PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: September 7 - 8, 2006 **Test Site/Location:** PCTEST Lab., Columbia, MD, USA

Test Report Serial No.:

0608230726

FCC ID: BEJVX9400

APPLICANT: LG ELECTRONICS USA

Application Type: Certification

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §22(H), §24(E)

EUT Type: Dual-Band CDMA Phone with Bluetooth

Model(s): LG-VX9400

824.70 - 848.31MHz (Cell. CDMA) / 1851.25 - 1908.75MHz (PCS CDMA) Tx Frequency Range: **Rx Frequency Range:** 869.70 - 893.31MHz (Cell. CDMA) / 1931.25 - 1988.75MHz (PCS CDMA)

Max. RF Output Power: 0.333 W ERP Cell. CDMA (25.230 dBm) /

0.311 W EIRP PCS CDMA (24.930 dBm)

Max. SAR Measurement: 1.250 W/kg Cell. CDMA Head SAR, 1.270 W/kg Cell. CDMA Body SAR;

1.130 W/kg PCS CDMA Head SAR, 0.718 W/kg PCS CDMA Body SAR

1M26F9W (CDMA) / 1M26F9W (PCS) **Emission Designator(s):**

identical prototype [S/N: A0000003003D02] **Test Device Serial No.:**

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24. SAR compliance for body-worn operating configuration is based on a separation distance of 1.5 between the back of the unit and the body of the user. End-users must be informed of the body-worn operating requirements for satisfying RF exposure compliance. Belt clips or holsters may not contain metallic components.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		rage 1 01 20

President

TABLE OF CONTENTS

FCC F	PART	22 & 24 MEASUREMENT REPORT	3
1.0	INT	RODUCTION	4
	1.1	MEASUREMENT PROCEDURE	4
	1.2	SCOPE	4
	1.3	TESTING FACILITY	4
2.0	PRO	DDUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	OCCUPIED BANDWIDTH EMISSION LIMITS	6
	3.2	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.3	CELLULAR - MOBILE FREQUENCY BLOCKS	6
	3.4	PCS - BASE FREQUENCY BLOCKS	7
	3.5	PCS - MOBILE FREQUENCY BLOCKS	7
	3.6	FREQUENCIES	
	3.7	RADIATED SPURIOUS AND HARMONIC EMISSIONS	
	3.8	FREQUENCY STABILITY / TEMPERATURE VARIATION	
4.0	TES	ST EQUIPMENT CALIBRATION DATA	9
5.0	SAN	MPLE CALCULATIONS	10
6.0	TES	ST RESULTS	11
	CON	IDUCTED OUTPUT POWER	12
	EFFE	ECTIVE RADIATED POWER OUTPUT DATA	13
	EQU	IVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	14
	CELI	LULAR CDMA RADIATED MEASUREMENTS	15
	PCS	CDMA RADIATED MEASUREMENTS	18
	FRE	QUENCY STABILITY (CELLULAR CDMA)	21
	FRE	QUENCY STABILITY (PCS CDMA)	23
7.0	COI	NCLUSION	25
EXHIE	BIT A -	- PLOT(S) OF EMISSIONS	26
EXHIE	3IT B -	- TEST SETUP PHOTOGRAPHS	27
EXHIE	BIT C -	- INTERNAL/EXTERNAL PHOTOGRAPHS	28

FCC ID: BEJVX9400	PCTEST.	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 2 01 20

MEASUREMENT REPORT

FCC Part 22 & 24

A. §2.1033 General Information

APPLICANT: LG Electronics USA
APPLICANT ADDRESS: 1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

FCC RULE PART(S): §2; §22(H), §24(E)

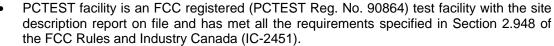
MODEL NAME: LG-VX9400 FCC ID: BEJVX9400

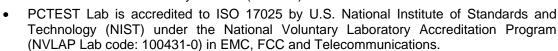
FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)

EMISSION DESIGNATOR(S): 1M26F9W (CDMA) / 1M26F9W (PCS)

MODE: CDMA

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)


Test Device Serial No.: A0000003003D02 ☐ Production ☐ Production ☐ Engineering


DATE(S) OF TEST: September 7 - 8, 2006

TEST REPORT S/N: 0608230726

A.1 Test Facility / Accreditations


Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

Midde

1.0 INTRODUCTION

1.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3-meter test range (see Figure 1-1). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

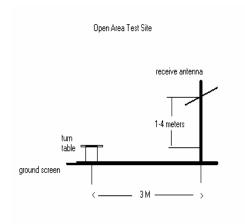


Figure 1-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure.....

1.2 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.3 Testing Facility

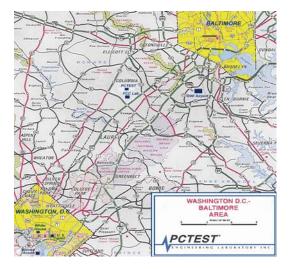


Figure 1-3. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

These measurement tests were conducted at PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 27, 2006 and Industry Canada.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 4 01 20

© 2006 PCTEST Engineering Laboratory, Inc.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Electronics Dual-Band CDMA Phone with Bluetooth FCC ID: BEJVX9400**. The EUT consisted of the following components(s):

Manufacturer / Description	FCC ID	Serial Number
LG Electronics Dual-Band CDMA Phone with Bluetooth	BEJVX9400	A0000003003D02

Table 2.1. EUT Equipment Description

2.2 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing.

None

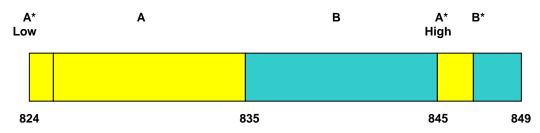
FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of 29
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 5 of 28

DESCRIPTION OF TESTS

Occupied Bandwidth Emission Limits §2.1049, 22.917(a), 24.238(a)

- On any frequency outside a licensee's frequency block, the power of any emission shall be a. attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$.
- b. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the C. licensee's frequency block edges, both upper and lower, as the design permits.
- d. The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.2 Cellular - Base Frequency Blocks


BLOCK 1: 869 - 880 MHz (A* Low + A)

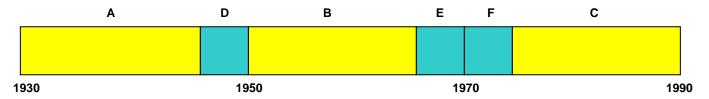
BLOCK 3: 890 - 891.5 MHz (A* High)

BLOCK 2: 880 - 890 MHz (B)

BLOCK 4: 891.5 - 894 MHz (B*)

3.3 **Cellular - Mobile Frequency Blocks**

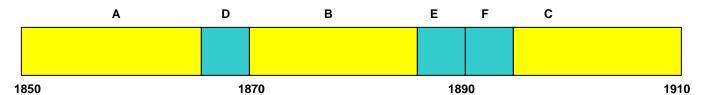
BLOCK 1: 824 - 835 MHz (A* Low + A)


BLOCK 3: 845 - 846.5 MHz (A* High)

BLOCK 2: 835 - 845 MHz (B) BLOCK 4: 846.5 - 849 MHz (B*)

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		rage 6 01 26
O COCCO DOTEOT F : :				1/ 0.70

3.4 PCS - Base Frequency Blocks



BLOCK 1: 1930 – 1945 MHz (A) BLOCK 4: 1965 – 1970 MHz (E)

BLOCK 2: 1945 – 1950 MHz (D) BLOCK 5: 1970 – 1975 MHz (F)

BLOCK 3: 1950 – 1965 MHz (B) BLOCK 6: 1975 – 1990 MHz (C)

3.5 PCS - Mobile Frequency Blocks

BLOCK 1: 1850 – 1865 MHz (A) BLOCK 4: 1885 – 1890 MHz (E)

BLOCK 2: 1865 – 1870 MHz (D) BLOCK 5: 1890 – 1895 MHz (F)

BLOCK 3: 1870 – 1885 MHz (B) BLOCK 6: 1895 – 1910 MHz (C)

3.6 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad) and a high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The high-pass filter (signals below 1.6 GHz) is to limit the fundamental frequency from interfering with the measurement of low-level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

3.7 Radiated Spurious and Harmonic Emissions

§2.1051, 22.917(a), 24.238(a); RSS-129 (8.1.1), RSS-133 (6.5.1(i))

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested under all R.C.s and S.O.s and the worst case is reported with EvDO FTAP with "All Up" power control bits.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 29
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 7 of 28

3.8 Frequency Stability / Temperature Variation §2.1055, 22.355, 24.235; RSS-129 (9.2.1), RSS-133 (6.7(a,b))

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +60°C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.00025 (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (22°C to 25°C to provide a reference).
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements are made at 10°C interval up to room temperature. At least a period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency measurements are at 10 intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after re-applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE: The EUT is tested down to the battery endpoint.

FCC ID: BEJVX9400	PCTEST:	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 9 of 29
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 8 of 28

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

TYPE	MODEL	CAL. DUE DATE	CAL. INTERVAL	SERIAL No.
Microwave Spectrum Analyzer	Agilent E4448A (3Hz-50GHz)	09/19/06	Annual	US42510244
Spectrum Analyzer	HP 8566B (100Hz-22GHz)	12/22/06	Annual	3638A08713
PSG Analog Signal Generator	Agilent E8257D (250kHz-20GHz)	02/11/07	Annual	MY45470194
5 Watt Amplifier	5S1G4 (800MHz-4.2GHz)	N/A	N/A	22332
Wireless Communication Test Set	Agilent 8960 Series 10 E5515C	06/10/07	Annual	6B46110872
Universal Power Meter	Gigatronics 8651A (50MHz-18GHz)	07/28/07	Annual	1834052
Power Sensor	Gigatronics 80701A	04/11/07	Annual	1833460
Quasi-Peak Adapter	HP 85650A	12/22/06	Annual	2043A00301
Preamplifier	HP 8449B (1-26.5GHz)	12/22/06	Annual	3008A00985
Attenutation/Switch Driver	HP 11713A	12/22/06	Annual	N/A
Preselector	HP 85685A (20Hz-2GHz)	12/22/06	Annual	N/A
6dB Res BW Spec. Analyzer Display	OPT 462	12/22/06	Annual	3701A22204
Horn Antenna	EMCO Model 3115 (1-18GHz)	08/25/07	Bi-Annual	9704-5182
Horn Antenna	EMCO Model 3116 (18-40GHz)	08/25/07	Bi-Annual	9203-2178
EMCO Dipoles (2)	N/A	05/08/08	Bi-Annual	00023951
EMCO LISN (3)	3816/2, 3816/2, 3725/2	10/26/06	Annual	1077, 1079, 2099
10dB Attenuator	HP 8493B	N/A	N/A	N/A
Bi-Directional Coax Coupler	PE2208-6	N/A	Annual	N/A
Microwave Cables	MicroCoax (1.0-26.5GHz)	02/26/07	Annual	N/A
Temperature & Humidity Chamber	ESPEC SCP-220	06/08/07	Annual	017620

Table 4.1. Test Equipment

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo C of 29
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 9 of 28

5.0 SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz F = Frequency Modulation 9 = Composite Digital Info

W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission - PCS Band

Example: Channel 25 PCS Mode 2nd Harmonic (3702.50 MHz)

The receive analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the receive analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3702.50 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: BEJVX9400	PCTEST:	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 10 01 20

6.0 TEST RESULTS

Summary

The intentional radiator has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards. The radio was transmitting at full power on the specified channels. The channels tested are high, middle and low of the allocated bands. Final system data was gathered in a mode that tended to maximize emissions by varying the orientation of the EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization. This device was tested under all R.C.s and S.O.s and the worst case is reported with EvDO FTAP with "All Up" power control bits.

Method/System: PCS Licensed Transmitter Held to Ear (PCE)

Mode(s): CDMA

FCC Part Section(s)	RSS Section	on Test Description Test Limit		Test Condition	Test Result
TRANSMITTER MO	DE (TX)				
2.1049, 22.917(a), 24.238(a)	N/A	Occupied Bandwidth	N/A		N/A
22.917(a), 24.238(a)	RSS-129 (8.1.1) RSS-133 (6.5.1(i))	Band Edge / Conducted Spurious Emissions	< 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions	CONDUCTED	PASS
2.1046	N/A	Transmitter Conducted Output Power	N/A		N/A
22.913(a)(2)	RSS-129 (9.1)	Effective Radiated Power	< 7 Watts max. ERP		PASS
24.232(c)	RSS-133 (6.4) [SRSP-510 (5.1.2)]	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP		PASS
2.1051, 22.917(a), 24.238(a)	RSS-129 (8.1.1) RSS-133 (6.5.1(i))	Undesirable Emissions	< 43 + log ₁₀ (P[Watts]) for all out- of-band emissions	RADIATED	PASS
2.1055, 22.355, 24.235	RSS-129 (9.2.1) RSS-133 (6.7(a,b))	Frequency Stability	< 2.5 ppm		PASS
RECEIVER MODE (I	RX)				
15.107	RSS-Gen [7.2.2]	AC Conducted Emissions 150kHz – 30MHz	EN55022	Line Conducted	PASS
15.109	RSS-129 (10(a,d)), RSS-133 (6.7(a,b)), RSS-210 (7.3)	General Field Strength Limits (Restricted Bands and Radiated Emissions Limits)	< FCC 15.209 limits or < RSS-Gen limits [Section 6; Table1]	RADIATED (30MHz-1GHz) (1-25 GHz)	PASS
RF EXPOSURE (SAR)					
2.1093	RSS-102	SAR Test or MPE	1.6 W/kg (SAR Limit)	3 Channels	PASS

Table 6-1. Summary of Test Results

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 29
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 11 of 28

© 2006 PCTEST Engineering Laboratory, Inc.

Conducted Output Power §2.1046

This device was tested under all R.C.s and S.O.s and the worst case is reported with EvDO FTAP with "All Up" power control bits.

SAR Measurement Conditions for CDMA2000

The following procedures were followed according to FCC "SAR Measurement Procedures for 3G Devices", June 2006.

Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by "SAR Measurement Procedures for 3G Devices", June 2006.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 6-2 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 6-3 was applied.
- 5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 6-2
Parameters for Max. Power for RC1

Parameter	Units	Value
Îor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 6-3
Parameters for Max. Power for RC3

Band	Channel	SO2	SO2	SO55	SO55	TDSO SO32	1x EvDO Rev. 0	1x EvDO Rev. 0
		RC1/1	RC3/3	RC1/1	RC3/3	RC3/3	(FTAP)	(RTAP)
	1013	24.04	24.02	24.06	24.02	24.10	24.36	24.32
Cellular	384	24.07	24.04	24.09	24.03	24.12	24.36	24.29
	777	24.03	24.03	24.08	24.02	24.13	24.39	24.31
	25	23.84	23.77	23.89	23.75	23.92	24.00	24.17
PCS	600	23.97	23.94	24.03	23.82	24.01	24.12	24.26
	1175	24.01	24.01	24.02	23.87	24.03	24.15	24.20

Table 6-4
Maximum Power Output Table for LG-VX9400

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 12 01 20

Effective Radiated Power Output Data

§22.913(a)(2); RSS-129 (9.1)

POWER: High (CDMA Mode)

Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)	BATTERY
824.70	-16.233	Н	0.319	25.040	Standard
836.52	-17.463	Н	0.249	23.970	Standard
848.31	-16.353	Н	0.333	25.230	Standard

Table 6-5. Effective Radiated Power Output Data

NOTES:

<u>Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 13 01 20

Equivalent Isotropic Radiated Power Output Data

§24.232(c); RSS-133 (6.4) [SRSP-510 (5.1.2)]

Radiated measurements at 3 meters

Supply Voltage: 3.7 VDC

Modulation: PCS CDMA

FREQ. (MHz)	REF. LEVEL (dBm)	POL (H/V)	Azimuth (o angle)	EIRP (dBm)	EIRP (W)	Battery
1851.25	-18.151	Н	95	24.930	0.311	Standard
1880.00	-19.140	Н	95	24.111	0.258	Standard
1908.75	-18.971	Н	95	24.450	0.279	Standard

Table 6-6. Equivalent Isotropic Radiated Power Output Data

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 14 01 20

Cellular CDMA Radiated Measurements

§2.1051, 22.917(a): RSS-129 (8.1.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.70 MHz

CHANNEL: 1013 (Low)

MEASURED OUTPUT POWER: 25.230 dBm = 0.333 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 38.23$ dBc

FREQ.	LEVEL @ ANTENNA	SUBSTITUTE ANTENNA	CORRECT GENERATOR	POL	
(MHz)	TERMINALS (dBm)	GAIN (dBd)	LEVEL (dBm)	(H/V)	(dBc)
1649.40	-56.73	6.10	-50.63	Н	75.9
2474.10	-57.15	6.70	-50.45	Н	75.7
3298.80	-63.99	6.80	-57.19	Н	82.4
4123.50	-58.98	6.50	-52.48	Н	77.7
4948.20	-57.98	7.00	-50.98	Н	76.2

Table 6-7. Radiated Spurious Data (Cellular CDMA Mode – Ch. 1013)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 15 01 26

Cellular CDMA Radiated Measurements (Cont'd)

§2.1051, 22.917(a); RSS-129 (8.1.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: 0384 (Mid)

MEASURED OUTPUT POWER: 25.230 dBm = 0.333 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10}}$ (W) = 38.23 dBc

FREQ.	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.04	-56.53	6.10	-50.43	Н	75.7
2509.56	-56.36	6.70	-49.66	Н	74.9
3346.08	-63.80	6.80	-57.00	Н	82.2
4182.60	-55.81	6.50	-49.31	Н	74.5
5019.12	-53.50	7.00	-46.50	Н	71.7

Table 6-8. Radiated Spurious Data (Cellular CDMA Mode - Ch. 384)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 10 01 20

Cellular CDMA Radiated Measurements (Cont'd)

§2.1051, 22.917(a); RSS-129 (8.1.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.31 MHz

CHANNEL: 0777 (High)

MEASURED OUTPUT POWER: 25.230 dBm = 0.333 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 38.23$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1696.62	-55.84	6.10	-49.74	Н	75.0
2544.93	-57.36	6.70	-50.66	Н	75.9
3393.24	-61.81	6.80	-55.01	Н	80.2
4241.55	-59.25	6.50	-52.75	Н	78.0
5089.86	-58.64	7.00	-51.64	Н	76.9

Table 6-9. Radiated Spurious Data (Cellular CDMA Mode – Ch. 777)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 17 01 20

PCS CDMA Radiated Measurements

§2.1051, 24.238(a); RSS-133 (6.5.1(i))

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1851.25 MHz

CHANNEL: 0025 (Low)

MEASURED OUTPUT POWER: 24.930 dBm = 0.311 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 37.93$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3702.50	-55.75	8.70	-47.05	Н	72.0
5553.75	-53.70	9.70	-44.00	Н	68.9
7405.00	-59.62	9.90	-49.72	Н	74.6
9256.25	-77.43	11.40	-66.03	Н	91.0
11107.50	-77.33	12.10	-65.23	Н	90.2

Table 6-10. Radiated Spurious Data (PCS CDMA Mode - Ch. 25)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 10 01 20

PCS CDMA Radiated Measurements (Cont'd)

§2.1051, 24.238(a); RSS-133 (6.5.1(i))

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: 0600 (Mid)

MEASURED OUTPUT POWER: 24.930 dBm = 0.311 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 37.93$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-47.10	8.70	-38.40	Н	63.3
5640.00	-55.63	9.70	-45.93	Н	70.9
7520.00	-56.53	9.90	-46.63	Н	71.6
9400.00	-77.23	11.40	-65.83	Н	90.8
11280.00	-77.13	12.10	-65.03	Н	90.0

Table 6-11. Radiated Spurious Data (PCS CDMA Mode – Ch. 600)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJVX9400	PCTEST:	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 19 01 20

PCS CDMA Radiated Measurements (Cont'd)

§2.1051, 24.238(a); RSS-133 (6.5.1(i))

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1908.75 MHz

CHANNEL: 1175 (High)

MEASURED OUTPUT POWER: 24.930 dBm = 0.311 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 37.93$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3817.50	-42.34	8.70	-33.64	Н	58.6
5726.25	-49.52	9.70	-39.82	Н	64.7
0.20.20		00	00.02		•
7635.00	-57.80	9.90	-47.90	Н	72.8
9543.75	-76.93	11.40	-65.53	Н	90.5
11452.50	-76.93	12.10	-64.83	Н	89.8

Table 6-12. Radiated Spurious Data (PCS CDMA Mode - Ch. 1175)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJVX9400	PCTEST:	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 20 01 26

<u>Frequency Stability (Cellular CDMA)</u> <u>§2.1055, 22.355; RSS-129 (9.2.1)</u>

OPERATING FREQUENCY: 836,520,007 Hz

CHANNEL: 384

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ. (Hz)	Freq. Dev.	Deviation (%)
100 %	3.70	+ 20 (Ref)	836,520,007	0.00	0.000000
100 %		-30	836,519,965	41.83	0.000005
100 %		-20	836,519,915	92.02	0.000011
100 %		-10	836,519,898	108.75	0.000013
100 %		0	836,520,057	-50.19	-0.000006
100 %		10	836,520,082	-75.29	-0.000009
100 %		20	836,520,074	-66.92	-0.000008
100 %		25	836,520,040	-33.46	-0.000004
100 %		30	836,520,141	-133.84	-0.000016
100 %		40	836,520,149	-142.21	-0.000017
100 %		50	836,519,957	50.19	0.000006
100 %		60	836,519,923	83.65	0.000010
85 %	3.17	20	836,519,898	108.75	0.000013
115 %	4.26	20	836,520,074	-66.92	-0.000008
BATT. ENDPOINT	2.97	20	836,519,965	41.83	0.000005

Table 6-13. Frequency Stability Data (Cellular CDMA Mode – Ch. 384)

Note:

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 21 01 20

Frequency Stability (Cellular CDMA) (Cont'd)

§2.1055, 22.355; RSS-129 (9.2.1)

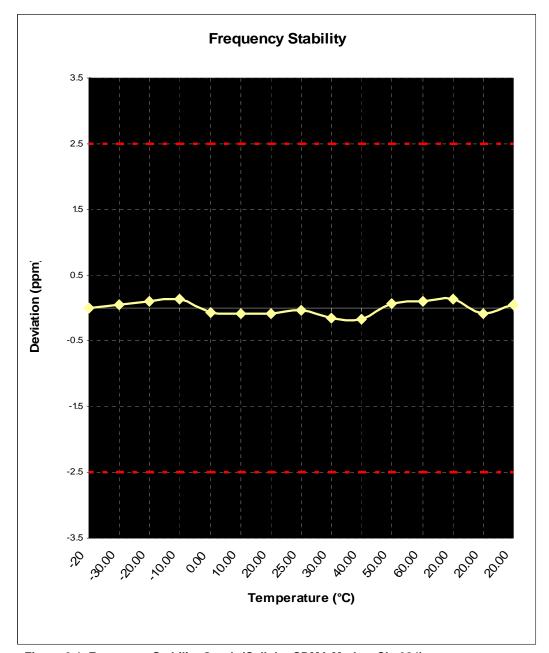


Figure 6-1. Frequency Stability Graph (Cellular CDMA Mode – Ch. 384)

Note:

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 28		
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth	Fage 22 01 20		
O COORD POTENT E					

<u>Frequency Stability (PCS CDMA)</u> §2.1055, 24.235; RSS-133 (6.7(a,b))

OPERATING FREQUENCY: 1,880,000,003 Hz

CHANNEL: 600

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ. (Hz)	Freq. Dev.	Deviation (%)
100 %	3.70	+ 20 (Ref)	1,880,000,003	0.00	0.000000
100 %		-30	1,880,000,153	-150.40	-0.000008
100 %		-20	1,879,999,777	225.60	0.000012
100 %		-10	1,880,000,172	-169.20	-0.000009
100 %		0	1,879,999,721	282.00	0.000015
100 %		10	1,879,999,834	169.20	0.000009
100 %		20	1,879,999,928	75.20	0.000004
100 %		25	1,880,000,135	-131.60	-0.000007
100 %		30	1,880,000,191	-188.00	-0.000010
100 %		40	1,880,000,097	-94.00	-0.000005
100 %		50	1,880,000,172	-169.20	-0.000009
100 %		60	1,880,000,078	-75.20	-0.000004
85 %	3.15	20	1,880,000,135	-131.60	-0.000007
115 %	4.26	20	1,880,000,116	-112.80	-0.000006
BATT. ENDPOINT	2.94	20	1,879,999,796	206.80	0.000011

Table 6-14. Frequency Stability Data (PCS CDMA Mode – Ch. 600)

Note:

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 23 01 20

Frequency Stability (PCS CDMA) (Cont'd)

§2.1055, 24.235; RSS-133 (6.7(a,b))

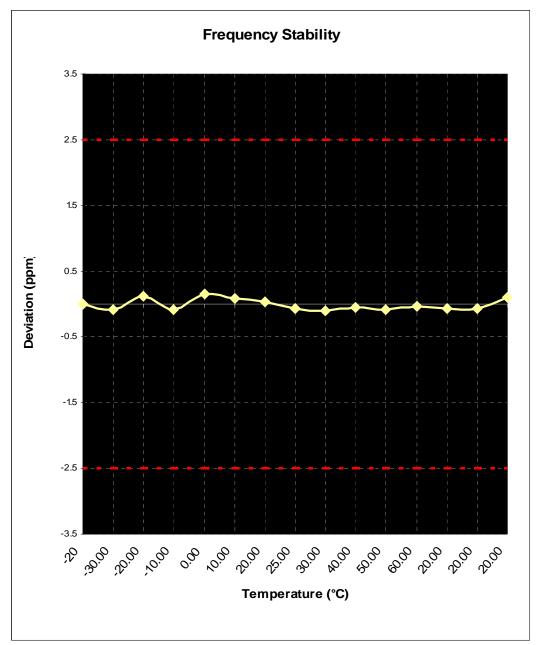


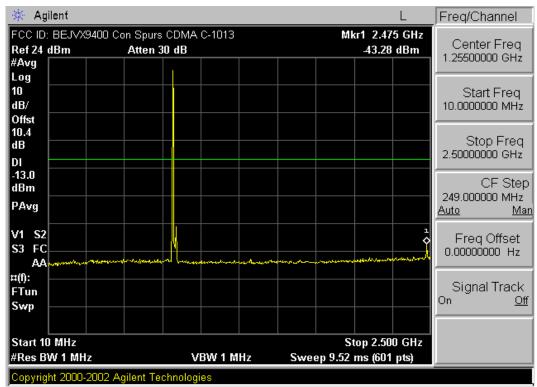
Figure 6-2. Frequency Stability Graph (PCS CDMA Mode - Ch. 600)

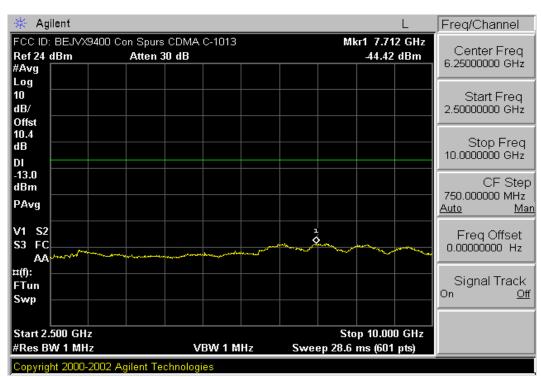
Note:

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 24 01 20
0.0000 POTEOT E				

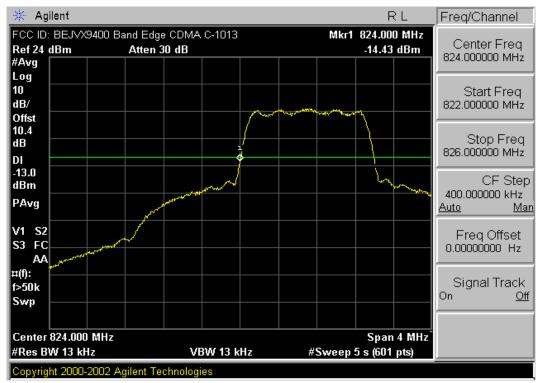
7.0 CONCLUSION

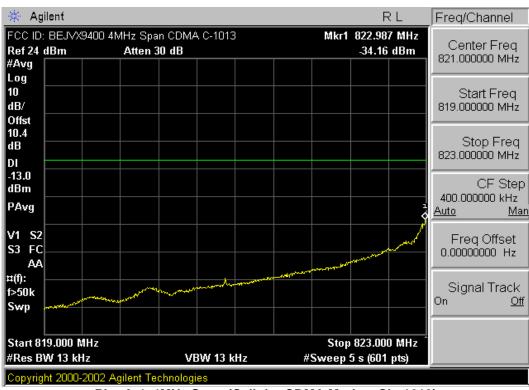
The data collected shows that the **LG Electronics Dual-Band CDMA Phone with Bluetooth FCC ID: BEJVX9400** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.


FCC ID: BEJVX9400	@ PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page 25 01 26

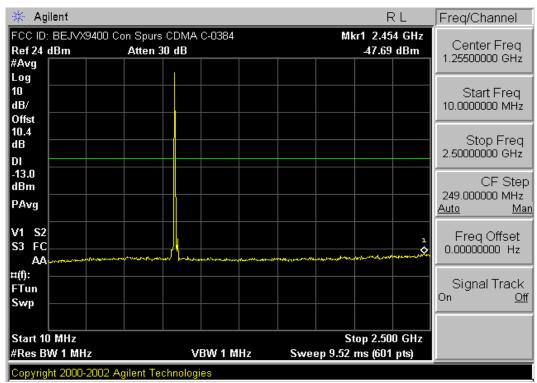

EXHIBIT A - PLOT(S) OF EMISSIONS

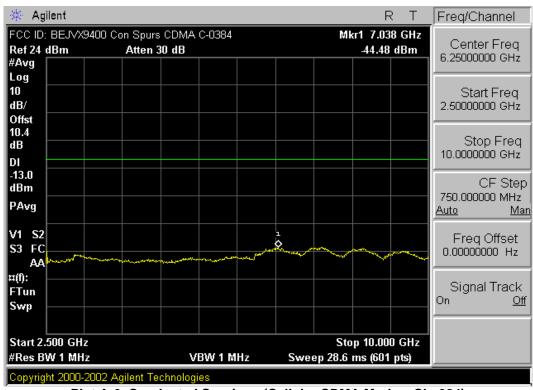
FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Fage 20 01 20


Plot A-1. Conducted Spurious (Cellular CDMA Mode - Ch. 1013)

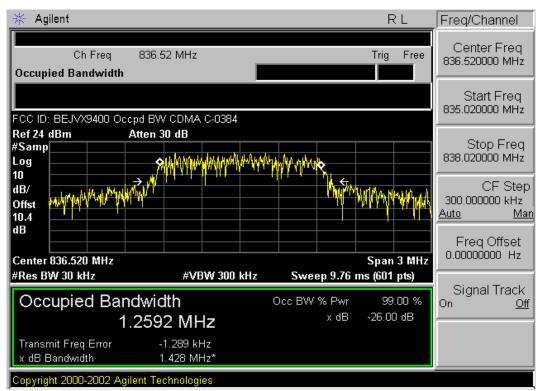

Plot A-2. Conducted Spurious (Cellular CDMA Mode – Ch. 1013)

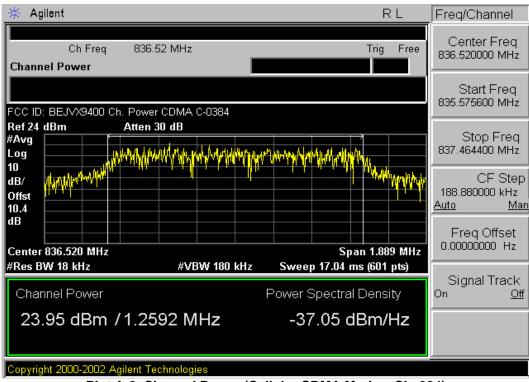
FCC ID: BEJVX9400	PCTEST.	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A1
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A1


Plot A-3. Band Edge (Cellular CDMA Mode – Ch. 1013)

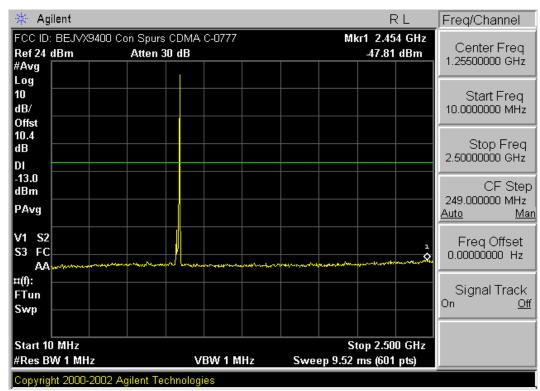

Plot A-4. 4MHz Span (Cellular CDMA Mode - Ch. 1013)

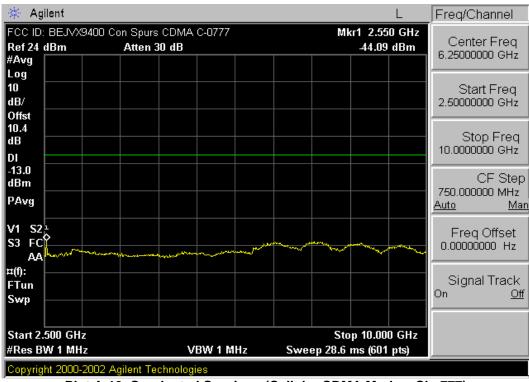
FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A2
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A2


Plot A-5. Conducted Spurious (Cellular CDMA Mode - Ch. 384)

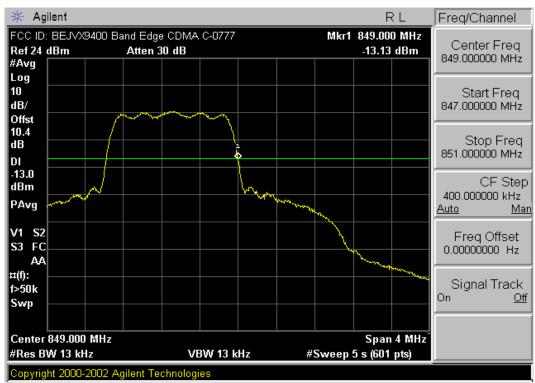

Plot A-6. Conducted Spurious (Cellular CDMA Mode – Ch. 384)

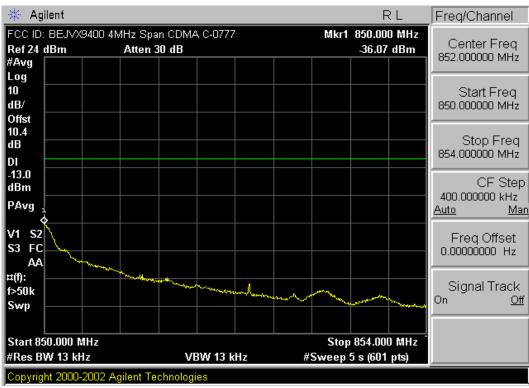
FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A2
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A3


Plot A-7. Occupied Bandwidth (Cellular CDMA Mode - Ch. 384)

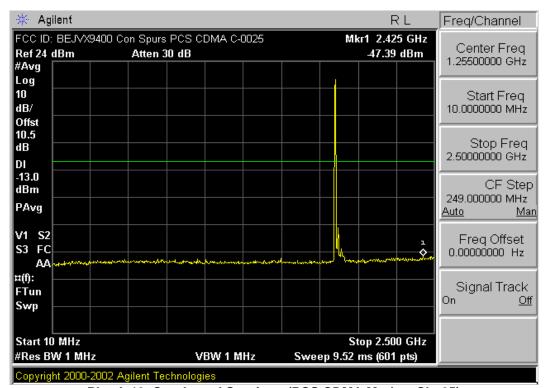

Plot A-8. Channel Power (Cellular CDMA Mode – Ch. 384)

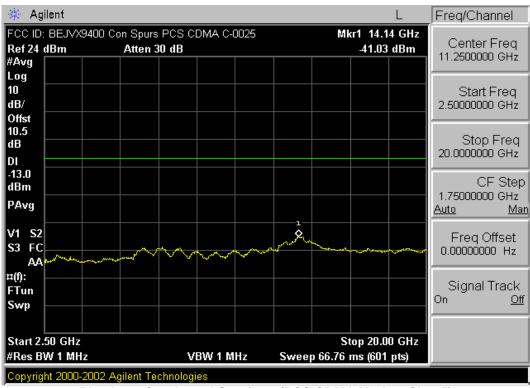
FCC ID: BEJVX9400	@\PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A4
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A4


Plot A-9. Conducted Spurious (Cellular CDMA Mode - Ch. 777)

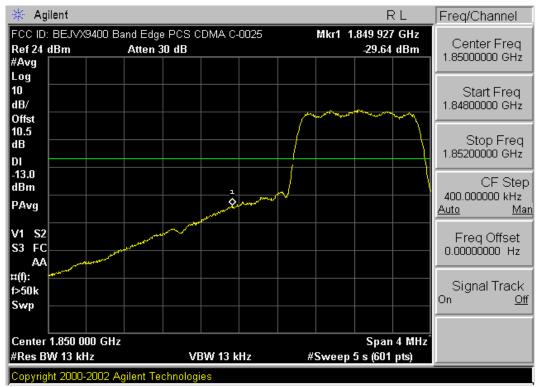

Plot A-10. Conducted Spurious (Cellular CDMA Mode – Ch. 777)

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo AF
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A5


Plot A-11. Band Edge (Cellular CDMA Mode – Ch. 777)

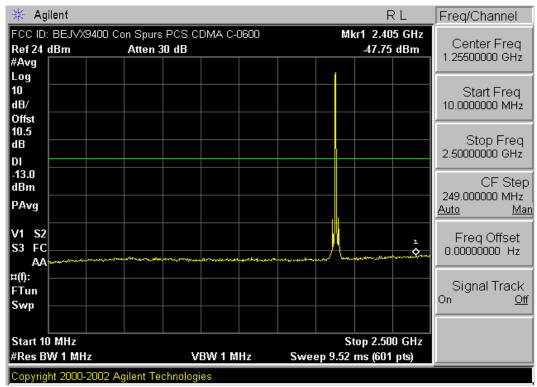

Plot A-12. 4MHz Span (Cellular CDMA Mode – Ch. 777)

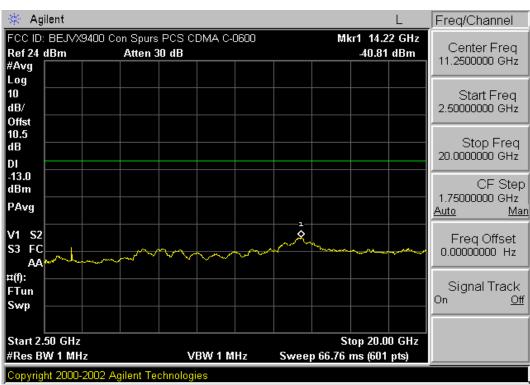
FCC ID: BEJVX9400	@PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A6
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A6


Plot A-13. Conducted Spurious (PCS CDMA Mode - Ch. 25)

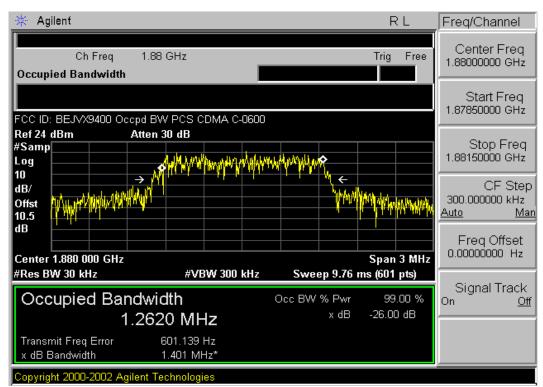
Plot A-14. Conducted Spurious (PCS CDMA Mode – Ch. 25)

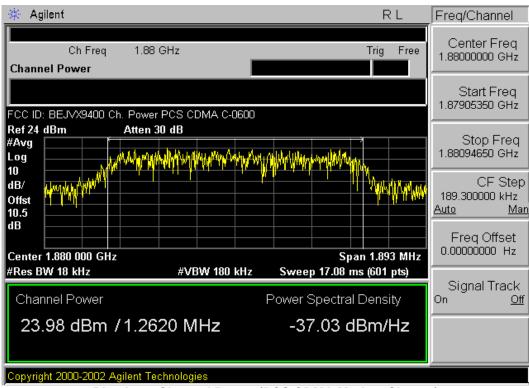
FCC ID: BEJVX9400	@PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo A7	
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A7	


Plot A-15. Band Edge (PCS CDMA Mode - Ch. 25)

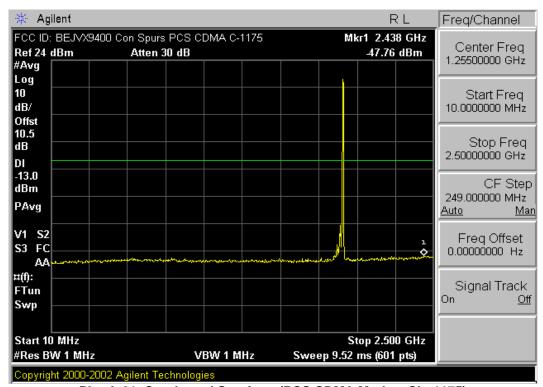

Plot A-16. 4MHz Span (PCS CDMA Mode - Ch. 25)

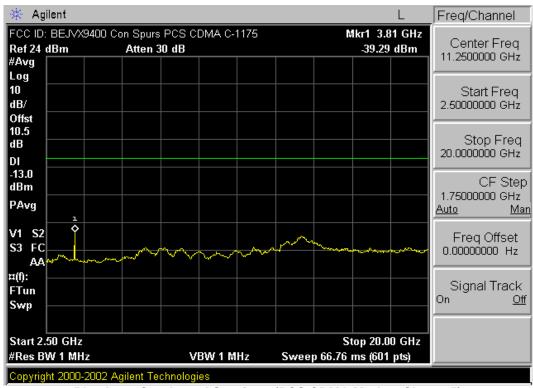
FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A9
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A8


Plot A-17. Conducted Spurious (PCS CDMA Mode - Ch. 600)


Plot A-18. Conducted Spurious (PCS CDMA Mode – Ch. 600)

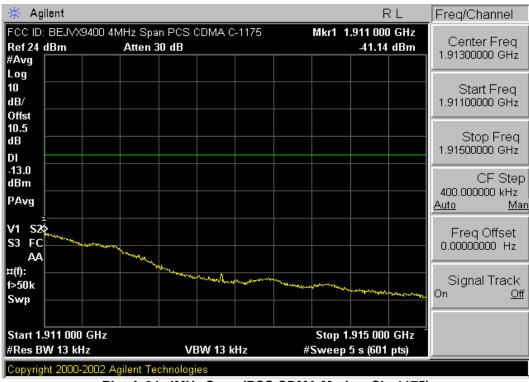
FCC ID: BEJVX9400	@PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo AO
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A9


Plot A-19. Occupied Bandwidth (PCS CDMA Mode - Ch. 600)


Plot A-20. Channel Power (PCS CDMA Mode – Ch. 600)

FCC ID: BEJVX9400	@PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A10
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A10

Plot A-21. Conducted Spurious (PCS CDMA Mode – Ch. 1175)


Plot A-22. Conducted Spurious (PCS CDMA Mode – Ch. 1175)

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A11
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A11

Plot A-23. Band Edge (PCS CDMA Mode – Ch. 1175)

Plot A-24. 4MHz Span (PCS CDMA Mode – Ch. 1175)

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MODE CONDUCTED PLOTS	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo A12
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Page A12

EXHIBIT B - TEST SETUP PHOTOGRAPHS

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		Faye 27 01 20

EXHIBIT C - INTERNAL/EXTERNAL PHOTOGRAPHS

FCC ID: BEJVX9400	PCTEST	FCC Pt. 22/24 CDMA MEASUREMENT REPORT	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 28
0608230726	September 7 - 8, 2006	Dual-Band CDMA Phone with Bluetooth		F aye 20 01 20