PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing:
October 21-22, 2008
Test Site/Location:
PCTEST Lab, Columbia, MD, USA
Test Report Serial No.:
0810171523.BEJ

FCC ID: BEJLG410G

APPLICANT: LG ELECTRONICS USA

Application Type: Certification

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §22(H), §24(E)

EUT Type: 850/1900 GSM/GPRS Phone

Model(s): LG410G

Tx Frequency Range: 824.20 - 848.80MHz (Cell. GSM) / 1850.20 - 1909.80MHz (PCS GSM)

Max. RF Output Power: 0.838 W ERP Cell. GSM (29.23 dBm) / 1.995 W EIRP PCS GSM (33 dBm)

Emission Designator(s): 248KGXW (Cellular GSM), 243KGXW (PCS GSM)

Test Device Serial No.: identical prototype [S/N: N/A]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 1 of 35

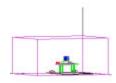


TABLE OF CONTENTS

FCC	PART 2	22 & 24 MEASUREMENT REPORT	3
1.0	INTF	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRO	DDUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	OCCUPIED BANDWIDTH EMISSION LIMITS	6
	3.3	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.4	CELLULAR - MOBILE FREQUENCY BLOCKS	7
	3.5	PCS - BASE FREQUENCY BLOCKS	7
	3.6	PCS - MOBILE FREQUENCY BLOCKS	7
	3.7	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	7
	3.8	RADIATED SPURIOUS AND HARMONIC EMISSIONS	8
	3.9	PEAK-AVERAGE RATIO	
	3.10	FREQUENCY STABILITY / TEMPERATURE VARIATION	8
4.0	TES	T EQUIPMENT CALIB RATION DATA	9
5.0	SAM	IPLE CALCULATIONS	10
6.0	TES'	T RESULTS	11
	6.1	SUMMARY	11
	6.2	CONDUCTED OUTPUT POWER	12
	6.3	EFFECTIVE RADIATED POWER OUTPUT DATA	13
	6.4	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DAT A	14
	6.5	CELLULAR GSM RADIATED MEASUREMENTS	15
	6.6	PCS GSM RADIATED MEASUREMENTS	18
	6.7	CELLULAR GSM FREQUENCY STABILITY MEASUREMENTS	21
	6.8	PCS GSM FREQUENCY STABILITY MEASUREMENTS	23
7.0	PLO	TS OF EMISSIONS	25
8.0	CON	NCLUSION	35

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 2 of 35

MEASUREMENT REPORT FCC Part 22 & 24

§2.1033 General Information

APPLICANT: LG Electronics USA
APPLICANT ADDRESS: 1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

FCC RULE PART(S): §2; §22(H), §24(E)

BASE MODEL: LG410G **FCC ID**: BEJLG410G

FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)

EMISSION DESIGNATOR(S): 248KGXW (Cellular GSM), 243KGXW (PCS GSM)

MODE: GSM

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)

Test Device Serial No.: N/A □ Production □ Pre-Production □ Engineering

DATE(S) OF TEST: October 21-22, 2008 **TEST REPORT S/N:** 0810171523.BEJ

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).

- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: BEJLG410G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 35	
0810171523.BEJ	October 21-22, 2008	850/1900 GSM/GPRS Phone		1 ago o o o oo	
© 2009 PCTEST Engineering Laboratory, Inc.					

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (see Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 27, 2006 and Industry Canada.

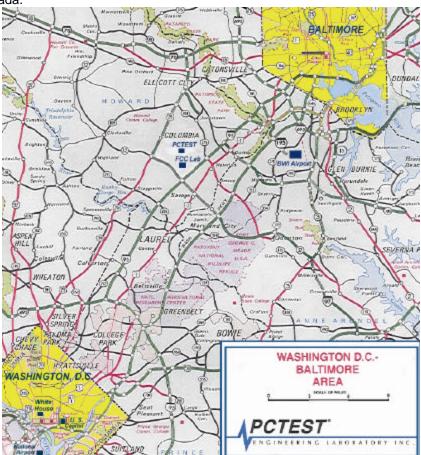


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

•	•	•	• /			
FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	⊕ LG	Reviewed by: Quality Manager		
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 4 of 35		
© COCCEPTED : :	DEVICES.					

© 2008 PCTEST Engineering Laboratory, Inc.

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG 850/1900 GSM/GPRS Phone FCC ID: BEJLG410G. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
LG / Model: LG410G	BEJLG410G	850/1900 GSM/GPRS Phone

Table 2-1. EUT Equipment Description

2.2 **EMI Suppression Device(s)/Modifications**

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 **Labeling Requirements**

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 5 of 35

© 2008 PCTEST Engineering Laboratory, Inc.

DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3meter test range (see Figure 3-1). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A halfwave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

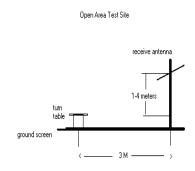


Figure 3-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure.....None

3.2 Occupied Bandwidth Emission Limits §2.1049, 22.917(a), 24.238(a)

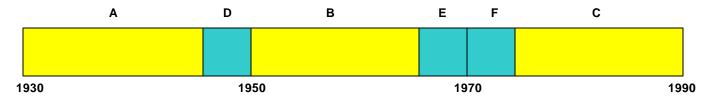
- a. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.
- b. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- c. When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- d. The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.3 Cellular - Base Frequency Blocks

BLOCK 1: 869 - 880 MHz (A* Low + A) BLOCK 3: 890 - 891.5 MHz (A* High)

BLOCK 2: 880 - 890 MHz (B) BLOCK 4: 891.5 - 894 MHz (B*)

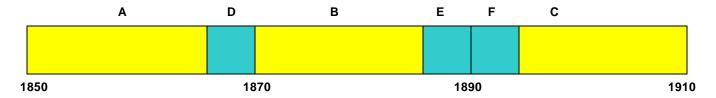
FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 35
0810171523.BEJ	October 21-22, 2008	850/1900 GSM/GPRS Phone		
© 2008 PCTEST Engineering	Laboratory, Inc.			REV 6.7G


3.4 Cellular - Mobile Frequency Blocks

BLOCK 1: 824 – 835 MHz (A* Low + A) BLOCK 3: 845 – 846.5 MHz (A* High)

BLOCK 2: 835 – 845 MHz (B) BLOCK 4: 846.5 – 849 MHz (B*)

3.5 PCS - Base Frequency Blocks



BLOCK 1: 1930 – 1945 MHz (A) BLOCK 4: 1965 – 1970 MHz (E)

BLOCK 2: 1945 – 1950 MHz (D) BLOCK 5: 1970 – 1975 MHz (F)

BLOCK 3: 1950 – 1965 MHz (B) BLOCK 6: 1975 – 1990 MHz (C)

3.6 PCS - Mobile Frequency Blocks

BLOCK 1: 1850 – 1865 MHz (A) BLOCK 4: 1885 – 1890 MHz (E)

BLOCK 2: 1865 – 1870 MHz (D) BLOCK 5: 1890 – 1895 MHz (F)

BLOCK 3: 1870 – 1885 MHz (B) BLOCK 6: 1895 – 1910 MHz (C)

3.7 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a), 24.238(a)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 35
0810171523.BEJ	October 21-22, 2008	850/1900 GSM/GPRS Phone		1 ago 7 01 00
© 2008 PCTEST Engineering Laboratory, Inc.				REV 6.7G

09/26/2008

3.8 Radiated Spurious and Harmonic Emissions §2.1053, 22.917(a), 24.238(a)

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested in all configurations and the highest power is reported in GSM voice mode while using a Power Control Level of "5" in the Cellular band and "0" in the PCS band.

3.9 Peak-Average Ratio §24.232(d)

A peak to average ratio measurement is performed at the conducted port of the EUT. For CDMA and WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth.

3.10 Frequency Stability / Temperature Variation §2.1055, 22.355, 24.235

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 35
0810171523.BEJ	October 21-22, 2008	850/1900 GSM/GPRS Phone		. ago o or oo
© 2008 PCTEST Engineering Laboratory, Inc.				REV 6.7G

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

- 263-10dB (DC-18GHz) 10 dB Attenuator N/A N/A N/A N/A N-165 (30MHz - 1000MHz) RG55 Caax Cable N/A	Manufacturer	Model	Description	Calibration Date	Cal Interval	Calibration Due	Serial No.
- No.166 (1000-28500MHz) Microwave RF Cable N/A N/A N/A N/A Aglient 11713A Attenuation Switch Driver 12713/07 Annual 12713/08 3439A02845 Aglient 11713A Attenuation Switch Driver 12713/07 Annual 12713/08 3439A02845 Aglient 84498 (1-26.5GHz) Pre-Amplifier 12713/07 Annual 12712/08 3008A00985 Aglient 8495A (0-70dB) DC-4GHz Attenuator N/A N/A N/A N/A Aglient 8565D	-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
No.167	-	No.165	(30MHz - 1000MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent 11713A Attenuation/Switch Driver 12/13/07 Annual 12/13/08 3439A02645 Agilent 8449B (1-26.5GHz) Pre-Ampiller 12/13/07 Annual 12/12/08 3008A00985 Agilent 8498A (0-708) DC-4GHz Attenuator N/A N/A N/A N/A Agilent 85650A Quasi-Peak Adapter 03/13/08 Annual 03/13/09 2043A00301 Agilent 8566B (100Hz-22GHz) Spectrum Analyzer 12/13/07 Annual 12/13/08 3638A08713 Agilent 8566B Opt. 462 Impulse Bandwidth 12/13/07 Annual 12/13/08 3638A08713 Agilent 8567 Qpt. 462 Impulse Bandwidth 12/13/07 Annual 10/10/09 3144A02458 Agilent 8584D Qpt. 462 Impulse Bandwidth 12/13/07 Annual 10/10/09 3144A02458 Agilent E5450 Mireless Communications Test Set 08/10/09 Annual 10/10/09 3613A00315 Agilent E5515C Wireless Communications Test Set 06/08/07	=	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
Agilent 8449B (1-26.5GHz) Pre-Ampilifier 12/13/07 Annual 12/12/08 3008A00985 Agilent 8495A (0-708B) DC-4GHz Attenutor N/A 1/27009 20343003 20343003 204300301 20450000 20471000	-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent 8495A (0-70dB) DC-4GHz Attenuator N/A N/A N/A N/A Agilent 85650A Quasi-Peak Adapter 03/13/08 Annual 03/13/08 2043A00301 Agilent 8566B (100Hz-22GHz) Spectrum Analyzer 12/13/07 Annual 12/13/08 338A8A8713 Agilent 8566B Opt. 462 Impulse Bandwidth 12/13/07 Annual 12/12/08 3701A22204 Agilent 8564B Opt. 462 Impulse Bandwidth 12/13/07 Annual 10/19/09 3144A02458 Agilent 864BD (9kHz-1/8GHz) Signal Generator 10/11/07 Biennial 10/11/07 313008 Annual 03/13/09 1344A02458 Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 01/14/09 US42510244 Agilent E5515C Wireless Communications Test Set 060807 Biennial 06/08/09 G846110872 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 G841450275 Agilent	Agilent	11713A	,	12/13/07	Annual	12/13/08	3439A02645
Agilent 85650A Quasi-Peak Adapter 0.3/13/08 Annual 0.3/13/09 2043A00301 Agilent 8566B (100Hz-22GHz) Spectrum Analyzer 1.2/13/07 Annual 1.2/13/08 3638A08713 Agilent 8566B Opt. 462 Impulse Bandwidth 1.2/13/07 Annual 1.2/12/08 3701A22204 Agilent 8648D (9kHz-18GHz) Spectrum Analyzer 0.919/08 Annual 0.03/19/09 3144A02458 Agilent E4407B ESA Spectrum Analyzer 0.913/08 Annual 0.03/19/09 3144A02458 Agilent E4407B ESA Spectrum Analyzer 0.912/408 Annual 0.03/19/09 3144A02458 Agilent E5515C Wireless Communications Test Set 0.608/07 Biennial 0.1074/09 US42510244 Agilent E5515C Wireless Communications Test Set 0.608/07 Biennial 0.6708/09 GB46110872 Agilent E5515C Wireless Communications Test Set 0.608/07 Biennial 0.910/10/10 Biennial 0.910/10/10 1.010/10/10 1.010/10/10<	Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/13/07	Annual	12/12/08	3008A00985
Agilent 8566B (100Hz~22GHz) Spectrum Analyzer 12/13/07 Annual 12/13/08 3638A08713 Agilent 8566B Opt. 462 Impulse Bandwidth 12/13/07 Annual 12/12/08 3701422204 Agilent 8591A (9kHz-18GHz) Signal Generator 08/19/09 Annual 09419/09 3114A02458 Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 03/13/09 US39210313 Agilent E4407B ESA Spectrum Analyzer 01/24/08 Annual 03/13/09 US39210313 Agilent E4448A (3Hz-50GHz) Spectrum Analyzer 01/24/08 Annual 01/124/09 US42510244 Agilent E5515C Wireless Communications Test Set 06/08/07 Blennial 06/08/09 GB46310798 Agilent E5515C Wireless Communications Test Set 06/08/07 Blennial 04/10/10 GB41450275 Agilent E6515C Wireless Communications Test Set 06/08/07 Blennial 04/10/10 GB41450275 Agilent E82515C Virele	Agilent	8495A	(0-70dB) DC-4GHz Attenuator	N/A		N/A	N/A
Agilent 8566B Opt. 462 Impulse Bandwidth 12/13/07 Annual 12/12/08 3701A22204 Agilent 8591A (9kHz-18GHz) Spectrum Analyzer 08/19/08 Annual 08/19/09 3144A02458 Agilent 8648D (9kHz-4GHz) Signal Generator 10/11/07 Biennial 10/10/109 3613A00315 Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 03/13/09 US39210313 Agilent E4448A (3Hz-50GHz) Spectrum Analyzer 01/24/08 Annual 01/24/09 US42510244 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46110872 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB4110872 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB4110872 Agilent E5257D (250kHz-20GHz) Signal Generator 03/08/07 Biennial 09/10/10 GB41450275 Agilent E8257D <	Agilent	85650A	Quasi-Peak Adapter	03/13/08	Annual	03/13/09	2043A00301
Agilent 8591A (9kHz-1.8GHz) Spectrum Analyzer 08/19/08 Annual 08/19/09 3144A02458 Agilent 8648D (9kHz-4.GHz) Signal Generator 10/11/07 Blennial 10/11/09 3613A00315 Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 03/13/09 US33210313 Agilent E4448A (3Hz-50GHz) Spectrum Analyzer 01/12/408 Annual 01/12/409 US432510244 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46110872 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB441450275 Agilent E8257D (250kHz-20GHz) Signal Generator 03/08/07 Biennial 09/10/10 GB41450275 Agilent E8257D (250kHz-20GHz) Signal Generator 03/08/07 Biennial 03/08/09 MY45470140 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Compliance Design Roberts	Agilent	8566B	(100Hz–22GHz) Spectrum Analyzer	12/13/07	Annual	12/13/08	3638A08713
Agilent 8648D (9kHz-4GHz) Signal Generator 10/11/07 Biennial 10/10/09 3613A00315 Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 03/13/09 US39210313 Agilent E4448A (3Hz-5GHz) Spectrum Analyzer 01/24/08 Annual 03/13/09 US39210313 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46310798 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46310798 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 11/08/09 147 Compliance Design Rob	Agilent	8566B	Opt. 462 Impulse Bandwidth	12/13/07	Annual	12/12/08	3701A22204
Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 03/13/09 US39210313 Agilent E4448A (3Hz-50GHz) Spectrum Analyzer 01/24/08 Annual 01/24/09 US42510244 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46110872 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 09/10/10 GB4810798 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 03/08/09 MY45470194 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9704-5182 Emco 31215 Horn Antenna (1-1	Agilent	8591A	(9kHz-1.8GHz) Spectrum Analyzer	08/19/08	Annual	08/19/09	3144A02458
Agilent E4407B ESA Spectrum Analyzer 03/13/08 Annual 03/13/09 US39210313 Agilent E4448A (3Hz-50GHz) Spectrum Analyzer 01/24/08 Annual 01/24/09 US42510244 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46110872 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 09/10/10 GB4810798 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 03/08/09 MY45470194 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9704-5182 Emco 31215 Horn Antenna (1-1	Agilent	8648D	(9kHz-4GHz) Signal Generator	10/11/07	Biennial	10/10/09	3613A00315
Agilent E4448A (3Hz-50GHz) Spectrum Analyzer 01/24/08 Annual 01/24/09 US42510244 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46110872 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 09/10/10 GB46310798 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E5257D (250KHz-20GHz) Signal Generator 03/08/07 Biennial 09/10/10 GB41450275 Agilent E8257D (250KHz-20GHz) Signal Generator 03/08/07 Biennial 11/08/09 146 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Biennial 11/08/09 9704-5182 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 11/22/09 00023951 Espec ESX-2CA Environmental Chamber		E4407B	, ,		Annual		
Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46110872 Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46310798 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E8257D (250kHz-20GHz) Signal Generator 03/08/07 Biennial 03/08/09 MY45470194 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 146 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 11/08/09 9704-5182 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 11/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08							
Agilent E5515C Wireless Communications Test Set 06/08/07 Biennial 06/08/09 GB46310798 Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E8257D (250kHz-20GHz) Signal Generator 0308/07 Biennial 03/08/09 MY45470194 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Biennial 10/3/09 9704-5182 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 1/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual			, , , , , , , , , , , , , , , , , , ,				
Agilent E5515C Wireless Communications Test Set 09/10/08 Biennial 09/10/10 GB41450275 Agilent E8257D (250kHz-20GHz) Signal Generator 03/08/07 Biennial 03/08/09 MY45470194 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 146 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Biennial 10/3/09 9704-5182 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9704-5182 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 10/3/09 9704-5182 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/18/09 017620 Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual					Biennial		
Agilent E8257D (250kHz-20GHz) Signal Generator 03/08/07 Biennial 03/08/09 MY45470194 Compliance Design Roberts Dipole Set 11/09/07 Blennial 11/08/09 146 Compliance Design Roberts Dipole Set 11/09/07 Blennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Blennial 10/3/09 9205-3874 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Blennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Blennial 1/22/09 90023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 8671A Universal Power Meter 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09							GB41450275
Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 146 Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Biennial 19/23/09 9704-5182 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9205-3874 Emco 3121-C-DB4 Dipole Antenna 1/23/07 Biennial 11/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 13044000 <td></td> <td></td> <td></td> <td>03/08/07</td> <td></td> <td></td> <td></td>				03/08/07			
Compliance Design Roberts Dipole Set 11/09/07 Biennial 11/08/09 147 Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Biennial 9/23/09 9704-5182 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 11/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A N/A			, ,				
Emco 3115 Horn Antenna (1-18GHz) 9/24/07 Biennial 9/23/09 9704-5182 Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 1/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 K & L 11SH10 Band Pass Filter N/A Annual 8/18/09 1835299 K & L 11SH10 Band Pass Filter N/A Annual 8/18/09 1835299 K & L 11SH10 Band Pass Filter N/A Annual N/A N/A			·				
Emco 3115 Horn Antenna (1-18GHz) 10/4/07 Biennial 10/3/09 9205-3874 Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 1/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A MiniCircuits VHF-1300+ High Pass Filter N/A N/A N/A Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Si			'				
Emco 3121C-DB4 Dipole Antenna 1/23/07 Biennial 1/22/09 00023951 Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A N/A MiniCircuits VHF-300+ High Pass Filter N/A N/A N/A N/A Pasternack <t< td=""><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td></t<>			·				
Espec ESX-2CA Environmental Chamber 3/12/08 Annual 3/12/09 017620 Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 30716 MiniCircuits VHF-1300+ High Pass Filter N/A N/A N/A 30716 MiniCircuits VHF-3100+ High Pass Filter N/A N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A N/A Rohde & Schwarz CMU200<			` '				
Gigatronics 80701A (0.05-18GHz) Power Sensor 8/18/08 Annual 8/18/09 1833460 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 30716 MiniCircuits VHF-1300+ High Pass Filter N/A N/A 30716 MiniCircuits VHF-3100+ High Pass Filter N/A N/A N/A Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz NRVD Dual Channel Power			'				
Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 1835299 Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 30716 MiniCircuits VHF-1300+ High Pass Filter N/A N/A N/A 30716 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A 30721 Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 7/23/08 107826 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695	·						
Gigatronics 8651A Universal Power Meter 8/18/08 Annual 8/18/09 8650319 K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 30716 MiniCircuits VHF-1300+ High Pass Filter N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 7/2/09 835360/0079			,				
K & L 11SH10 Band Pass Filter N/A Annual N/A 1300/4000 K & L 11SH10 Band Pass Filter N/A Annual N/A 30716 MiniCircuits VHF-1300+ High Pass Filter N/A N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 11/27/08 10							
K & L 11SH10 Band Pass Filter N/A Annual N/A MiniCircuits VHF-1300+ High Pass Filter N/A N/A 30716 MiniCircuits VHF-3100+ High Pass Filter N/A N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 R							
MiniCircuits VHF-1300+ High Pass Filter N/A N/A 30716 MiniCircuits VHF-3100+ High Pass Filter N/A N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 11/27/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
MiniCircuits VHF-3100+ High Pass Filter N/A N/A 30721 Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 11/27/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial							30716
Pasternack PE2208-6 Bidirectional Coupler N/A N/A N/A Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRV-S Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 11/27/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx <t< td=""><td>MiniCircuits</td><td></td><td></td><td></td><td></td><td>N/A</td><td></td></t<>	MiniCircuits					N/A	
Rohde & Schwarz CMU200 Base Station Simulator 5/29/08 Annual 5/29/09 836371/0079 Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRV-S Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 11/27/08 46076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2404 Solar Electronics 8012-50-R-24-BNC<	Pasternack		Ü				
Rohde & Schwarz CMU200 Base Station Simulator 12/6/07 Annual 12/5/08 107826 Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 11/27/08 46076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-					Annual		836371/0079
Rohde & Schwarz CMU200 Base Station Simulator 7/23/08 Annual 7/23/09 109892 Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 17/2/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233							
Rohde & Schwarz NRVD Dual Channel Power Meter 12/12/06 Biennial 12/11/08 101695 Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 7/2/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233							
Rohde & Schwarz NRVS Single Channel Power Meter 7/3/07 Biennial 7/2/09 835360/0079 Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 7/2/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233				12/12/06			
Rohde & Schwarz NRV-Z32 Peak Power Sensor (100uW-2W) 12/21/06 Biennial 12/20/08 100155 Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 7/2/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233	_						
Rohde & Schwarz NRV-Z33 Peak Power Sensor (1mW-20W) 11/28/06 Biennial 11/27/08 100004 Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 7/2/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233			· ·				
Rohde & Schwarz NRV-Z53 Power Sensor 7/3/07 Biennial 7/2/09 846076/0007 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233			,				
Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Rx 6/19/07 Biennial 6/18/09 9105-2404 Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233			\ /				
Schwarzbeck UHA9105 Dipole Antenna (400 - 1GHz) Tx 6/19/07 Biennial 6/18/09 9105-2403 Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233	_						
Solar Electronics 8012-50-R-24-BNC LISN 11/8/07 Biennial 11/8/09 0310233	_		` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `				
			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `				
	_						

Table 4-1. Test Equipment

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 35
0810171523.BEJ	,	850/1900 GSM/GPRS Phone		DEV.0.70

SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHzG = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

Spurious Radiated Emission - PCS Band

Example: Channel 512 PCS Mode 2nd Harmonic (3700.40 MHz)

The receive analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the receive analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	(LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 10 of 35

© 2008 PCTEST Engineering Laboratory, Inc.

6.0 TEST RESULTS

6.1 Summary

Company Name: <u>LG Electronics USA</u>

FCC ID: BEJLG410G

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

Mode(s): GSM

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference				
TRANSMITTER MODE	TRANSMITTER MODE (TX)								
2.1049, 22.917(a), 24.238(a)	Occupied Bandwidth	N/A		PASS	Section 7.0				
2.1051, 22.917(a), 24.238(a)	Band Edge / Conducted Spurious Emissions	< 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions		PASS	Section 7.0				
24.232(d)	Peak-Average Ratio	< 13 dB	CONDUCTED	PASS	Section 7.0				
2.1046	Transmitter Conducted Output Power	N/A		PASS	Section 6.2				
22.913(a)(2)	Effective Radiated Power	< 7 Watts max. ERP (<6.3 Watts max. ERP (IC))		PASS	Section 6.3				
24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.4				
2.1053, 22.917(a), 24.238(a)	Undesirable Emissions	< 43 + log ₁₀ (P[Watts]) for all out-of- band emissions	TODINIED	PASS	Sections 6.5, 6.6				
2.1055, 22.355, 24.235	Frequency Stability	< 2.5 ppm		PASS	Sections 6.7, 6.8				
RECEIVER MODE (RX)	/ DIGITAL EMISSIONS								
15.107	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.107 limits	LINE CONDUCTED	PASS	Pt. 15B Test Report				
15.109	General Field Strength Limits (Restricted Bands and Radiated Emissions Limits)	< FCC 15.109 limits	RADIATED (30MHz-1GHz) (1-25 GHz)	PASS	Pt. 15B Test Report				
RF EXPOSURE									
2.1091 / 2.1093	SAR Test	1.6 W/kg (SAR Limit)	SAR	PASS	SAR Report				

Table 6-1. Summary of Test Results

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 11 of 35

© 2008 PCTEST Engineering Laboratory, Inc.

Conducted Output Power 6.2 §2.1046

A base station simulator (Rhode and Schwartz Model: CMU200) was used to establish communication with the LG 850/1900 GSM/GPRS Phone FCC ID: BEJLG410G. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested in all configurations and the highest power is reported in GSM voice mode while using a Power Control Level of "5" in the Cellular band and "0" in the PCS band. The powers are reported below.

		GS	SM	GP	RS
Band	Channel	Power Control Level	Conducted Power	Uplink / Downlink Slots Used	Conducted Power
			[dBm]		[dBm]
	128	5	32.12	1/1	32.12
Cellular	190	5	32.25	1/1	32.24
	251	5	31.98	1/1	31.99
	512	0	29.94	1/1	29.94
PCS	661	0	29.82	1/1	29.81
	810	0	29.47	1/1	29.48

Table 6-2. GSM Conducted Output Powers

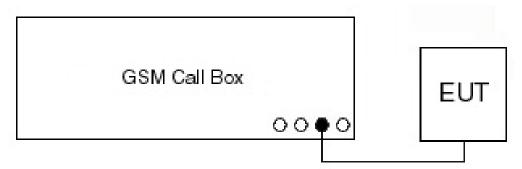


Figure 6-1. GSM Conducted Power Test Setup Diagram

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 12 of 35

6.3 Effective Radiated Power Output Data §22.913(a)(2)

POWER: PCL "5" (Cellular GSM Mode)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
824.20	GSM850	-13.380	25.18	0.00	Н	25.18	0.330	Standard
836.60	GSM850	-11.270	27.29	0.00	Н	27.29	0.536	Standard
848.80	GSM850	-9.330	29.23	0.00	Н	29.23	0.838	Standard

Table 6-3. Effective Radiated Power Output Data

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 13 of 35

6.4 Equivalent Isotropic Radiated Power Output Data §24.232(c)

POWER: PCL "0" (PCS GSM Mode)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1850.20	GSM1900	-11.040	22.52	8.00	Н	30.52	1.127	Standard
1880.00	GSM1900	-10.250	23.31	8.00	Н	31.31	1.352	Standard
1909.80	GSM1900	-8.560	25.00	8.00	Н	33.00	1.995	Standard

Table 6-4. Equivalent Isotropic Radiated Power Output Data

NOTES:

<u>Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA -603-C-2004, Aug. 17, 2004:</u>

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 14 of 35

6.5 Cellular GSM Radiated Measurements §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.20 MHz

CHANNEL: 128

MEASURED OUTPUT POWER: 29.230 dBm = 0.838 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: 43 + 10 log10 (W) = 42.23 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1648.40	-31.98	6.08	-25.90	Н	55.1
2472.60	-33.98	6.53	-27.45	Н	56.7
3296.80	-51.98	6.87	-45.11	Н	74.3
4121.00	-96.27	7.21	-89.06	Н	118.3
4945.20	-95.92	8.37	-87.55	Н	116.8

Table 6-5. Radiated Spurious Data (Cellular GSM Mode – Ch. 128)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 15 of 35

Cellular GSM Radiated Measurements (Cont'd) §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.60 MHz

CHANNEL: 190

MEASURED OUTPUT POWER: 29.230 dBm = 0.838 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: 43 + 10 log10 (W) = 42.23 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.20	-31.47	6.09	-25.38	Н	54.6
2509.80	-32.02	6.55	-25.47	I	54.7
3346.40	-51.67	6.89	-44.78	Н	74.0
4183.00	-55.28	7.43	-47.85	Н	77.1
5019.60	-95.63	8.35	-87.28	Н	116.5

Table 6-6. Radiated Spurious Data (Cellular GSM Mode – Ch. 190)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and tumtable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 16 of 35

Cellular GSM Radiated Measurements (Cont'd) §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.80 MHz

CHANNEL: 251

MEASURED OUTPUT POWER: 29.230 dBm = 0.838 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: 43 + 10 log10 (W) = 42.23 dBd

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1697.60	-29.66	6.09	-23.57	Н	52.8
2546.40	-34.10	6.57	-27.53	Н	56.8
3395.20	-52.66	6.91	-45.75	Н	75.0
4244.00	-56.30	7.65	-48.64	Н	77.9
5092.80	-95.33	8.33	-87.00	Н	116.2

Table 6-7. Radiated Spurious Data (Cellular GSM Mode – Ch. 251)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 17 of 35

6.6 PCS GSM Radiated Measurements

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1850.20 MHz

CHANNEL: 512

MEASURED OUTPUT POWER: 33.010 dBm = 2.000 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log 10 \text{ (W)} = \underline{46.01} \text{ dBc}$

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-39.46	9.02	-30.44	Н	63.5
5550.60	-42.81	10.40	-32.41	Н	65.4
7400.80	-92.00	10.50	-81.50	Н	114.5
9251.00	-43.34	11.85	-31.49	Н	64.5
11101.20	-89.92	12.76	-77.16	Н	110.2

Table 6-8. Radiated Spurious Data (PCS GSM Mode – Ch. 512)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 18 of 35

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: _______661

MEASURED OUTPUT POWER: 33.010 dBm = 2.000 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log 10 \text{ (W)} = \underline{46.01} \text{ dBc}$

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-38.23	8.99	-29.24	Н	62.2
5640.00	-47.42	10.40	-37.02	Н	70.0
7520.00	-92.03	10.62	-81.41	Н	114.4
9400.00	-41.49	11.70	-29.79	Н	62.8
11280.00	-89.26	12.69	-76.58	Н	109.6

Table 6-9. Radiated Spurious Data (PCS GSM Mode - Ch. 661)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 19 of 35

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1909.80 MHz

CHANNEL: 810

MEASURED OUTPUT POWER: 33.010 dBm = 2.000 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log 10 (W) = 46.01$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3819.60	-31.40	8.97	-22.43	Н	55.4
5729.40	-48.94	10.40	-38.54	Н	71.6
7639.20	-91.96	10.71	-81.25	Н	114.3
9549.00	-45.47	11.64	-33.83	Н	66.8
11458.80	-88.61	12.62	-76.00	Н	109.0

Table 6-10. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 20 of 35

6.7 Cellular GSM Frequency Stability Measurements §2.1055, 22.355; RSS-132 (4.3)

OPERATING FREQUENCY: 836,600,000 Hz

CHANNEL: 190

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

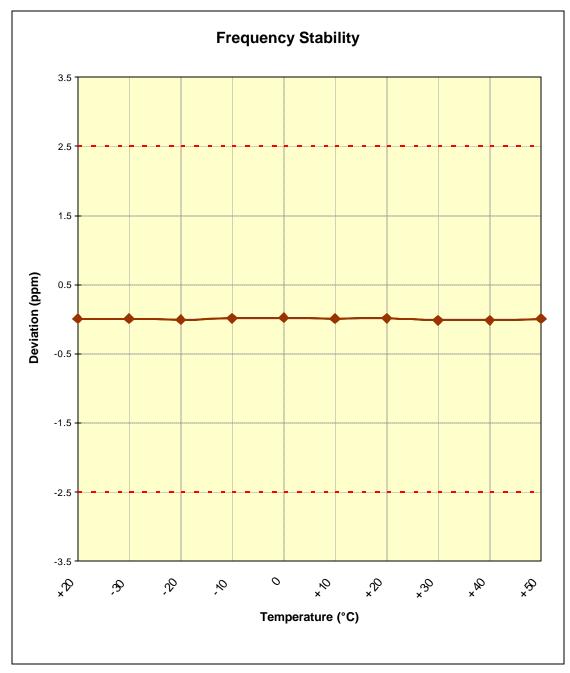

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.70	+ 20 (Ref)	836,600,010	10	0.000001
100 %		- 30	836,600,005	5	0.000001
100 %		- 20	836,599,992	-8	-0.000001
100 %		- 10	836,600,016	16	0.000002
100 %		0	836,600,021	21	0.000003
100 %		+ 10	836,600,010	10	0.000001
100 %		+ 20	836,600,014	14	0.000002
100 %		+ 30	836,599,984	-16	-0.000002
100 %		+ 40	836,599,985	-15	-0.000002
100 %		+ 50	836,600,010	10	0.000001
115 %	4.26	+ 20	836,600,013	13	0.000002
BATT. ENDPOINT	3.40	+ 20	836,599,990	-10	-0.000001

Table 6-11. Frequency Stability Data (Cellular GSM Mode – Ch. 190)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 21 of 35

Cellular GSM Frequency Stability Measurements (Cont'd) §2.1055, 22.355; RSS-132 (4.3)

Plot 6-1. Frequency Stability Graph (Cellular GSM Mode - Ch. 190)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 35
0810171523.BEJ	October 21-22, 2008	850/1900 GSM/GPRS Phone		

6.8 PCS GSM Frequency Stability Measurements §2.1055, 24.235; RSS-133 (6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

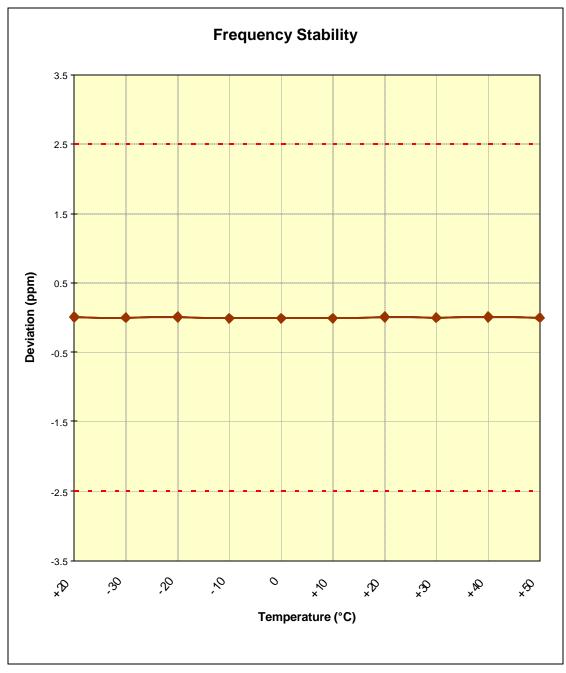
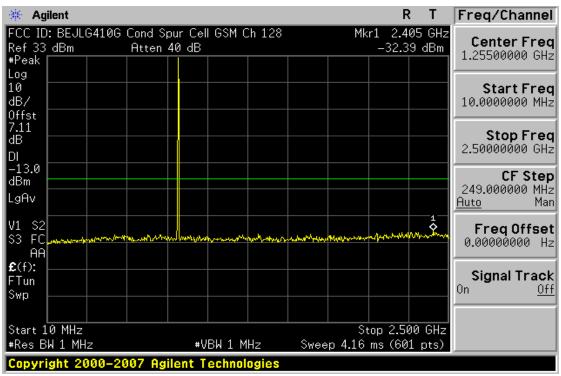

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.70	+ 20 (Ref)	1,880,000,010	10	0.000001
100 %		- 30	1,880,000,004	4	0.000000
100 %		- 20	1,880,000,014	14	0.000001
100 %		- 10	1,879,999,984	-16	-0.000001
100 %		0	1,879,999,985	-15	-0.000001
100 %		+ 10	1,879,999,990	-10	-0.000001
100 %		+ 20	1,880,000,008	8	0.000000
100 %		+ 30	1,880,000,004	4	0.000000
100 %		+ 40	1,880,000,011	11	0.000001
100 %		+ 50	1,879,999,993	-7	0.000000
115 %	4.26	+ 20	1,880,000,012	12	0.000001
BATT. ENDPOINT	3.40	+ 20	1,879,999,990	-10	-0.000001

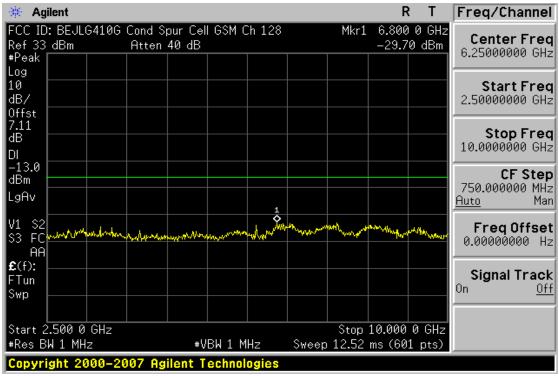
Table 6-12. Frequency Stability Data (PCS GSM Mode - Ch. 661)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	(LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 23 of 35

PCS GSM Frequency Stability Measurements (Cont'd) §2.1055, 24.235; RSS-133 (6.3)



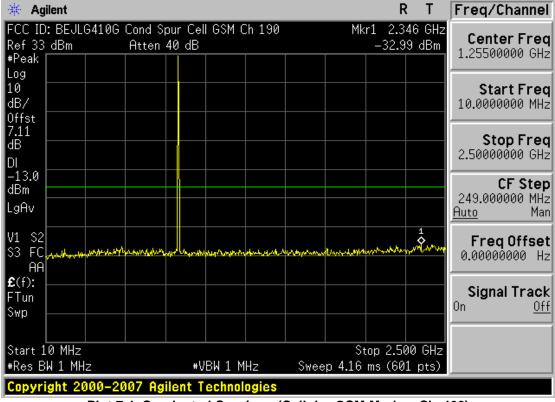
Plot 6-2. Frequency Stability Graph (PCS GSM Mode - Ch. 661)


FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 24 of 35

PLOTS OF EMISSIONS

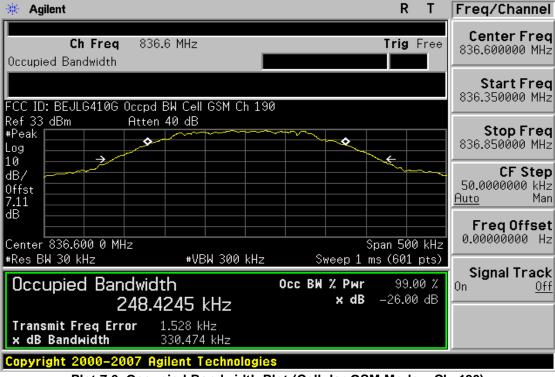
Plot 7-1. Conducted Spurious Plot (Cellular GSM Mode – Ch. 128)

Plot 7-2. Conducted Spurious Plot (Cellular GSM Mode – Ch. 128)

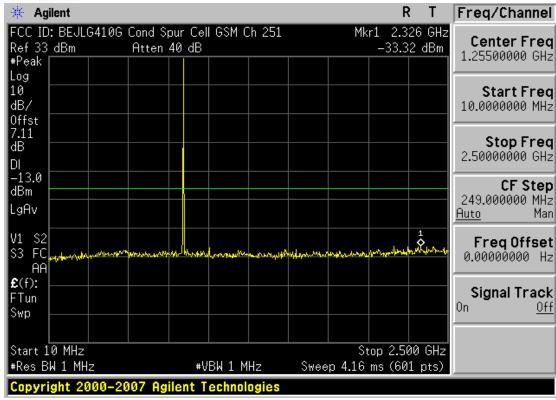

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ		EUT Type: 850/1900 GSM/GPRS Phone		Page 25 of 35

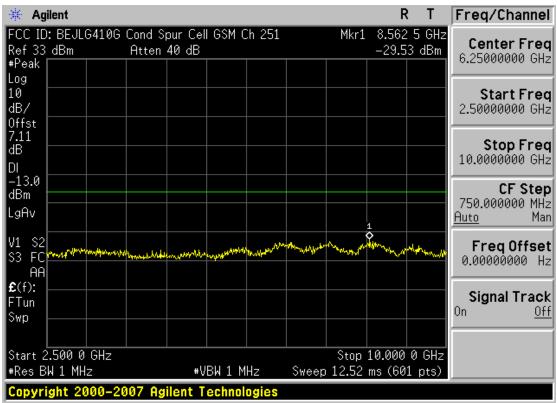
© 2008 PCTEST Engineering Laboratory, Inc.

Plot 7-3. Band Edge Plot (Cellular GSM Mode - Ch. 128)

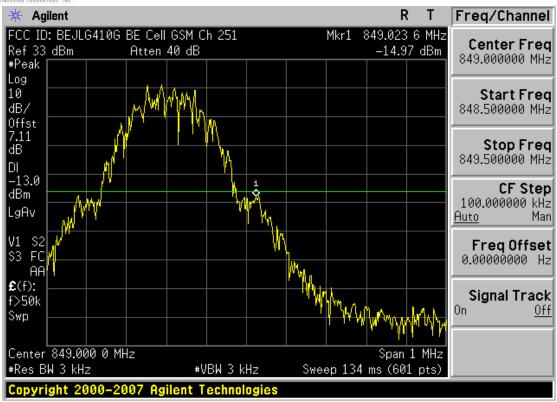

Plot 7-4. Conducted Spurious (Cellular GSM Mode - Ch. 190)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 26 of 35


Plot 7-5. Conducted Spurious Plot (Cellular GSM Mode - Ch. 190)

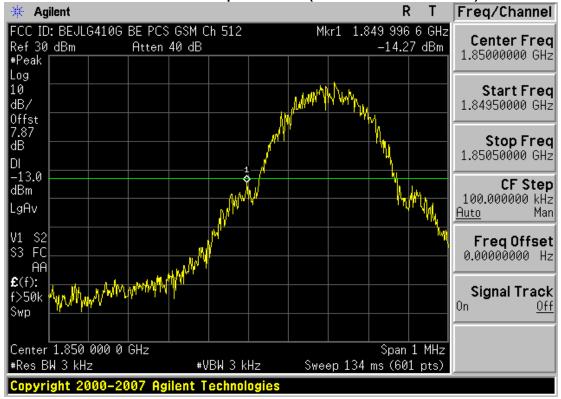

Plot 7-6. Occupied Bandwidth Plot (Cellular GSM Mode - Ch. 190)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 27 of 35

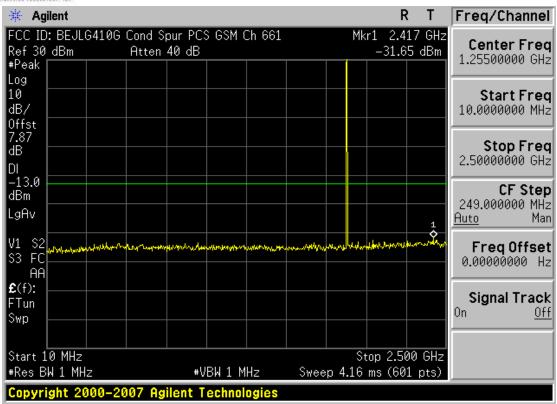

Plot 7-7. Conducted Spurious Plot (Cellular GSM Mode – Ch. 251)

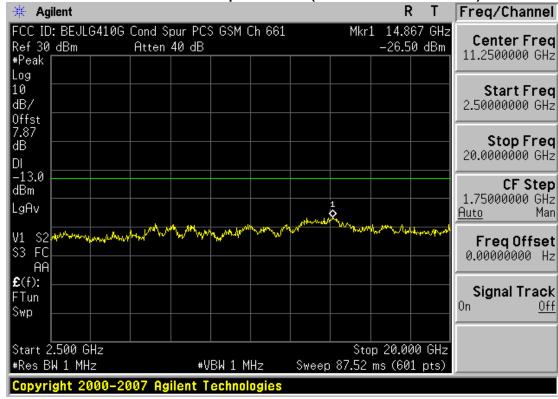
Plot 7-8, Conducted Spurious Plot (Cellular GSM Mode - Ch. 251)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 28 of 35


Plot 7-10. Conducted Spurious Plot (PCS GSM Mode - Ch. 512)

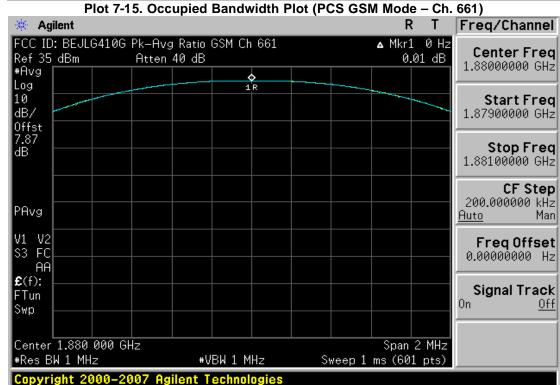
FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 29 of 35


Plot 7-11. Conducted Spurious Plot (PCS GSM Mode - Ch. 512)


Plot 7-12. Band Edge Plot (PCS GSM Mode - Ch. 512)

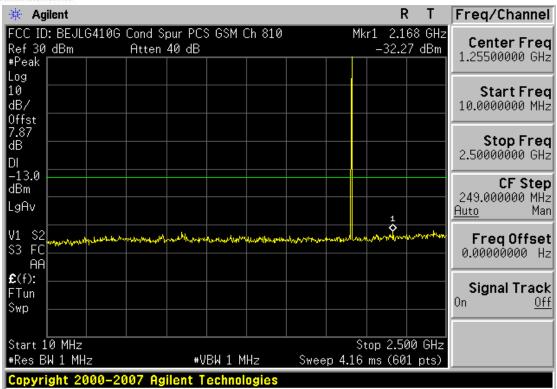
FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 30 of 35

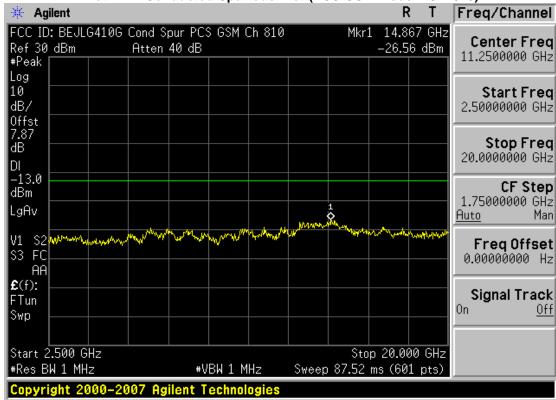
Plot 7-13. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)



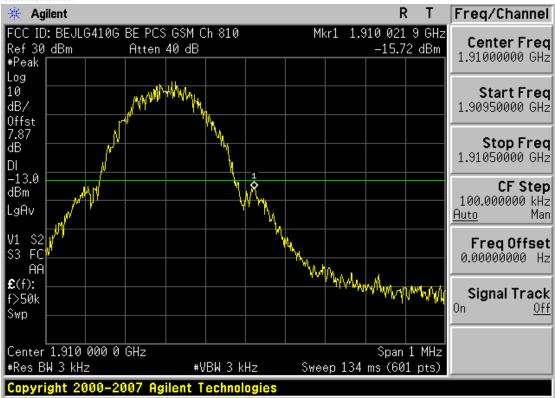
Plot 7-14. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 31 of 35




Plot 7-16. Peak-Average Ratio Plot (PCS GSM Mode - Ch. 661)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 32 of 35
0010171323.BE3	,	030/1900 G3W/GFK3 FIIONE		DEV 0.70



Plot 7-18. Conducted Spurious Plot (PCS GSM Mode - Ch. 810)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 35
0810171523.BEJ	,	850/1900 GSM/GPRS Phone		DEV/0.70

Plot 7-19. Band Edge Plot (PCS GSM Mode - Ch. 810)

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 34 of 35

8.0 CONCLUSION

The data collected show that the **LG 850/1900 GSM/GPRS Phone FCC ID: BEJLG410G** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.

FCC ID: BEJLG410G	PCTEST*	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	(LG	Reviewed by: Quality Manager
Test Report S/N: 0810171523.BEJ	Test Dates: October 21-22, 2008	EUT Type: 850/1900 GSM/GPRS Phone		Page 35 of 35