HCT CO., LTD.

PRODUCT COMPLIANCE DIVISION
SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL: +82 31 639 8539 FAX: +82 31 639 8525 www.hct.co.kr

EMI CERTIFICATION REPORT

Applicant:

LG Electronics Inc.

60-39, Gasan-dong, Gumchon-gu, Seoul 153-023. Korea

Date of Issue: August 05, 2010 Test Report No.: HCTE1008FE04

Test Site: HCT CO., LTD. HCT FRN: 0005-8664-21

FCC ID:

BEJMN180

Rule Part(s) / Standard(s) : FCC PART 15 Subpart B / CISPR 22 Class B

Equipment Type

: Cellular/AWS/PCS CDMA Phone with Bluetooth

Model(s) Name

: MN180, LG-MN180

Port / Connector(s)

: USB Data Port / Headset Port

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003. (See Test Report if any modifications were made for compliance)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT certifies that no party to application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862.

Report prepared by

: Dong Sup Kim

Test Engineer of EMC Tech. Part

Approved by : Jin Pyo Hong

Manager of EMC Tech. Part

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report No.: HCTE1008FE04

FCC ID: BEJMN180

Date: August 05, 2010

TABLE OF CONTENTS

	PAGE
1. GENERAL INFORMATION	
1.1 Product description	3
1.2 Related submittal(s)/Grant(s)	3
1.3 Tested system details	4
1.4 Cable description	5
1.5 Noise suppression parts on cable. (I/O cable)	5
1.6 Test methodology	6
1.7 Test facility	6
1.8 Frequency Range of Radiated Measurements	6
2. SYSTEM TEST CONFIGURATION	
2.1 Configuration of tested system	7
3. PRELIMINARY TEST	
3.1 Conducted Emission test	8
3.2 Radiated Emission test	8
4. CONDUCTED AND RADIATED EMISSION TESTS SUMMARY	
4.1 Conducted Emission test	9
4.2 Radiated Emission test	14
5. FIELD STRENGTH CALCULATION	15
6. TEST EQUIPMENT	16
7. CONCLUSION	17

1. GENERAL INFORMATION

1.1 Product Description

Equipment Under Test (E.U.T) is **Cellular/AWS/PCS CDMA Phone with Bluetooth, Model: MN180, LG-MN180** manufactured by **LG Electronics Inc.** Its basic purpose is used for communications.

Model (s)	MN180, LG-MN180
FCC ID	BEJMN180
E.U.T Type	Cellular/AWS/PCS CDMA Phone with Bluetooth
TX Frequency	824.70 Mb to 848.31 Mb (CDMA 835) 1 851.25 Mb to 1 908.75 Mb (CDMA 1 900) 1 711.25 Mb to 1 753.75 Mb (AWS 1 700)
RX Frequency	869.70 MHz to 893.31 MHz (CDMA 835) 1 931.25 MHz to 1 988.75 MHz (CDMA 1 900) 2 111.25 MHz to 2 153.75 MHz (AWS 1 700)

1.2 Related Submittal(s) / Grant(s)

Original submittal only.

1.3 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Manufacturer	Model Number/ Part Number	FCC ID / DoC	Connected To
Cellular/AWS/PCS CDMA Phone with Bluetooth	LG	MN180	BEJMN180	Notebook PC
Notebook PC	SAMSUNG	NT-R519	DoC	E.U.T
Notebook PC adaptor	DELTA	ADP-60ZH D AD-6019R	-	Notebook PC
Mouse	Microsoft	Intellimouse optical USB and PS/2 compatible	DoC	Notebook PC
USB Cable	-	-	-	Notebook PC E.U.T
Headset	-	-	-	E.U.T

FCC ID: BEJMN180
Report No.: HCTE1008FE04

1.4 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
Cellular/AWS/PCS CDMA Phone with	Headset jack	-	N	(D)1.4
Bluetooth	USB data	Y	Y	(P,D)1.2
Notebook PC	USB (Mouse)	-	Y	(D)1.8

Date: August 05, 2010

1.5 Noise Suppression Parts on Cable. (I/O cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
Cellular/AWS/PCS CDMA Phone with	Headset jack	N	-	Y	E.U.T End
Bluetooth	USB data	N	-	Y	Both End
Notebook PC	USB (Mouse)	Y	Notebook PC End	Y	Notebook PC End

 $[\]ast$ The marked "(D)" means the data cable and "(P)" means the power cable.

FCC ID: BEJMN180
Report No.: HCTE1008FE04

1.6 Test Methodology

Both Conducted and Radiated testing was performed according to the procedures in ANSI C63.4/2003. Radiated testing was performed at an antenna to E.U.T distance of 3 m

Date: August 05, 2010

1.7 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1, Maekok-ri, Hobup-myun, Ichon-si, Kyoungki-do, 467-701, KOREA. The site is constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated June 10, 2009. (Registration Number: 90661)

1.8 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

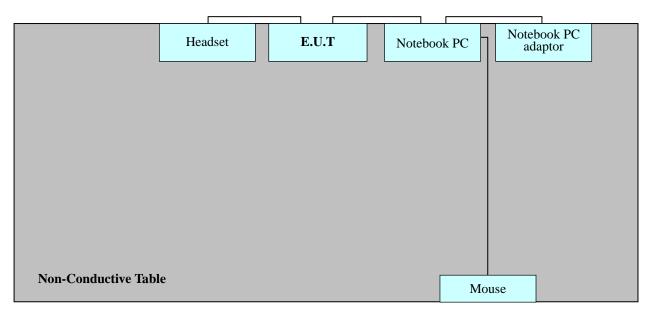
Highest frequency generated or used in the device or on which the device operates or tunes (Mz)	Upper frequency of measurement range
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

2. SYSTEM TEST CONFIGURATION

2.1 Configuration of Test System

Power Line Conducted test : E.U.T was connected to LISN via Notebook PC adaptor.

Preliminary Power Line Conducted Emission tests were performed by using the procedure in ANSI C63.4/2003 7.2.3 to determine the


worst operating conditions.

Radiated Emission test : Preliminary Radiated Emission tests were performed by using the

procedure in ANSI C63.4/2003 8.3.1.1 to determine the worst operating condition. Final Radiated Emission tests were performed

at 3 m open area test site.

[Configuration of Tested System]

Power Line: 110 VAC

Report No.: HCTE1008FE04

3. PRELIMINARY TEST

3.1 Conducted Emission Test

■ Test E.U.T with Data Communication mode, after connecting all peripheral devices.

During preliminary tests, the following operating mode was investigated:

Operation Mode	The Worst Operating Condition
Data Communication	0

Date: August 05, 2010

3. 2 Radiated Emission Test

■ Test E.U.T with Data Communication mode, after connecting all peripheral devices.

During preliminary tests, the following operating mode was investigated:

Operation Mode	The Worst Operating Condition
Data Communication	0

4. CONDUCTED AND RADIATED EMISSION TEST SUMMARY

4.1 Conducted Emission Test

The following table shows the highest levels of conducted emissions on both polarization of hot and neutral line.

Limit apply to : CISPR 22 Class B

Result : Passed by 10.3 dB

Operating condition : Data Communication mode

Detector : Quasi-Peak, Average (6 dB Bandwidth: 9 klb)

Temperature : 27.4 °C

Humidity level : 47.1 %

Test date : August 03, 2010

Power Line Conducted Emissions			CISPR 22 Class B			
Frequency (MHz)	Amplitude (dBμV)	Conductor	Detector	Limit (dBµV)	Margin (dB)	
0.1940	40.9	НОТ	Average	54.0	13.0	
0.1940	53.6	НОТ	Quasi-Peak	64.0	10.3	
4.6680	31.9	NEUTRAL	Average	46.0	14.1	
4.6680	42.1	NEUTRAL	Quasi-Peak	56.0	13.9	

* NOTE: Refer to page 10 to page 13 for details.

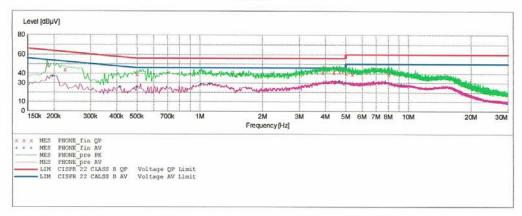
FCC ID: BEJMN180

Date: August 05, 2010

HCT

Report No.: HCTE1008FE04

EMC


EUT: MN180 Manufacturer: LG
Operating Condition: DATA MODE
Test Site: SHIELD ROOM Operator: DS-KIM

Test Specification: CISPR22 CLASS B

Comment:

SCAN TABLE: "CISPR22 CLASS B"

Short Desc	ription:	(CISPR22 CLAS	S B		
Start Frequency	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz	500.0 kHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	ESH3 (20100210)
500.0 kHz	5.0 MHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	ESH3 (20100210)
5.0 MHz	30.0 MHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	ESH3 (20100210)

MEASUREMENT RESULT: "PHONE_fin QP"

8/3/2010	12:4	OPM					
Freque	ncy	Level	Transd	Limit	Margin	Line	PE
	MHz	dBµV	dB	dBµV	dB		
0.186	001	48.60	10.0	64	15.6		
0.226	001	44.20	10.0	63	18.4		
0.500	000	39.50	10.1	56	16.5		
3.896	000	41.10	10.3	56	14.9		
4.388	000	41.40	10.4	56	14.6		
4.668	000	42.10	10.4	56	13.9		
5.024	000	40.80	10.4	60	19.2		
5.380	000	39.60	10.5	60	20.4		
8.060	000	39.30	10.7	60	20.7		
	0.186 0.226 0.500 3.896 4.388 4.668 5.024 5.380	8/3/2010 12:4 Frequency MHz 0.186001 0.226001 0.500000 3.896000 4.388000 4.668000 5.024000 5.380000 8.060000	Frequency MHz dBµV 0.186001 48.60 0.226001 44.20 0.500000 39.50 3.896000 41.10 4.388000 41.40 4.668000 42.10 5.024000 40.80 5.380000 39.60	Frequency MHz Level Transd dB dB 0.186001	Frequency MHz dBµV dB Limit dBµV	Frequency MHz dBμV dB Limit dBμV dB 0.186001 48.60 10.0 64 15.6 0.226001 44.20 10.0 63 18.4 0.500000 39.50 10.1 56 16.5 3.896000 41.10 10.3 56 14.9 4.388000 41.40 10.4 56 14.6 4.668000 42.10 10.4 56 13.9 5.024000 40.80 10.4 60 19.2 5.380000 39.60 10.5 60 20.4	Frequency MHz dBµV dB dB dBµV dB dB dBµV dB dB dBµV dB dB dB dB dB dBµV dB

Page 1/2 8/3/2010 12:40PM HCT EMC LAB

FCC ID: BEJMN180

Report No.: HCTE1008FE04 Date: August 05, 2010

MEASURE	ŒNT	RESULT	: "PHON	E_fin	AV"	
8/3/2010	12:4	OPM				
A STATE OF THE PARTY OF THE PAR	ncy	Level	Transd	Limit	Margin	Line

rrequency	rever	ITansu	TIMIT	margin	Line	PE
MHz	dBµV	dB	dBµV	dB		
0.198001	37.10	10.0	54	16.6		
0.414001	25.90	10.1	48	21.7		
0.500000	25.60	10.1	46	20.4		
1.016000	28.50	10.1	46	17.5		
1.120000	29.10	10.1	46	16.9		
4.668000	31.90	10.4	46	14.1		
5.000000	30.30	10.4	46	15.7		
7.756000	30.50	10.6	50	19.5		
9.236000	27.90	10.7	50	22.1		

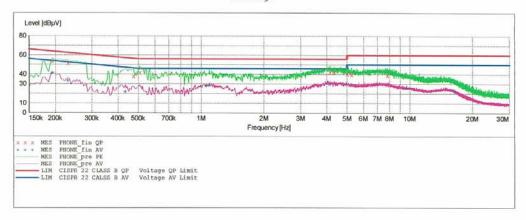
Page 2/2 8/3/2010 12:40PM HCT EMC LAB

FCC ID: BEJMN180

Report No.: HCTE1008FE04 Date: August 05, 2010

HCT

EMC


EUT: MN180
Manufacturer: LG
Operating Condition: DATA MODE
Test Site: SHIELD ROOM
Operator: DS-KIM

Test Specification: CISPR22 CLASS B

Comment:

SCAN TABLE: "CISPR22 CLASS B"

Short Desc	ription:	C	ISPR22 CLAS	SB		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	500.0 kHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	ESH3 (20100210)
500.0 kHz	5.0 MHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	ESH3 (20100210)
5.0 MHz	30.0 MHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	ESH3 (20100210)

MEASUREMENT RESULT: "PHONE_fin QP"

8/3/2010	12:4	3PM					
Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.194	001	53.60	10.0	64	10.3		
0.230	001	51.40	10.0	62	11.1		
0.474	001	37.90	10.1	56	18.5		
0.508	000	41.60	10.1	56	14.4		
4.148	000	41.90	10.4	56	14.1		
4.340	000	42.00	10.4	56	14.0		
5.000	000	40.80	10.4	56	15.2		
5.264	000	39.70	10.4	60	20.3		
7.820	000	39.10	10.6	60	20.9		

Page 1/2 8/3/2010 12:43PM HCT EMC LAB

Report No.: HCTE1008FE04

FCC ID: BEJMN180

Date: August 05, 2010

MEASUREMENT	RESULT	: "PHON	E_fin	AV"		
8/3/2010 12:	43PM					
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.194001	40.90	10.0	54	13.0		
0.230001	33.40	10.0	52	19.1		
0.434001	21.60	10.1	47	25.6		
1.064000	28.30	10.1	46	17.7		
1.100000	28.70	10.1	46	17.3		
4.048000	30.90	10.4	46	15.1		
5.000000	30.00	10.4	46	16.0		
9.676000	26.10	10.8	50	23.9		-
16.552000	22.30	11.4	50	27.7		

4.2 Radiated Emission Test

The following table shows the highest levels of Radiated Emissions on both polarization of horizontal and vertical.

Limit apply to : FCC PART 15 Subpart B

Result : Passed by 6.1 dB

Operating condition : Data Communication mode

Detector : Quasi-Peak (6 dB Bandwidth: 120 kHz)

Temperature : $20.0 \,^{\circ}\text{C}$

Humidity level : 34.5 %

Test date : August 03, 2010

Frequency	Reading	Ant. Factor	Cable Loss	Ant. POL	Total	Limit	Margin
MHz	dBµV	dB/m	dB	(H/V)	dBμV/m	dBμV/m	dB
41.2	19.7	12.2	0.7	V	32.6	40.0	7.4
83.5	24.5	8.4	1.0	V	33.9	40.0	6.1
215.9	20.8	10.4	1.6	Н	32.8	43.5	10.7
290.6	18.3	12.8	1.8	V	32.9	46.0	13.1
431.9	11.5	16.1	2.2	Н	29.8	46.0	16.2
580.1	13.0	19.0	2.6	Н	34.6	46.0	11.4

5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the antenna factor and cable factor.

The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF$$

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

Assume a receiver reading of 21.5 dB μ V is obtained. The antenna factor of 7.4 dB/m and a cable factor of 1.1 dB are added. The 30 dB μ V/m value is mathematically converted to its corresponding level in μ V/m.

$$FS = 21.5 + 7.4 + 1.1 = 30 \text{ dB}\mu\text{V/m}$$

[Radiated Emission Limits]

Frequency of Emission	Field Strength				
(MHz)	μV/m	dBμV/m			
30 to 88	100	40.0			
88 to 216	150	43.5			
216 to 960	200	46.0			
Above 960	500	54.0			

Report No.: HCTE1008FE04 FCC ID: BEJMN180

6. TEST EQUIPMENT

<u>Type</u>	<u>Manufacturer</u>	Model Number	Serial Number	Next CAL Date					
Conducted Emission									
EMI Test Receiver	Rohde & Schwarz	ESCI	100033	2011.02.19					
EMI Test Receiver	Rohde & Schwarz	ESU26	100214	2011.04.29					
LISN	Rohde & Schwarz	ESH3-Z5	100282	2011.02.05					
LISN	Rohde & Schwarz	ENV216	3560.6550.02	2011.04.06					
Attenuator	Rohde & Schwarz	ESH3-Z2	357.8810.52	2010.10.30					
Radiated Emission									
EMI Test Receiver	Rohde & Schwarz	ESI40	831564103	2010.10.30					
EMI Test Receiver	Rohde & Schwarz	ESU26	100214	2011.04.29					
Trilog Antenna	Schwarzbeck	VULB9160	9160-3150	2010.12.18					
Antenna Master	HD	MA240	240/520/00	-					
Turn Table	EMCO	1060	-	-					
Communication Antenna	Schwarzbeck	USLP 9142	9142-248	-					
Base Station	Rohde & Schwarz	CMU 200	1100000802	2011.02.17					
Horn Antenna	Schwarzbeck	BBHA 9120D	-	2012.04.13					
RF-Amplifier	MITEQ	AMF-6D-00101800 -35.20P.PS	-	2011.05.20					
Bluetooth Base Station	TESCOM	TC-3000A	-	2011.01.07					

Date: August 05, 2010

Report No.: HCTE1008FE04 FCC ID: BEJMN180

7. CONCLUSION

The data collected shows that the **LG Electronics Inc, Cellular/AWS/PCS CDMA Phone with Bluetooth, Model: MN180, LG-MN180, FCC ID: BEJMN180** complies with §15.107 and §15.109 of the FCC rules.

Date: August 05, 2010

HCT CO., LTD.