

TEST REPORT

FCC/IC BT LE Test for LGSBWAC03

Certification

APPLICANT

LG Electronics Inc.

REPORT NO.

HCT-RF-2006-FI010-R1

DATE OF ISSUE

13 July 2020

Tested byJin Gwan Lee

Technical ManagerJong Seok Lee

MAS

John

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD.

Soo Chan Lee

Scotchan Lee

(CEO

HCT Co., Ltd.

TEST REPORT FCC/IC BT LE Test for LGSBWAC03

REPORT NO. HCT-RF-2006-FI010-R1

DATE OF ISSUE July 13, 2020

Additional Model

-

Applicant	LG Electronics Inc. 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713, Korea
Eut Type Model Name	RF Module LGSBWAC03
FCC ID IC	BEJLGSBWAC03 2703H-LGSBWAC03
Max. RF Output Power	9.355 dBm (8.62 mW)
Modulation type	GFSK
FCC Classification	Digital Transmission System(DTS)
FCC Rule Part(s)	Part 15.247
IC Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 1 (March 2019)
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

F-TP22-03 (Rev. 03) Page 2 of 94

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 08, 2020	Initial Release
1	July 13, 2020	A2LA mark removed & Typo revised (Page 1, 2, 3)

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance.

This laboratory is not accredited for the test results marked *.

The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 AND KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA.(HCT Accreditation No.: KT197)

F-TP22-03 (Rev. 03) Page 3 of 94

^{*} The report shall not be reproduced except in full(only partly) without approval of the laboratory.

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	8
3. INSTRUMENT CALIBRATION	8
4. FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
EQUIPMENT	8
5. ANTENNA REQUIREMENTS	9
6. MEASUREMENT UNCERTAINTY	9
7. DESCRIPTION OF TESTS	10
8. SUMMARY TEST OF RESULTS	30
9. TEST RESULT	32
9.1 DUTY CYCLE	32
9.2 6dB BANDWIDTH & 99 % BANDWIDTH	37
9.3 OUTPUT POWER	55
9.4 POWER SPECTRAL DENSITY	57
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	60
9.6 RADIATED SPURIOUS EMISSIONS	77
9.7 RADIATED RESTRICTED BAND EDGES	84
9.8 RECEIVER SPURIOUS EMISSIONS	87
9.9 POWERLINE CONDUCTED EMISSIONS	88
10. LIST OF TEST EQUIPMENT	92
11. ANNEX A_ TEST SETUP PHOTO	94

F-TP22-03 (Rev. 03) Page 4 of 94

1. EUT DESCRIPTION

Model	LGSBWAC03			
Additional Model	-			
EUT Type	RF Module			
Power Supply	DC 3.30 V	DC 3.30 V		
Frequency Range	2402 MHz - 2480 MHz			
		125k Bit/s : 9.119 dBm (8.16 mW)		
	Peak	500k Bit/s : 9.355 dBm (8.62 mW)		
	Реак	1M Bit/s : 9.333 dBm (8.58 mW)		
May DE Output Dawar		2M Bit/s : 9.343 dBm (8.60 mW)		
Max. RF Output Power		125k Bit/s : 8.41 dBm (6.93 mW)		
		500k Bit/s : 8.65 dBm (7.33 mW)		
	Average	1M Bit/s : 8.29 dBm (6.75 mW)		
		2M Bit/s : 6.70 dBm (4.68 mW)		
Modulation Type	GFSK			
Bluetooth Version	5.0			
Number of Channels	40 Channels			
Antenna type	Metal press			
Antenna Peak Gain	1.19 dBi			
Date(s) of Tests	June 01, 2020 ~ June 24, 2020			
PMN (Product Marketing Number)	LGSBWAC03			
HVIN (Hardware Version Identification Number)	ETWCFMBC02			
FVIN (Firmware Version Identification Number)	MT7663_V1.0			
HMN (Host Marketing Name)	N/A			
EUT serial numbers	ETWCFMBC02-01, ETWCFMBC02-02, ETWCFMBC02-03, ETWCFMBC02-04			

F-TP22-03 (Rev. 03) Page 5 of 94

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version: 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

F-TP22-03 (Rev. 03) Page 6 of 94

F-TP22-03 (Rev. 03) Page 7 of 94

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-TP22-03 (Rev. 03) Page 8 of 94

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203 / RSS-Gen(Issue 5) Section 8:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

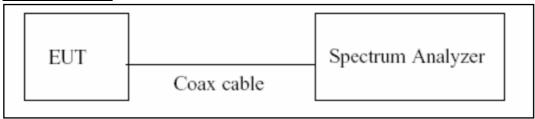
6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)	
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82	
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40	
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80	
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70	
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05	


F-TP22-03 (Rev. 03) Page 9 of 94

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

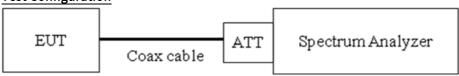
The largest availble value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest availble value)
- 2. $VBW = 8 MHz (\ge RBW)$
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure Ttotal and Ton
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)

F-TP22-03 (Rev. 03) Page 10 of 94



7.2. 6dB Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02,

Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Test Procedure (99 % Bandwidth for IC)

The transmitter output is connected to the spectrum analyzer.

RBW = $1\% \sim 5\%$ of the occupied bandwidth

VBW ≒ 3 x RBW

Detector = Peak

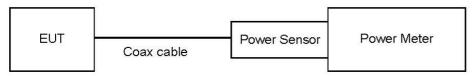
Trace mode = max hold

Sweep = auto couple

Allow the trace to stabilize

Note: We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.

F-TP22-03 (Rev. 03) Page 11 of 94



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

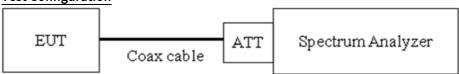
The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor

F-TP22-03 (Rev. 03) Page 12 of 94



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

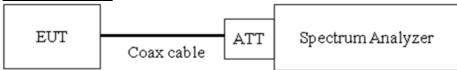
The spectrum analyzer is set to:

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = Peak
- 7) Trace mode = max hold
- 8) Allow trace to fully stablize.
- 9) Use the peak marker function to determine the maximum amplitude level.
- 10) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Reading Value + ATT loss + Cable loss

F-TP22-03 (Rev. 03) Page 13 of 94


7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2 \times \text{Span/VBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

F-TP22-03 (Rev. 03) Page 14 of 94

Factors for frequency

Factors for frequency	
Freq(MHz)	Factor(dB)
30	19.94
100	19.98
200	20.02
300	20.09
400	20.12
500	20.10
600	20.13
700	20.15
800	20.17
900	20.19
1000	20.21
2000	20.36
2400	20.41
2437	20.48
2500	20.80
3000	21.32
4000	21.56
5000	21.88
6000	21.99
7000	22.09
8000	22.15
9000	22.22
10000	22.27
11000	22.30
12000	22.35
13000	22.41
14000	22.42
15000	22.45
16000	22.51
17000	22.52
18000	22.57
19000	22.59
20000	22.63
21000	22.76
22000	22.75
23000	22.19
24000	22.24
25000	22.35

Note: 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss(20dB) + Cable loss

F-TP22-03 (Rev. 03) Page 15 of 94

7.6. Radiated Test

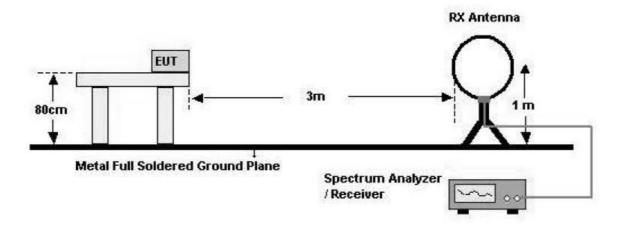
FCC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30

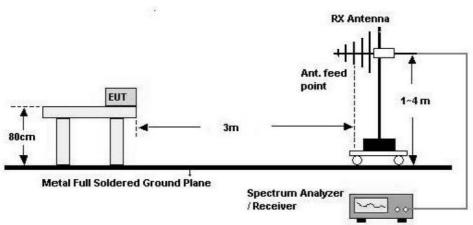
<u>IC</u>

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 – 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

FCC&IC

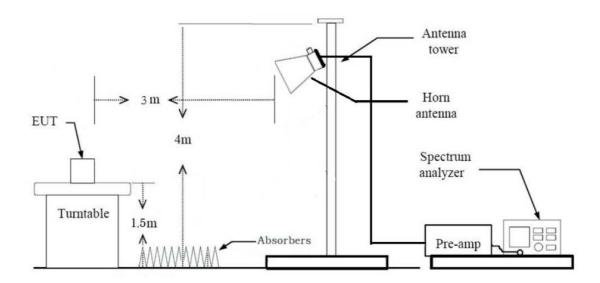

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

F-TP22-03 (Rev. 03) Page 16 of 94



Test Configuration

Below 30 MHz


30 MHz - 1 GHz

F-TP22-03 (Rev. 03) Page 17 of 94

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = $40\log(3 \text{ m}/300 \text{ m}) = -80 \text{ dB}$ Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$ Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - -RBW = 9 kHz
 - VBW ≥ $3 \times RBW$
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered

F-TP22-03 (Rev. 03) Page 18 of 94

that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

F-TP22-03 (Rev. 03) Page 19 of 94

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - -RBW = 120 kHz

In general, (1) is used mainly

- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

F-TP22-03 (Rev. 03) Page 20 of 94

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (i.e., RMS)
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB): Please refer to the please refer to section 9.1
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

F-TP22-03 (Rev. 03) Page 21 of 94

- 11. Total (Measurement Type: Peak)
- = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total (Measurement Type: Average)

- = Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G)
 - + Distance Factor(D.F) + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (i.e., RMS)
 - -RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had

F-TP22-03 (Rev. 03) Page 22 of 94

the test been performed at 100 percent duty cycle.

- Duty Cycle Factor (dB): Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type: Peak
 - = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

Total(Measurement Type: Average)

- = Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- + Duty Cycle Factor

F-TP22-03 (Rev. 03) Page 23 of 94

7.7. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50$ ohms line impedance stabilization network (LISN).

Fraguerou Paraco (MIII-)	Limits (dBμV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors: Quasi Peak and Average Detector.

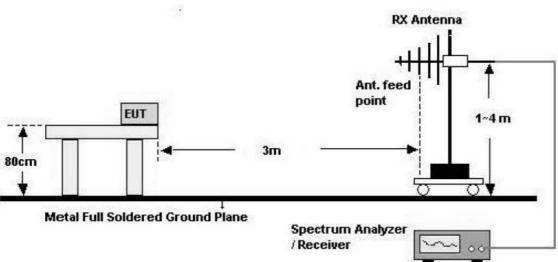
Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

F-TP22-03 (Rev. 03) Page 24 of 94

7.8. Receiver Spurious Emissions

Limit


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

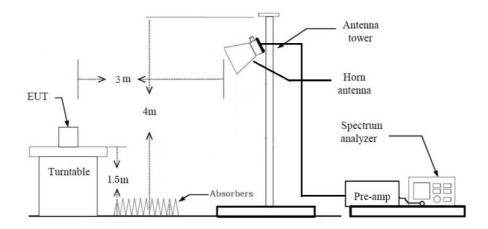
Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

30 MHz - 1 GHz

F-TP22-03 (Rev. 03) Page 25 of 94


Test Procedure of Receiver Spurious Emissions (Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

F-TP22-03 (Rev. 03) Page 26 of 94

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = Peak

F-TP22-03 (Rev. 03) Page 27 of 94

- Trace = Maxhold
- RBW = 1 MHz
- VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds The actual setting value of VBW = 1 kHz
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- $11. \ Total = Reading \ Value + Antenna \ Factor(A.F) + Cable \ Loss(C.L) Amp \ Gain(G) + Distance \ Factor(D.F)$

F-TP22-03 (Rev. 03) Page 28 of 94

7.9. Worst case configuration and mode

Radiated Test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode: Stand alone, Stand alone

- Worstcase: Stand alone

2. EUT Axis:

- Radiated Spurious Emissions : X

- Radiated Restricted Band Edge: X

3. All packet length of operation were investigated and the test results are worst case in lowest packet length.

(Worst case: 500Kbps 255Bytes, 2M 255Byte)

- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position: Horizontal, Vertical, Parallel to the ground plane

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode: Stand alone + External accessories (Notebook)

Conducted test

1. The EUT was configured with packet length of highest power.

(Worst case: 500Kbps 255Bytes, 2M 255Byte)

F-TP22-03 (Rev. 03) Page 29 of 94

8. SUMMARY TEST OF RESULTS

FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

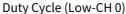
F-TP22-03 (Rev. 03) Page 30 of 94

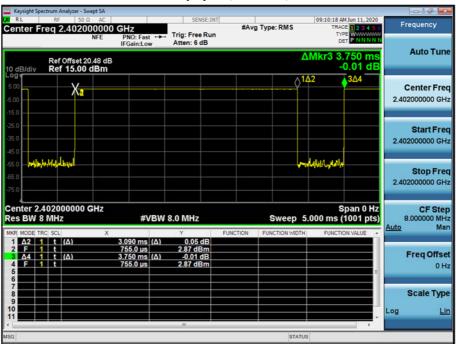
IC Part

Test Description	IC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	RSS-247, 5.2	> 500 kHz		PASS
99% Bandwidth	RSS-GEN, 6.7	NA		PASS
Conducted Maximum Peak Output Power And e.i.r.p.	RSS-247, 5.4.4	< 1 Watt <4 Watt(e.i.r.p.)	Conducted	PASS
Power Spectral Density	RSS-247, 5.2	< 8 dBm / 3 kHz Band		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	RSS-GEN, 8.8	RSS-GEN section 8.8 table 4		PASS
Radiated Spurious Emissions	RSS-GEN, 8.9	RSS-GEN section 8.9 table 5, 6		PASS
Receiver Spurious Emissions	RSS-GEN, 5 RSS-GEN, 7.3	RSS-GEN section 7.3 table 3	Radiated	PASS
Radiated Restricted Band Edge	RSS-GEN, 8.10	RSS-GEN section 8.10 table 7		PASS

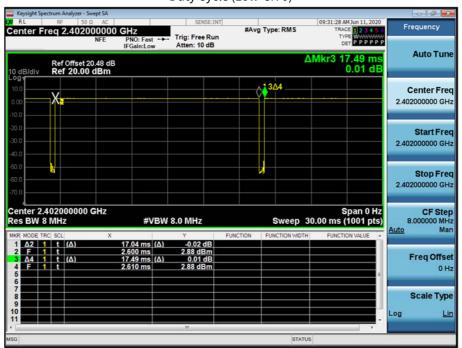
F-TP22-03 (Rev. 03) Page 31 of 94

9. TEST RESULT

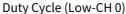

9.1 DUTY CYCLE

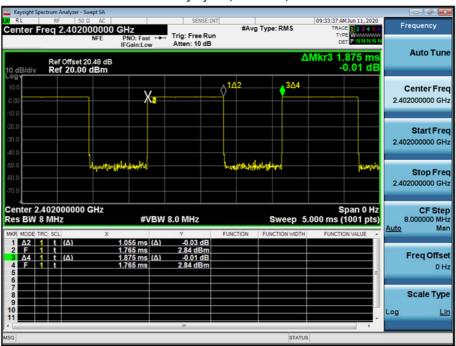

Data rate (Bit/s)	Packet length (Byte)	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
125k	37	3.0900	3.7500	0.8240	0.84
	255	17.0400	17.4900	0.9743	0.11
500k	37	1.0550	1.8750	0.5627	2.50
	255	4.5300	5.0000	0.9060	0.43
1M	37	0.3825	0.6245	0.6126	2.13
	255	2.1250	2.5000	0.8500	0.71
2М	37	0.1989	0.6245	0.3185	4.97
	255	1.0700	1.8750	0.5707	2.44

F-TP22-03 (Rev. 03) Page 32 of 94

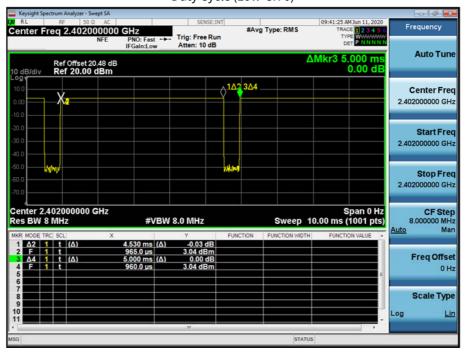

■ 125k Bit/s(37 Byte) Test Plots

■ 125k Bit/s(255 Byte) Test Plots


Duty Cycle (Low-CH 0)

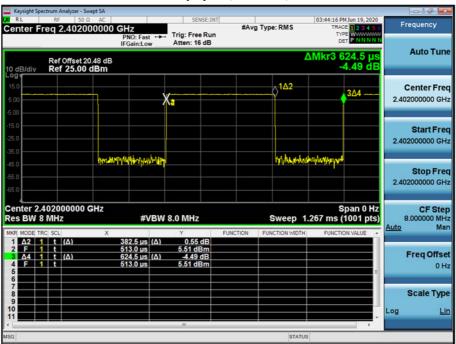


F-TP22-03 (Rev. 03) Page 33 of 94

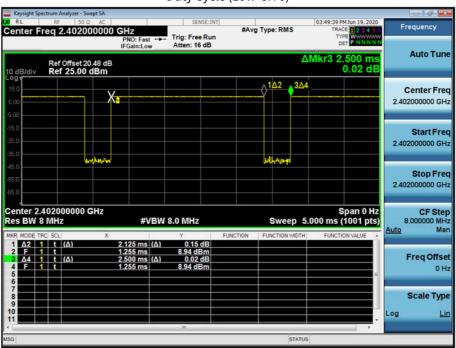

■ 500k Bit/s(37 Byte) Test Plots

■ 500k Bit/s(255 Byte) Test Plots

Duty Cycle (Low-CH 0)



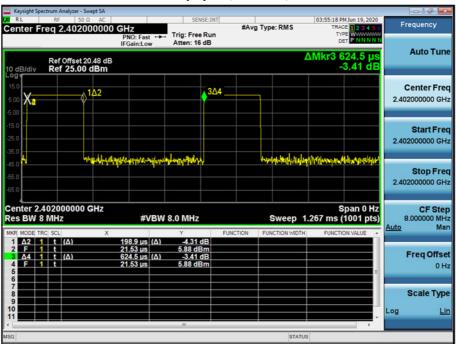
F-TP22-03 (Rev. 03) Page 34 of 94


■ 1M Bit/s (37 Byte) Test Plots

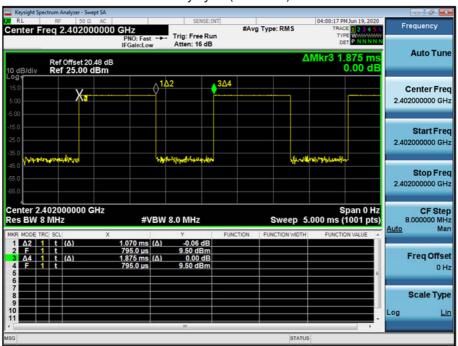
Duty Cycle (Low-CH 0)

■ 1M Bit/s (255 Byte) Test Plots

Duty Cycle (Low-CH 0)



F-TP22-03 (Rev. 03) Page 35 of 94


■ 2M Bit/s (37 Byte) Test Plots

Duty Cycle (Low-CH 0)

■ 2M Bit/s (255 Byte) Test Plots

Duty Cycle (Low-CH 0)

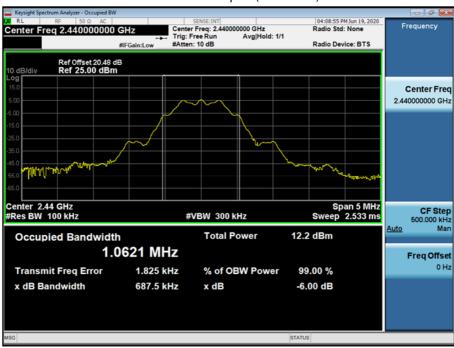
F-TP22-03 (Rev. 03) Page 36 of 94

9.2 6dB BANDWIDTH & 99 % BANDWIDTH

FCC


Mode (Bit/s)	Channel	6 dB Bandwidth (kHz)	Limit (kHz)	
	0	690.4		
125k	19	687.5	> 500	
	39	687.0		
	0	672.8		
500k	19	667.4	> 500	
	39	668.5		
	0	663.7		
1M	19	667.4	> 500	
1M	39	670.3		
	0	1167.7		
2M	19	1168.1	> 500	
	39	1165.7		

F-TP22-03 (Rev. 03) Page 37 of 94



■ 125k Bit/s(37 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 38 of 94

6 dB Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 39 of 94

■ 500k Bit/s(255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 40 of 94

6 dB Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 41 of 94

■ 1M Bit/s (255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 42 of 94

6 dB Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 43 of 94

■ 2M Bit/s (255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 44 of 94

6 dB Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 45 of 94

IC

Mode (Bit/s)	Packet length (Byte)	Channel	99 % Bandwidth (kHz)
		0	1055.0
125k	37		1054.8
		39	1053.4
		0	1037.4
500k	255	0 19 39 0 19 39 0 19 39 0	1033.2
		39	1032.9
		0	1041.6
1M	255	19	1041.3
		39	1039.7
		0	2081.1
2M	255	0 1041.6 19 1041.3 39 1039.7 0 2081.1 19 2077.7	2077.7
		39	2077.7

F-TP22-03 (Rev. 03) Page 46 of 94

■ 125k Bit/s(37 Byte) Test Plots

99 % Bandwidth plot (Low-CH 0)

99 % Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 47 of 94

99 % Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 48 of 94

■ 500k Bit/s(255 Byte) Test Plots

99 % Bandwidth plot (Low-CH 0)

99 % Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 49 of 94

99 % Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 50 of 94

■ 1M Bit/s (255 Byte) Test Plots

99 % Bandwidth plot (Low-CH 0)

99 % Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 51 of 94

99 % Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 52 of 94

■ 2M Bit/s (255 Byte) Test Plots

99 % Bandwidth plot (Low-CH 0)

99 % Bandwidth plot (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 53 of 94

99 % Bandwidth plot (High-CH 39)

F-TP22-03 (Rev. 03) Page 54 of 94

9.3 OUTPUT POWER

Peak Power

Data rate	Packet length	LE Mode		Measured	Limeia
(Bit/s)	(Byte)	Frequency [MHz]	Channel	Power(dBm)	Limit (dBm)
		2402	0	8.897	
	37	2440	19	9.119	
125k		2480	39	8.613	
123K		2402	0	8.844	
	255	2440	19	8.620	
		2480	39	8.577	
		2402	0	9.180	
	37	2440	19	9.166	
5001		2480	39	8.934	
500k		2402	0	9.355	- 30
	255	2440	19	8.645	
		2480	39	9.070	
		2402	0	9.158	
	37	2440	19	9.147	
114		2480	39	8.900	
1M		2402	0	9.333	
	255	2440	19	9.100	
		2480	39	8.612	
	37	2402	0	9.143	
24		2440	19	9.114	
		2480	39	9.143	
2M		2402	0	9.343	
	255	2440	19	9.128	
		2480	39	9.099	

F-TP22-03 (Rev. 03) Page 55 of 94

Average Power

Data rate	Packet length	LE Mode		Measured Power	Duty Cycle Factor	Result	Limit (dBm)
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(ubili)
		2402	0	7.77	0.84	8.61	
	37	2440	19	8.15	0.84	8.99	
125k		2480	39	7.36	0.84	8.21	
125K		2402	0	8.41	0.11	8.52	
	255	2440	19	8.35	0.11	8.47	
		2480	39	8.20	0.11	8.32	
		2402	0	6.46	2.50	8.95	-
	37	2440	19	6.12	2.50	8.62	
500k		2480	39	6.17	2.50	8.67	
500K		2402	0	8.65	0.43	9.08	
	255	2440	19	7.98	0.43	8.41	
		2480	39	8.43	0.43	8.86	30
		2402	0	6.81	2.13	8.94	30
	37	2440	19	6.61	2.13	8.74	
1 1 4		2480	39	6.51	2.13	8.64	
1M		2402	0	8.29	0.71	8.99	
	255	2440	19	8.23	0.71	8.94	
		2480	39	7.32	0.71	8.03	
	37	2402	0	3.87	4.97	8.84	
		2440	19	3.94	4.97	8.91	
2M		2480	39	3.76	4.97	8.73	
∠IVI	255	2402	0	6.36	2.44	8.79	
		2440	19	6.70	2.44	9.14	
		2480	39	6.29	2.44	8.72	

Note:

- 1. Power meter offset = Attenuator loss + Cable loss
- 2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 20.48 dB is offset for 2.4 GHz Band.

F-TP22-03 (Rev. 03) Page 56 of 94

9.4 POWER SPECTRAL DENSITY

			Test Result		
Frequency (MHz)	Channel No.	Mode (Bit/s)	Measured Power(dBm)	Limit (dBm)	
2402	0	125k 37 Byte	2.604		
2440	19		2.809		
2480	39	o. Byte	2.363		
2402	0		2.924		
2440	19	500k 255 Byte	2.256		
2480	39	200 2710	2.744	8	
2402	0		-6.979	0	
2440	19	1M 255 Byte	-7.215		
2480	39		-7.612		
2402	0	2M 255 Byte	-9.544		
2440	19		-9.585		
2480	39		-9.567		

Note:

1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 20.48 dB is offset for 2.4 GHz Band.
- 4. The plot included is the worst mode (500k Bit/s (255 Byte) of peak output power.

F-TP22-03 (Rev. 03) Page 57 of 94

■ 500k Bit/s (255 Byte) Test Plots

Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

F-TP22-03 (Rev. 03) Page 58 of 94

Center Freq 2.480000000 GHz PNO: Wide ----IFGain:Low Atten: 6 dB #Avg Type: RMS Avg|Hold: 1/1 Mkr1 2.479 750 3 GHz 2.744 dBm Auto Tune Ref Offset 20.48 dB Ref 15.00 dBm Center Freq 2.480000000 GHz And the state of the second second of the second 2.479498628 GHz Stop Freq 2.480501372 GHz CF Step 100.274 kHz Man Freq Offset Scale Type Center 2.4800000 GHz #Res BW 3.0 kHz Span 1.003 MHz Sweep 106.4 ms (1001 pts) Log **#VBW 9.1 kHz**

Power Spectral Density (High-CH 39)

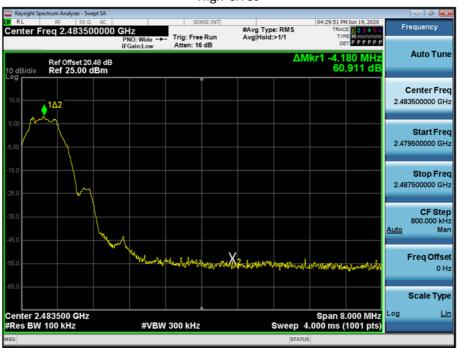
F-TP22-03 (Rev. 03) Page 59 of 94

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Result: please refer to the plot below.


In order to simplify the report, attached plots were only the worst case channel and data rate.

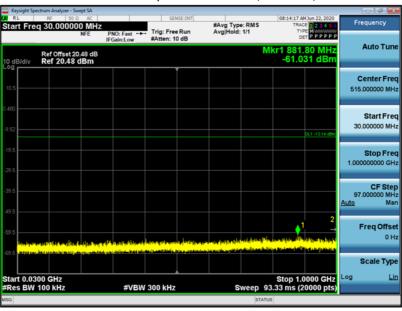
F-TP22-03 (Rev. 03) Page 60 of 94



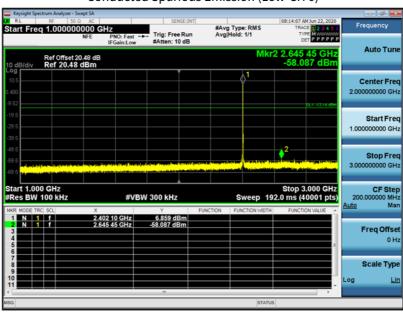
■ 500k Bit/s (255 Byte) Test Plots -BandEdge

Low-CH 0

High-CH 39

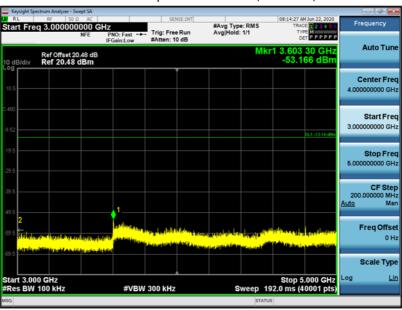

F-TP22-03 (Rev. 03) Page 61 of 94

■ 500k Bit/s (255 Byte) Test Plots -Conducted Spurious Emission

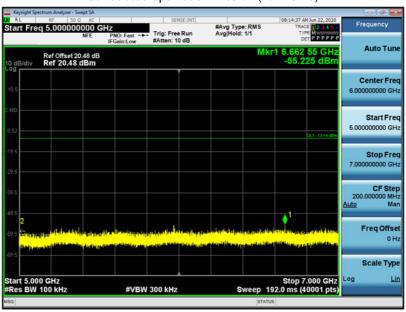

30 MHz ~ 1 GHz

1 GHz ~ 3 GHz

Conducted Spurious Emission (Low-CH 0)



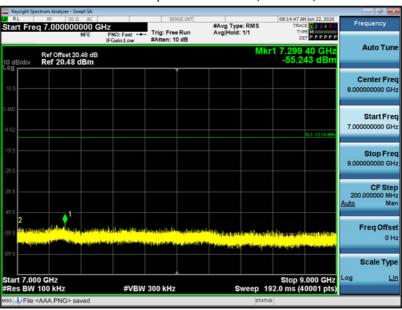
F-TP22-03 (Rev. 03) Page 62 of 94


3 GHz ~ 5 GHz

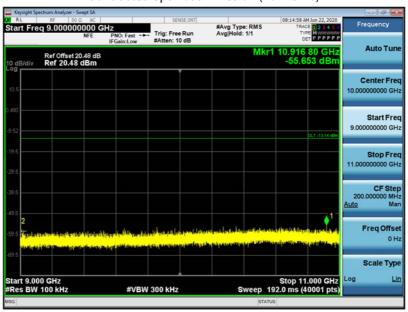
Conducted Spurious Emission (Low-CH 0)

5 GHz ~ 7 GHz

Conducted Spurious Emission (Low-CH 0)



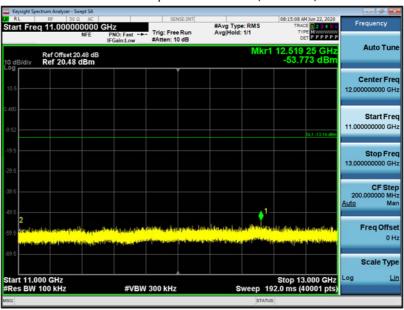
F-TP22-03 (Rev. 03) Page 63 of 94


7 GHz ~ 9 GHz

Conducted Spurious Emission (Low-CH 0)

9 GHz ~ 11 GHz

Conducted Spurious Emission (Low-CH 0)



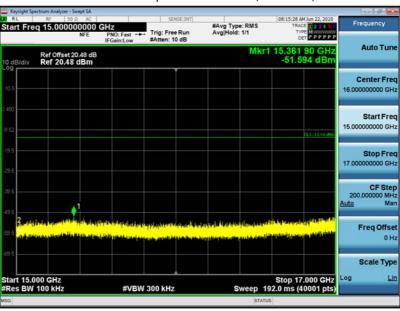
F-TP22-03 (Rev. 03) Page 64 of 94

11 GHz ~ 13 GHz

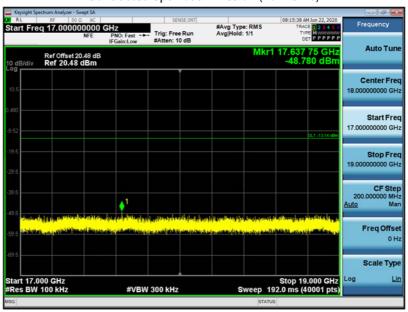
Conducted Spurious Emission (Low-CH 0)

13 GHz ~ 15 GHz

Conducted Spurious Emission (Low-CH 0)



F-TP22-03 (Rev. 03) Page 65 of 94


15 GHz ~ 17 GHz

Conducted Spurious Emission (Low-CH 0)

17 GHz ~ 19 GHz

Conducted Spurious Emission (Low-CH 0)

F-TP22-03 (Rev. 03) Page 66 of 94