

Report File No.:

F690501/RF-SAR001930 2011-04-21

Date of Issue:

Page:

1/167

SAR TEST REPORT

Equipment Under Test

: Cellular/PCS GSM/GPRS/EDGE/WCDMA/HSPA Phone

with Bluetooth and WLAN

Model No.

LG-P920h (Additional model name: P920h, LGP920h,

LG-P920H, P920H, LGP920H)

Applicant

LG Electronics Inc.

Address of Applicant

60-39, Gasan-dong, Gumchon-gu, Seoul, 153-023, Korea

FCC ID

BEJP920H

Device Category

Portable Device

Exposure Category

General Population/Uncontrolled Exposure

Date of Receipt

2011-03-16

Date of Test(s)

2011-03-29 ~ 2011-03-31

Date of Issue

2011-04-21

Max. SAR

0.649 W/kg (GSM850), 0.410 W/kg (PCS1900)

0.446 W/kg (WCDMA V), 0.361 W/kg (WCDMA II)

0.119 W/kg (WLAN)

Standards:

FCC OET Bulletin 65 supplement C IEEE 1528, 2003 ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Korea Co., Ltd. (Gunpo Laboratory) or testing done by SGS Korea Co., Ltd. (Gunpo Laboratory) in connection with distribution or use of the product described in this report must be approved by SGS Korea Co., Ltd. (Gunpo Laboratory) in writing.

Tested by

Fred Jeong

对 多包

2011-04-21

Approved by

: Charles Kim

C. K.16

2011-04-21

Date of Issue : 2011-04-21 Page : 2 / 167

Contents

1. General Information

1.	.1	Testing Laboratory	3
1.	.2	Details of Applicant.	3
1.	.3	Version of Report.	3
1.	.4	Description of EUT(s).	3
1.	.5	Test Environment.	4
1.	.6	Operation description.	4
1.	.7	Evaluation procedures.	5
1.	.8	The SAR Measurement System.	6
1.	.9	System Components.	8
1.	.10	SAR System Verification.	9
1.	.11	Tissue Simulant Fluid for the Frequency Band.	11
1.	.12	Test Standards and Limits.	12
2. Inst	rum	ents List	14
3. Sun	nmaı	ry of Results	15
3.	.1	FCC Power Measurement Procedures.	15
3.	.2	RF Conducted Power.	15
3.	.3	KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05 _Sept. 2008	20
3.	.4	SAR Test Configuration.	23
3.	.5	SAR Data Summary	24

APPENDIX

- A. DASY4 SAR Report
- B. Uncertainty Analysis
- C. Calibration certificate

Date of Issue : 2011-04-21 Page : 3 / 167

1. General Information

1.1 Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, 435-040, Korea

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371 Homepage : www.kr.sgs.com/ee

1.2 Details of Manufacturer

Manufacturer : LG Electronics Inc.

Address : 60-39, Gasan-dong, Gumchon-gu, Seoul, 153-023, Korea

Contact Person : Hyeon Kyun Kim Phone No. : 82-2-2033-1113

1.3 Version of Report

Version Number	Date	Revision
00	2011-04-21	Initial issue

1.4 Description of EUT(s)

EUT Type	: Cellular/PCS GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth and WLAN
Model	: LG-P920h (Additional model name : P920h, LGP920h, LG-P920H, P920H, LGP920H)
Serial Number	: 102KPQJ948548
Mode of Operation	: GSM850, PCS1900, WCDMA V, WCDMA II, WLAN, Bluetooth
Duty Cycle	: 8(GSM), 8(GPRS 1Tx Slot), 4(GPRS 2Tx Slot), 2.67(GPRS 3Tx Slot), 2(GPRS 4Tx Slot), 1(WCDMA), 1(WLAN)
Body worn Accessory	: None
Tx Frequency Range	: 824.2 MHz ~ 848.8 MHz (GSM850) 1850.2 MHz ~ 1909.8 MHz (PCS1900) 826.4 MHz ~ 846.6 MHz (WCDMA V) 1852.4 MHz ~ 1907.6 MHz (WCDMA II) 2412 MHz ~ 2462 MHz (WLAN) 2402 MHz ~ 2480 MHz (Bluetooth)
Conducted Max Power	: 32.76 dBm(GSM850), 29.71 dBm(PCS1900), 22.66 dBm(WCDMA V), 22.63 dBm(WCDMA II), 14.41 dBm(WLAN), 4.01 dBm(Bluetooth)
Battery Type	: 3.7 V d.c. (Lithum-ion Battery)

Date of Issue : 2011-04-21 Page : 4 / 167

1.5 Test Environment

Ambient temperature	: (22 ± 2) ° C
Tissue Simulating Liquid	: (22 ± 2) ° C
Relative Humidity	: (55 ± 5) % R.H.

1.6 Operation Configuration

The device in GSM and WCDMA mode was controlled by using a Communication tester (CMU 200). Communication between the device and the tester was established by air link. And the client provided a special driver and test program which can control the frequency and power of the WLAN module. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. Based on the RF Power and antenna separation distance, stand-alone BT SAR and simultaneous SAR evaluation are not required.

Date of Issue : 2011-04-21 Page : 5 / 167

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 mm to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1 % for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions

Date of Issue : 2011-04-21 Page : 6 / 167

even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1 g and 10 g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30 g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1 g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- •A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- •A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Date of Issue : 2011-04-21 Page : 7 / 167

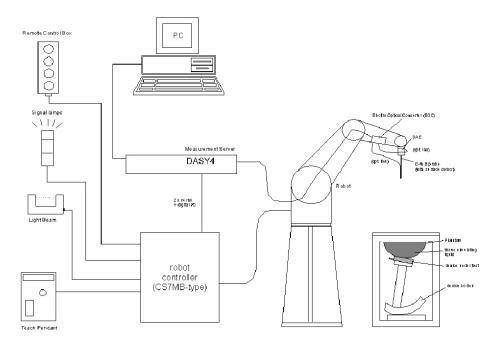


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Date of Issue: 2011-04-21 8 / 167 Page:

1.9 System Components

ET3DV6 E-Field Probe

Symmetrical design with triangular core Built-in Construction

shielding against static charges PEEK enclosure material

(resistant to organic solvents, e.g. glycol).

Calibration : In air from 10 MHz to 2.5 GHz In brain simulating tissue

 $(accuracy \pm 8 \%)$

: 10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 **Frequency**

GHz)

Directivity : ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

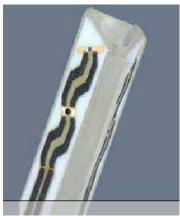
Dynamic Range

Srfce. Detect

5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

±0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces


Dimensions Overall length: 330 mm

> Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Compliance tests of **Application**

mobile phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

Date of Issue : 2011-04-21 Page : 9 / 167

SAM Phantom

Construction: The SAM

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

Shell Thickness: $2.0 \text{ mm} \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10 % from the target SAR values. These tests were done at 835 MHz, 1900 MHz and 2450 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) ° C, the relative humidity was in the range (55 \pm 5) % R.H. and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Date of Issue : 2011-04-21 Page : 10 / 167

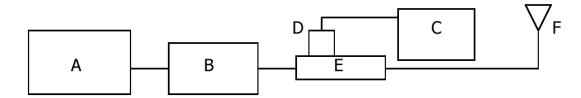


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2057-BBS3Q5KCK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (1 W)	Measured SAR 1 g (1 W)	Deviation (%)	Date	Liquid Temp. (°C)
D835V2 S/N: 490	835 MHz Brain	9.62 W/kg	9.96 W/kg	3.53	2011-03-30	22.0
D835V2 S/N: 490	835 MHz Body	9.84 W/kg	10.08 W/kg	2.44	2011-03-30	22.0
D1900V2 S/N: 5d033	1900 MHz Brain	39.4 W/kg	38.88 W/kg	-1.32	2011-03-31	22.2
D1900V2 S/N: 5d033	1900 MHz Body	41.3 W/kg	42.40 W/kg	2.66	2011-03-31	22.2
D2450V2 S/N: 734	2450 MHz Brain	51.7 W/kg	52.8 W/kg	2.13	2011-03-29	22.0
D2450V2 S/N: 734	2450 MHz Body	53.5 W/kg	54.4 W/kg	1.68	2011-03-29	22.0

Table 1. Results system validation

Date of Issue : 2011-04-21 Page : 11 / 167

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz - 3 GHz) by using a procedure detailed in Section V.

	Tissue			Dielectric Param	eters
f (MHz)	type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()
		Measured, 2011-03-30	43.3	0.89	22.0
835	Head	Recommended Limits	41.5	0.90	21.0 ~ 23.0
		Deviation(%)	4.34	-1.11	-
		Measured, 2011-03-30	55.7	0.95	22.0
	Body	Recommended Limits	55.2	0.97	21.0 ~ 23.0
		Deviation(%)	0.91	-2.06	-
	Head	Measured, 2011-03-31	38.4	1.36	22.2
		Recommended Limits	40.0	1.40	21.0 ~ 23.0
1900		Deviation(%)	-4.00	-2.86	-
1900	Body	Measured, 2011-03-31	51.3	1.54	22.2
		Recommended Limits	53.3	1.52	21.0 ~ 23.0
		Deviation(%)	-3.75	1.32	-
		Measured, 2011-03-29	37.7	1.87	22.0
	Head	Recommended Limits	39.2	1.80	21.0 ~ 23.0
2450		Deviation(%)	-3.83	3.89	-
2430		Measured, 2011-03-29	51.4	2.02	22.0
	Body	Recommended Limits	52.7	1.95	21.0 ~ 23.0
		Deviation(%)	-2.47	3.59	-

Date of Issue : 2011-04-21 Page : 12 / 167

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1800/1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 $^{+}$ % Pure Sodium Chloride Sugar: 98 $^{+}$ % Pure Sucrose Water: De-ionized, 16 $M\Omega^{+}$ resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 $^{+}$ % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for

Date of Issue : 2011-04-21 Page : 13 / 167

portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

Date of Issue : 2011-04-21 Page : 14 / 167

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E- Field Probe	ET3DV6	1782	April 14, 2012
Schmid& Partner Engineering AG	835 MHz System Validation Dipole	D835V2	490	May 21, 2012
Schmid& Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d033	May 26, 2012
Schmid& Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	734	May 27, 2012
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	January 27, 2012
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	March 31, 2012
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	September 28, 2011
Agilent	Power Sensor	Е9300Н	MY41495307 MY41495308	October 01, 2011 October 01, 2011
Agilent	Signal Generator	E4421B	MY43350132	September 28, 2011
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	April 01, 2012
Agilent	Dual Directional Coupler	777D 778D	50128 50454	September 28, 2011
Microlab	LP Filter	LA-15N LA-30N	N/A	October 01, 2011
R&S	Mobile Test Unit	CMU 200	109495	September 29, 2011

Date of Issue : 2011-04-21 Page : 15 / 167

3. Summary of Results

3.1 FCC Power Measurement Procedures

Power measurements were performed using a base station simulator under digital average power.

The handset was placed into a simulated call using a base station simulator in shielded chamber. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

3.2 RF Conducted Power

GSM

			Conducted Average Power(dBm)					
	Channel	Frequency(MHz)	GSM		GP	RS		
			GSIVI	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	
GG1 1 050	128	824.2	32.74	32.75	30.84	28.82	27.78	
GSM 850 Band	190	836.6	32.75	32.76	30.83	28.86	27.81	
Band	251	848.8	32.73	32.74	30.81	28.84	27.76	
P.GG 1000	512	1850.2	29.66	29.66	27.63	25.64	24.70	
PCS 1900 Band	661	1880.0	29.70	29.71	27.70	25.74	24.74	
Dand	810	1909.8	29.65	29.66	27.72	25.75	24.76	

			Conducted Power(dBm)					
	Channel	Frequency(MHz)	EDGE					
			1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot		
CCM 070	128	824.2	27.24	25.11	23.14	22.12		
GSM 850 Band	190	836.6	27.26	25.12	23.12	22.16		
Build	251	848.8	27.25	25.15	23.18	22.19		
P.CC 1000	512	1850.2	26.00	24.10	22.18	21.04		
PCS 1900 Band	661	1880.0	26.02	24.22	22.30	21.12		
Build	810	1909.8	26.01	24.14	22.24	21.11		

Date of Issue : 2011-04-21 Page : 16 / 167

WCDMA V

W CDMA V			-	G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Band	Mode	Channel	Frequency (MHz)	Conducted Power (dBm)	С	d
IVCDMA V	RMC	4132	826.4	22.62		
WCDMA V	RMC	4183	836.6	22.50	-	-
(RMC)	RMC	4233	846.6	22.60		
		4132	826.4	22.60		
	Sub-test 1	4183	836.6	22.53	2	15
		4233	846.6	22.63		
		4132	826.4	22.66		
	Sub-test 2	4183	836.6	22.58	12	15
WCDMA V		4233	846.6	22.60		
(HSDPA Active)		4132	826.4	22.00		
	Sub-test 3	4183	836.6	22.01	15	8
		4233	846.6	22.10		
		4132	826.4	21.90		
	Sub-test 4	4183	836.6	21.85	15	4
		4233	846.6	22.07		
		4132	826.4	21.62		
	Sub-test 1	4183	836.6	21.64	11	15
		4233	846.6	21.73		
		4132	826.4	19.87		
	Sub-test 2	4183	836.6	19.65	6	15
		4233	846.6	19.84		
WCDMA V		4132	826.4	20.71		
(HSUPA)	Sub-test 3	4183	836.6	20.92	15	15
(HSOTA)		4233	846.6	21.07		
		4132	826.4	19.65		
	Sub-test 4	4183	836.6	20.03	2	15
		4233	846.6	19.95		
		4132	826.4	21.48		
	Sub-test 5	4183	836.6	21.40	15	15
		4233	846.6	21.53		

Date of Issue : 2011-04-21 Page : 17 / 167

WCDMA II

WCDMAII						
Band	Mode	Channel	Frequency (MHz)	Conducted Power (dBm)	С	d
HIGD) (A H	RMC	9262	1852.4	22.59		
WCDMA II	RMC	9400	1880.0	22.55	1 -	_
(RMC)	RMC	9538	1907.6	22.58	1	
		9262	1852.4	22.59		
	Sub-test 1	9400	1880.0	22.50	2	15
		9538	1907.6	22.51	1	
		9262	1852.4	22.63		
	Sub-test 2	9400	1880.0	22.55	12	15
WCDMA II		9538	1907.6	22.53	1	
(HSDPA Active)		9262	1852.4	21.90		
	Sub-test 3	9400	1880.0	21.95	15	8
		9538	1907.6	21.97	1	
		9262	1852.4	21.97		
	Sub-test 4	9400	1880.0	21.73	15	4
		9538	1907.6	21.72		
		9262	1852.4	21.76		
	Sub-test 1	9400	1880.0	21.57	11	15
		9538	1907.6	21.67		
		9262	1852.4	19.94		
	Sub-test 2	9400	1880.0	19.91	6	15
		9538	1907.6	19.72		
WCDMA II		9262	1852.4	20.85		
(HSUPA)	Sub-test 3	9400	1880.0	20.71	15	15
(HSOIA)		9538	1907.6	20.92		
		9262	1852.4	20.03		
	Sub-test 4	9400	1880.0	19.72	2	15
		9538	1907.6	19.94		
		9262	1852.4	21.52		
	Sub-test 5	9400	1880.0	21.40	15	15
		9538	1907.6	21.37		

Date of Issue : 2011-04-21 Page : 18 / 167

Bluetooth

Channel	Frequency (MHz)	GFSK (dBm)	8DPSK (dBm)
Low	2402	3.97	3.89
Middle	2441	3.13	3.10
High	2480	4.01	3.88

WLAN

802.118	802.11b Mode		Measured Power
Frequency (MHz)	Channel No.	(Mbps)	(dBm)
		1	14.41
2412	1	2	14.27
2412	1	5.5	14.36
		11	14.24
2437	6	1	14.33
		2	14.20
		5.5	14.29
		11	14.20
		1	14.21
2462	11	2	14.14
	11	5.5	14.16
		11	14.18

802.11g Mode		Rated	Measured Power
Frequency (MHz)	Channel No.	(Mbps)	(dBm)
		6	11.10
		9	11.10
		12	11.13
2412	1	18	11.15
2412	1	24	11.05
		36	11.05
		48	11.08
		54	11.08
		6	11.15
2437	6	9	11.11
		12	11.15
		18	11.10
		24	11.15
		36	11.10
		48	11.09
		54	11.07
		6	11.14
		9	11.13
		12	11.06
2462	11	18	11.12
2402	11	24	11.05
		36	11.06
		48	11.15
		54	11.02

Date of Issue : 2011-04-21 Page : 19 / 167

802.111	n Mode	Rated	Measured Power
Frequency (MHz)	Channel No.	(Mbps)	(dBm)
		MCS0	10.08
		MCS1	9.88
		MCS2	9.77
2412	1	MCS3	9.93
2412	1	MCS4	10.06
		MCS5	9.66
		MCS6	10.02
		MCS7	9.76
2437		MCS0	10.01
	6	MCS1	10.01
		MCS2	9.59
		MCS3	10.00
		MCS4	9.75
		MCS5	9.85
		MCS6	10.00
		MCS7	9.86
		MCS0	9.92
		MCS1	9.64
		MCS2	9.84
2462	11	MCS3	9.72
2462	11	MCS4	9.57
		MCS5	9.60
		MCS6	9.64
		MCS7	9.80

Date of Issue : 2011-04-21 Page : 20 / 167

3.3 KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05 _Sept. 2008

Summary of SAR Evaluation Requirements for Cell Phone with Multiple Transmitters

These procedures were followed according to KDB 648474 document "SAR Handsets Multi Xmiter and Ant v01r05", September 2008. The procedures are applicable to phones with built-in unlicensed transmitters, such as 802.11 a/b/g and Bluetooth devices.

< Output Power Thresholds for Unlicensed Transmitters>

	2.45	5.15 - 5.35	5.47 - 5.85	GHz
P_{Ref}	12	6	5	mW

Device output power should be rounded to the nearest mW to compare with values specified in this table.

<SAR Evaluation Requirements for Cellphones with Multiple Transmitters>

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — o output $\leq 60/f$: SAR not required o output $\geq 60/f$: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when o output $\leq 2 \cdot P_{Bef}$ and antenna is ≥ 5.0 cm from other antennas o output $\leq P_{Ref}$ and antenna is ≥ 2.5 cm from other antennas o output $\leq P_{Ref}$ and antenna is ≤ 2.5 cm from other antennas, each with either output power $\leq P_{Ref}$ or $1-g$ SAR ≤ 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is $\geq 50\%$ of SAR limit, evaluate all channels according to normal procedures	when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition. Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply.
Jaw, Mouth and Nose	Flat phantom SAR required when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

Date of Issue : 2011-04-21 Page : 21 / 167

<KDB 648474 Simultaneous SAR evaluation>

Mode (f)	P (dBm)	P (mW)	Stand-alone SAR
GSM 850	32.76	1887.99	Yes
PCS 1900	29.71	935.41	Yes
WCDMA V	22.66	184.50	Yes
WCDMA II	22.63	183.23	Yes
WLAN	14.41	27.61	Yes
Bluetooth	4.01	2.52	No

<Simultaneous Transmission Summation for Held to Ear Voice Call with Hotspot Active Scenario>

Simultaneous TX	configuration	850 GSM SAR (W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)	
	Right Cheek	0.195	0.046	0.241	
Head SAR	Right Tilt	0.142	0.024	0.166	
	Left Cheek	0.170	0.119	0.289	
	Left Tilt	0.133	0.094	0.227	
Simultaneous TX	configuration	1900 GSM SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)	
	Right Cheek	0.062	0.046	0.108	
Head SAR	Right Tilt	0.046	0.024	0.070	
neau SAR	Left Cheek	0.127 0.119		0.246	
	Left Tilt	0.053 0.094		0.147	
Simultaneous TX	configuration	WCDMA V SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)	
	Right Cheek	0.188	0.046	0.234	
Head SAR	Right Tilt	0.128	0.024	0.152	
neau SAR	Left Cheek	0.181	0.119	0.300	
	Left Tilt	0.130	0.094	0.224	
Simultaneous TX	configuration	WCDMA II SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)	
	Right Cheek	0.103	0.046	0.149	
Head SAR	Right Tilt	0.067	0.024	0.091	
neau SAR	Left Cheek	0.175	0.119	0.294	
	Left Tilt	0.073	0.094	0.167	

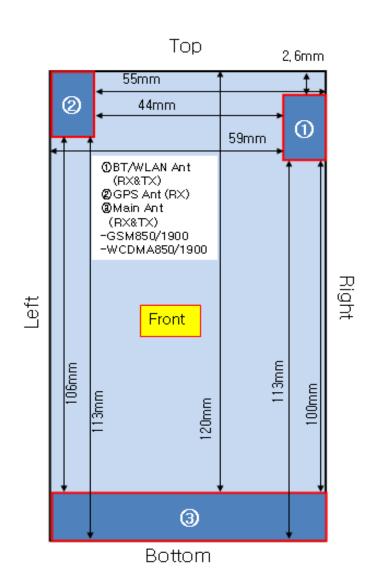
Date of Issue : 2011-04-21 Page : 22 / 167

<Simultaneous Transmission Summation for 2G/3G Hotspot Data and WIFI Hotspot Active Scenario>

Simultaneous TX	configuration	850 GSM SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)
	Back	0.649	0.074	0.723
	Front	0.380	0.045	0.425
Body SAR	Left Edge (A)	0.425	-	0.425
Douy SAK	Right Edge (B)	0.471	0.037	0.508
	Bottom Edge (C)	0.071	-	0.071
	Top Edge (D)	-	0.036	0.036
Simultaneous TX	configuration	1900 GSM SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)
	Back	0.410	0.074	0.484
	Front	0.199	0.045	0.244
Dody CAD	Left Edge (A)	0.074	-	0.074
Body SAR	Right Edge (B)	0.062	0.037	0.099
	Bottom Edge (C)	0.323	-	0.323
	Top Edge (D)	-	0.036	0.036
Simultaneous TX	configuration	WCDMA V SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)
	Back	0.446	0.074	0.520
	Front	0.355	0.045	0.400
Body SAR	Left Edge (A)	0.302	-	0.302
Douy SAK	Right Edge (B)	0.325	0.037	0.362
	Bottom Edge (C)	0.055	-	0.055
	Top Edge (D)	=	0.036	0.036
Simultaneous TX	configuration	WCDMA II SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)
	Back	0.361	0.074	0.435
	Front	0.214	0.045	0.259
Rody SAP	Left Edge (A)	0.080	-	0.080
Body SAR	Right Edge (B)	0.063	0.037	0.100
	Bottom Edge (C)	0.220	-	0.220
	Top Edge (D)	-	0.036	0.036

^{**} The above tables represent the worst-case simultaneous transmission scenarios possible with this device.

Note: "-" SAR results shown in the table are zero for summation purposes. SAR was not required to be measured due to exclusions mentioned in Section "3.4 SAR Test Configuration".


The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. Therefore, no volumetric SAR summation is required since the numerical sums are below the limit.

Date of Issue : 2011-04-21 Page : 23 / 167

3.4 SAR Test Configuration

Mode	Front	Back	Edge A (Left)	Edge B (Right)	Edge C (Bottom)	Edge D (Top)
GPRS 850	О	О	О	О	О	X
GPRS 1900	О	О	О	О	О	X
WCDMA V	О	О	О	О	О	X
WCDMA II	О	О	О	О	О	X
WLAN	О	О	X	О	X	О

3.5 SAR Data Summary

Report File No.: F690501/RF-SAR001930

Date of Issue : 2011-04-21 Page : 24 / 167

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2011-03-30

GSM850 Head SAR

IId	EUT	Traffic Channel		Power	1 g SAR	1 g SAR
Head		Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
Left	Cheek	836.6	190	-0.025	0.170	
Ear	Tilt	836.6	190	-0.139	0.133	1.6
Right	Cheek	836.6	190	0.018	0.195	1.0
Ear	Tilt	836.6	190	0.191	0.142	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

Date of Issue : 2011-04-21 Page : 25 / 167

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2011-03-30

GSM850 Body Hotspot SAR

Test Mode	EUT		Traffic Channel		Power	1 g SAR	1 g SAR
	Position	Slot	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
	Front	2 Tx	836.6	190	0.051	0.380	
	Back	2 Tx	836.6	190	0.071	0.643	
	Edge A	2 Tx	836.6	190	0.018	0.425	
GPRS	Edge B	2 Tx	836.6	190	0.035	0.471	1.6
GPKS	Edge C	2 Tx	836.6	190	0.180	0.071	1.0
	Back	1 Tx	836.6	190	0.138	0.576	
	Back	3 Tx	836.6	190	-0.021	0.649	
	Back	4 Tx	836.6	190	-0.068	0.631	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. Edge D was not tested since the antenna distance to edge was greater than 2.5 cm per Oct. 2010 TCB workshop guidance.

Date of Issue : 2011-04-21 Page : 26 / 167

Ambient Temperature (°C)	22.2
Liquid Temperature (°C)	22.2
Date	2011-03-31

PCS1900 Head SAR

EUT	EUT	Traffic Channel		Power	1 g SAR (W/kg)	1 g SAR Limits (W/kg)
Head	Position	Position Frequency (MHz) Channel	Drift(dB)			
Left	Cheek	1880.0	661	-0.109	0.127	
Ear	Tilt	1880.0	661	0.139	0.053	1.6
Right Ear	Cheek	1880.0	661	-0.015	0.062	1.0
	Tilt	1880.0	661	-0.091	0.046	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

Date of Issue : 2011-04-21 Page : 27 / 167

PCS1900	Body	Hotspo	ot SAR
	Doug	TTOUDD	

Ambient Temperature (°C)	22.2
Liquid Temperature (°C)	22.2
Date	2011-03-31

Test Mode	EUT Position Slot	Traffic Channel		Power	1 g SAR	1 g SAR	
		Slot	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
	Front	2 Tx	1880.0	661	-0.195	0.199	
	Back	2 Tx	1880.0	661	0.168	0.363	
	Edge A	2 Tx	1880.0	661	-0.036	0.074	
GPRS	Edge B	2 Tx	1880.0	661	-0.015	0.062	1.6
GPKS	Edge C	2 Tx	1880.0	661	0.034	0.323	1.0
	Back	1 Tx	1880.0	661	-0.173	0.246	
	Back	3 Tx	1880.0	661	0.097	0.330	
	Back	4 Tx	1880.0	661	-0.011	0.410	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. Edge D was not tested since the antenna distance to edge was greater than 2.5 cm per Oct. 2010 TCB workshop guidance.

Date of Issue : 2011-04-21 Page : 28 / 167

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2011-03-30

WCDMA V Head SAR

H	EUT	Traffic Channel		nannel Power		1 g SAR Limits (W/kg)
Head	Position Frequency (MHz) Channel	Trequency Channel	(W/kg)			
Left	Cheek	836.6	4183	0.199	0.181	
Ear	Tilt	836.6	4183	-0.164	0.130	1.6
Right	Cheek	836.6	4183	-0.111	0.188	1.0
Ear	Tilt	836.6	4183	0.158	0.128	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. WCDMA mode was tested under RMC 12.2 kbps with HSPA inactive.

Date of Issue : 2011-04-21 Page : 29 / 167

WCDMA	V Body	Hotspot	SAR
--------------	--------	---------	-----

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2011-03-30

Test Mode	EUT Position	Slot	Traffic Channel		Power	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
	Front	N/A	836.6	4183	0.048	0.355	
	Back	N/A	836.6	4183	0.080	0.446	
RMC	Edge A	N/A	836.6	4183	-0.028	0.302	1.6
	Edge B	N/A	836.6	4183	0.030	0.325	
	Edge C	N/A	836.6	4183	-0.054	0.055	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive.
- 8. Edge D was not tested since the antenna distance to edge was greater than 2.5 cm per Oct. 2010 TCB workshop guidance.

Date of Issue : 2011-04-21 Page : 30 / 167

Ambient Temperature (°C)	22.2
Liquid Temperature (°C)	22.2
Date	2011-03-31

WCDMA II Head SAR

Hand	EUT	Traffic Channel		Power	1 g SAR	1 g SAR Limits
Head	Position	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	(W/kg)
Left	Cheek	1880.0	9400	-0.038	0.175	
Ear	Tilt	1880.0	9400	0.157	0.073	1.6
Right	Cheek	1880.0	9400	-0.045	0.103	1.6
Ear	Tilt	1880.0	9400	-0.062	0.067	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. WCDMA mode was tested under RMC 12.2 kbps with HSPA inactive.

Date of Issue : 2011-04-21 Page : 31 / 167

Ambient Temperature (°C)	22.2
Liquid Temperature (°C)	22.2
Date	2011-03-31

Test Mode	EUT Position	Slot	Traffic Channel		Power	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
	Front	N/A	1880.0	9400	-0.191	0.214	
	Back	N/A	1880.0	9400	0.028	0.361	
RMC	Edge A	N/A	1880.0	9400	-0.040	0.080	1.6
	Edge B	N/A	1880.0	9400	0.025	0.063	
	Edge C	N/A	1880.0	9400	-0.063	0.220	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive.
- 8. Edge D was not tested since the antenna distance to edge was greater than 2.5 cm per Oct. 2010 TCB workshop guidance.

Date of Issue : 2011-04-21 Page : 32 / 167

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2011-03-29

WLAN Head SAR

Head	Test Mode	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
	11b	Cheek	2412	1	-0.005	0.108	
Left Ear	11b	Cheek	2437	6	-0.110	0.119	
Lett Eat	11b	Cheek	2462	11	0.046	0.074	1.6
	11b	Tilt	2437	6	-0.086	0.094	1.0
Right Ear	11b	Cheek	2437	6	0.046	0.046	
	11b	Tilt	2437	6	0.161	0.024	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. WLAN could be used for data transmission during voice communication at the same time.
- 7. KDB 248227 <SAR Measurement Procedures for 802.11 a/b/g Transmitters>
 - Channel 1, 6 and 11 were tested by the definition of "default test channels".
 - Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other mode were not tested since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 8. WLAN transmission was verified using a spectrum analyzer.

Date of Issue : 2011-04-21 Page : 33 / 167

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2011-03-29

WLAN Body Hotspot SAR

Body	Test Mode	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
	11b	Front	2437	6	0.198	0.045	
	11b	Back	2412	1	-0.109	0.065	
Dody	11b	Back	2437	6	-0.006	0.071	1.6
Body	11b	Back	2462	11	0.152	0.074	1.6
	11b	Edge B	2437	6	-0.031	0.037	
	11b	Edge D	2437	6	-0.017	0.036	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration: Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. KDB 248227 <SAR Measurement Procedures for 802.11 a/b/g Transmitters>
 - Channel 1, 6 and 11 were tested by the definition of "default test channels".
 - Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other mode were not tested since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 8. WLAN transmission was verified using a spectrum analyzer.
- 9. Edge A and Edge C was not tested since the antenna distance to edge was greater than 2.5 cm per Oct. 2010 TCB workshop guidance.

Date of Issue : 2011-04-21 Page : 34 / 167

Appendix

List

Appendix A	DASY4 Report (Plots of the SAR Measurements)	 - 835 MHz Validation Test - 1900 MHz Validation Test - 2450 MHz Validation Test - GSM850 Test - PCS1900 Test - WCDMA V Test - WCDMA II Test - WLAN Test
Appendix B	Uncertainty Analysis	
Appendix C	Calibration Certificate	- PROBE - DAE3 - DIPOLE

Date of Issue : 2011-04-21 Page : 35 / 167

Appendix A

Test Plot - DASY4 Report

Date of Issue: 2011-04-21 Page: 36 / 167

835 MHz Validation Test Head

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: Validation 835 MHz Head.da4

Input Power: 250 mW

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Program Name: Vaildation 835 MHz Head

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

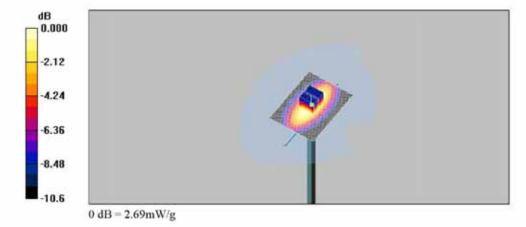
Medium parameters used: f = 835 MHz; $\sigma = 0.892$ mho/m; $\varepsilon_r = 43.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

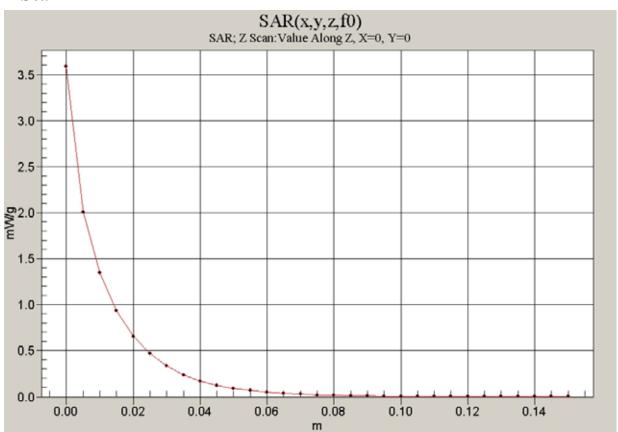
- Probe: ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 835 MHz_Head/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.69 mW/g

Validation 835 MHz_Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.7 V/m; Power Drift = -0.004 dB


Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.61 mW/gMaximum value of SAR (measured) = 2.69 mW/g

Date of Issue : 2011-04-21 Page : 37 / 167

Date of Issue: 2011-04-21 Page: 38 / 167

835 MHz Validation Test_Body

Date: 2010-03-30

Test Laboratory: SGS Testing Korea File Name: Validation 835 MHz Body.da4

Input Power: 250 mW

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Program Name: Validation 835 MHz Body

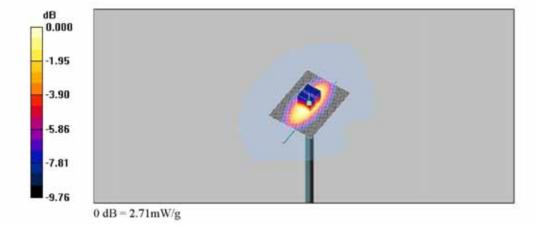
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.946$ mho/m; $\varepsilon_r = 55.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

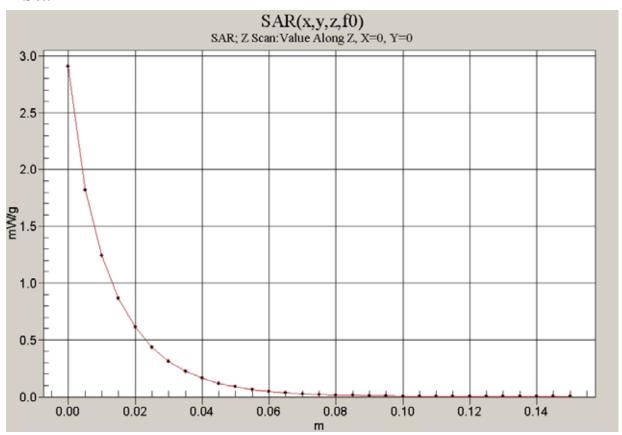
DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 835 MHz_Body/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.72 mW/g

Validation 835 MHz_Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.7 V/m; Power Drift = -0.028 dB


Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.68 mW/gMaximum value of SAR (measured) = 2.71 mW/g

Date of Issue : 2011-04-21 Page : 39 / 167

Date of Issue: 2011-04-21 Page: 40 / 167

1900 MHz Validation Test Head

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: Validation 1900 MHz Head.da4

Input Power: 250 mW

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033 Program Name: Validation 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

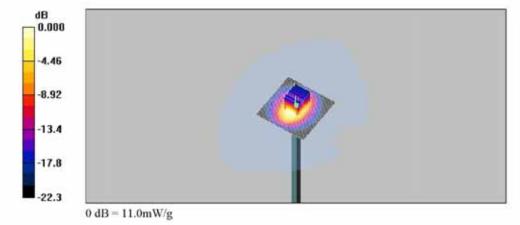
Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ mho/m}$; $\epsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

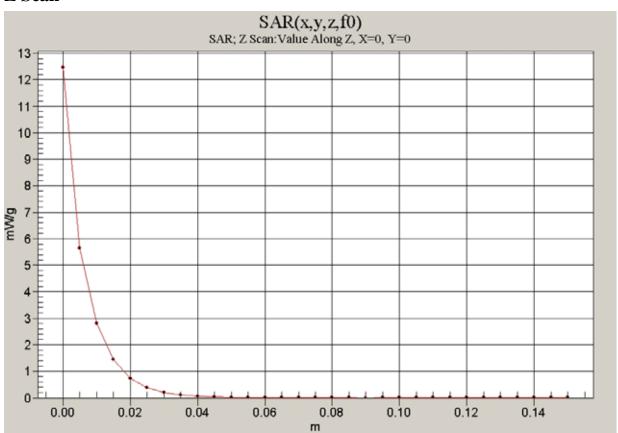
- Probe: ET3DV6 - SN1782; ConvF(5.04, 5.04, 5.04); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 1900 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.3 mW/g

Validation 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.7 V/m; Power Drift = -0.023 dB


Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 9.72 mW/g; SAR(10 g) = 4.79 mW/gMaximum value of SAR (measured) = 11.0 mW/g

Date of Issue : 2011-04-21 Page : 41 / 167

Date of Issue: 2011-04-21 Page: 42 / 167

1900 MHz Validation Test_Body

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: Validation 1900 MHz Body.da4

Input Power: 250 mW

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033 Program Name: Validation 1900 MHz Body

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

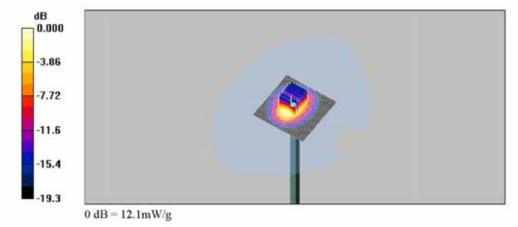
Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\epsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

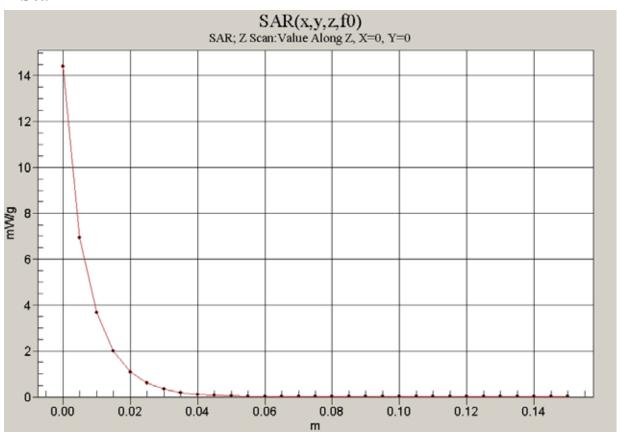
- Probe: ET3DV6 - SN1782; ConvF(4.46, 4.46, 4.46); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 1900 MHz_Body/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.7 mW/g

Validation 1900 MHz_Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.7 V/m; Power Drift = -0.047 dB


Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.51 mW/gMaximum value of SAR (measured) = 12.1 mW/g

Date of Issue : 2011-04-21 Page : 43 / 167

Date of Issue: 2011-04-21 Page: 44 / 167

2450 MHz Validation Test Head

Date: 2011-03-29

Test Laboratory: SGS Testing Korea File Name: Validation 2450 MHz Head.da4

Input Power: 250 mW

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734 Program Name: Validation 2450 MHz Head

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

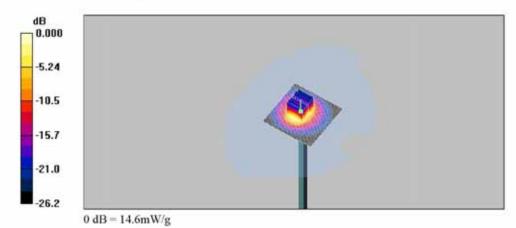
Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ mho/m}$; $\epsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

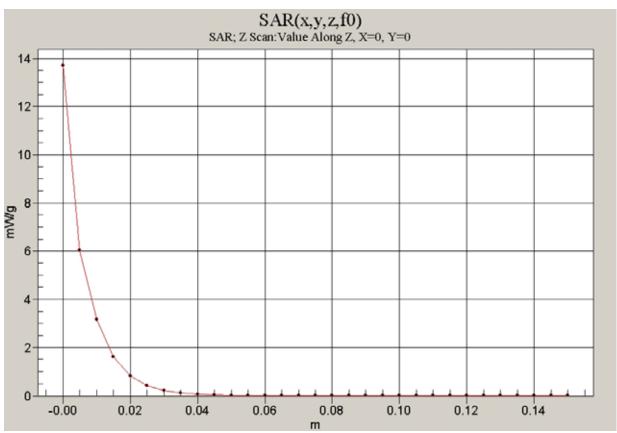
- Probe: ET3DV6 - SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 16.3 mW/g

Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.8 V/m; Power Drift = -0.064 dB


Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 5.79 mW/gMaximum value of SAR (measured) = 14.6 mW/g

Date of Issue : 2011-04-21 Page : 45 / 167

Date of Issue: 2011-04-21 Page: 46 / 167

2450 MHz Validation Test_Body

Date: 2011-03-29

Test Laboratory: SGS Testing Korea File Name: Validation 2450 MHz Body.da4

Input Power: 250 mW

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734 Program Name: Validation 2450 MHz Body

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

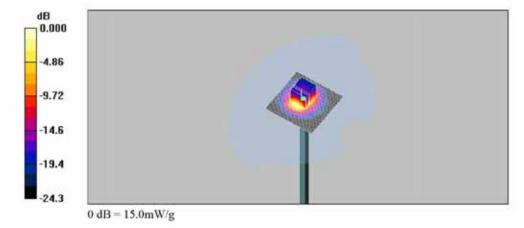
Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\epsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

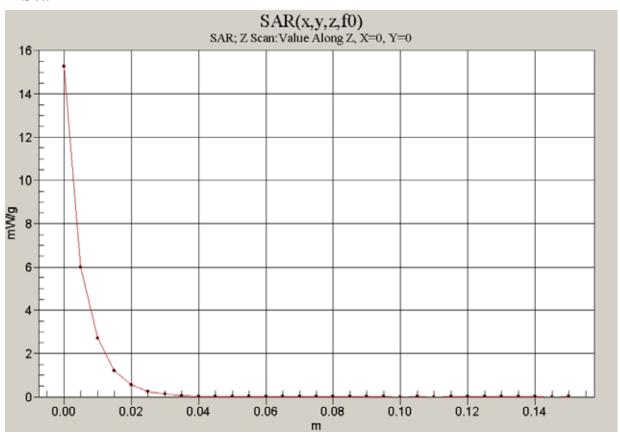
- Probe: ET3DV6 - SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.0 mW/g

Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.4 V/m; Power Drift = -0.024 dB


Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 13.6 mW/g; SAR(10 g) = 5.99 mW/gMaximum value of SAR (measured) = 15.0 mW/g

Date of Issue : 2011-04-21 Page : 47 / 167

Date of Issue : 2011-04-21 Page : 48 / 167

GSM 850 Head SAR Test

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: GSM850 LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: GSM850_Head

0 dB = 0.179 mW/g

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\epsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_LE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.181 mW/g

GSM850_LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.35 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 0.211 W/kg SAR(1 g) = 0.170 mW/g; SAR(10 g) = 0.129 mW/g Maximum value of SAR (measured) = 0.179 mW/g

-1.88 -3.76 -5.65 -7.53

Date of Issue : 2011-04-21 Page : 49 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: GSM850 LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Head

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

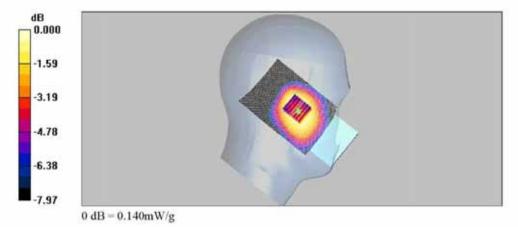
Phantom section: Left Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_LE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.140 mW/g


GSM850_LE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.99 V/m; Power Drift = -0.139 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.140 mW/g

Date of Issue : 2011-04-21 Page : 50 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: GSM850 RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

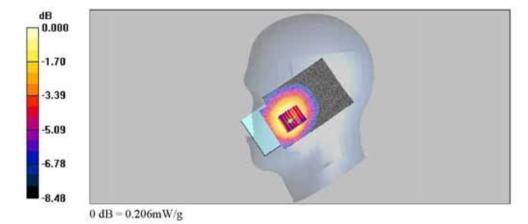
Program Name: GSM850_Head

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

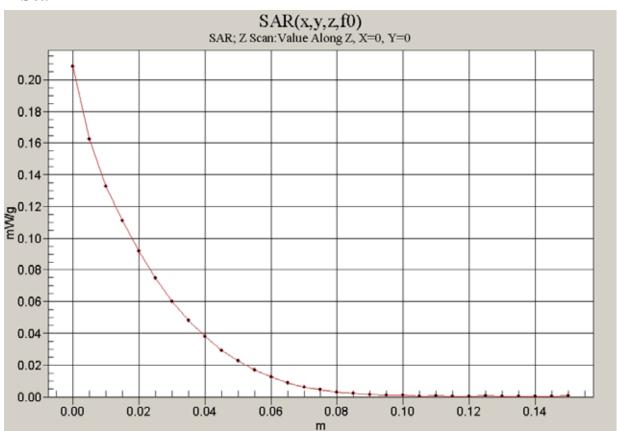
Phantom section: Right Section

DASY4 Configuration:


- Probe; ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_RE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.201 mW/g


GSM850_RE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.89 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 0.247 W/kg

SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.150 mW/gMaximum value of SAR (measured) = 0.206 mW/g

Date of Issue : 2011-04-21 Page : 51 / 167

Date of Issue : 2011-04-21 Page : 52 / 167

Date: 2011-03-30

Test Laboratory; SGS Testing Korea File Name: GSM850 RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Head

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

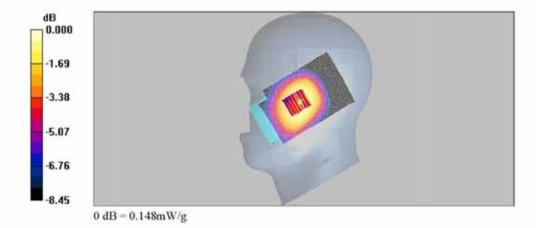
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GSM850_RE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.150 mW/g

GSM850_RE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.85 V/m; Power Drift = 0.191 dB

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.142 mW/g; SAR(10 g) = 0.111 mW/gMaximum value of SAR (measured) = 0.148 mW/g

Date of Issue : 2011-04-21 Page : 53 / 167

GSM850 Body Hotspot SAR Test

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 2Tx Front.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:4

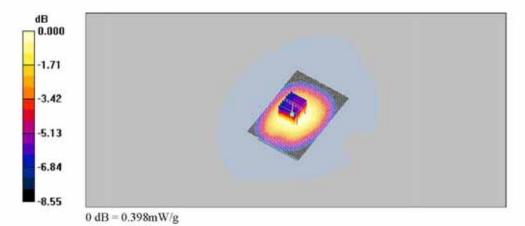
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS850_Front_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.397 mW/g

GPRS850_Front_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.475 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.292 mW/g Maximum value of SAR (measured) = 0.398 mW/g

Date of Issue: 2011-04-21 Page: 54 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 2Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

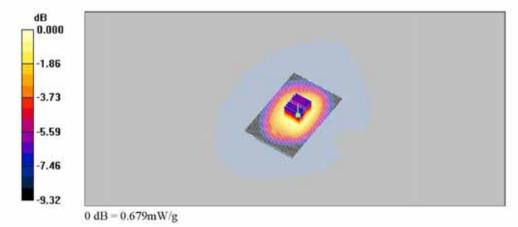
Program Name: GSM850_Body

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:


- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS850_Back_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.669 mW/g

GPRS850_Back_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.3 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.800 W/kg

SAR(1 g) = 0.643 mW/g; SAR(10 g) = 0.483 mW/gMaximum value of SAR (measured) = 0.679 mW/g

Date of Issue: 2011-04-21 Page: 55 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 2Tx Edge A.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

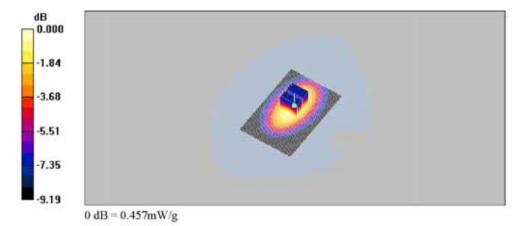
Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS850_Edge A_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.452 mW/g

GPRS850 Edge A Mid 1cm 2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.3 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.578 W/kg

SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.294 mW/gMaximum value of SAR (measured) = 0.457 mW/g

Date of Issue : 2011-04-21 Page : 56 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 2Tx Edge B.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:4

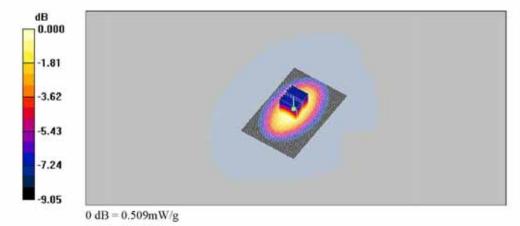
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS850_Edge B_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.508 mW/g

GPRS850_Edge B_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.6 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 0.633 W/kg

SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.329 mW/gMaximum value of SAR (measured) = 0.509 mW/g

Date of Issue : 2011-04-21 Page : 57 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 2Tx Edge C.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

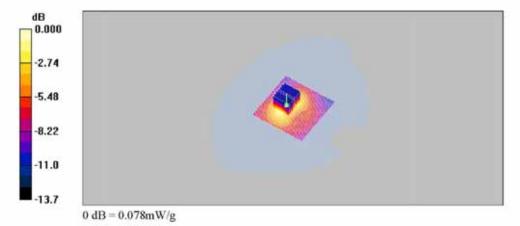
Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS850_Edge C_Mid_1cm_2Tx/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.078 mW/g

GPRS850_Edge C_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.75 V/m; Power Drift = 0.180 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.040 mW/g Maximum value of SAR (measured) = 0.078 mW/g

Date of Issue: 2011-04-21 Page: 58 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 1Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8

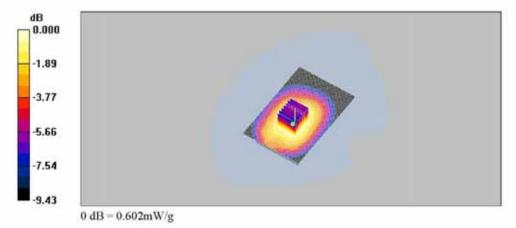
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS850_Back_Mid_1cm_1Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.591 mW/g

GPRS850_Back_Mid_1cm_1Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.6 V/m; Power Drift = 0.138 dB

Peak SAR (extrapolated) = 0.728 W/kg

SAR(1 g) = 0.576 mW/g; SAR(10 g) = 0.434 mW/g

Maximum value of SAR (measured) = 0.602 mW/g

Date of Issue : 2011-04-21 Page : 59 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 3Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

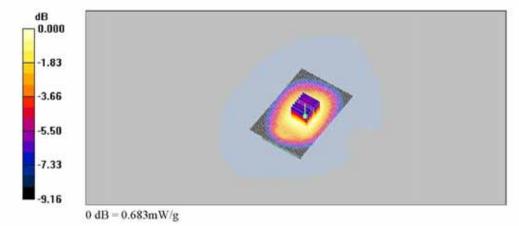
Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

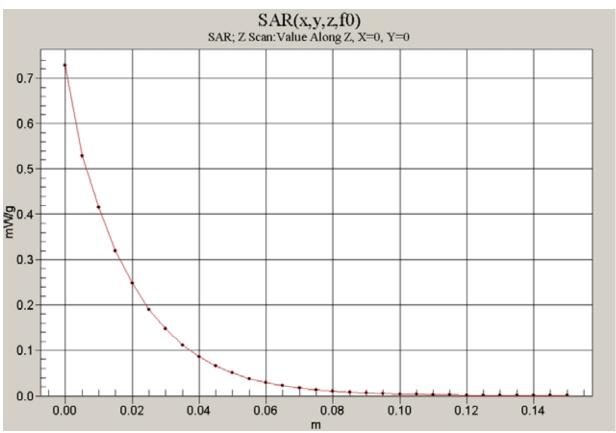
DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS850_Back_Mid_1cm_3Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.692 mW/g

GPRS850_Back_Mid_1cm_3Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.0 V/m; Power Drift = -0.021 dB


Peak SAR (extrapolated) = 0.791 W/kg

SAR(1 g) = 0.649 mW/g; SAR(10 g) = 0.491 mW/g Maximum value of SAR (measured) = 0.683 mW/g

Date of Issue : 2011-04-21 Page : 60 / 167

Date of Issue: 2011-04-21 Page: 61 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: GPRS850 Body 1cm 4Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: GSM850_Body

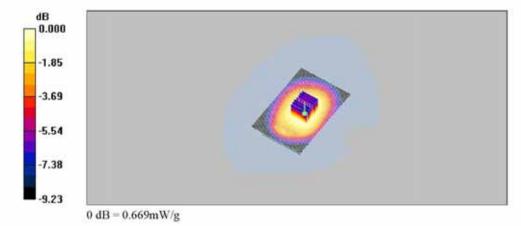
Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS850_Back_Mid_1cm_4Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.720 mW/g

GPRS850_Back_Mid_1cm_4Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.5 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 0.773 W/kg

SAR(1 g) = 0.631 mW/g; SAR(10 g) = 0.473 mW/gMaximum value of SAR (measured) = 0.669 mW/g

Date of Issue: 2011-04-21 Page: 62 / 167

PCS1900 Head SAR Test

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: PCS1900 LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

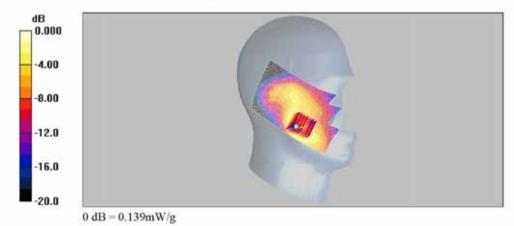
Program Name: PCS1900_Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

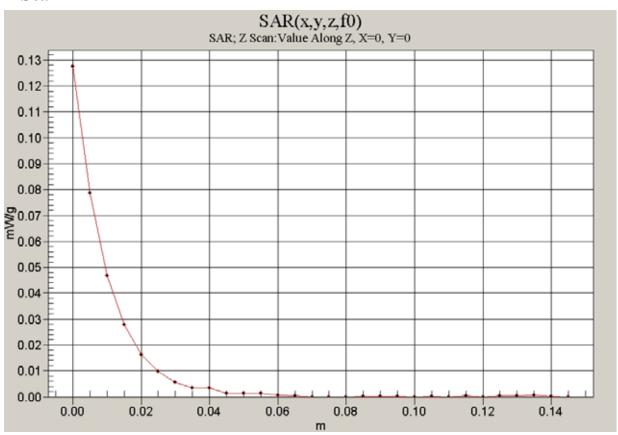
Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(5.04, 5.04, 5.04); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900 LE Mid Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.147 mW/g


PCS1900_LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.74 V/m; Power Drift = -0.109 dB Peak SAR (extrapolated) = 0.202 W/kg SAR(1 g) = 0.127 mW/g; SAR(10 g) = 0.077 mW/g

Maximum value of SAR (measured) = 0.139 mW/g

Date of Issue : 2011-04-21 Page : 63 / 167

Date of Issue : 2011-04-21 Page : 64 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: PCS1900 LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

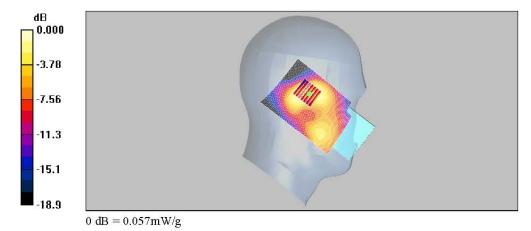
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_LE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.059 mW/g

PCS1900_LE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 5.95 V/m; Power Drift = 0.139 dB

Peak SAR (extrapolated) = 0.087 W/kg

SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.031 mW/g

Maximum value of SAR (measured) = 0.057 mW/g

Date of Issue : 2011-04-21 Page : 65 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: PCS1900 RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

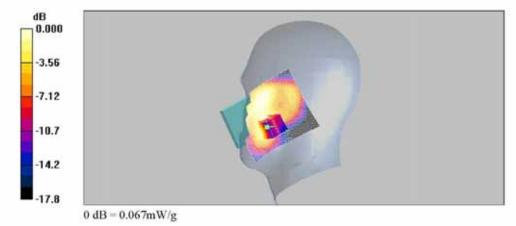
Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_RE_Mid_Cheek/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.069 mW/g


PCS1900_RE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.67 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.094 W/kg

SAR(1 g) = 0.062 mW/g; SAR(10 g) = 0.039 mW/g

Maximum value of SAR (measured) = 0.067 mW/g

Date of Issue : 2011-04-21 Page : 66 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: PCS1900 RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

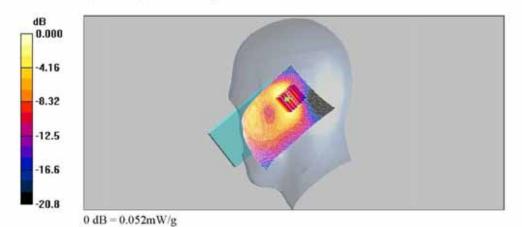
Program Name: PCS1900_Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:


- Probe; ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_RE_Mid_Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.052 mW/g

PCS1900_RE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.34 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 0.076 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.026 mW/gMaximum value of SAR (measured) = 0.052 mW/g

Date of Issue : 2011-04-21 Page : 67 / 167

PCS1900 Body Hotspot SAR Test

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 2Tx Front.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

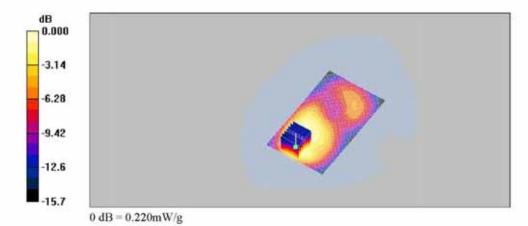
Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.46, 4.46, 4.46); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Front_Mid_1cm_2Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.218 mW/g

GPRS1900_Front_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.72 V/m; Power Drift = -0.195 dB

Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.117 mW/g Maximum value of SAR (measured) = 0.220 mW/g

Date of Issue: 2011-04-21 Page: 68 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 2Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Body

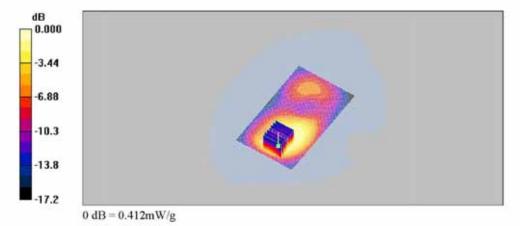
Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Back_Mid_1cm_2Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.360 mW/g

GPRS1900_Back_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.98 V/m; Power Drift = 0.168 dB

Peak SAR (extrapolated) = 0.566 W/kg

SAR(1 g) = 0.363 mW/g; SAR(10 g) = 0.204 mW/gMaximum value of SAR (measured) = 0.412 mW/g

Date of Issue: 2011-04-21 Page: 69 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 2Tx Edge A.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Body

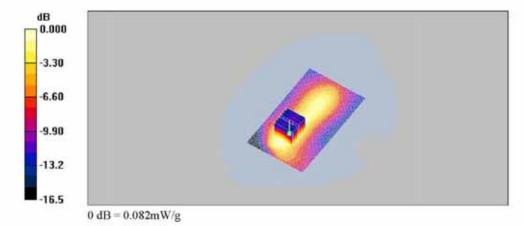
Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Edge A_Mid_1cm_2Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.082 mW/g

GPRS1900_Edge A_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.57 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.043 mW/g Maximum value of SAR (measured) = 0.082 mW/g

Date of Issue : 2011-04-21 Page : 70 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 2Tx Edge B.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Body

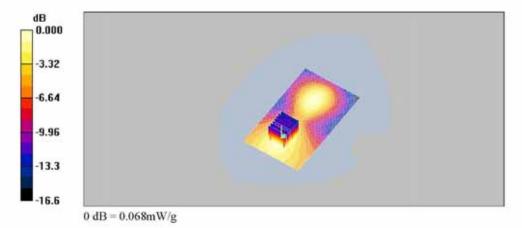
Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Edge B_Mid_1cm_2Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.067 mW/g

GPRS1900_Edge B_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.03 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.099 W/kg

SAR(1 g) = 0.062 mW/g; SAR(10 g) = 0.037 mW/gMaximum value of SAR (measured) = 0.068 mW/g

Date of Issue : 2011-04-21 Page : 71 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 2Tx Edge C.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Body

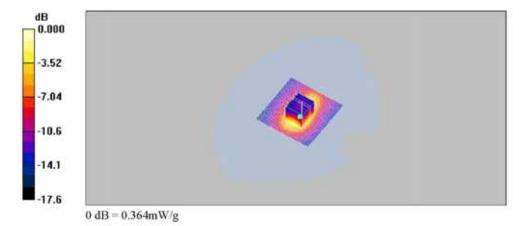
Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Edge C_Mid_1cm_2Tx/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.365 mW/g

GPRS1900_Edge C_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 0.521 W/kg

SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.177 mW/gMaximum value of SAR (measured) = 0.364 mW/g

Date of Issue : 2011-04-21 Page : 72 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 1Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: PCS1900_Body

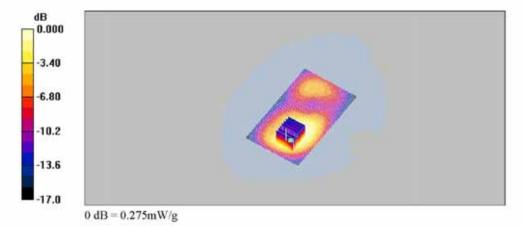
Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Back_Mid_1cm_1Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.293 mW/g

GPRS1900_Back_Mid_1cm_1Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.27 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.387 W/kg

SAR(1 g) = 0.246 mW/g; SAR(10 g) = 0.141 mW/gMaximum value of SAR (measured) = 0.275 mW/g

Date of Issue : 2011-04-21 Page : 73 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 3Tx Back.da4

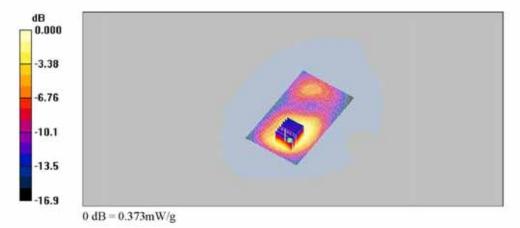
DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: PCS1900_Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.67 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Back_Mid_1cm_3Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.358 mW/g

GPRS1900_Back_Mid_1cm_3Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.54 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 0.522 W/kg

SAR(1 g) = 0.330 mW/g; SAR(10 g) = 0.187 mW/gMaximum value of SAR (measured) = 0.373 mW/g

Date of Issue : 2011-04-21 Page : 74 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: GPRS1900 Body 1cm 4Tx Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: PCS1900_Body

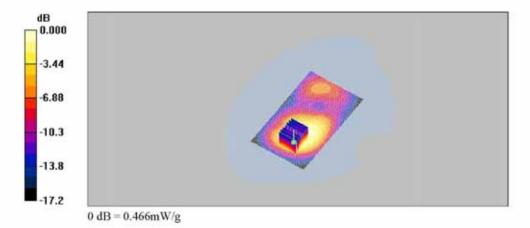
Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

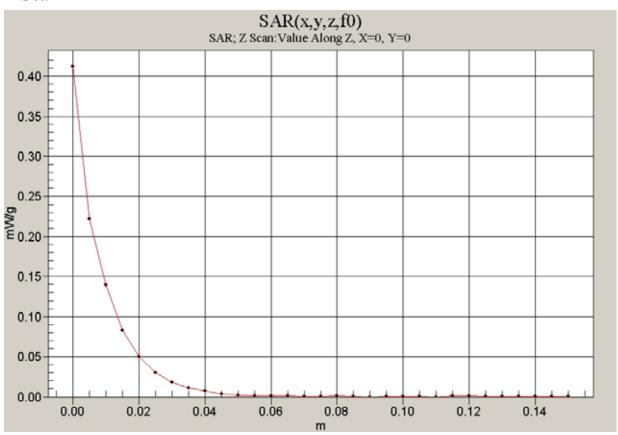
- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS1900_Back_Mid_1cm_4Tx/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.473 mW/g

GPRS1900_Back_Mid_1cm_4Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.87 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.649 W/kg


SAR(1 g) = 0.410 mW/g; SAR(10 g) = 0.227 mW/g Maximum value of SAR (measured) = 0.466 mW/g

Date of Issue : 2011-04-21 Page : 75 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 76 / 167

WCDMA V Head SAR Test

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: WCDMA V LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Head

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

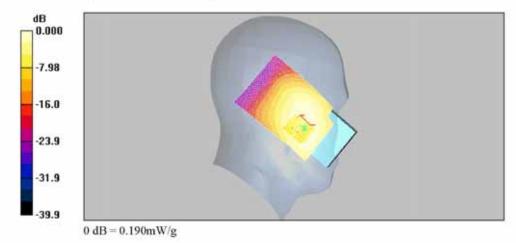
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_LE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.187 mW/g


WCDMA V_LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.95 V/m; Power Drift = 0.199 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.138 mW/g

Maximum value of SAR (measured) = 0.190 mW/g

Date of Issue : 2011-04-21 Page : 77 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: WCDMA V LE,da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Head

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

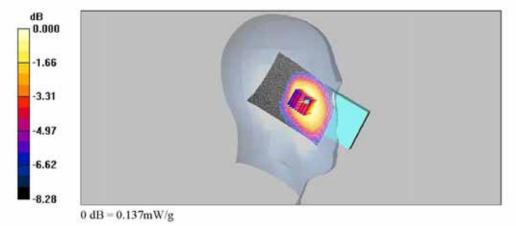
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.26, 6.26, 6.26); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_LE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.138 mW/g


WCDMA V_LE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.33 V/m; Power Drift = -0.164 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.137 mW/g

Date of Issue : 2011-04-21 Page : 78 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: WCDMA V RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Head

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

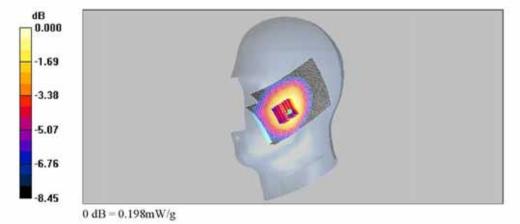
Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

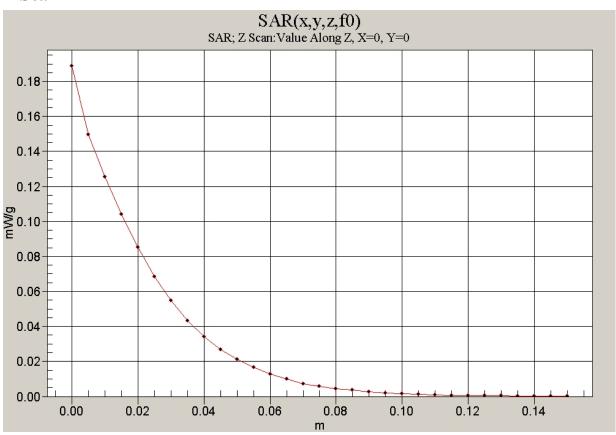
WCDMA V_RE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.193 mW/g


WCDMA V_RE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = $\overline{6.03}$ V/m; Power Drift = -0.111 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.188 mW/g; SAR(10 g) = 0.148 mW/g


Maximum value of SAR (measured) = 0.198 mW/g

Date of Issue : 2011-04-21 Page : 79 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 80 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea File Name: WCDMA V RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Head

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.899 \text{ mho/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

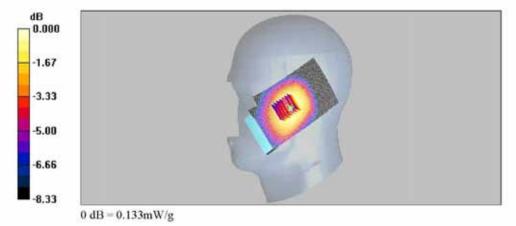
Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.26, 6.26, 6.26); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_RE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.134 mW/g


WCDMA V_RE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.87 V/m; Power Drift = 0.158 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.128 mW/g; SAR(10 g) = 0.100 mW/g

Maximum value of SAR (measured) = 0.133 mW/g

Date of Issue : 2011-04-21 Page : 81 / 167

WCDMA V Body Hotspot SAR Test

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Body 1cm Front.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

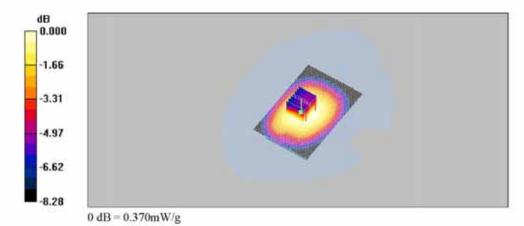
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(6.11, 6.11, 6.11); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA V_Front_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.370 mW/g

WCDMA V_Front_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 20.1 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.276 mW/gMaximum value of SAR (measured) = 0.370 mW/g

Date of Issue : 2011-04-21 Page : 82 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Body 1cm Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

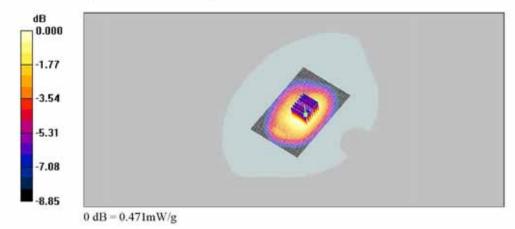
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

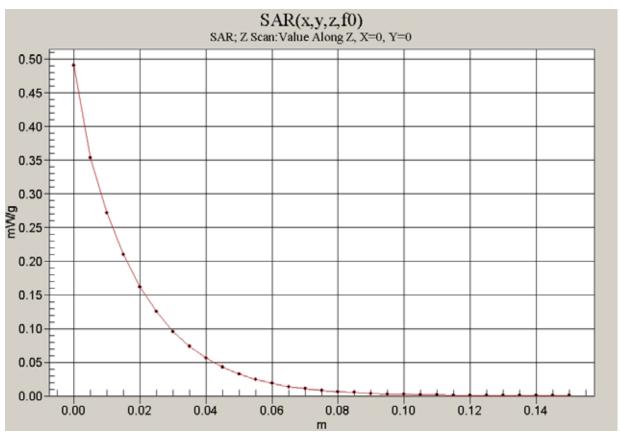
WCDMA V_Back_Mid_1cm/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.470 mW/g


WCDMA V_Back_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 0.556 W/kg

SAR(1 g) = 0.446 mW/g; SAR(10 g) = 0.331 mW/g


Maximum value of SAR (measured) = 0.471 mW/g

Date of Issue : 2011-04-21 Page : 83 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 84 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Body 1cm Edge A.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

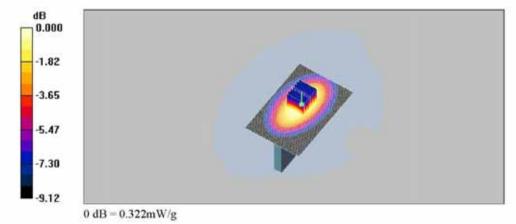
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Edge A_Mid_1cm/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.323 mW/g


WCDMA V_Edge A_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.302 mW/g; SAR(10 g) = 0.210 mW/g

Maximum value of SAR (measured) = 0.322 mW/g

Date of Issue : 2011-04-21 Page : 85 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Body 1cm Edge B.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

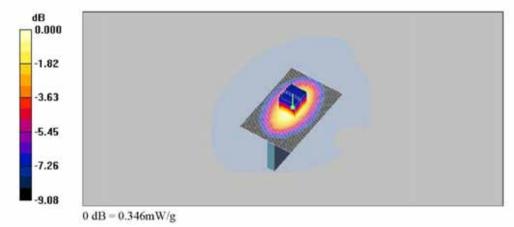
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Edge B_Mid_1cm/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.346 mW/g


WCDMA V_Edge B_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.227 mW/g

Maximum value of SAR (measured) = 0.346 mW/g

Date of Issue : 2011-04-21 Page : 86 / 167

Date: 2011-03-30

Test Laboratory: SGS Testing Korea

File Name: WCDMA V Body 1cm Edge C.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.6 MHz; Duty Cycle: 1:1

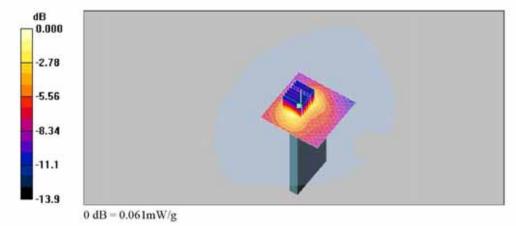
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.949 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(6.11, 6.11, 6.11); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Edge C_Mid_1cm/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.060 mW/g


WCDMA V_Edge C_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.73 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.098 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.061 mW/g

Date of Issue : 2011-04-21 Page : 87 / 167

WCDMA II Head SAR Test

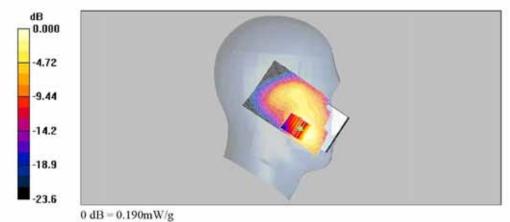
Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: WCDMA II LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: WCDMA II_Head

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³

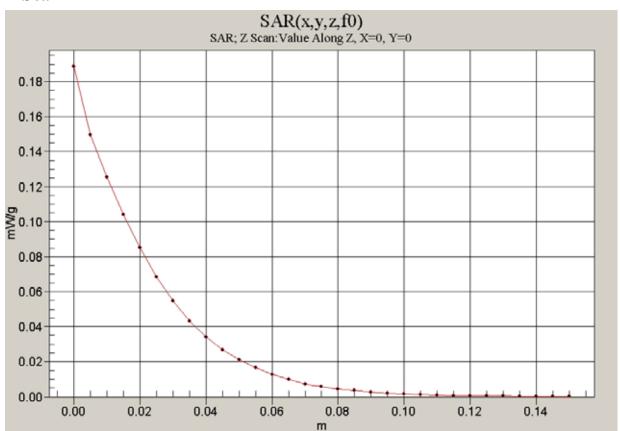
Phantom section: Left Section


DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_LE_Mid_Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.196 mW/g

WCDMA II_LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.26 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.284 W/kg SAR(1 g) = 0.175 mW/g; SAR(10 g) = 0.105 mW/g


Maximum value of SAR (measured) = 0.190 mW/g

Date of Issue : 2011-04-21 Page : 88 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 89 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: WCDMA II LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

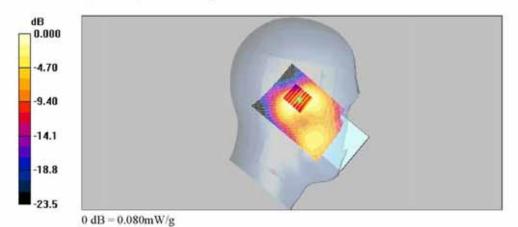
Program Name: WCDMA II_Head

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA II_LE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.088 mW/g

WCDMA II_LE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.56 V/m; Power Drift = 0.157 dB

Peak SAR (extrapolated) = 0.118 W/kg

SAR(1 g) = 0.073 mW/g; SAR(10 g) = 0.043 mW/g

Maximum value of SAR (measured) = 0.080 mW/g

Date of Issue : 2011-04-21 Page : 90 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: WCDMA II RE,da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

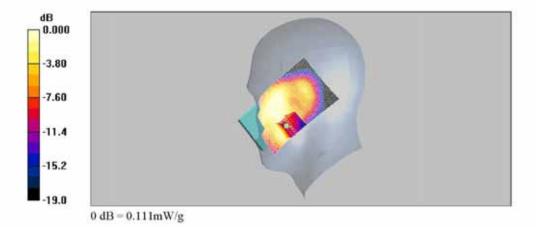
Program Name: WCDMA II_Head

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA II_RE_Mid_Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.118 mW/g

WCDMA II RE Mid Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.98 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.065 mW/gMaximum value of SAR (measured) = 0.111 mW/g

Date of Issue : 2011-04-21 Page : 91 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea File Name: WCDMA II RE,da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA II_Head

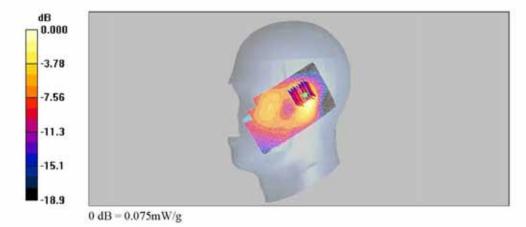
Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(5.04, 5.04, 5.04); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_RE_Mid_Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.076 mW/g


WCDMA II_RE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.65 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.067 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.075 mW/g

Date of Issue : 2011-04-21 Page : 92 / 167

WCDMA II Body Hotspot SAR Test

Date/Time: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: WCDMA II Body 1cm Front.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA II_Body

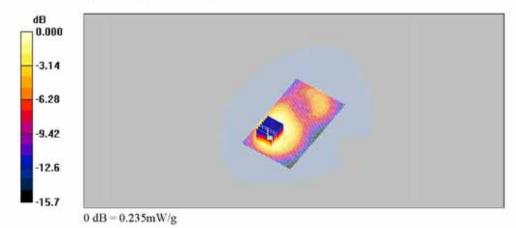
Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Front_Mid_1cm/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.244 mW/g


WCDMA II_Front_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.21 V/m; Power Drift = -0.191 dB

Peak SAR (extrapolated) = 0.353 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.129 mW/g

Maximum value of SAR (measured) = 0.235 mW/g

Date of Issue : 2011-04-21 Page : 93 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: WCDMA II Body 1cm Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Back_Mid_1cm/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.410 mW/g

WCDMA II_Back_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.79 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.562 W/kg

SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.208 mW/gMaximum value of SAR (measured) = 0.406 mW/g

> -3.50 -7.00 -10.5 -14.0 -17.5 0 dB = 0.406mW/g

Date of Issue : 2011-04-21 Page : 94 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 95 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: WCDMA II Body 1cm Edge A.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA II_Body

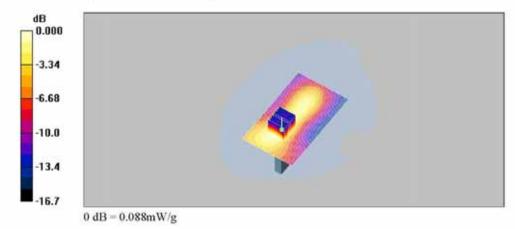
Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Edge A_Mid_1cm/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.090 mW/g


WCDMA II_Edge A_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.63 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 0.141 W/kg

SAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.046 mW/g

Maximum value of SAR (measured) = 0.088 mW/g

Date of Issue : 2011-04-21 Page : 96 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

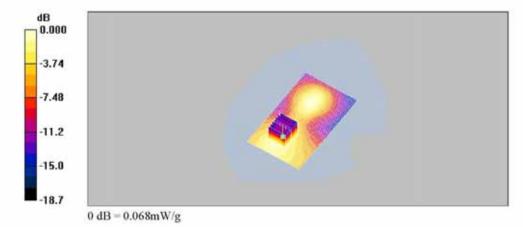
File Name: WCDMA II Body 1cm Edge B.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Edge B_Mid_1cm/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.066 mW/g

WCDMA II_Edge B_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.78 V/m; Power Drift = 0.025 dB Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.063 mW/g; SAR(10 g) = 0.037 mW/gMaximum value of SAR (measured) = 0.068 mW/g

Date of Issue : 2011-04-21 Page : 97 / 167

Date: 2011-03-31

Test Laboratory: SGS Testing Korea

File Name: WCDMA II Body 1cm Edge C.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: WCDMA II_Body

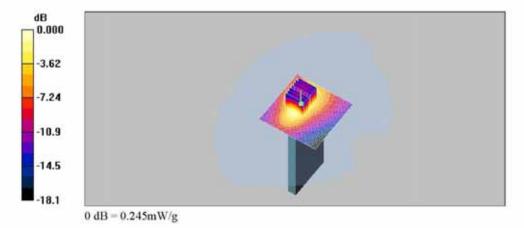
Communication System: W.CDMA II: Fraguency: 1880 MHz: Duty

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f=1880 MHz; $\sigma=1.53$ mho/m; $\epsilon_r=51.5$; $\rho=1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.46, 4.46, 4.46); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA II_Edge C_Mid_1cm/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.243 mW/g

WCDMA II_Edge C_Mid_1cm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.50 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 0.339 W/kg

SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.127 mW/g

Maximum value of SAR (measured) = 0.245 mW/g

Date of Issue : 2011-04-21 Page : 98 / 167

WLAN Head SAR Test

Date: 2011-03-29

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

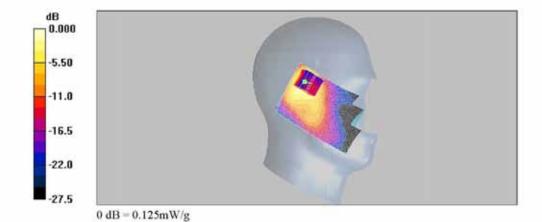
DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Head

Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 38$; $\rho = 1000$ kg/m³

Phantom section: Left Section


DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_LE_Low_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.104 mW/g

WLAN_LE_Low_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.55 V/m; Power Drift = -0.005 dB
Peak SAR (extrapolated) = 0.248 W/kg
SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.050 mW/g
Maximum value of SAR (measured) = 0.125 mW/g

Date of Issue : 2011-04-21 Page : 99 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

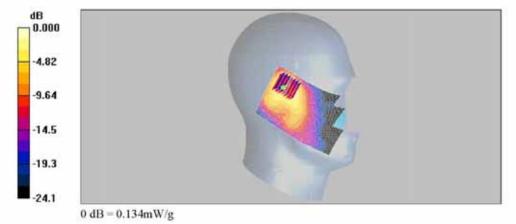
Medium parameters used: f = 2437 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

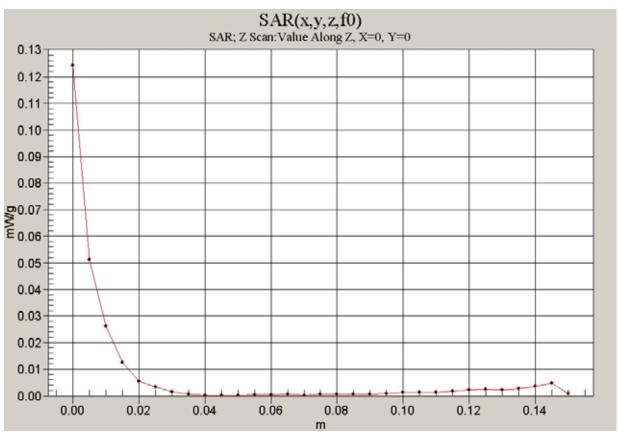
WLAN_LE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.115 mW/g


WLAN_LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.35 V/m; Power Drift = -0.110 dB

Peak SAR (extrapolated) = 0.268 W/kg

SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.056 mW/g


Maximum value of SAR (measured) = 0.134 mW/g

Date of Issue : 2011-04-21 Page : 100 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 101 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Head

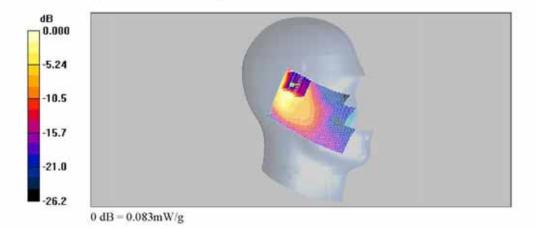
Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 1.89 \text{ mho/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_LE_High_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.078 mW/g

WLAN_LE_High_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.19 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.034 mW/g Maximum value of SAR (measured) = 0.083 mW/g

Date of Issue : 2011-04-21 Page : 102 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: WLAN_Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

$\label{eq:wlambda} \begin{tabular}{ll} WLAN_LE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.093 mW/g \\ \end{tabular}$

WLAN_LE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.64 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 0.216 W/kg

SAR(1 g) = 0.094 mW/g; SAR(10 g) = 0.042 mW/gMaximum value of SAR (measured) = 0.110 mW/g

> -5.72 -11.4 -17.2 -22.9 -28.6 0 dB = 0.110mW/g

Date of Issue : 2011-04-21 Page : 103 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

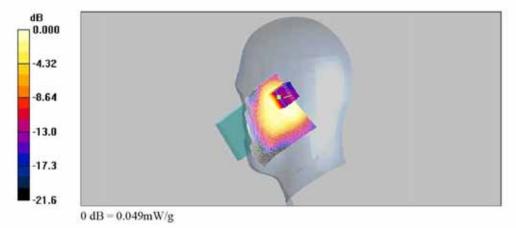
Medium parameters used: f = 2437 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_RE_Mid_Cheek/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.051 mW/g


WLAN_RE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.29 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.089 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.026 mW/g

Maximum value of SAR (measured) = 0.049 mW/g

Date of Issue : 2011-04-21 Page : 104 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

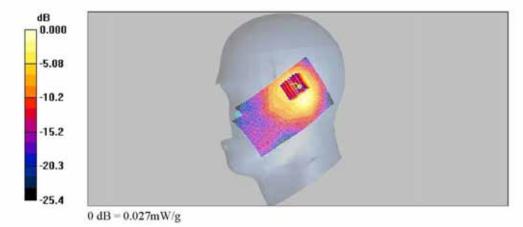
Medium parameters used: f = 2437 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_RE_Mid_Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.025 mW/g


WLAN RE Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.72 V/m; Power Drift = 0.161 dB

Peak SAR (extrapolated) = 0.040 W/kg

SAR(1 g) = 0.024 mW/g; SAR(10 g) = 0.013 mW/g

Maximum value of SAR (measured) = 0.027 mW/g

Date of Issue : 2011-04-21 Page : 105 / 167

WLAN Body Hotspot SAR Test

Date: 2011-03-29

Test Laboratory: SGS Testing Korea File Name: WLAN Body Front.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Body

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

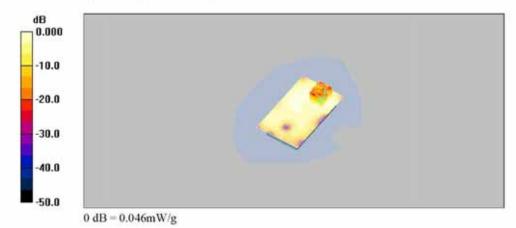
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_Body_11b_Front_Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.045 mW/g


WLAN_Body_11b_Front_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.47 V/m; Power Drift = 0.198 dB

Peak SAR (extrapolated) = 0.109 W/kg

SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.024 mW/g

Maximum value of SAR (measured) = 0.046 mW/g

Date of Issue : 2011-04-21 Page : 106 / 167

Date: 2011-03-29

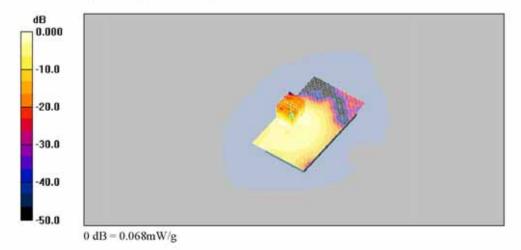
Test Laboratory: SGS Testing Korea File Name: WLAN Body Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: WLAN_Body

Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_Body_11b_Back_Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.077 mW/g

WLAN_Body_11b_Back_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.11 V/m; Power Drift = -0.109 dB Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.031 mW/gMaximum value of SAR (measured) = 0.068 mW/g

Date of Issue : 2011-04-21 Page : 107 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea File Name: WLAN Body Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Body

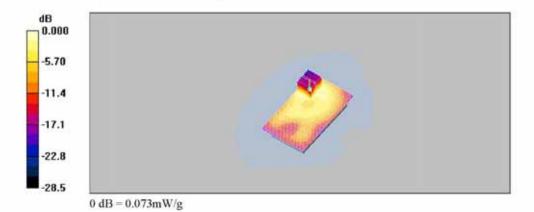
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_Body_11b_Back_Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.077 mW/g

WLAN_Body_11b_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.65 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.034 mW/gMaximum value of SAR (measured) = 0.073 mW/g

Date of Issue : 2011-04-21 Page : 108 / 167

Date: 2011-03-29

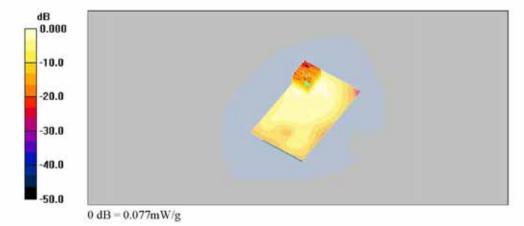
Test Laboratory: SGS Testing Korea File Name: WLAN Body Back.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548 Program Name: WLAN_Body

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

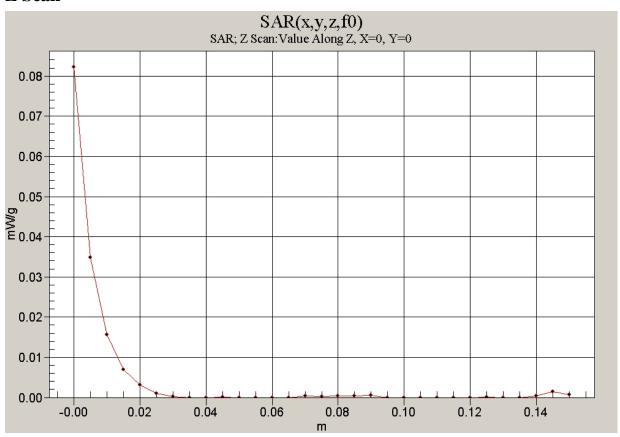
Phantom section: Flat Section


DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_Body_11b_Back_High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.081 mW/g

WLAN_Body_11b_Back_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.81 V/m; Power Drift = 0.152 dB Peak SAR (extrapolated) = 0.202 W/kg


SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.035 mW/gMaximum value of SAR (measured) = 0.077 mW/g

Date of Issue : 2011-04-21 Page : 109 / 167

Z Scan

Date of Issue : 2011-04-21 Page : 110 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea File Name: WLAN Body Edge B.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Body

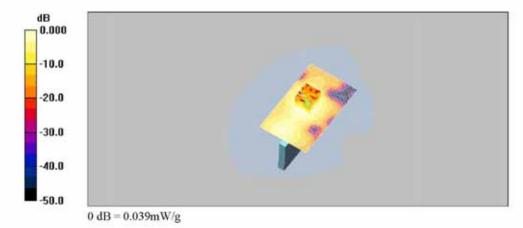
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated; 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_Body_11b_Edge B_Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.036 mW/g

WLAN_Body_11b_Edge B_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.26 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.092 W/kg

SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.039 mW/g

Date of Issue : 2011-04-21 Page : 111 / 167

Date: 2011-03-29

Test Laboratory: SGS Testing Korea File Name: WLAN Body Edge D.da4

DUT: LG-P920h; Type: Mobile Phone; Serial: 102KPQJ948548

Program Name: WLAN_Body

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

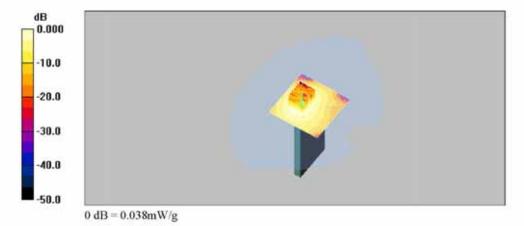
Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe; ET3DV6 - SN1782; ConvF(4.07, 4.07, 4.07); Calibrated; 2010-04-28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_Body_11b_Edge D_Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.040 mW/g

WLAN_Body_11b_Edge D_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.54 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.083 W/kg

SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.019 mW/gMaximum value of SAR (measured) = 0.038 mW/g

Date of Issue : 2011-04-21 Page : 112 / 167

Appendix B

Uncertainty Analysis

a	b	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Sectio n in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition -Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning - mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation - SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		19.27	