop antenna which was positioned with its plane vertical at the distance of 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The loop antenna was also positioned horizontally at the distance of 3m from the EUT. The center of the loop was 1m above the ground.

30MHz -1000MHz

EUT was placed on a platform of nominal size, 1m by 1m, raised 80cm above the conducting ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization.

The Radiated Electric Field Strength intensity has been measured on an open test site with a ground plane and at a distance of 3m.

The measuring antenna height was varied between 1 to 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurement were made with the following function of the test receiver and spectrum analyzer.

7.3 Test conditions

Frequency range and Detector Type

: 9kHz to 90kHz AV/PK Detector, IF BW 200Hz : 90kHz to 110kHz CISPR QP Detector, IF BW 200Hz : 110kHz to 150kHz AV/PK Detector, IF BW 200Hz : 150kHz to 490kHz AV/PK Detector, IF BW 10kHz

: 490kHz to 30MHz QP Detector, IF BW 10kHz

: $30\mbox{MHz}$ to $1000\mbox{MHz}$ CISPR QP Detector, IF BW $120\mbox{kHz}$

EUT position : Table top

EUT operation mode: Transmitting Mode

7.4 Results

Summary of the test results: Pass

Date: August 26, 2003 Test engineer: Naoki Sakamoto

UL Apex Co., Ltd. EMC Head Office Division.

Page : 10 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

SECTION 8: Frequency stability

8.1 Test Procedure

Variation of ambient temperature :-20deg.C to +50deg.C. Variation of the input power:102V(85%) to 138V(115%)

8.2 Limits

The client has stated that the operating frequency of the EUT is 13.56MHz. The following frequency limits shall not be exceeded throughout the test

Operating frequency 13.56MHz: $\pm 0.01\%$ (± 1.356 kHz)

Lower Limit	13.55864 MHz
Upper Limit	13.56136 MHz

8.3 Results

Summary of the test results: Pass

Date: August 28, 2003 Test engineer: Naoki Sakamoto

Page : 11 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

APPENDIX 1: Photographs of test setup

Page 12: Conducted emission

Page 13-14: Radiated emission

APPENDIX 2: Test instruments

Page 15: Test instruments

APPENDIX 3: Data of EMI test

Page 16-18 : Conducted emissions

Page 19-20 : Radiated emissions

Page 21 : Frequency Stability Measurements

Page 22 : 26dB Bandwidth (Reference data)

Page : 12 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

APPENDIX 1: Photographs of test setup

Conducted emission

UL Apex Co., Ltd. EMC Head Office Division.

Page : 13 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

Radiated emission(<30MHz)

UL Apex Co., Ltd. EMC Head Office Division.

Page : 14 of 22

FCC ID : BGBCP9000DW Issued date : September 26, 2003

Radiated emission(30 –1000MHz)

UL Apex Co., Ltd. EMC Head Office Division.

APPENDIX 2 Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Test Item	Calibration Date * Interval(month)
MAEC-02	Anechoic Chamber	TDK	Semi Anechoic Chamber 3m	RE / CE	2003/04/11 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	RE	2002/12/24 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	RE	2003/04/28 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	RE	2003/05/08 * 12
MCC-13	Coaxial Cable	Fujikura/Agilent	=	CE	2003/05/08 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	RE	2003/04/28 * 12
MOS-02	Digital Humidity Indicator	N.T	NT-1800	RE / CE	2002/12/10 * 12
MPA-04	Pre Amplifier	Agilent	8447D	RE	2003/03/13 * 12
SA-07	Spectrum Analyzer	Advantest	R3273	RE / CE	2002/12/10 * 12
MTR-02	Test Receiver	Rohde & Schwarz	ESCS30	RE / CÉ	2003/01/31 * 12
MLS-07	LISN(AMN)	Schwarzbeck	NSLK8127	CE	2003/03/18 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	RE	2002/12/13 * 1,2
· · · · · · · · · · · · · · · · · · ·					-

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Test Item:

CE: Conducted emission, RE: Radiated emission,

H/F: Harmonics and voltage fluctuation

RFI: RFI Power test,

AT: Antenna terminal disturbance voltage

DATA OF CONDUCTION TEST

UL Apex Co., Ltd. Head Office EMC Lab. No.2 Semi Anechoic Chamber

Report No.: 24AE0055-H0-1

Applicant : MITSUBISHI ERECTRIC Corporation

Kind of Equipment : DIGITAL COLOR PRINTER

Model No. : CP9000DW Serial No. : M022 Power : AC120V/60Hz : Transmitting Mode

Remarks

Date : 8/27/2003 : Single Phase Phase

Engineer : Naoki Sakamoto Temperature

Humidity

: 26 : 65 % : FCC 15.207 (0.15-30MHz) Regulation

No.	FREQ.	READI QP [dB	NG(N) AV uV]	QP	NG(L1) AV uV]	LISN FACTOR [dB]	CABLE LOSS [dB]	ATTEN	. RES QP [dBu	ΑV	LIM QP [dBu	ITS AV V]	MAR(QP [de	ΑV
1. 2. 3. 4. 5. 6. 7.	0.1874 0.2907 0.5718 0.8574 2.3870 4.7750 13.5600 23.6281	51.4 47.7 33.9 26.5 4.3 1.9 45.7 23.5	43.6 42.4 - - - 42.3	53.5 48.3 34.1 28.0 4.7 2.4 45.4 24.4	45.0 41.8 - - - 42.0	0.0 0.0 0.1 0.1 0.1 0.2 0.6 0.9	0.1 0.1 0.2 0.3 0.5 0.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0	53.6 48.4 34.3 28.3 5.1 3.1 47.2 26.6	45.1 42.5 - - - 43.8	64.2 60.5 56.0 56.0 56.0 60.0	54.2 50.5 46.0 46.0 46.0 50.0	10.6 12.1 21.7 27.7 50.9 52.9 12.8 33.4	9.1 8.0 - - - 6.2

CALCULATION: READING[dB μ V] + LISN FACTOR[dB] + CABLE LOSS[dB] + ATTEN[dB].

All other spurious emissions were less than 20dB for the limit.

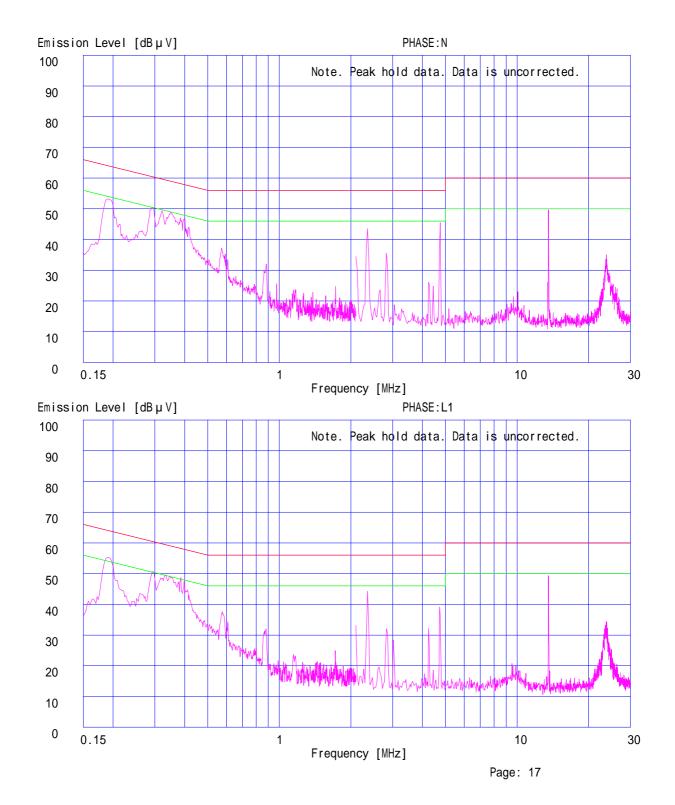
Page: 16

DATA OF CONDUCTION TEST CHART

UL Apex Co., Ltd. Head Office EMC Lab. No.2 Semi Anechoic Chamber Report No.: 24AE0055-H0-1

Applicant : MITSUBISHI ERECTRIC Corporation Kind of Equipment : DIGITAL COLOR PRINTER

Model No. : CP90 : M022 CP9000DW Serial No. Power AC120V/60Hz Mode Transmitting


Remarks

Date 8/27/2003 Phase Single Phase

Temperature 26 Engineer : Naoki Sakamoto

Humidity 65 %

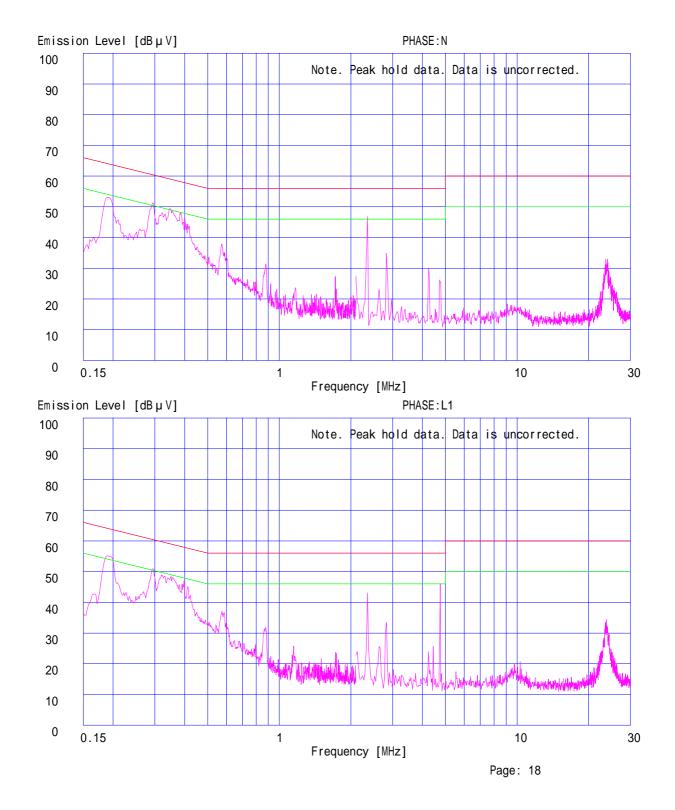
: FCC 15.207 (0.15-30MHz) : FCC 15.207 (0.15-30MHz) Regulation 1 Regulation 2

DATA OF CONDUCTION TEST CHART

UL Apex Co., Ltd. Head Office EMC Lab. No.2 Semi Anechoic Chamber Report No.: 24AE0055-H0-1

Applicant : MITSUBISHI ERECTRIC Corporation Kind of Equipment : DIGITAL COLOR PRINTER

Model No. CP9000DW Serial No. M022 Power AC120V/60Hz Mode Standby


Remarks

8/27/2003 Date Phase Single Phase

Temperature 26 Engineer : Naoki Sakamoto

65 % Humidity

: FCC 15.207 (0.15-30MHz) : FCC 15.207 (0.15-30MHz) Regulation 1 Regulation 2

Field Strength(9kHz to 30MHz)

UL Apex Co., Ltd.

No2 SEMI ANECHOIC CHAMBER

COMPANY : Mitsubishi Erectric Corporation REPORT NO : 24AE0055-HO-2 EQUIPMENT : Digital Color Printer REGULATION : FCC Part 15.225(a)

MODEL : CP9000DW TEST DISTANCE : 3m

 S/ N
 : M022
 DATE
 : 08/27/2003

 POWER
 : AC120V / 60Hz
 TEMPERATURE
 : 27 deg. C

 MODE
 : TRANSMITTING
 HUMIDITY
 : 66 %

ENGINEER: Naoki Sakamoto

No.	FREQ	T/R READING			C.F		RESULT				MARGIN	
		0deg	45deg	90deg*1		0deg	45deg	90deg*1		0deg	45deg	90deg*1
	[MHz]		[dBuV/m]		[dB]		[dBuV/m]		[dBuV/m]		[dB]	
1	13.5600	52.8	55.3	55.0	-0.6	52.2	54.7	54.4	120.0	67.8	65.3	65.6
2	27.1200	21.7	21.7	21.8	-0.5	21.2	21.2	21.3	69.5	48.3	48.3	48.2

 $Calculation: Reading + C.F (Ant.\ Factor + Cable\ loss - AMP.Gain + Atten).$

Except for the above table : All other spurious emissions were less than 20dB for the limit.

^{*1:}Loop antenna Angle

^{*2:}Distance Factor = 40Log(D1/D2)

DATA OF RADIATION TEST

UL Apex Co., Ltd. Head Office EMC Lab. No.2 Semi Anechoic Chamber

Report No.: 24AE0055-H0-1

: MITSUBISHI ERECTRIC Corporation : DIGITAL COLOR PRINTER Applicant

Kind of Equipment

Model No. CP9000DW Serial No. M022

Power : AC120V/60Hz Mode : Transmitting

Remarks

Date : 8/26/2003

Test Distance : 3 m : Naoki Sakamoto Temperature Engineer

Humidity

: 25 : 70 % : Fcc 15C § 15.209(a) Regulation

No.		ANT TYPE	READ HOR [dB	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN.	RESI HOR [dB µ \	VER	LIMITS BµV/m]	HOR	RGIN VER JB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	40.68 54.24 67.80 78.64 81.36 94.92 108.48 122.04 135.60 432.00 720.00 744.00 816.00	BB	14.7 15.3 15.0 15.4 15.3 15.3 15.0 14.7 14.3 15.8 17.2 17.9 21.6	15.2 15.3 15.2 17.8 15.2 16.5 15.0 14.6 14.3 23.0 26.3 28.2	14.4 9.9 5.5 5.5 7.7 7.5 10.5 13.4 13.9 17.6 20.8 21.0 21.4	23.7 23.6 23.2 23.5 23.7 23.3 23.5 23.1 22.9 23.1 23.2 23.2	0.6 0.9 1.0 1.1 1.2 1.3 1.4 1.5 2.8 3.9 3.9	6.0 6.0 6.0 6.0 6.1 6.0 6.0 6.0 6.1 6.1 6.1	12.0 8.4 3.9 4.8 4.7 6.4 9.5 12.2 12.6 19.5 24.9 25.7 30.1	12.5 8.4 4.1 7.2 4.5 7.6 9.5 12.1 12.6 26.7 30.7 34.1 36.7	40.0 40.0 40.0 40.0 43.5 43.5 43.5 46.0 46.0 46.0	28.0 31.6 36.1 35.2 35.3 37.1 34.0 31.3 30.9 26.5 21.1 20.3 15.9	27.5 31.6 35.9 32.8 35.5 35.9 34.0 31.4 30.9 19.3 11.9 9.3

CALCULATION: READING + ANT.FACTOR + CABLE LOSS - AMP.GAIN + ATTEN.

All other spurious emissions were less than 20dB for the limit. ANT.TYPE: 30-300MHz Biconical Ant. 300-1000MHz Logperiodic Ant.

Page: 20

Frequency Stability FCC15.225(c)

Test Report No: 24AE0055-HO-1

Page : 21 of 22

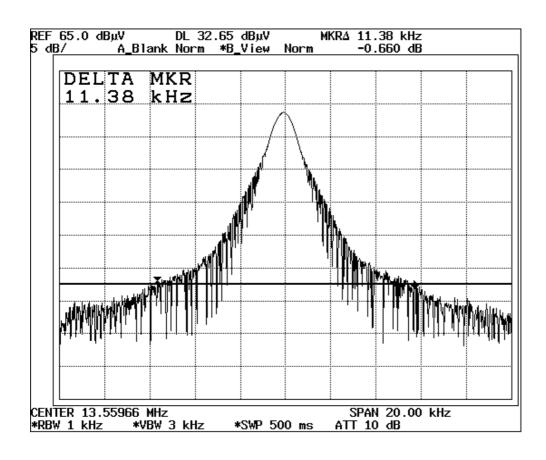
FCC ID : BGBCP9000DW

limit ±0.01% (**100** ppm)

Variation of temperature : -20deg. to + 50deg

Input power(Fixed) : AC120V/60Hz

Passage	Temp.	-20		-10		0		10		20		30		40		50	
Time	Frequency	13.560000	MHz														
Start	Measurement Freq.	13.559632	MHz	13.559636	MHz	13.559621	MHz	13.559599	MHz	13.559565	MHz	13.559581	MHz	13.559556	MHz	13.559524	MHz
UP	Deviation	-0.000368	MHz	-0.000364	MHz	-0.000379	MHz	-0.000401	MHz	-0.000435	MHz	-0.000419	MHz	-0.000444	MHz	-0.000476	MHz
		-27.15	ppm	-26.87	ppm	-27.95	ppm	-29.55	ppm	-32.06	ppm	-30.91	ppm	-32.74	ppm	-35.11	ppm
2	Measurement Freq.	13.559626	MHz	13.559636	MHz	13.559629	MHz	13.559600	MHz	13.559566	MHz	13.559573	MHz	13.559545	MHz	13.559518	MHz
minute	Deviation	-0.000374	MHz	-0.000364	MHz	-0.000371	MHz	-0.000400	MHz	-0.000434	MHz	-0.000427	MHz	-0.000455	MHz	-0.000483	MHz
		-27.58	ppm	-26.84	ppm	-27.35	ppm	-29.50	ppm	-31.99	ppm	-31.49	ppm	-33.55	ppm	-35.58	ppm
5	Measurement Freq.	13.559625	MHz	13.559640	MHz	13.559633	MHz	13.559602	MHz	13.559569	MHz	13.559562	MHz	13.559534	MHz	13.559517	MHz
minute	Deviation	-0.000375	MHz	-0.000360	MHz	-0.000367	MHz	-0.000398	MHz	-0.000431	MHz	-0.000438	MHz	-0.000466	MHz	-0.000483	MHz
		-27.67	ppm	-26.57	ppm	-27.06	ppm	-29.37	ppm	-31.81	ppm	-32.28	ppm	-34.37	ppm	-35.65	ppm
10	Measurement Freq.	13.559621	MHz	13.559641	MHz	13.559634	MHz	13.559604	MHz	13.559571	MHz	13.559556	MHz	13.559529	MHz	13.559516	MHz
minute	Deviation	-0.000379	MHz	-0.000359	MHz	-0.000366	MHz	-0.000396	MHz	-0.000429	MHz	-0.000444	MHz	-0.000471	MHz	-0.000484	MHz
		-27.95	ppm	-26.50	ppm	-26.96	ppm	-29.23	ppm	-31.67	ppm	-32.74	ppm	-34.71	ppm	-35.67	ppm
	Result	Pass															


Variation of the input power : 102V(85%) to 138V(115%)

temperature(Fixed) : 20deg.

Voltage	Temp.	20	
	Frequency	13.560000	MHz
102V	Measurement Freq.	13.559572	MHz
	Deviation	-0.000428	MHz
		-31.59	ppm
138V	Measurement Freq.	13.559574	MHz
	Deviation	-0.000426	MHz
		-31.42	ppm
	Result	Pass	

Test Report No : 24AE0055-HO-1 Page : 22 of 22 26dB Band Width

: BGBCP9000DW FCC ID

