ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 74 SUBPART H REQUIREMENT

OF

Wireless Microphone

MODEL No.: HT-U81, HT-8U, UH-81

BRAND NAME: NADY, VOTEX

FCC ID: BEK9E3HT-U81

REPORT NO: E0911029F

ISSUE DATE: December 01, 2009

Prepared for

Nady Systems Inc 6701 Bay Street Emeryville, California 94608, United States

Prepared by

SHENZHEN EMTEK CO., LTD

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280

FAX: 86-755-26954282

VERIFICATION OF COMPLIANCE

Applicant:	Nady Systems Inc 6701 Bay Street Emeryville, California 94608, United States
Product Description:	Wireless Microphone
Brand Name:	NADY, VOTEX
Model Number:	HT-U81, HT-8U, UH-81 (Note: The samples are same, except model number is different.)
File Number:	E0911029F
Date of Test:	November 05, 2009 to December 01, 2009

We hereby certify that:

The above equipment was tested by SHENZHEN EMTEK CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 74 Subpart H.

The test results of this report relate only to the tested sample identified in this report.

Approved By

David Lee / Q.A. Manager SHENZHEN EMTEK CO., LTD.

Table of Contents

1.	GENERAL INFORMATION	5
1.1	Product Description	5
1.2	Related Submittal(s) / Grant (s)	
1.3	Test Methodology	5
1.4	Special Accessories	5
1.5	Equipment Modifications	5
1.6	Test Facility	<i>6</i>
2.	SYSTEM TEST CONFIGURATION	7
2.1	EUT Configuration	7
2.2	EUT Exercise	7
2.3	Configuration of Tested System	8
3.	SUMMARY OF TEST RESULTS	9
4.	DESCRIPTION OF TEST MODES	9
5.	MAXIMUM TRANSMITTER POWER	10
5.1	Provisions Applicable	10
5.4	Measurement Equipment Used:	12
5.4	Measurement Result	12
6.	MODULATION CHARACTERISTICS	13
6.1	PROVISIONS APPLICABLE	13
6.2	MEASUREMENT METHOD	13
6.3	Measurement instruments	
6.4	Measurement Result	14
7.	FREQUENCY TOLERANCE	18
7.1	Provisions Applicable	18
7.2	Measurement Procedure	18
7.3	Test Setup Block diagram(Block diagram of configuration)	
7.4	Test Equipment used:	
7.5	Test Result	
8.	EMISSION BANDWIDTH	21
8.1	Provisions Applicable	21
8.2	MEASUREMENT PROCEDURE	
8.3	TEST SETUP BLOCK DIAGRAM (Block Diagram of Configuration)	
8.4	Measurement Equipment used:	
8.5	Measurement Result:	
9.	UNWANTED RADIATION	24
9.1	Provisions applicable	24
9.2	MEASUREMENT PROCEDURE	24

SHENZI	HEN EMTEK CO., LTD.		
REPORT	Г NO: E0911029F	FCC ID: BEK9E3HT-U81	DATE: 12/01/2009
9.3	Test Setup Block Diagram(blo	ock diagram of configuration)	25
9.4	Measurement Equipment used	l:	26
9.5	Measurement Results:		26
APPE	NDIX 1		27

DATE: 12/01/2009

1. GENERAL INFORMATION

1.1 Product Description

The Nady Systems Inc Model: HT-U81 (referred to as the EUT in this report). The EUT is a UHF Wireless Microphone designed as Low Power Auxiliary Stations for transmitting voice only. It is designed by may of utilizing the FM modulation achieves the system operating.

A major technical descriptions of EUT is described as following:

- A). Frequency Tolerance: 0.0036%(0.005%)
- B). Modulation: FM
- C). Max. Deviation Range: ±50KHz(Limit<±75KHz)
- D). Spurious Emissions: <-55dBc
- E). RF Output Power: <10mW(limit: 1W)
- F). Frequency Adjustment: Automatic Channel Setting
- G). Operation Frequency: 944-952MHz (lower channel: 944.200MHz, High channel:
- 951.600MHz.)
- H). Power Supply: $1.5V (AA) \times 2$

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: BEK9E3HT-U81 filing to comply with FCC Part 74, Subpart H Rules.

1.3 Test Methodology

The radiated emission testing was performed according to the procedures of ANSI TIA/EIA 603 and FCC CFR 47 2.1046, 2.1047,2.1051,2.1053, 2.1055 and 2.1057

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

DATE: 12/01/2009

1.6 Test Facility

Site Description EMC Lab.

: Accredited by CNAS, 2005.11.02

The certificate is valid until 2010.11

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01: 2006 (identical to ISO/IEC17025: 2005)

The Certificate Registration Number is L2291.

Accredited by TUV Rheinland Shenzhen 2008.3

The Laboratory has been assessed according to the requirements

ISO/IEC 17025.

Accredited by FCC, March 18, 2008

The Certificate Registration Number is 709623.

Accredited by Industry Canada, May 24, 2008

The Certificate Registration Number is 46405-4480.

Name of Firm : SHENZHEN EMTEK CO., LTD

Site Location : Bldg 69, Majialong Industry Zone,

Nanshan District, Shenzhen, Guangdong, China

DATE: 12/01/2009

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Wireless microphone (EUT)

Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
1.	Wireless Microphone	NADY,VOTEX	HT-U81	BEK9E3HT-U81	N/A	EUT

Note:

(1) Unless otherwise denoted as EUT in <code>[Remark]</code> column, device(s) used in tested system is a support equipment.

3. Summary Of Test Results

FCC Rules	Description Of Test	Result
§ 74.861(d)-1	Carrier Power	Compliant
§ Part 2 Section 2.1047(a)	Frequency Deviation	Compliant
§ Part 2 Section 2.1055(a)(1)	Frequency Tolerance	Compliant
§ 74.861(d)-3	Operating Bandwidth	Compliant
§ 74.861(e)-6	Unwanted Radiation	Compliant

4. Description of test modes

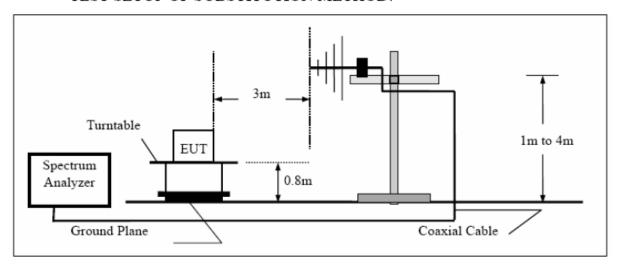
The EUT (Wireless Microphone) has been tested under normal operating condition.

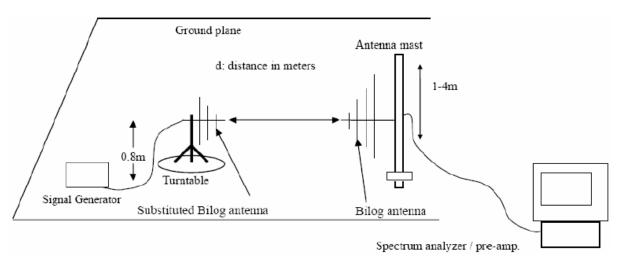
Three channels of EUT (the lowest channel, the middle channel and the highest channel) have been chosen for testing under Normal Operating condition. In this report, all the measured datum of the three channels have been reported. No software used to control the EUT for staying in continuous transmitting mode for testing.

For Bottom channel: 944.2MHz
For Top channel: 951.6MHz

5. Maximum Transmitter Power

5.1 Provisions Applicable


According to FCC Part 74 Section 74.861(d)-1: The maximum transmitter power which will be authorized is 1Watt. Licensees may accept the manufacturer's power rating; however, it is the licensee's responsibility to observe specified power limits.


5.2 Measurement Procedure

- 1). On a test site, the EUT shall be placed on a turntable and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- 3). The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). Replace the antenna with a proper Antenna (substitution antenna).
- 10). The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14). The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

5.3 Test SET-UP (Block Diagram of Configuration)

TEST SETUP OF SUBSTITUTION METHOD:

SHENZHEN EMTEK CO., LTD. REPORT NO: E0911029F

5.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	ANRITSU	MS2661C	6200140915	05/29/2009	05/29/2010
EMI Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2009	05/29/2010
Pre-Amplifier	HP	8447D	2944A07999	05/29/2009	05/29/2010
Bilog Antenna	Schwarzbeck	VULB9163	142	05/29/2009	05/29/2010
Loop Antenna	ARA	PLA-1030/B	1029	05/29/2009	05/29/2010

5.4 Measurement Result

The Output Power of Wireless Microphone

Operation Mode: Trimester Test Date: November 05, 2009

Test Item: Output power Temperature: 28 ℃ Test Result: **PASS** Humidity: 65 % Test By: Andy

The bottom channel -944.2MHz

Freq.	Ant.Pol.	Reading	SGO/P	Ant. Gain	Dipole	Cable	Correcte	ed power	Limit
					Gain				
(MHz)	H/V	(dBuV)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(mW)	(W)
944.2	V	33.45	-2.10	12.12	0	1.61	8.41	6.93	1
944.2	Н	38.79	-3.81	12.12	0	1.61	6.70	4.67	1

The top channel -951.6MHz

	2 110 top tillimit								
Freq.	Ant.Pol.	Reading	SGO/P	Ant. Gain	Dipole	Cable	Correcte	ed power	Limit
					Gain				
(MHz)	H/V	(dBuV)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(mW)	(W)
951.6	V	38.90	-1.50	11.13	0	1.42	8.21	6.62	1
951.6	Н	34.85	-1.89	11.13	0	1.42	7.82	6.05	1

Remark:

(1) Corrected Power (dBm) = SG O/P-Cable + Ant Gain

DATE: 12/01/2009

6. Modulation Characteristics

6.1 PROVISIONS APPLICABLE

- a). According to CFR 47 section 2.1047(a), for Voice Modulation Communication Equipment, Acurve showing the frequency response of the audio modulating circuit over a range of 50Hz to 20kHz is submitted with this report.
- b). Equipment which employs modulation limiting

A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulation frequencies and input modulating signal levels employed.

6.2 MEASUREMENT METHOD

6.2.1 Modulation Limit

- 1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- 2). Repeat step 1 with input frequency changing to 100,1000,2500, 10000, and 15000Hz in sequence.

6.2.2 Audio Frequency Response

- 1). Configure the EUT as shown in figure 1.
- 2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB)
- 3). Vary the Audio frequency from 100 Hz to 30 KHz and record the frequency deviation.

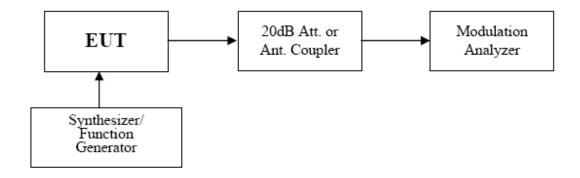
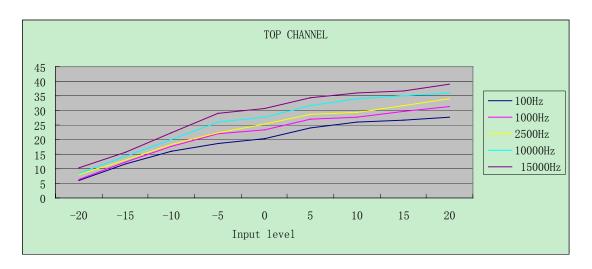


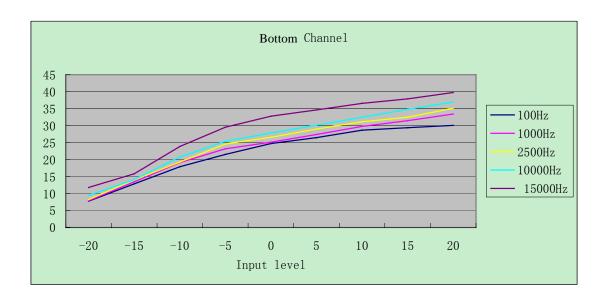
Figure 1: Modulation characteristic measurement configuration

6.3 Measurement instruments


EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	ANRITSU	MS2661C	6200140915	05/29/2009	05/29/2010
Audio Signal Generator	HP	3325A	2561540502	05/29/2009	05/29/2010
Attenuator	MINI CIRCUITS	8920B	2484357000	05/29/2009	05/29/2010

6.4 Measurement Result

a). Modulation Limit:


The top channel -951.6MHz

		The top chai	11161 -331.0W111Z		
Modulation	Peak Freq.	Peak Freq.	Peak Freq.	Peak Freq.	Peak Freq.
Level (dB)	Deviation At	Deviation At	Deviation At	Deviation At	Deviation At
	100Hz(KHz)	1000Hz(KHz)	2500Hz(KHz)	10000Hz(KHz)	15000Hz(KHz)
-20	6.10	6.38	7.98	8.35	10.29
-15	11.80	12.25	13.14	14.25	15.78
-10	15.84	17.58	18.25	20.10	22.48
-5	18.54	21.89	22.29	25.88	28.85
0	20.47	23.50	25.47	27.80	30.80
+5	23.87	26.85	28.67	31.57	34.48
+10	25.89	27.58	29.27	33.87	35.87
+15	26.78	29.57	31.63	34.87	36.78
+20	27.80	31.50	33.87	36.10	38.95

The bottom channel -944.2MH

Modulation	Peak Freq.				
Level (dB)	Deviation At				
	100Hz(KHz)	1000Hz(KHz)	2500Hz(KHz)	10000Hz(KHz)	15000Hz(KHz)
-20	7.75	7.89	8.23	9.43	11.78
-15	12.85	13.45	13.98	14.08	15.81
-10	17.89	19.12	19.28	20.78	23.84
-5	21.5	23.17	24.57	25.35	29.55
0	24.71	25.14	26.54	27.86	32.78
+5	26.45	27.4	28.97	30.14	34.65
+10	28.67	29.78	31.14	32.48	36.54
+15	29.4	31.48	32.47	34.78	37.91
+20	30.1	33.46	35.14	36.97	39.78

b). Audio Frequency Response:

The top channel -951.6MHz

The top channel -951.0MITZ						
Frequency(Hz)	Deviation(KHz)					
100	3.15					
200	3.89					
300	4.25					
400	4.89					
500	5.10					
600	5.20					
700	5.48					
800	6.05					
900	6.20					
1000	6.89					
1200	7.12					
1400	7.23					
1600	7.52					
1800	7.68					
2000	7.98					
2400	8.15					
2800	8.21					
3200	8.22					
3600	8.63					
4000	8.98					
4500	9.10					
5000	9.56					
5500	9.64					
6000	9.78					
6500	9.89					
7000	10.12					
8000	10.18					
9000	10.21					
10000	10.34					
12000	10.58					
14000	10.06					
16000	9.78					
18000	9.42					
20000	8.45					
25000	8.10					
30000	7.12					
t .						

The bottom channel -944.2MHz

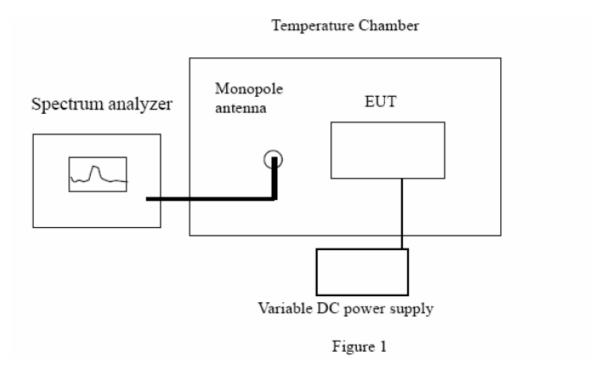
Frequency(Hz)	Deviation(KHz)
100	3.15
200	3.87
300	4.13
400	4.88
500	5.11
600	5.19
700	5.48
800	6.10
900	6.22
1000	6.87
1200	7.13
1400	7.23
1600	7.51
1800	7.67
2000	7.97
2400	8.15
2800	8.22
3200	8.53
3600	8.76
4000	8.92
4500	9.13
5000	9.58
5500	9.69
6000	9.77
6500	9.98
7000	10.12
8000	10.15
9000	10.23
10000	10.36
12000	10.51
14000	10.08
16000	9.76
18000	9.41
20000	8.45
25000	8.11
30000	7.10

7. Frequency Tolerance

7.1 Provisions Applicable

- a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to $+50^{\circ}\text{C}$ centigrade.
- b). According to FCC Part 2 Section 2.1055(d)(2), for hand carried battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- c). According to FCC Part 74 Section 74.861(e)-4, the frequency tolerance must be maintained within 0.005%.

7.2 Measurement Procedure


7.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50° C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
 - 3. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured; Record all measured frequencies on each temperature step.

7.2.2 Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15° C to 25° C. Otherwise, an environment chamber set for a temperature of 20° C shall be used. Install new battery in the EUT.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. For battery operated only device, supply the EUT primary voltage at the operating end point, which is specified by manufacturer, and record the frequency.

7.3 Test Setup Block diagram(Block diagram of configuration)

7.4 Test Equipment used:

EQUIPMENT	MODEL	SERIAL	LAST	CAL DUE.
TYPE	NUMBER	NUMBER	CAL.	
Advantest Spectrum Analyzer	R3132	120901472	05/29/2009	05/29/2010
Shihin Temperature Chamber	BM50-CB	908	05/29/2009	05/29/2010
Huber+Suhner low loss cable	WYK-605	N/A	05/29/2009	05/29/2010
Monople Antenna	N/A	N/A	05/29/2009	05/29/2010

7.5 Test Result

a. Frequency Stability versus input voltage(battery operation end point voltage is 2.7V)

Wireless Microphone	Reference	Frequency Measured at	Frequency Error	Limit (%)
	Frequency (MHz)	end point voltage	(%)	
Top Channel	951.6	951.621	0.00220681	0.005
Bottom Channel	944.2	944.235	0.00370684	0.005

b. Frequency stability versus ambient temperature

The top channel -951.6MHz

Reference Frequency: 951.60 MHz Limit (%) ±0.					
Environment	Power Supply	Frequency deviation measured with time			
Temperature($^{\circ}$ C)		Elapse(30 minutes)			
		(MHz)	%		
50	New Battery	951.62103	0.002209962		
40	New Battery	951.61288	0.001353512		
30	New Battery	951.62735	0.002874107		
20	New Battery	951.61530	0.001607818		
10	New Battery	951.61350	0.001418663		
0	New Battery	951.62040	0.002143758		
-10	New Battery	951.61324	0.001391341		
-20	New Battery	951.61204	0.001265237		
-30	New Battery	951.62247	0.002361286		

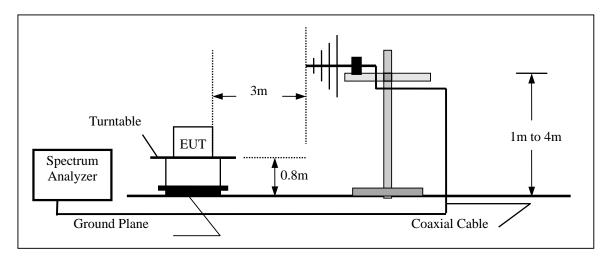
The Bottom channel –944.20MHz

The Dottom chamber 7 1 120 WIII						
Reference Frequency: 94	14.20MHz	$Limit (\%) \pm 0.005\%$				
Environment	ent Power Supply Frequency deviation measured with time					
Temperature ($^{\circ}$ C)		Elapse(30 minutes)				
		(MHz)	%			
50	New Battery	944.21150	0.001217962			
40	New Battery	944.22231	0.002362847			
30	New Battery	944.23014	0.003192756			
20	New Battery	944.23507	0.003714255			
10	New Battery	944.22470	0.002615971			
0	New Battery	944.22690	0.002848973			
-10	New Battery	944.23057	0.003237767			
-20	New Battery	944.23424	0.003626350			
-30	New Battery	944.23047	0.003227071			

8. Emission Bandwidth

8.1 Provisions Applicable

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99% of the total mean power and measured under the following conditions:


For lower power auxiliary station operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated 43+10log10(mean output power, in watts) dB below the mean output power of the transmitting unit(device under test).

For lower power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of $\pm 75 \text{kHz}$ is permitted when frequency modulation is use. The operating bandwidth shall not exceed 200kHz_{\circ}

8.2 MEASUREMENT PROCEDURE

- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). Set EUT as normal operation
- 3). Set SPA Center Frequency = fundamental frequency , RBW=3 KHz, VBW=10KHz, Span = 200 KHz.
 - 4). Set SPA Max hold. Mark peak, 99% power bandwidth.

8.3 TEST SETUP BLOCK DIAGRAM (Block Diagram of Configuration)

8.4 Measurement Equipment used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	ANRITSU	MS2661C	6200140915	05/29/2009	05/29/2010
EMI Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2009	05/29/2010
Pre-Amplifier	HP	8447D	2944A07999	05/29/2009	05/29/2010
Bilog Antenna	Schwarzbeck	VULB9163	142	05/29/2009	05/29/2010

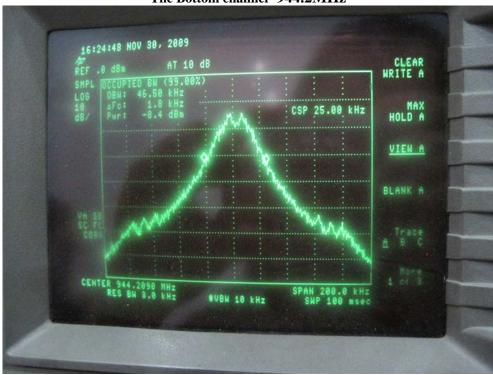
8.5 Measurement Result:

The Occupied bandwidth's plot is presented on the following pager, which illustrates compliance with the rules.

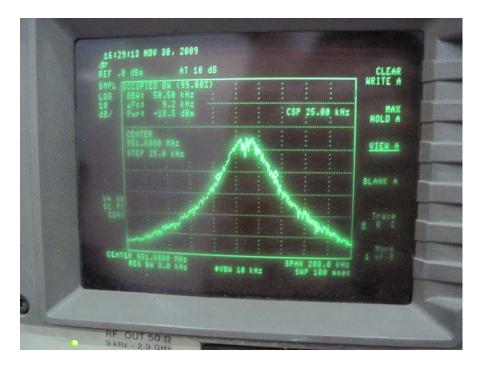
Calculation of Necessary Bandwidth (Bn)

Bn=2M+2KD

M=Max.Modulation Frequency =15KHz


D=Peak Frequency Deviation=39.78KHz (Page 18).

K=1

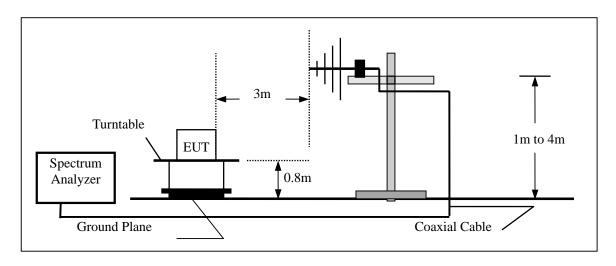

Bn=109.56KHz

Refer to attached data chart

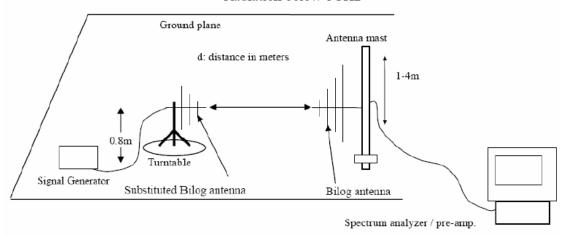
The Bottom channel -944.2MHz

The Top channel -951.6MHz

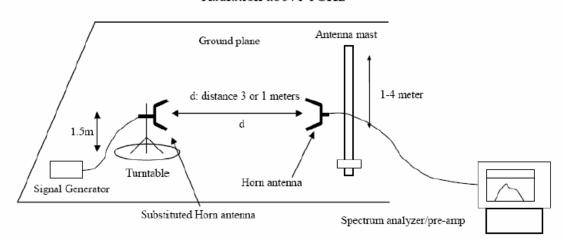
9. Unwanted Radiation


9.1 Provisions applicable

According to Section 74.861(d)-3, The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:


9.2 MEASUREMENT PROCEDURE

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- 3). The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). The measurement shall be repeated with the test antenna set to horizontal polarization.
- 10). Replace the antenna with a proper Antenna (substitution antenna).
- 11). The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- 12). The substitution antenna shall be connected to a calibrated signal generator.
- 13). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 14). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 15). The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 16). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 17). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.


9.3 Test Setup Block Diagram(block diagram of configuration)

Radiation below 1GHz

Radiation above 1GHz

9.4 Measurement Equipment used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	ANRITSU	MS2661C	6200140915	05/29/2009	05/29/2010
EMI Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2009	05/29/2010
Pre-Amplifier	HP	8447D	2944A07999	05/29/2009	05/29/2010
Bilog Antenna	Schwarzbeck	VULB9163	142	05/29/2009	05/29/2010
Horn Antenna	ARA	DRG-118/A	105	05/29/2009	05/29/2010

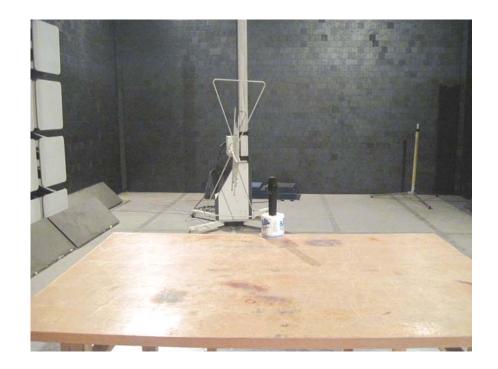
9.5 Measurement Results:

Calculation: Limit(dBM)= EL-43-10log10(TP)

Notes: EL is the emission level of the output power expressed in dBm, in this application. The EL is

8.41dBm.

Limit(dBm)= 8.41-43-10log10(0.00693)=-13


Top Channel & Bottom Channel

Frequency	Reading	Antena	S.G	Cable	Ant.Gain	Emission	Limit	Margin
	level			loss		Level		
(MHz)	(dBuV)	Polarization	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
1503.75	26.61	V	-45.89	1.91	12.21	-35.59	-13	-22.59
1503.75	28.31	Н	-37.10	1.91	12.21	-26.80	-13	-13.80
1491.35	25.57	V	-43.10	1.93	12.15	-32.88	-13	-19.88
1491.35	23.14	Н	-36.10	1.93	12.15	-25.88	-13	-12.88
1480.25	24.24	V	-50.40	1.98	12.03	-40.35	-13	-27.35
1480.25	24.47	Н	-44.89	1.98	12.03	-34.84	-13	-21.84
*	*						-13	

Note: * means the output power of all the spurious frequency is at least 20dB down to the limit.

APPENDIX 1

PHOTOGRAPHS OF SET UP

