

TEST REPORT

Certification Of Compliance

Test Report No.: 00431-4529-C5115

EQUIPMENT UNDER TEST

Wireless Local Loop Telephone (CDMA) Equipment:

Type/Model: LST-260

Manufacturer: LG Electronics Inc. Applicant: LG Electronics Inc.

Address: 19-1, Cheongho-Ri, Jinwuy-Myun,

Pyungtaik-City, Kyunggi-Do, 451-713 Korea

FCC ID: BEJLST260

Regulation: FCC Part 22, Part 2

ANSI C63.4-2003, TIA/EIA603 Test procedure:

Equipment Class: Intentional Radiators

Date of Receipt of EUT: May 16, 2005

Date of Test: May 17~25, 2005

Date of issue: June 3, 2005

Test Result: **PASS**

SUMMARY

This device has been verified to comply with the applicable requirements in the FCC Part 22 & Part2 and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003, TIA/EIA 603

* The test results in this test report apply only to sample(s) tested.

Kyeom-Soon Kim / General Manager

Standards Group

Approved by

Tested by:

Quality and Reliability Center

Reviewed by:

J. C. Lee / Chief Research Engineer Standards Group

Quality and Reliability Center

Y. S. Lee / Chief Research Engineer Standards Group

Quality and Reliability Center

This report may not be reproduced other than in full, except with the prior written approval by Quality and Reliability Center.

CONTENTS

	Page
1. GENERAL INFORMATION	3
1.1 DESCRIPTIONS OF EQUIPMENT UNDER TEST (EUT)	
1.2 REGULATIONS APPLIED TO EUT	
1.3 Measurement procedure 1.4 Measurement place	
2. TEST SITE	
2.1 ANECHOIC CHAMBER	
2.2 A SHIELDED ENCLOSURE	
3. CALIBRATIONS OF MEASURING INSTRUMENTS	4
4. DESCRIPTION OF TEST CONDITION	4
4.1 RF Power Output	4
4.2 OCCUPIED BANDWIDTH	
4.3 Spurious Emission at Antenna Terminal	
4.4 FIELD STRENGTH OF SPURIOUS RADIATION	
5. TEST DATA	
5.1. RF Power Output (§2.1046)	
5.2. OCCUPIED BANDWIDTH / 26DB EMISSION BANDWIDTH(§2.1049)	
5.4. FIELD STRENGTH OF SPURIOUS RADIATION (§2.1051)	11
5.5. Frequency Stability (§2.1055)	
6. PREDICTION OF MPE	
6.1. Equation for Predicting MPE	14
6.2. RESULTS	
7. LIST OF INSTRUMENTS USED	15
APPENDIX A: TEST GRAPH 1 Volume	
APPENDIX B: TEST SET-UP PHOTOGRAPHS 1 Volume	
APPENDIX C: EUT PHOTOGRAPHS 1 Volume	

1. GENERAL INFORMATION

1.1 Descriptions of equipment under test (EUT)

1.1.1 Manufacturer: LG Electronics Inc.

19-1, Cheongho-Ri, Jinwuy-Myun, Pyungtaik-City, Kyunggi-Do,

451-713 Korea

1.1.2 EUT Type: Wireless Local Loop Telephone (CDMA)

1.1.3 Model No.: LST-260

1.1.4 Serial No.: N/A

1.1.5 System characteristic and descriptions

1) Output power: 25.8 dBm (ERP)

2) Antenna type: Half wavelength antenna

3) Emission Designator: 1M25F9W (CDMA)

4) Transmitting of frequency range: $824.70 \sim 848.31$ MHz.

5) Receiving of frequency range : 869.70 ~ 893.31 MHz.

1.2 Regulations applied to EUT

FCC Part 22(H), Part2

1.3 Measurement procedure

ANSI C63.4-2003, TIA/EIA603

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and TIA/EIA603

1.4 Measurement place

LG Electronics Inc. Quality and Reliability Center

36, Munlae-dong, 6-ga, Youngdungpo-gu, Seoul 150-096, Korea

2. TEST SITE

2.1 Anechoic chamber

Measurement of radiated emissions from EUT was made at anechoic chamber that has been in compliance with Federal Communications Commissions (FCC) according to ANSI C63.4-2003.

2.2 A shielded enclosure

The measurement of conducted spurious emissions was made in a shielded enclosure providing sufficient shielding effectiveness.

3. CALIBRATIONS OF MEASURING INSTRUMENTS

All measurements were made with instruments calibrated according to the recommendation by manufacturer. Measurement of radiated emissions and conducted emissions were made with instruments conforming to American National Standards Institute, ANSI C63.4-2003. The calibration of measuring instrument, including any accessories that may affect test results, were performed according to the recommendation by manufacturer.

4. DESCRIPTION OF TEST CONDITION

4.1 RF Power Output

- 1) On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2) The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.
- 3) The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4) The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6) The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8) The maximum signal level detected by the measuring receiver shall be noted.

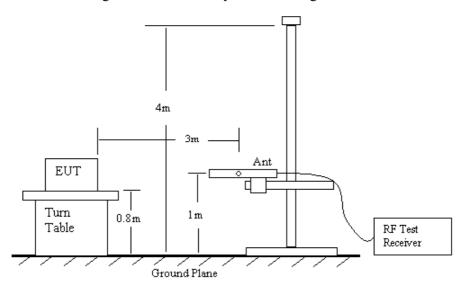


Figure 1. Radiated Emission Measurement 30 to 1000 MHz

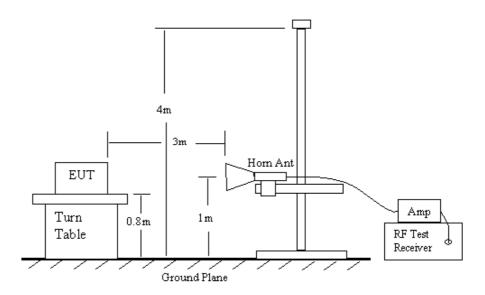
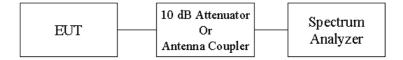


Figure 2. Radiated Emission Above 1000 MHz

- 9) The transmitter shall be replaced by a tuned dipole (substitution antenna).
- 10) The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11) The substitution antenna shall be connected to a calibrated signal generator.
- 12) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13) The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15) The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16) The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17) The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.



 $Figure 3.\ Radiated\ Emission-Substitution\ Method$

4.2 Occupied Bandwidth

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of the Emission bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

4.3 Spurious Emission at Antenna Terminal

- 1) EUT's RF output connector (made solely for the purpose of the test) is connected to the spectrum analyzer, and set as close as possible to the bottom of the block edge and one set as close as possible to the top of the block edge. Set the RES BW to 1% of the emission bandwidth to show compliance with the –13dBm limit, in the 1 MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.
- 2) For the Out-of-Band measurements a 1 MHz RES BW was used to scan from 30 MHz to 5x fo of the fundamental carrier for all frequency block. A display line was placed at 13dBm to show compliance for spurious, and harmonics.

4.4 Field Strength of Spurious Radiation

- 1) On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2) The test antenna shall be oriented initially for vertical polarization located 3 m from the EUT to correspond to the frequency of the transmitter.
- 3) The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4) The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6) The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8) The maximum signal level detected by the measuring receiver shall be noted.

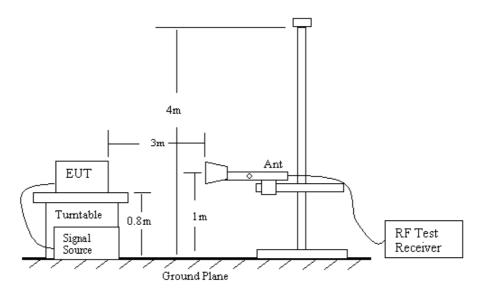


Figure 4. Radiated Emission Measurement

- 9) The transmitter shall be replaced by a substitution antenna.
- 10) The substitution antenna shall be oriented for vertical polarization.
- 11) The substitution antenna shall be connected to a calibrated signal generator.
- 12) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13) The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

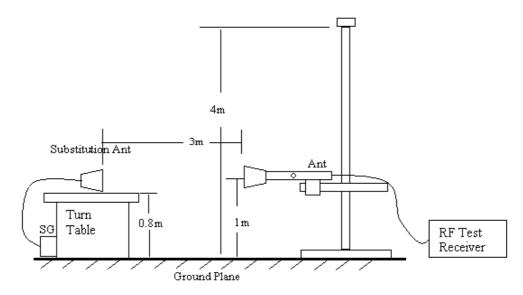


Figure 5. Radiated Emission – Substitution Method set-up

- 14) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15) The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

- 16) The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17) The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

4.5 Frequency Stability

- 4.5.1 Frequency stability versus environmental temperature
 - 1) Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber. Set the temperature of the chamber to 20°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 20°C operating frequency as reference frequency.
 - 2) Turn EUT off and set Chamber temperature to -30°C.
 - 3) Allow sufficient time (approximately 20 to 30 minutes after chamber reach the assigned temperature) for EUT to stabilize. Turn on EUT and measure the EUT operating frequency. Turn off EUT after the measurement
 - 4) Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

4.5.2 Frequency stability versus input voltage

- 1) Setup the configuration per figure 6 and set chamber temperature to 20°C. Use a variable power supply to power the EUT and set output voltage to EUT nominal input voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 20°C operating frequency as reference frequency.
- 2) Slowly reduce the EUT input voltage to specified extreme voltage variation (±15%) and record the maximum frequency change.

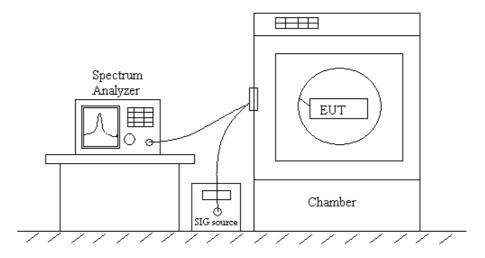


Figure 6. Frequency Stability

5. TEST DATA

5.1. RF Power Output (§ 2.1046)

Product: Wireless Local Loop Telephone (CDMA) Serial No.: N/A

Model: LST-260 Test Date: May 25, 2005

CDMA Output Power

Freq. (MHz)	SG Reading (dBm)	Amp. Gain(dB)	CL (dB)	Pol. (H/V)	Ant. Impedance Matching(dB	ERP (dBm)	Limit (dBm)	Margin (dB)
Low (Low Channel(CH#: 1013)							
824.70	5.8	32.6	2.7	Н	10.0	25.7	38.5	-12.8
Middle	Middle Channel(CH#: 363)							
835.89	5.9	32.6	2.7	Н	10.0	25.8	38.5	-12.7
High Channel(CH#: 777)								
848.31	5.9	32.6	2.7	Н	10.0	25.8	38.5	-12.7

NOTES: RBW = VBW = 3 MHz

Result: Pass

5.2. Occupied Bandwidth / 26dB Emission Bandwidth (§ 2.1049)

Product: Wireless Local Loop Telephone (CDMA) Serial No.: N/A

Model: LST-260 Test Date: May 17, 2005

Channel	Frequency (MHz)	Occupied BW (MHz)	-26 dB Emission BW (MHz)
1013	824.70	1.242	1.363
363	835.89	1.252	1.386
777	848.31	1.222	1.375

5.3. Spurious Emission at Antenna Terminal (§ 2.1051)

Product: Wireless Local Loop Telephone (CDMA) Serial No.: N/A

Model: LST-260 Test Date: May 17, 2004

Band Edge

Channel	Measured frequency(MHz)	Measured value (dBm)	Limit (dBm)	Margin (dB)
1013	824.00	-16.9	-13.0	-3.9
777	849.00	-13.4	-13.0	-0.4

NOTES: <u>RBW=15 kHz</u> (above 1% of -26 dB Emission Bandwidth)

Out-of-Band

Channel	Frequency (GHz)	Measured value (dBm)	Limit (dBm)	Margin (dB)
1013	1.642	-33.5	-13.0	-20.5
363	1.675	-31.2	-13.0	-18.2
777	1.625	-37.7	-13.0	-24.7

NOTES: RBW = VBW = 1 MHz

Result: Pass

5.4. Field Strength of Spurious Radiation (§ 2.1053)

Serial No.: N/A

Product: Wireless Local Loop Telephone (CDMA) Model: LST-260 Test Date: May 25, 2005

Frequency (MHz)	SG Reading (dBm)	CL (dB)	Pol. (H/V)	Gain (dBi)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
Low Channe	Low Channel(CH#:1013)							
1649.40	-44.2	4.1	V	8.1	6.0	-42.4	-13.0	-29.4
1649.40	-47.8	4.1	Н	8.1	6.0	-46.0	-13.0	-33.0
2474.10	-46.2	5.2	V	9.4	7.3	-44.2	-13.0	-31.2
2474.10	-50.8	5.2	Н	9.4	7.3	-48.8	-13.0	-35.8
3298.80	-50.0	6.1	V	10.3	8.2	-48.0	-13.0	-35.0
3298.80	-54.8	6.1	Н	10.3	8.2	-52.8	-13.0	-39.8
Middle Cha	nnel(CH#:36	3)						
1671.78	-42.1	4.2	V	8.1	6.0	-40.4	-13.0	-27.4
1671.78	-45.9	4.2	Н	8.1	6.0	-44.2	-13.0	-31.2
2507.67	-41.4	5.3	V	9.5	7.4	-39.4	-13.0	-26.4
2507.67	-43.8	5.3	Н	9.5	7.4	-41.8	-13.0	-28.8
3343.56	-44.9	6.1	V	10.3	8.2	-42.9	-13.0	-29.9
3343.56	-46.3	6.1	Н	10.3	8.2	-44.3	-13.0	-31.3
High Chann	el(CH#:777)							
1696.62	-43.8	4.2	V	8.2	6.1	-42.0	-13.0	-29.0
1696.62	-46.9	4.2	Н	8.2	6.1	-45.1	-13.0	-32.1
2544.93	-47.8	5.3	V	9.5	7.4	-45.8	-13.0	-32.8
2544.93	-48.8	5.3	Н	9.5	7.4	-46.8	-13.0	-33.8
3393.24	-51.8	6.2	V	10.4	8.3	-49.8	-13.0	-36.8
3393.24	-48.6	6.2	Н	10.4	8.3	-46.6	-13.0	-33.6

Result: Pass

5.5. Frequency Stability (§ 2.1055)

Product: Wireless Local Loop Telephone (CDMA) Serial No.: N/A

Model: LST-260 Test Date: May 19, 2005

Reference Frequency: CDMA Middle Channel 835.890009 MHz @ 20 °C							
	limit: to stay ± 2.5 ppm = 2089.725 Hz						
Power Supply	Environment Temperature	Frequency Dev	viation Measured wi	ith Time Elapse			
(V _{AC})	(°C)	(MHz)	Delta (ppm)	Limit (ppm)			
220	50	835.890010	0.00	±2.5			
220	40	835.890008	0.00	±2.5			
220	30	835.890009	0.00	±2.5			
220	20(Ref)	835.890009	0.00	±2.5			
220	10	835.889988	0.03	±2.5			
220	0	835.890009	0.00	±2.5			
220	-10	835.889986	0.03	±2.5			
220	-20	835.889987	0.03	±2.5			
220	-30	835.890016	-0.01	±2.5			
187(-15%)	20	835.890021	-0.01	±2.5			
253(+15%)	20	835.889967	0.05	±2.5			
BATT. End Point	N/A	N/A	N/A	N/A			

Result: Pass

6. Prediction of MPE

6.1. Equation for Predicting MPE

6.1.1 Equation : $S = (P \times G) / (4 \times \pi \times R^2)$

where: $S = power density in mW/cm^2$

P= output power to antenna in mW

G = gain of antenna in the direction of interest relative to an isotropic radiator

 $\pi = 3.1416$

R = distance between observation point and center of the radiator in cm

Power density(S) is limit of MPE, **f/1500 mW/cm**². If we know the maximum Gain of the antenna and the total power input to the antenna, through the calculation, we can calculate the power density(S) at 20 cm.

6.2. Results

6.2.1 Antenna Gain

The maximum Gain measured in Fully Anechoic Chamber is 3.0dBi or 1.995(numeric).

6.2.2 Prediction for power density

Channel	Frequency (MHz)	Maximum Output Power at Antenna Terminal(mW)	Power Density at 20cm (mW/cm ²)	Limit (mW/cm ²)
363	835.89	281.84	0.11186	0.5573

Note: Limit of Power Density(S)= $f/1500 = 835.89/1500 = 0.5573 \text{ mW/cm}^2$

Calculation Power Density at 20 cm

$$S = (P \times G) / (4 \times \pi \times R^2)$$

= (281.84 \times 1.995)/(4\times 3.1416\times 20^2)
= **0.11186** (mW/cm²)

where: P = 281.84 mW (Maximum output power is 24.5dBm at antenna terminal)

G = 1.995(numeric gain)

 $\pi = 3.1416$ R = 20 cm

Result: Pass

7. LIST OF INSTRUMENTS USED

Туре	Maker	Model	Serial Number	Cal. Due Date
Wireless Communication Test Set	Agilent	8960	GB43133078	21-Jul05
Spectrum Analyzer(PSA)	Agilent	E4440A	MY44022892	30-Mar06
Signal Generator	R&S	SMR40	100106	25-Aug05
Tuned dipole Antenna	S/B	UHAP	579	28-May-05
Biconical Antenna	S/B	VHA 9103	VHA91031341	28-May-05
Log-periodic Antenna	S/B	VHALP9107	1667	21-Nov05
Tx Horn Antenna	EMCO	3115	9202-3805	15-Jun05
Rx Horn Antenna	EMCO	3115	9202-3804	15-Jun05
HFP	ANDECHS	WHK1.2/15G	8	26-Oct05
Amplifier	MITQ	AMF-4D- 001180-24-10P	832938	26-Oct05
Temperature Chamber	ESPEC	SH-641	92001096	12-May-06
Step Attenuator	R&S	DPSP	892-561/Q25	02-May-06

Note: R&S: Rohde & Schwarz S/B: Schwarzbeck HP: Hewlett-Packard

Cal Due Date: Next calibration due date