

Date of Issue:

2010-11-30

Page:

1/64

SAR TEST REPORT

Equipment Under Test

Cellular WCDMA USB Modem

Model No.

PD200

Applicant

LG Electronics Inc.

Address of Applicant

60-39, Gasan-dong, Gumchon-gu, Seoul, 153-023, Korea

FCC ID

BEJPD200

Device Category

Portable Device

Exposure Category

General Population/Uncontrolled Exposure

Date of Receipt

2010-11-09

Date of Test(s)

2010-11-16, 2010-11-29

Date of Issue

2010-11-30

Max. SAR

1.17 W/kg (WCDMA V)

Standards:

FCC OET Bulletin 65 supplement C IEEE 1528, 2003

ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by

Fred Jeong

2010-11-30

Approved by

Charles Kim

2010-11-30

15

Date of Issue : 2010-11-30
Page : 2 / 64

Contents

1. Genera	al Information	
1.1	Testing Laboratory	3
1.2	Details of Applicant.	3
1.3	Version of Report.	3
1.4	Description of EUT(s)	3
1.5	Test Environment.	4
1.6	Operation Configuration.	4
1.7	Evaluation procedures.	5
1.8	The SAR Measurement System.	6
1.9	System Components.	8
1.10	SAR System Verification	9
1.11	Tissue Simulant Fluid for the Frequency Band.	11
1.12	Test Standards and Limits.	12
2. Instrui	ments List	14

3. Summary of Results.....

APPENDIX

- A. DASY4 SAR Report
- B. Uncertainty Analysis
- C. Calibration certificate

Date of Issue : 2010-11-30 Page : 3 / 64

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371 Homepage : www.kr.sgs.com/ee

1.2 Details of Manufacturer

Manufacturer : LG Electronics Inc.

Address : 60-39, Gasan-dong, Gumchon-gu, Seoul, 153-023, Korea

Contact Person : Hyeon Kyun Kim Phone No. : 82-2-2033-1113

1.3 Version of Report

Version Number	Date	Revision
00	2010-11-23	Initial issue
01	2010-11-30	Revision 01

1.4 Description of EUT(s)

EUT Type	: Cellular WCDMA USB Modem	
Model	: PD200	
Serial Number	: N/A	
Mode of Operation	: WCDMA V	
Duty Cycle : 1(WCDMA)		
Tx Frequency Range	: 826.4 MHz ~ 846.6 MHz (WCDMA V)	
Conducted Max Power	: 22.68 dBm(WCDMA V)	
Battery Type	: USB Power Supply from Laptop Computer	

Date of Issue : 2010-11-30 Page : 4/64

1.5 Test Environment

Ambient temperature	: (22 ± 2) ° C
Tissue Simulating Liquid	: (22 ± 2) ° C
Relative Humidity	: (55 ± 5) % R.H.

1.6 Operation Configuration

The device in WCDMA mode was controlled by using a Communication tester (CMU 200). Communication between the device and the tester was established by air link. Measurements were performed at the lowest, middle and highest channels of the operating band. The power of EUT was supplied by USB port of Host PC and it was tested with the extender cable that was given by manufacturer as the accessory. Please refer to the below information of Host PC and find the setup photo file.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement.

Host PC Information

Position	Manufacturer	Model Name
Horizontal Up	Sony Corporation	PCG-1P6P
Vertical Front	Lenovo	T60

Date of Issue : 2010-11-30 Page : 5 / 64

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 mm to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1 % for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with

Date of Issue : 2010-11-30 Page : 6 / 64

relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1 g and 10 g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30 g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1 g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- •A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- •A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Date of Issue : 2010-11-30 Page : 7 / 64

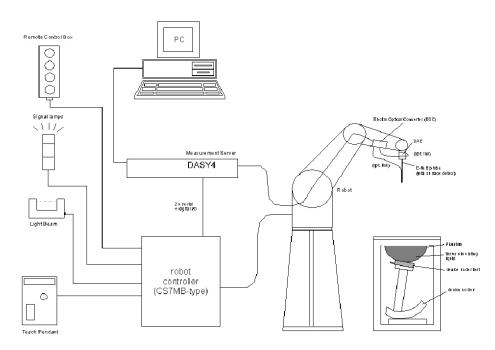


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Date of Issue : 2010-11-30 Page : 8 / 64

1.9 System Components

ET3DV6 E-Field Probe

Construction: Symmetrical design with triangular core Built-in shielding

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. glycol).

Calibration: In air from 10 MHz to 2.5 GHz In brain simulating tissue

 $(accuracy \pm 8 \%)$

Frequency: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 3 GHz)

Directivity : ± 0.2 dB in brain tissue (rotation around probe axis)

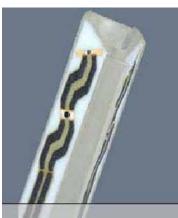
 ± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range : $5 \mu W/g$ to >100 mW/g; Linearity: $\pm 0.2 dB$

Srfce. Detect

Detect : ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces


Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz Compliance tests of mobile

phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

Date of Issue : 2010-11-30 Page : 9/64

SAM Phantom

Construction: The SAM Phantom is constructed of a

fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points in the robot

Shell Thickness: $2.0 \text{ mm} \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10 % from the target SAR values. These tests were done at 835 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) ° C, the relative humidity was in the range (55 \pm 5) % R.H. and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Date of Issue : 2010-11-30 Page : 10 / 64

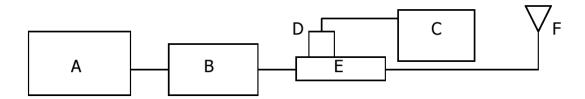


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2057-BBS3Q5KCK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (Input Power : 250 mW)	Measured SAR 1 g (Input Power : 250 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D835V2 S/N: 490	835 MHz Body	2.49 W/kg	2.51 W/kg	0.80	2010-11-16	22.5
D835V2 S/N: 490	835 MHz Body	2.49 W/kg	2.45 W/kg	-1.61	2010-11-29	22.1

Table 1. Results system validation

Date of Issue : 2010-11-30 Page : 11 / 64

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz - 3 GHz) by using a procedure detailed in Section V.

	Tissue		Dielectric Parameters				
f (MHz)	type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()		
		Measured, 2010-11-16	54.6	0.94	22.5		
835		Recommended Limits	55.2	0.97	21.0 ~ 23.0		
	Body	Deviation(%)	-1.09	-3.09	-		
		Measured, 2010-11-29	54.7	0.94	22.1		
		Recommended Limits		0.97	21.0 ~ 23.0		
		Deviation(%)	-0.91	-3.09	-		

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4:	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 ⁺% Pure Sodium Chloride Sugar: 98 ⁺% Pure Sucrose

Water: De-ionized, 16 $M\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 ⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Date of Issue : 2010-11-30 Page : 12 / 64

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

Date of Issue : 2010-11-30 Page : 13 / 64

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

Date of Issue : 2010-11-30 Page : 14 / 64

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 28, 2011
Schmid& Partner Engineering AG	835 MHz System Validation Dipole	D835V2	490	May 21, 2012
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	December 09, 2010
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	March 31, 2011
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	September 28, 2011
Agilent	Power Sensor	Е9300Н	MY41495307 MY41495308	October 01, 2011 October 01, 2011
Agilent	Signal Generator	E4421B	MY43350132	September 28, 2011
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	March 31, 2011
Agilent	Dual Directional Coupler	777D 778D	50128 50454	September 28, 2011
Microlab	LP Filter	LA-15N LA-30N	N/A	October 01, 2011
R&S	Mobile Test Unit	CMU 200	107279	March 31, 2011

Date of Issue : 2010-11-30 Page : 15 / 64

3. Summary of Results

FCC Power Measurement Procedures

Power measurements were performed using a base station simulator under digital average power.

The Dongle was placed into a simulated call using a base station simulator in shielded chamber. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

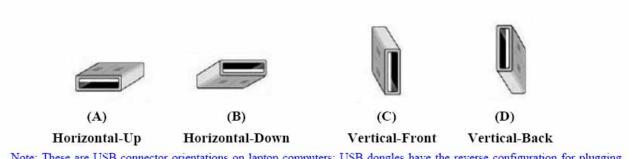
RF Conducted Power

Band	Mode	Channe	l Free	quency(MHz)	Condu	icted Pow	er(dBm)
WCDMA V	RMC	4132		826.4		22.55	
(RMC)	RMC	4183		836.6		22.49	
(KIVIC)	RMC	4233		846.6		22.43	
		4132		826.4		22.68	
	Sub-test 1	4183		836.6		22.59	
		4233		846.6		22.50	
		4132		826.4		22.65	
	Sub-test 2	4183		836.6		22.58	
		4233		846.6		22.62	
		4132		826.4		21.97	
WCDMAN	Sub-test 3	4183		836.6		22.07	
WCDMA V		4233		846.6		22.01	
(HSDPA Active)		4132		826.4		22.08	
	Sub-test 4	4183		836.6		21.98	
		4233		846.6		21.97	
		С	d	ACK,	NACK,	CQI	AGV
	Sub-test 1	1	15	15			-
	Sub-test 2	12	15				-
_	Sub-test 3	15	8				-
	Sub-test 4	15	1	8		8	
		4132		826.4		20.8	
	Sub-test 1	4180		<u> </u>		20.9	
		4233		846.6		21.0	
		4132		826.4		20.5	
	Sub-test 2	4180		836.0		20.3	
		4233		846.6		20.5	
		4132		826.4		21.3	
	Sub-test 3	4180		836.0		21.4	
		4233		846.6		21.3	
WCMA V		4132		826.4		20.45	
(HSUPA)	Sub-test 4	4180		836.0		20.5	
(HSOIA)		4233		846.6		20.7	
		4132		826.4		20.87	
	Sub-test 5	4180		836.0		21.1	
		4233		846.6		21.25	
		С	d	ACK,	NACK,	CQI	AGV
	Sub-test 1	11	15		8		20
	Sub-test 2	6	15		8		12
	Sub-test 3	15	9		8		15
	Sub-test 4	2	15		8		17
	Sub-test 5	15	15		8		21

Date of Issue : 2010-11-30 Page : 16 / 64

KDB 447498 D02 SAR Procedures for Dongle Xmtr v02 _Nov. 2009

The procedures are intended for USB dongle transmitters with internal antennas, which are referred to as "simple dongles".


<Simple Dongle Procedures>

Test all USB orientations [see figure below] with a device-to-phantom separation distance of 5mm or less, according to KDB 447498 requirements. These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.

<Other SAR Test Considerations>

Dongles with certain spacers, contours or tapering added to the housing should generally be tested according to the 5 mm test separation requirement required for simple dongles, which is based on overall host platform, device and user operating configurations and exposure conditions of a peripheral device as compared to individual use conditions.

USB dongle transmitters must show compliance at a test separation distance of 5 mm. When the SAR is 1.2 W/kg, applications for equipment certification require a PBA for TCB approval. When the SAR is 1.2 W/kg, especially for SAR > 1.5 W/kg, certain caution statements, labels and other means to ensure compliance may be required.

Note: These are USB connector orientations on laptop computers; USB dongles have the reverse configuration for plugging into the corresponding laptop computers.

USB Connector Orientations Implemented on Laptop Computers

Date of Issue : 2010-11-30 Page : 17 / 64

Ambient Temperature (°C)	(22 ± 2) ° C
Liquid Temperature (°C)	(22 ± 2) ° C
Date	2010-11-16
Date	2010-11-29

WCDMA V Body SAR

Band	EUT Position	Mode	Traffic Channel		Power	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Drift (dB)	(W/kg)	Limits (W/kg)
WCDMA V	Horizontal Up	RMC	826.4	4132	-0.092	1.17	1.6
	Horizontal Up	RMC	836.6	4183	-0.093	0.891	
	Horizontal Up	RMC	846.6	4233	-0.184	1.07	
	Horizontal Down	RMC	826.4	4132	-0.149	1.15	
	Horizontal Down	RMC	836.6	4183	-0.024	1.04	
	Horizontal Down	RMC	846.6	4233	-0.052	1.17	
	Horizontal Down	HSDPA	826.4	4132	0.045	0.781	
	Horizontal Down	HSDPA	836.6	4183	-0.019	0.611	
	Horizontal Down	HSDPA	846.6	4233	0.056	0.810	
	Horizontal Down	HSUPA	846.6	4233	0.157	0.746	
	Vertical Front	RMC	836.6	4183	0.015	0.655	
	Vertical Back	RMC	836.6	4183	0.084	0.689	

<Note>

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 4. The distance from EUT to flat phantom for testing Body SAR is 5 mm.
- 5. This model supports WCDMA V with HSDPA/HSUPA. It was tested in RMC mode, and HSDPA/HSUPA mode is tested at a worst case.

Date of Issue : 2010-11-30 Page : 18 / 64

Appendix

List

Appendix A	DASY4 Report (Plots of the SAR Measurements)	- 835 MHz Validation Test- 835 MHz Validation Test-1- WCDMA V Test
Appendix B	Uncertainty Analysis	
Appendix C	Calibration Certificate	- PROBE - DAE - DIPOLE

Date of Issue : 2010-11-30 Page : 19 / 64

Appendix A

Test Plot - DASY4 Report

Date of Issue : 2010-11-30 Page : 20 / 64

835 MHz Validation Test

Date/Time: 2010-11-16 11:02:54

Test Laboratory: SGS Testing Korea File Name: <u>Validation 835 MHz_Body.da4</u>

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Program Name: Validation 835 MHz_Body

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.943$ mho/m; $\varepsilon_r = 54.6$; $\rho = 1000$ kg/m³

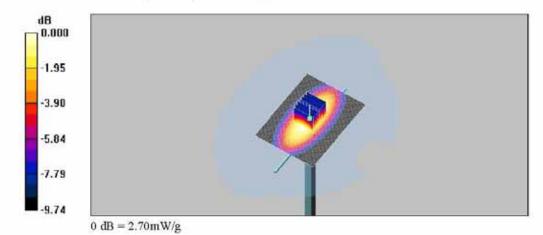
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

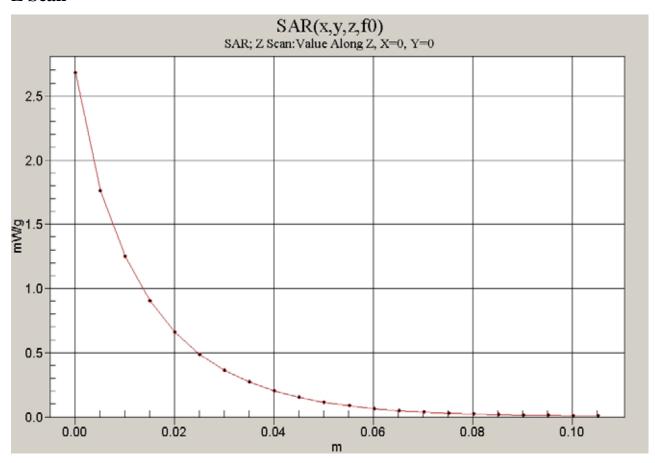
Validation 835 MHz_Body/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.71 mW/g


Validation 835 MHz_Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 3.56 W/kg


SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.67 mW/g Maximum value of SAR (measured) = 2.70 mW/g

Date of Issue : 2010-11-30 Page : 21 / 64

Z Scan

Date of Issue : 2010-11-30 Page : 22 / 64

835 MHz Validation Test - 1

Date/Time: 2010-11-29 1:36:47

Test Laboratory: SGS Testing Korea

File Name: Validation 835 MHz Body HSDPA-Retest.da4

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Program Name: Validation 835 MHz Body

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

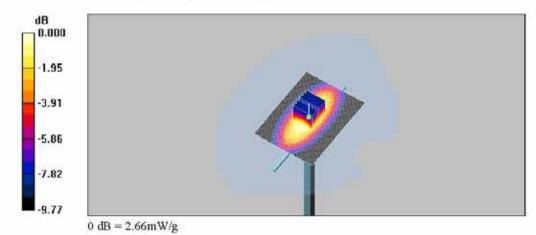
Medium parameters used: f = 835 MHz; $\sigma = 0.943$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

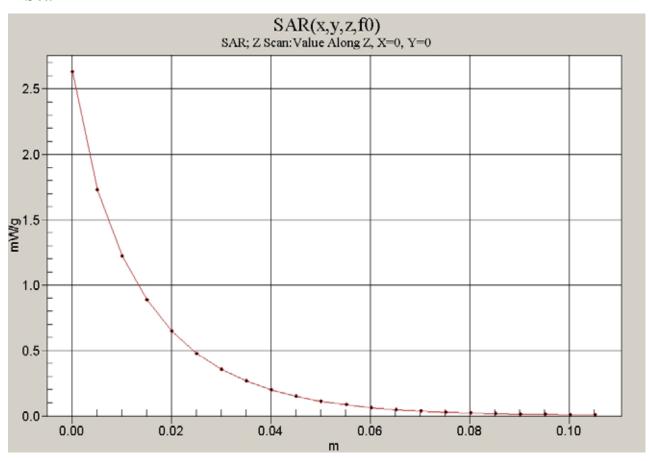
Validation 835 MHz_Body/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.64 mW/g


Validation 835 MHz_Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 3.50 W/kg


SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.63 mW/gMaximum value of SAR (measured) = 2.66 mW/g

Date of Issue : 2010-11-30 Page : 23 / 64

Z Scan

GSM 850 SAR Test

Report File No.: F690501/RF-SAR001906-A1

Date of Issue: 2010-11-30 24 / 64 Page:

Date/Time: 2010-11-16 12:15:59

Test Laboratory: SGS Testing Korea File Name: WCDMA V Horizontal Up.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

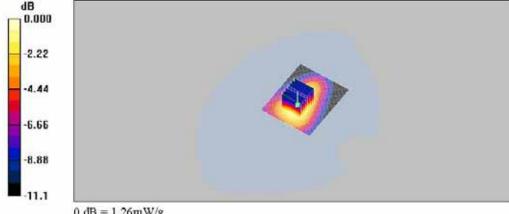
Communication System: WCDMA V; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 826.5 MHz; $\sigma = 0.929 \text{ mho/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V Low Horizontal Up/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

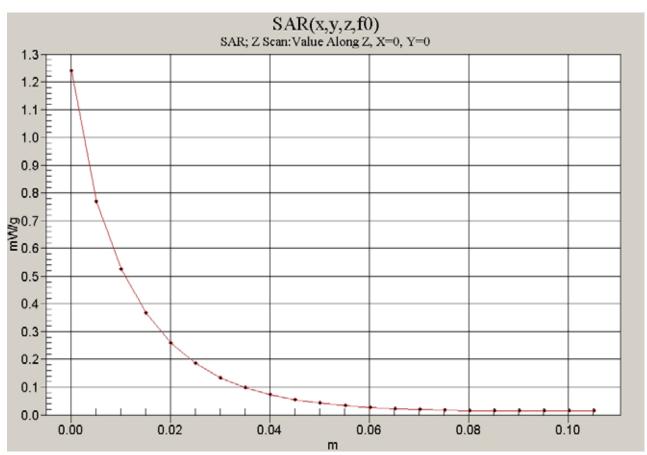

Maximum value of SAR (interpolated) = 1.28 mW/g

WCDMA V Low Horizontal Up/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.0 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.738 mW/gMaximum value of SAR (measured) = 1.26 mW/g



0 dB = 1.26 mW/g

Date of Issue : 2010-11-30 Page : 25 / 64

Z Scan

Date of Issue : 2010-11-30 Page : 26 / 64

Date/Time: 2010-11-16 11:48:03

Test Laboratory: SGS Testing Korea File Name: WCDMA V Horizontal Up.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.946 \text{ mho/m}$; $\epsilon_e = 54.6$; $\rho = 1000 \text{ kg/m}^3$

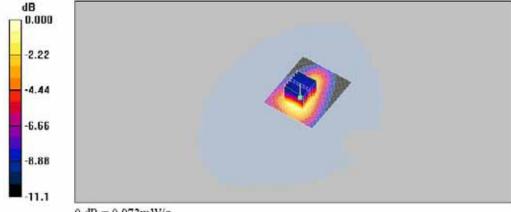
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Horizontal Up/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.982 mW/g


WCDMA V_Mid_Horizontal Up/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.891 mW/g; SAR(10 g) = 0.565 mW/g Maximum value of SAR (measured) = 0.973 mW/g

0 dB = 0.973 mW/g

Date of Issue : 2010-11-30 Page : 27 / 64

Date/Time: 2010-11-16 1:25:44

Test Laboratory: SGS Testing Korea File Name: WCDMA V Horizontal Up.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.962 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

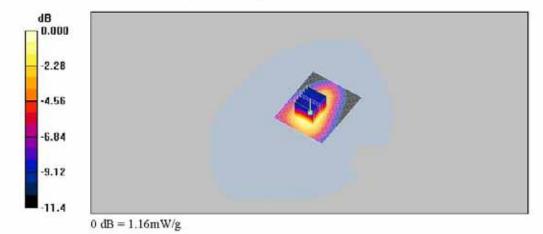
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_High_Horizontal Up/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.19 mW/g


WCDMA V_High_Horizontal Up/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 31.6 V/m; Power Drift = -0.184 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.675 mW/g Maximum value of SAR (measured) = 1.16 mW/g

Date of Issue: 2010-11-30 28 / 64 Page:

Date/Time: 2010-11-16 2:27:01

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 826.5 MHz; $\sigma = 0.929 \text{ mho/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

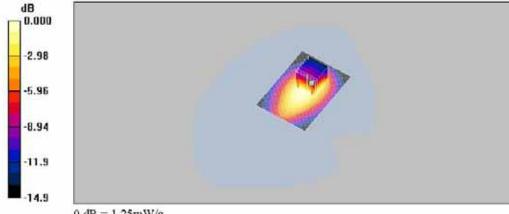
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V Low Horizontal Down/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.36 mW/g


WCDMA V_Low_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.2 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.713 mW/gMaximum value of SAR (measured) = 1.25 mW/g

0 dB = 1.25 mW/g

Date of Issue : 2010-11-30 Page : 29 / 64

Date/Time: 2010-11-16 1:55:45

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.946 \text{ mho/m}$; $\epsilon_e = 54.6$; $\rho = 1000 \text{ kg/m}^3$

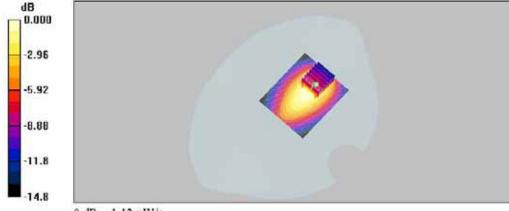
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Horizontal Down/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.18 mW/g


WCDMA V_Mid_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.5 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.650 mW/g Maximum value of SAR (measured) = 1.13 mW/g

0 dB = 1.13 mW/g

Date of Issue : 2010-11-30 Page : 30 / 64

Date/Time: 2010-11-16 2:53:32

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.962 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

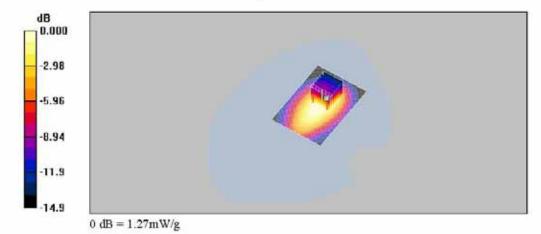
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_High_Horizontal Down/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

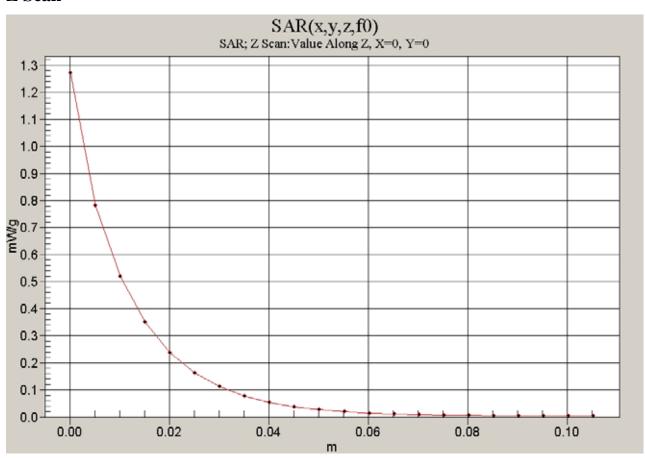
Maximum value of SAR (interpolated) = 1.35 mW/g


WCDMA V_High_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.3 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 1.78 W/kg


SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.726 mW/g Maximum value of SAR (measured) = 1.27 mW/g

Date of Issue : 2010-11-30 Page : 31 / 64

Z Scan

Date of Issue : 2010-11-30 Page : 32 / 64

Date/Time: 2010-11-29 3:03:50

Test Laboratory: SGS Testing Korea

File Name: WCDMA V HSDPA Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 826.5 MHz; $\sigma = 0.929$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

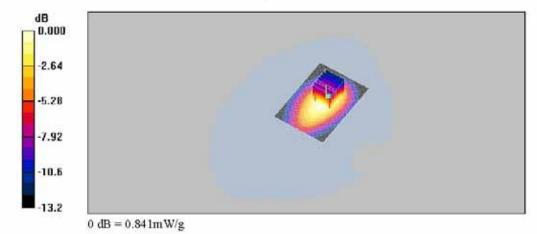
DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_HSDPA_Low_Horizontal Down/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.848 mW/g

WCDMA V_HSDPA_Low_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.4 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.781 mW/g; SAR(10 g) = 0.505 mW/g

Maximum value of SAR (measured) = 0.841 mW/g

Date of Issue : 2010-11-30 Page : 33 / 64

Date/Time: 2010-11-29 4:04:45

Test Laboratory: SGS Testing Korea

File Name: WCDMA V HSDPA Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.946 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

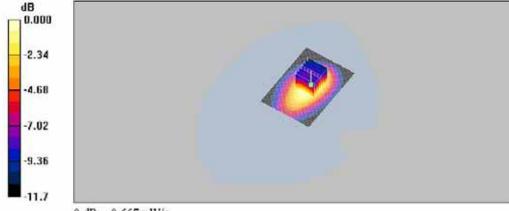
- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_HSDPA_Mid_Horizontal Down/Area Scan (51x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.676 mW/g

WCDMA V_HSDPA_Mid_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.871 W/kg

SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.400 mW/g

Maximum value of SAR (measured) = 0.667 mW/g

0 dB = 0.667 mW/g

Date of Issue : 2010-11-30 Page : 34 / 64

Date/Time: 2010-11-16 3:23:31

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.962 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

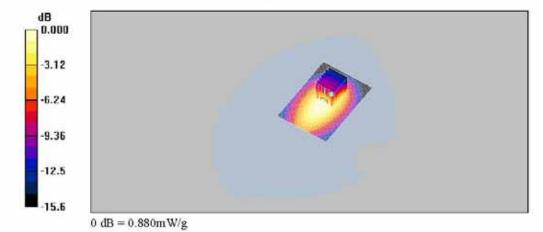
- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_HSDPA_High_Horizontal Down/Area Scan (51x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.912 mW/g

WCDMA V_HSDPA_High_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.810 mW/g; SAR(10 g) = 0.495 mW/g

Maximum value of SAR (measured) = 0.880 mW/g

Date of Issue : 2010-11-30 Page : 35 / 64

Date/Time: 2010-11-16 3:50:38

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Horizontal Down.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.962 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

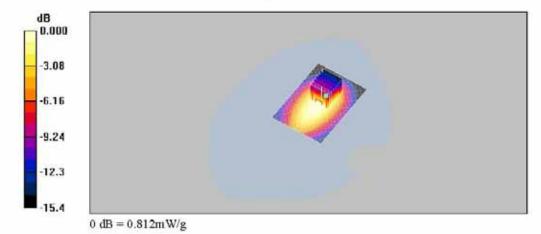
- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_HSUPA_High_Horizontal Down/Area Scan (51x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.856 mW/g

WCDMA V_HSUPA_High_Horizontal Down/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.4 V/m; Power Drift = 0.157 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.746 mW/g; SAR(10 g) = 0.455 mW/g

Maximum value of SAR (measured) = 0.812 mW/g

Date of Issue : 2010-11-30 Page : 36 / 64

Date/Time: 2010-11-16 4:24:08

Test Laboratory: SGS Testing Korea File Name: WCDMA V Vertical Front.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.946 \text{ mho/m}$; $\epsilon_e = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Vertical Front/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.735 mW/g

WCDMA V_Mid_Vertical Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 23.2 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.417 mW/g

Maximum value of SAR (measured) = 0.706 mW/g

0 dB = 0.706 mW/g

Date of Issue : 2010-11-30 Page : 37 / 64

Date/Time: 2010-11-16 5:06:24

Test Laboratory: SGS Testing Korea File Name: WCDMA V Vertical Back.da4

DUT: PD200; Type: USB Modem; Serial: N/A

Program Name: WCDMA V

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.946 \text{ mho/m}$; $\epsilon_e = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

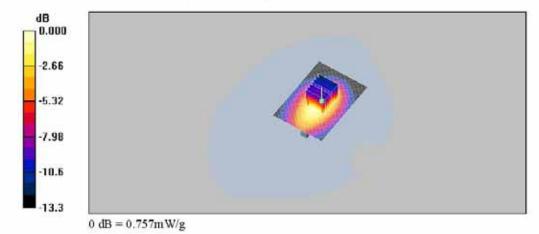
DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Vertical Back/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.737 mW/g

WCDMA V_Mid_Vertical Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = 0.084 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.689 mW/g; SAR(10 g) = 0.428 mW/g

Maximum value of SAR (measured) = 0.757 mW/g

Date of Issue : 2010-11-30 Page : 38 / 64

Appendix B

Uncertainty Analysis

а	b	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Sectio n in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition -Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning - mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation - SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		19.27	

Appendix C

Calibration Certificate

- PROBE
- DAE
- 835 MHz DIPOLE

Report File No.: F690501/RF-SAR001906-A1

Date of Issue : 2010-11-30
Page : 39 / 64

Date of Issue:

2010-11-30

Page:

40 / 64

- PROBE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS-KES (Dymstec)

Certificate No: ET3-1782_Apr10

QA CAL-01.v6,		
Calibration proo	QA CAL-12.v6, QA CAL-23.v3 and edure for dosimetric E-field probes	
April 28, 2010		
MATE critical for calibration)	bry facility: environment temperature (22 \pm 3)°C	
ID#	Cal Date (Certificate No.)	Scheduled Calibration
		Apr-11
1 2000 000 0000000		Apr-11
100000000000000000000000000000000000000		Apr-11
		Mar-11
	() 그 [지 :] 다른 [지 :] [] [] [] [] [] [] [] [] []	Mar-51
	(b) THE STATE OF T	Mar-11 Dec-10
SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10
I ID#	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
		Signature
Name	Function	
Name Jeton Kestrati	Function Laboratory Technician	I Cu
a history and a service of	AND AND AND AND AND AND AND ADDRESS OF THE PARTY OF THE P	7-fr
	iments the traceability to na certainties with confidence ducted in the closed laboration) ID # GB41293874 MY41498277 MY41498087 SN 55054 (3c) SN 55058 (20b) SN 55129 (30b) SN 3013 SN 660 ID # US3642U01700	Interest the traceability to national standards, which realize the physical univertainties with confidence probability are given on the following pages and ducted in the closed laboratory facility: environment temperature (22 ± 3)°C ID #

Certificate No: ET3-1782_Apr10

Page 1 of 11

Date of Issue: 2010-11-30

Page: 41/64

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space convF sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 3 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 3 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 EEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003.

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of CorivF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1782 Apr10 Page 2 of 11

Date of Issue : 2010-11-30 Page : 42 / 64

ET3DV6 SN:1782 April 28, 2010

Probe ET3DV6

SN:1782

Manufactured: April 15, 2003 Last calibrated: April 30, 2009 Modified: April 27, 2010 Recalibrated: April 28, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Date of Issue : 2010-11-30

Page: 43 / 64

ET3DV6 SN:1782 April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Vorm (yıV/(V/m) ²) ^A	2.01	1.74	1.86	± 10.1%
DCP (mV) ^{ff}	93.9	96.4	91.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^t (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
		0.00	Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 $^{^{\}circ}$ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

¹ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value

Date of Issue : 2010-11-30 Page : 44 / 64

ET3DV6 SN:1782 April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF.X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	43.5 ± 5%	$0.87 \pm 5\%$	6.67	6.67	6.67	0.19	2.19 ± 13.3%
835	± 50 / ± 100	41.9 ± 5%	$0.89 \pm 5\%$	6.26	6.26	6.26	0.51	2.05 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	$1.37 \pm 5\%$	5.30	5.30	5.30	0.53	2.60 ± 11.0%
1900	±50/±100	40.0 ± 5%	$1.40 \pm 5\%$	5.04	5.04	5.04	0.69	2.24 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	4.48	4.48	4.48	0.99	1.71 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Date of Issue : 2010-11-30 Page : 45 / 64

ET3DV6 SN:1782 April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

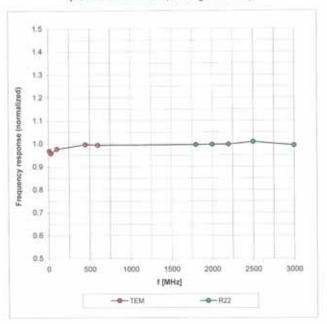
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	56.7 ± 5%	$0.94 \pm 5\%$	7.53	7.53	7.53	0.15	2.33 ± 13.3%
835	±50/±100	55.2 ± 5%	$0.97 \pm 5\%$	6.11	6.11	5.11	0.42	2.40 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	$1.49 \pm 5\%$	4.68	4.68	4.68	0.63	3.03 ± 11.0%
1900	±50/±100	53.3 ± 5%	1.52 ± 5%	4.46	4.46	4.46	0.85	2.44 ± 11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	4.07	4.07	4.07	0.99	1.40 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1782_Apr10

Page 6 of 11

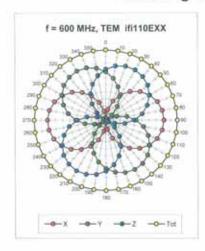


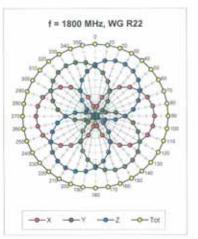
Date of Issue : 2010-11-30 Page : 46 / 64

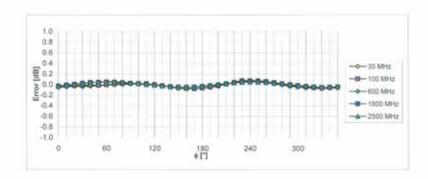
ET3DV6 SN:1782 April 28, 2010

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




Date of Issue : 2010-11-30 Page : 47 / 64

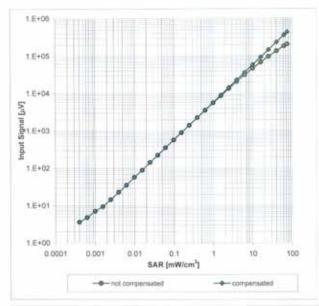
ET3DV6 SN:1782 April 28, 2010

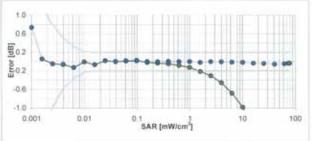
Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1782 Aprilo

Page 8 of 11




Date of Issue : 2010-11-30 Page : 48 / 64

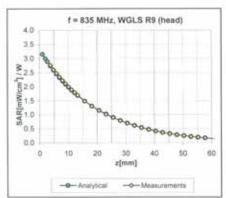
ET3DV6 SN:1782 April 28, 2010

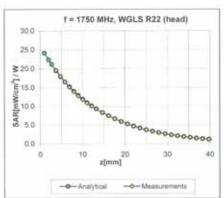
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

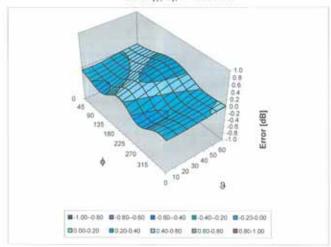
Certificate No: ET3-1782_Apr10


Page 9 of 11



Date of Issue : 2010-11-30 Page : 49 / 64

ET3DV6 SN:1782 April 28, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (¢, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No. ET3-1782_Apr10

Page 10 of 11

Date of Issue : 2010-11-30 Page : 50 / 64

ET3DV6 SN:1782 April 28, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Date of Issue:

2010-11-30

Page:

51 / 64

-DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE3-567 Dec09

Object	DAE3 - SD 000 D03 AA - SN: 567				
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	electronics (DAE)			
Calibration date:	December 9, 2009	Z D LTRA			
THE INVESTIGATION OF STREET					
All calibrations have been condu-	cted in the closed laboratory TE critical for calibration)	facility: environment temperature (22			
All calibrations have been condu Calibration Equipment used (M&	cted in the closed laboratory		±3)°C and humidity < 70%		
All calibrations have been conducted (M& Primary Standards Keithley Multimater Type 2001	TE critical for calibration) ID # SN: 0810278	facility: environment temperature (22 Cel Date (Certificate No.) 1-Oct-09 (No. 9055)	± 3)°C and humidity < 70%. Scheduled Calibration		
Calibration Equipment used (M&	TE critical for calibration)	facility: environment temperature (22 Cel Date (Certificate No.)	± 3)*C and humidity < 70%. Scheduled Calibration Oct-10		
All calibrations have been conducted (M& Primary Standards Kelthley Multimeter Type 2001 Secondary Standards	ID # SE UMS 006 AB 1004	facility: environment temperature (22 Cel Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	\$3)°C and hurridity < 70% Scheduled Calibration Oct-10 Scheduled Check		
All calibrations have been conducted (M& Primary Standards Keithley Multimater Type 2001 Secondary Standards	TE critical for calibration) ID # SN: 0810278	facility: environment temperature (22 Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check)	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10 Signature		
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimater Type 2001 Secondary Standards Calibrator Box V1.1	ID # SE UMS 006 AB 1004 Name	facility: environment temperature (22 Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check) Function	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10		

Date of Issue:

2010-11-30

Page:

52 / 64

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Date of Issue:

2010-11-30

Page:

53 / 64

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1 µV , full range = -100...+300 mV
Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.546 ± 0.1% (k=2)	404.281 ± 0.1% (k=2)	404.334 ± 0.1% (k=2)
Low Range	3.96697 ± 0.7% (k=2)		

Connector Angle

Connector Angle to be used in DASY system	7.5°±1°

Date of Issue:

2010-11-30

Page:

54 / 64

Appendix

1. [

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.8	+1.89	-0.00
Channel X + Input	19998.11	-1.59	-0.01
Channel X - Input	-19992.89	7.71	-0.04
Channel Y + Input	199957.5	-46.16	-0.02
Channel Y + Input	19992.42	-7.98	-0.04
Channel Y - Input	-19994.34	4.96	-0.02
Channel Z + Input	199931.6	-61,88	-0.03
Channel Z + Input	19990.70	-8.50	-0.04
Channel Z - Input	-19992.89	-0.04	-0.04

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.7	0.61	0.03
Channel X + Input	199.14	-0.86	-0.43
Channel X - Input	-200.82	-0.72	0.36
Channel Y + Input	2000.0	-0.11	-0.01
Channel Y + Input	198.97	-1.13	-0.56
Channel Y - Input	-201.08	-1.18	0.59
Channel Z + Input	1999.4	-0.87	-0.04
Channel Z + Input	198.62	-1.48	-0.74
Channel Z - Input	-201.26	-1.36	0.68

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	3.98	2.30
	- 200	-0.74	-2.83
Channel Y	200	-0.27	-0.39
	- 200	-0.32	-0.95
Channel Z	200	4,97	4.65
	- 200	-6.07	-6.68

Channel separation
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		1.57	-1.52
Channel Y	200	3.06		3,39
Channel Z	200	3.26	-0.28	

Date of Issue: 2010-11-30

55 / 64 Page:

4. AD-Converter Values with inputs shorted

ec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16355	16407
Channel Y	16166	16176
Channel Z	15925	16100

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec input $10M\Omega$

nput 10Mt2	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.19	-1.19	0.58	0.37
Channel Y	-0.59	-1.52	0.73	0.36
Channel Z	-1.05	-2.18	-0.05	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <251A

7. Input Resistance

iiput nesistance	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	203.2
Channel Y	0.1999	202.8
Channel Z	0.1999	201.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Date of Issue : 2010-11-30 Page : 56 / 64

- 835 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS KES (Dymstec)

Certificate No: D835V2-490 May10

Accreditation No.: SCS 108

Object	D835V2 - SN: 49	0	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	May 21, 2010		
		onal standards, which realize the physical un robability are given on the following pages ar	
All calibrations have been conduc	cted in the closed laborator	ry facility: environment temperature (22 ± 3)*(C and humidity < 70%.
It calibrations have been conducted that calibration Equipment used (M&	cted in the closed laborator	ry facility: environment temperature (22 ± 3)*(
It calibrations have been conductions alibration Equipment used (M& rimary Standards	cted in the closed laborator TE critical for calibration)	ry facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.)	Scheduled Calibration
t calibrations have been conductable to the calibration Equipment used (M& rimary Standards ower meter EPM-442A	cted in the closed laborator	ry facility: environment temperature (22 ± 3)*(
calibrations have been conductable and calibration Equipment used (M& imary Standards over meter EPM-442A over sensor HP 8481A	TE critical for calibration) ID # GB37480704	ry facility: environment temperature (22 ± 3)** Call Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
t calibrations have been conductable to the conductable to the conductable to the calibration Equipment used (M& rimary Standards over meter EPM-442A over sensor HP 8481A eference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783	Call Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
It calibrations have been conducted in the conducted in t	TE critical for calibration) ID # GB37480704 US37292783 SN: 5088 (20g)	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Scheduled Calibration Oct-10 Oct-10 Mar-11
Il calibrations have been conductalibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Call Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11
alibrations have been conductable alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator type-N mismatch combination deference Probe ES3DV3 AE4	ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205 SN: 601	Call Date (Certificate No.) 06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 253-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11
t calibrations have been condu- alibration Equipment used (M& imary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check
alibrations have been conductable and the cond	ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205 SN: 601	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11
Alt calibrations have been conducted (M&Calibration Equipment used	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Apr-11 Scheduled Check In house check: Oct-11
Calibrations have been conducted (M&Calibration Equipment used (M&	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibrations have been conducted (M&Calibration Equipment used (M&	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibrations have been conducted (M&Calibration Equipment used (M&Calibration Equipment used (M&Calibration Equipment used (M&Calibration Ephasia) (M&	cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Call Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10
	cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 54208 Name	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) Function	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10

Certificate No: D835V2-490_May10 Page 1 of 9

C

Report File No.: F690501/RF-SAR001906-A1

Date of Issue:

2010-11-30

Page:

57 / 64

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Date of Issue:

2010-11-30

Page:

58 / 64

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C	V.2775	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR normalized	normalized to 1W	9.68 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.62 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.29 mW/g ± 16.5 % (k=2)

Date of Issue : 2010-11-30 Page : 59 / 64

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.84 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-490_May10

Page 4 of 9

Date of Issue : 2010-11-30 Page : 60 / 64

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9 Ω - 5.3 jΩ	
Return Loss	- 25.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$45.4 \Omega - 6.9 jΩ$	
Return Loss	-21.2 dB	

General Antenna Parameters and Design

381 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 19, 2003

Page 5 of 9

Certificate No: D835V2-490_May10

2010-11-30 Date of Issue: 61 / 64Page:

DASY5 Validation Report for Head TSL.

Date/Time: 21.05.2010 10:57:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

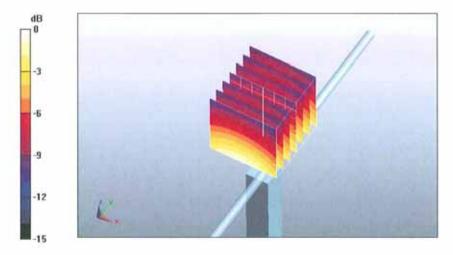
Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 41.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

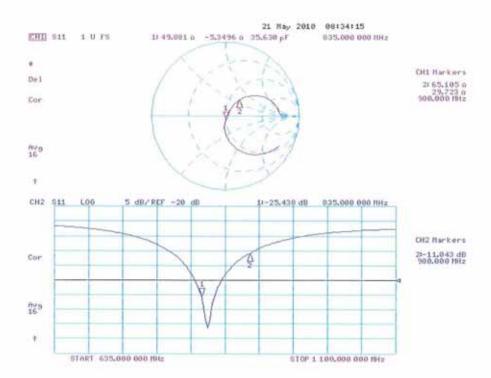

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.1 V/m; Power Drift = 0.00869 dB

Peak SAR (extrapolated) = 3.6 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.8 mW/g



0 dB = 2.8 mW/g

Date of Issue : 2010-11-30 Page : 62 / 64

Impedance Measurement Plot for Head TSL

Date of Issue:

2010-11-30

Page:

63 / 64

DASY5 Validation Report for Body

Date/Time: 20.05,2010 10:28:20

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_t = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

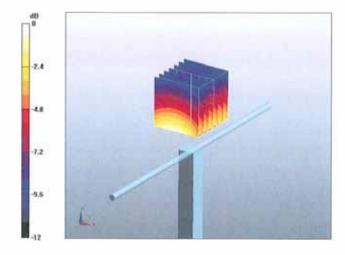
Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

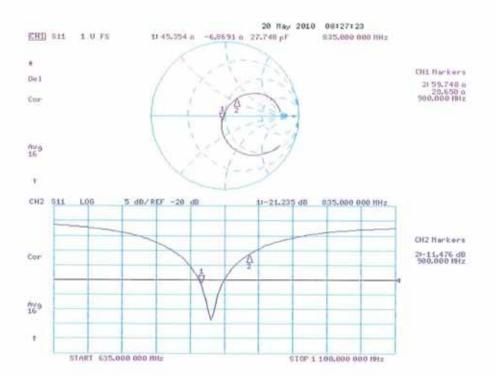

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.1 V/m; Power Drift = 0.000723 dB

Peak SAR (extrapolated) = 3.65 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 2.89 mW/g



0 dB = 2.89 mW/g

Date of Issue : 2010-11-30 Page : 64 / 64

Impedance Measurement Plot for Body TSL

