PCTEST.

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing:
September 19, 2007
Test Site/Location:
PCTEST Lab, Columbia, MD, USA
Test Report Serial No.:
0709111005.BEJ

FCC ID: BEJLG400G

APPLICANT: LG ELECTRONICS USA

Application Type: Certification

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §22(H), §24(E)

EUT Type: 850/1900 GSM Phone

Model(s): LG400G, LG400GT, TFLG400GB, NTLG400GB

Tx Frequency Range: 824.20 - 848.80MHz (Cell. GSM) / 1850.20 - 1909.80MHz (PCS GSM)

Max. RF Output Power: 3.556 W ERP Cell. GSM (35.51 dBm) / 1.282 W EIRP PCS GSM (31.08 dBm)

Emission Designator(s): 252KGXW (Cellular GSM), 245KGXW (PCS GSM)

Test Device Serial No.: identical prototype [S/N: 708KPGS083999]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 10134

TABLE OF CONTENTS

FCC F	PART 2	2 & 24 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	MEASUREMENT PROCEDURE	4
	1.2	SCOPE	4
	1.3	TESTING FACILITY	4
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	OCCUPIED BANDWIDTH EMISSION LIMITS	6
	3.2	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.3	CELLULAR - MOBILE FREQUENCY BLOCKS	6
	3.4	PCS - BASE FREQUENCY BLOCKS	7
	3.5	PCS - MOBILE FREQUENCY BLOCKS	7
	3.6	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	7
	3.7	RADIATED SPURIOUS AND HARMONIC EMISSIONS	7
	3.8	FREQUENCY STABILITY / TEMPERATURE VARIATION	8
4.0	TES	FEQUIPMENT CALIBRATION DATA	9
5.0	SAM	PLE CALCULATIONS	10
6.0	TES	「RESULTS	11
	6.1	SUMMARY	11
	6.2	CONDUCTED OUTPUT POWER	12
	6.3	EFFECTIVE RADIATED POWER OUTPUT DATA	13
	6.4	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	14
	6.5	CELLULAR GSM RADIATED MEASUREMENTS	15
	6.6	PCS GSM RADIATED MEASUREMENTS	18
	6.7	CELLULAR GSM FREQUENCY STABILITY MEASUREMENTS	21
	6.8	PCS GSM FREQUENCY STABILITY MEASUREMENTS	
7.0	PLO	TS OF EMISSIONS	25
8.0	CON	CLUSION	34

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 2 or 34

MEASUREMENT REPORT

FCC Part 22 & 24

§2.1033 General Information

APPLICANT: LG Electronics USA APPLICANT ADDRESS: 1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

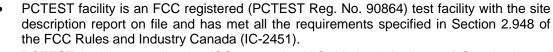
TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

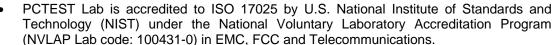
FCC RULE PART(S): §2; §22(H), §24(E)

BASE MODEL: LG400G FCC ID: BEJLG400G

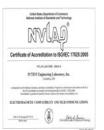
FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE) **EMISSION DESIGNATOR(S):** 252KGXW (Cellular GSM), 245KGXW (PCS GSM)

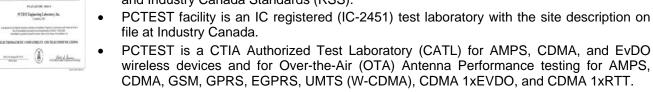
MODE: **GSM**


FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)

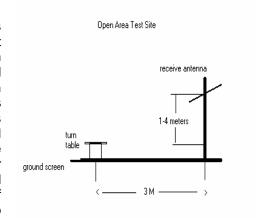

708KPGS083999 ☐ Production ☐ Pre-Production ☐ Engineering **Test Device Serial No.:**

DATE(S) OF TEST: September 19, 2007 **TEST REPORT S/N:** 0709111005.BEJ


Test Facility / Accreditations


Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- file at Industry Canada.
- wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.


FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 34	
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 3 01 34	
@ 2007 DCTEST Engineering I	2007 PCTEST Engineering Loberston, Inc.				

1.0 INTRODUCTION

1.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3-meter test range (see Figure 1-1). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Deviation from Measurement Procedure.....None

Figure 1-1. Diagram of 3-meter outdoor test range

1.2 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.3 Testing Facility

These measurements were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia. Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 27, 2006 and Industry Canada.

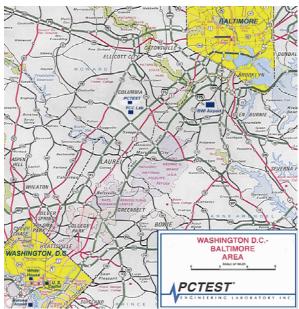


Figure 1-2. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

05/24/07

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 4 01 34
© 2007 PCTEST Engineering	2007 PCTEST Engineering Laboratory, Inc			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG 850/1900 GSM Phone FCC ID: BEJLG400G**. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
LG / Model: LG400G	BEJLG400G	850/1900 GSM Phone

Table 2-1. EUT Equipment Description

2.2 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

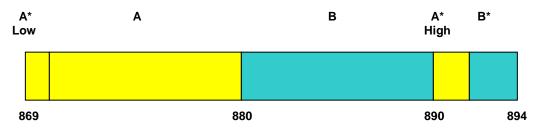
2.3 Labeling Requirements

Per 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: BEJLG400G	POTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 3 01 34

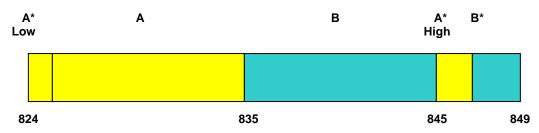


3.0 DESCRIPTION OF TESTS

3.1 Occupied Bandwidth Emission Limits §2.1049, 22.917(a), 24.238(a)

- a. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.
- b. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- c. When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- d. The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.2 Cellular - Base Frequency Blocks


BLOCK 1: 869 – 880 MHz (A* Low + A)

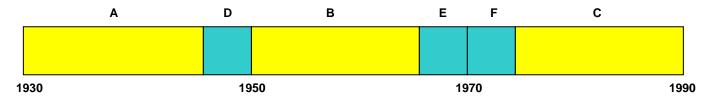
BLOCK 3: 890 - 891.5 MHz (A* High)

BLOCK 2: 880 - 890 MHz (B)

BLOCK 4: 891.5 – 894 MHz (B*)

3.3 Cellular - Mobile Frequency Blocks

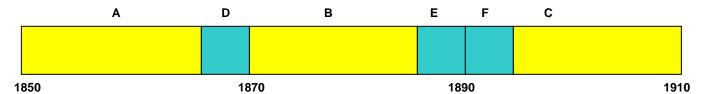
BLOCK 1: 824 - 835 MHz (A* Low + A)


BLOCK 3: 845 – 846.5 MHz (A* High)

BLOCK 2: 835 – 845 MHz (B) BLOCK 4: 846.5 – 849 MHz (B*)

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		raye 0 01 34

3.4 PCS - Base Frequency Blocks



BLOCK 1: 1930 – 1945 MHz (A) BLOCK 4: 1965 – 1970 MHz (E)

BLOCK 2: 1945 – 1950 MHz (D) BLOCK 5: 1970 – 1975 MHz (F)

BLOCK 3: 1950 – 1965 MHz (B) BLOCK 6: 1975 – 1990 MHz (C)

3.5 PCS - Mobile Frequency Blocks

BLOCK 1: 1850 – 1865 MHz (A) BLOCK 4: 1885 – 1890 MHz (E)

BLOCK 2: 1865 – 1870 MHz (D) BLOCK 5: 1890 – 1895 MHz (F)

BLOCK 3: 1870 – 1885 MHz (B) BLOCK 6: 1895 – 1910 MHz (C)

3.6 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a), 24.238(a); RSS-129 (8.1.1), RSS-133 (6.5.1)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.7 Radiated Spurious and Harmonic Emissions §2.1053, 22.917(a), 24.238(a); RSS-129 (8.1.1), RSS-133 (6.5.1(i))

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested using a Power Control Level of "5" in the Cellular band and "0" in the PCS band.

FCC ID: BEJLG400G	PCTEST:	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage / 0i 34

3.8 Frequency Stability / Temperature Variation §2.1055, 22.355, 24.235; RSS-132 (4.3) / RSS-133 (6.3)

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage o or 54
2007 PCTEST Engineering Laboratory, Inc.				

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

rest Equipment Ca	alibration is traceable to the National Institute of	Siandards an	u rechnolog	ду (INIST).	
Manufacturer	Model / Equipment	Calibration Date	Cal Interval	Calibration Due	Serial No.
Agilent	E4407B ESA Spectrum Analyzer	04/29/07	Annual	04/28/08	US39210313
Agilent	E5515C Wireless Communications Test Set	07/27/06	Biennial	07/26/08	GB41450275
Agilent	E5515C Wireless Communications Test Set	10/06/06	Biennial	10/05/08	GB43193972
Agilent	8648D (9kHz-4GHz) Signal Generator	10/01/06	Annual	10/01/07	3613A00315
Agilent	E5515C Wireless Communications Test Set	10/26/06	Biennial	10/25/08	GB46310798
EMCO	Model 3115 (1-18GHz) Horn Antenna	09/24/06	Biennial	09/23/08	9203-2178
EMCO	Model 3115 (1-18GHz) Horn Antenna	09/25/06	Biennial	09/24/08	9704-5182
Rohde & Schwarz	NRVS Power Meter	07/03/07	Biennial	07/02/09	835360/079
Rohde & Schwarz	NRV-Z53 Power Sensor	07/03/07	Biennial	07/02/09	846076/007
Rohde & Schwarz	CMU200 Base Station Simulator	11/08/06	Annual	11/08/07	107826
Rohde & Schwarz	CMU200 Base Station Simulator	09/07/07	Annual	09/06/08	833855/010
Rohde & Schwarz	CMU200 Base Station Simulator	05/24/07	Annual	05/23/08	836371/079
Agilent	HP 8566B (100Hz–22GHz) Spectrum Analyzer	12/21/06	Annual	12/21/07	3638A08713
Agilent	E4448A (3Hz-50GHz) Spectrum Analyzer	09/22/06	Annual	09/22/07	US42510244
Agilent	E8257D (250kHz-20GHz) Signal Generator	03/08/07	Annual	03/07/08	MY45470194
Agilent	HP 85650A Quasi-Peak Adapter	12/21/06	Annual	12/21/07	2043A00301
Agilent	HP 8449B (1-26.5GHz) Pre-Amplifier	12/12/06	Annual	12/12/07	3008A00985
Agilent	HP 85650A Quasi-Peak Adapter	12/21/06	Annual	12/21/07	2043A00301
Agilent	HP 8449B (1-26.5GHz) Pre-Amplifier	12/12/06	Annual	12/12/07	3008A00985
Agilent	HP 11713A Attenuation/Switch Driver	12/12/06	Annual	12/12/07	N/A
Agilent	HP 85685A (20Hz-2GHz) Preselector	12/12/06	Annual	12/12/07	N/A
Agilent	HP 8566B Opt. 462 Impulse Bandwidth	12/12/06	Annual	12/12/07	3701A22204
EMCO	Dipole Pair	09/21/06	Biennial	09/20/08	23951
SOLAR	8012-50 LISN (2)	11/18/05	Biennial	11/18/07	0313233, 0310234
K&L	11SH10 Band Pass Filter	N/A	Annual	N/A	1300/4000
K&L	11SH10 Band Pass Filter	N/A	Annual	N/A	4000/12000
Agilent	HP 8495A (0-70dB) DC-4GHz Attenuator	N/A		N/A	N/A
-	263-10dB (DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
Pasternack	PE2208-6 Bidirectional Coupler	N/A		N/A	N/A
-	No.165 (30MHz - 1000MHz) RG58 Coax Cable	N/A		N/A	N/A
-	No.166 (1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167 (100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Rohde & Schwarz	NRVD Dual Channel Power Meter	12/11/06	Biennial	12/10/08	101695
Rohde & Schwarz	NRV-Z33 Peak Power Sensor (1mW-20W)	11/28/06	Biennial	11/27/08	100155
		_			

Table 4-1. Test Equipment

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		raye 3 01 34

5.0 SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

Spurious Radiated Emission - PCS Band

Example: Channel 512 PCS Mode 2nd Harmonic (3700.40 MHz)

The receive analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the receive analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	G	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 10 01 34

© 2007 PCTEST Engineering Laboratory, Inc.

6.0 TEST RESULTS

6.1 **Summary**

Company Name: LG Electronics USA

FCC ID: BEJLG400G

PCS Licensed Transmitter Held to Ear (PCE) FCC Classification:

GSM Mode(s):

FCC Part Section(s)	RSS Section	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MC	DDE (TX)					
2.1049, 22.917(a), 24.238(a)	N/A	Occupied Bandwidth	N/A		PASS	Section 7.0
2.1051, 22.917(a), 24.238(a)	RSS-132 (4.5.1) / RSS-133 (6.5.1)	Band Edge / Conducted Spurious Emissions	< 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions	CONDUCTED	PASS	Section 7.0
2.1046	N/A	Transmitter Conducted Output Power	N/A		PASS	Section 6.2
22.913(a)(2)	RSS-132 (4.4) [SRSP-503(5.1.3)]	Effective Radiated Power	< 7 Watts max. ERP (<6.3 Watts max. ERP (IC))		PASS	Section 6.3
24.232(c)	RSS-133 (6.4) [SRSP-510 (5.1.2)]	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.4
2.1053, 22.917(a), 24.238(a)	RSS-132 (4.5.1) / RSS-133 (6.5.1)	Undesirable Emissions	< 43 + log ₁₀ (P[Watts]) for all out-of-band emissions	KADIATED	PASS	Sections 6.5, 6.6
2.1055, 22.355, 24.235	RSS-132 (4.3) / RSS-133 (6.3)	Frequency Stability	< 2.5 ppm		PASS	Sections 6.7, 6.8
RECEIVER MODE	(RX) / DIGITAL EMIS	SIONS				
15.107	RSS-Gen (7.2.2)	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits or < RSS-Gen table 2 limits	LINE CONDUCTED	PASS	Pt. 15B Test Report
15.109	RSS-132 (4.6) / RSS-133(6.7(a) / [RSS-Gen (7.2.2)] / RSS-210 (7.3)	General Field Strength Limits (Restricted Bands and Radiated Emissions Limits)	< FCC 15.209 limits or < RSS-210 table 3 limits	RADIATED (30MHz-1GHz) (1-25 GHz)	PASS	Pt. 15B Test Report
RF EXPOSURE						
2.1091 / 2.1093	RSS-102	SAR Test	1.6 W/kg (SAR Limit)	SAR	PASS	SAR Report

Table 6-1. Summary of Test Results

FCC ID: BEJLG400G	PCTEST:	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 11 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		raye ii 0134

6.2 Conducted Output Power §2.1046

A base station simulator (Rhode and Schwartz Model: CMU200) was used to establish communication with the **LG 850/1900 GSM Phone FCC ID: BEJLG400G**. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested using a Power Control Level of "5" in the Cellular band and "0" in the PCS band. The powers are reported below.

		GSM/	GPRS
Band	Channel	Power Control Level	Conducted Power
			[dBm]
	128	5	32.50
Cellular	190	5	32.40
	251	5	32.30
	512	0	30.10
PCS	661	0	30.10
	810	0	30.00

Table 6-2. GSM Conducted Output Powers

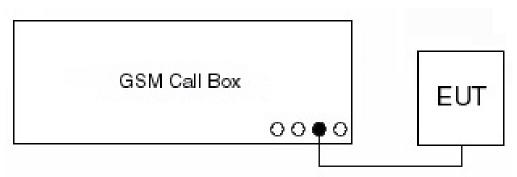


Figure 6-1. GSM Conducted Power Test Setup Diagram

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 34	
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 12 01 34	
© 2007 PCTEST Engineering Laboratory, Inc.					

6.3 Effective Radiated Power Output Data

§22.913(a)(2); RSS-132 (4.4) [SRSP-503(5.1.3)]

POWER: PCL "5" (Cellular GSM Mode)

Frequency [MHz]	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
824.20	-7.400	33.01	0.00	V	33.01	2.000	Standard
836.60	-6.900	33.51	0.00	V	33.51	2.244	Standard
848.80	-4.900	35.51	0.00	V	35.51	3.556	Standard

Table 6-3. Effective Radiated Power Output Data

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 13 01 34

6.4 Equivalent Isotropic Radiated Power Output Data §24.232(c); RSS-133 (6.4) [SRSP-510 (5.1.2)]

POWER: PCL "0" (PCS GSM Mode)

Frequency [MHz]	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1850.20	-10.000	22.48	8.00	Н	30.48	1.117	Standard
1880.00	-9.400	23.08	8.00	Н	31.08	1.282	Standard
1909.80	-10.800	21.68	8.00	Н	29.68	0.929	Standard

Table 6-4. Equivalent Isotropic Radiated Power Output Data

NOTES:

<u>Equivalent Isotropic Radiated Power Measurements by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 14 01 34

6.5 Cellular GSM Radiated Measurements §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.20 MHz

CHANNEL: 128

MEASURED OUTPUT POWER: <u>35.510</u> dBm = <u>3.556</u> W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 48.51$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL (H/V)	(dBc)
	(dBm)	(dBd)	(dBm)		
1648.40	-38.32	6.32	-32.00	V	67.5
2472.60	-53.48	7.69	-45.80	V	81.3
3296.80	-55.19	7.83	-47.35	V	82.9
4121.00	-92.94	7.83	-85.11	V	120.6
4945.20	-91.84	8.62	-83.22	V	118.7

Table 6-5. Radiated Spurious Data (Cellular GSM Mode – Ch. 128)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 13 01 34

Cellular GSM Radiated Measurements (Cont'd)

§2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.60 MHz

CHANNEL: 190

MEASURED OUTPUT POWER: ______ 35.510 _____ dBm = ____ 3.556 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 48.51$ dBc

FREQ.	LEVEL @ ANTENNA	SUBSTITUTE ANTENNA	CORRECT GENERATOR	POL	
(MHz)	TERMINALS	GAIN	LEVEL	(H/V)	(dBc)
	(dBm)	(dBd)	(dBm)		
1673.20	-38.15	6.33	-31.82	V	67.3
2509.80	-54.26	7.75	-46.51	V	82.0
3346.40	-51.72	7.86	-43.86	V	79.4
4183.00	-93.03	8.07	-84.96	V	120.5
5019.60	-91.57	8.55	-83.02	V	118.5

Table 6-6. Radiated Spurious Data (Cellular GSM Mode – Ch. 190)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 10 01 34

Cellular GSM Radiated Measurements (Cont'd)

§2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.80 MHz

CHANNEL: 251

MEASURED OUTPUT POWER: 35.510 dBm = 3.556 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 48.51$ dBc

FREQ.	LEVEL @ ANTENNA	SUBSTITUTE ANTENNA	CORRECT GENERATOR	POL	
(MHz)	TERMINALS	GAIN	LEVEL	(H/V)	(dBc)
	(dBm)	(dBd)	(dBm)		
1697.60	-34.17	6.34	-27.84	V	63.3
2546.40	-52.90	7.74	-45.16	V	80.7
3395.20	-55.27	7.89	-47.38	V	82.9
4244.00	-51.76	8.31	-43.45	V	79.0
5092.80	-91.27	8.53	-82.74	V	118.3

Table 6-7. Radiated Spurious Data (Cellular GSM Mode - Ch. 251)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 17 01 34

6.6 PCS GSM Radiated Measurements

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1850.20 MHz

CHANNEL: 512

MEASURED OUTPUT POWER: _____ 31.080 ____ dBm = ____1.282 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 44.08$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-32.96	9.85	-23.11	Н	54.2
5550.60	-48.91	10.72	-38.19	Н	69.3
7400.80	-37.34	11.60	-25.74	Н	56.8
9251.00	-26.93	11.36	-15.57	Н	46.7
11101.20	-75.30	12.74	-62.56	Н	93.6

Table 6-8. Radiated Spurious Data (PCS GSM Mode – Ch. 512)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 10 01 34

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: 661

MEASURED OUTPUT POWER: ______31.080 _____ dBm = ____1.282 __W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 44.08$ dBc

FREQ.	LEVEL @ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL (H/V)	(dBc)
,	(dBm)	(dBi)	(dBm)	, ,	
3760.00	-40.22	9.78	-30.44	Н	61.5
5640.00	-46.66	10.92	-35.74	Н	66.8
7520.00	-40.67	11.66	-29.00	Н	60.1
9400.00	-72.39	11.56	-60.82	Н	91.9
11280.00	-75.35	12.63	-62.72	Н	93.8

Table 6-9. Radiated Spurious Data (PCS GSM Mode - Ch. 661)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 19 01 34

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1909.80 MHz

CHANNEL: 810

MEASURED OUTPUT POWER: 31.080 dBm = 1.282 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ 3 ____meters

LIMIT: $43 + 10 \log_{10} (W) = 44.08$ dBc

FREQ.	LEVEL @ ANTENNA	SUBSTITUTE ANTENNA	CORRECT GENERATOR	POL	
(MHz)	TERMINALS	GAIN	LEVEL	(H/V)	(dBc)
	(dBm)	(dBi)	(dBm)		
3819.60	-39.79	9.71	-30.08	Н	61.2
5729.40	-46.32	11.12	-35.20	Н	66.3
7639.20	-37.36	11.44	-25.91	Н	57.0
9549.00	-71.11	11.73	-59.38	Н	90.5
11458.80	-75.40	12.52	-62.88	Н	94.0

Table 6-10. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 20 01 34

6.7 Cellular GSM Frequency Stability Measurements §2.1055, 22.355; RSS-132 (4.3)

OPERATING FREQUENCY: 836,600,000 Hz

CHANNEL: ____ 190

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

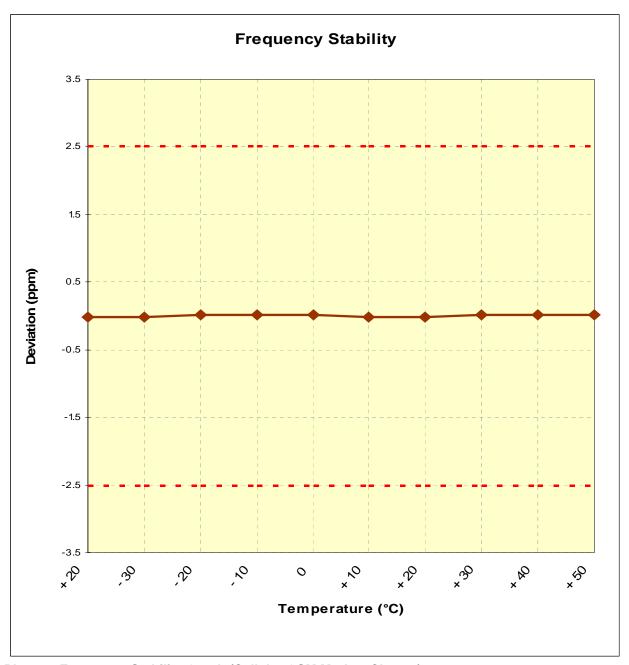

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ. (Hz)	Freq. Dev.	Deviation (%)
100 %	3.70	+ 20 (Ref)	836,599,988	-12	-0.000001
100 %		- 30	836,599,990	-10	-0.000001
100 %		- 20	836,600,015	15	0.000002
100 %		- 10	836,600,017	17	0.000002
100 %		0	836,600,011	11	0.000001
100 %		+ 10	836,599,991	-9	-0.000001
100 %		+ 20	836,599,988	-12	-0.000001
100 %		+ 30	836,600,014	14	0.000002
100 %		+ 40	836,600,019	19	0.000002
100 %		+ 50	836,600,014	14	0.000002
115 %	4.26	+ 20	836,599,988	-12	-0.000001
BATT. ENDPOINT	3.40	+ 20	836,600,021	21	0.000003

Table 6-11. Frequency Stability Data (Cellular GSM Mode - Ch. 190)

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 21 01 34

Cellular GSM Frequency Stability Measurements (Cont'd) §2.1055, 22.355; RSS-132 (4.3)

Plot 6-1. Frequency Stability Graph (Cellular GSM Mode – Ch. 190)

FCC ID: BEJLG400G	PCTEST:	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 22 01 34

6.8 PCS GSM Frequency Stability Measurements §2.1055, 24.235; RSS-133 (6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 661

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

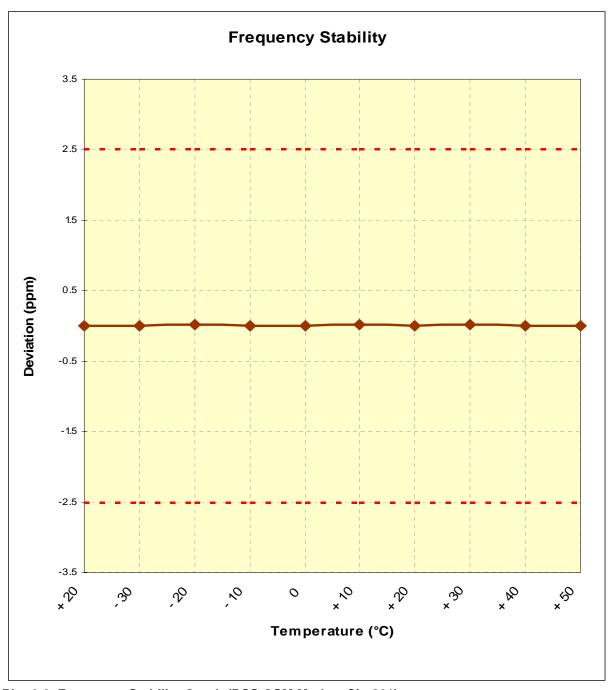
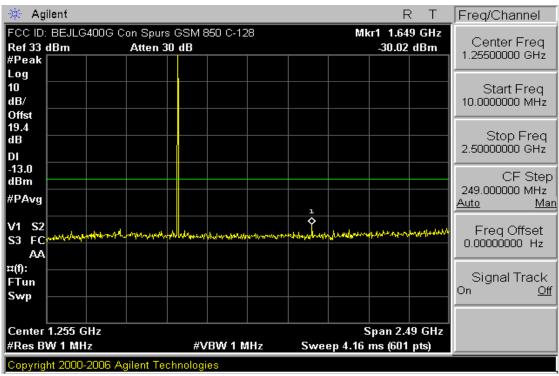

VOLTAGE	POWER	TEMP	FREQ.	Freq. Dev.	Deviation
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)
100 %	3.70	+ 20 (Ref)	1,880,000,009	9	0.000000
100 %		- 30	1,879,999,988	-12	-0.000001
100 %		- 20	1,880,000,018	18	0.000001
100 %		- 10	1,880,000,013	13	0.000001
100 %		0	1,880,000,008	8	0.000000
100 %		+ 10	1,880,000,017	17	0.000001
100 %		+ 20	1,880,000,009	9	0.000000
100 %		+ 30	1,880,000,016	16	0.000001
100 %		+ 40	1,880,000,011	11	0.000001
100 %		+ 50	1,880,000,007	7	0.000000
115 %	4.26	+ 20	1,880,000,014	14	0.000001
BATT. ENDPOINT	3.40	+ 20	1,880,000,022	22	0.000001

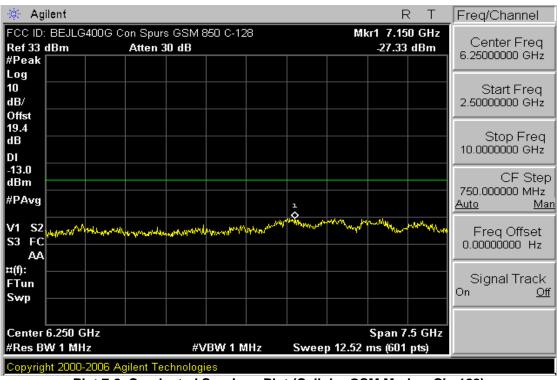
Table 6-12. Frequency Stability Data (PCS GSM Mode - Ch. 661)

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone	Fage 23 01 34

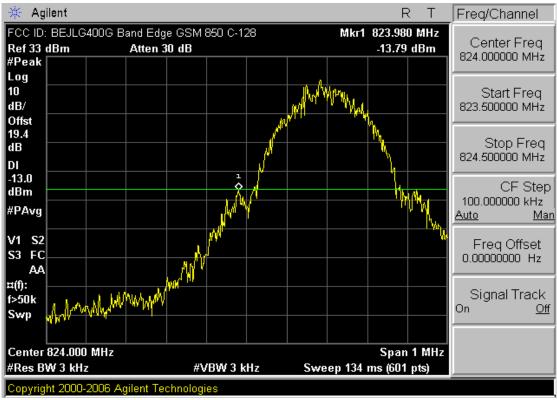
PCS GSM Frequency Stability Measurements (Cont'd) §2.1055, 24.235; RSS-133 (6.3)

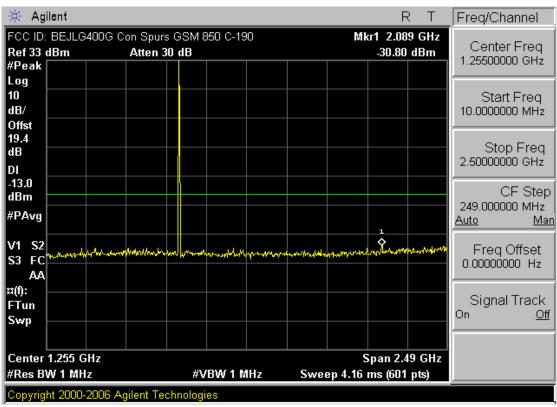


Plot 6-2. Frequency Stability Graph (PCS GSM Mode – Ch. 661)

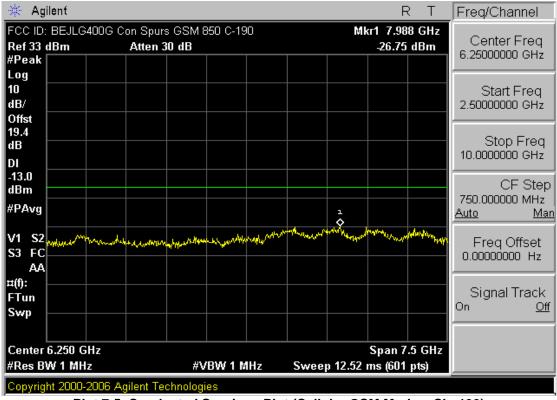

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 24 01 34

PLOTS OF EMISSIONS


Plot 7-1. Conducted Spurious Plot (Cellular GSM Mode – Ch. 128)

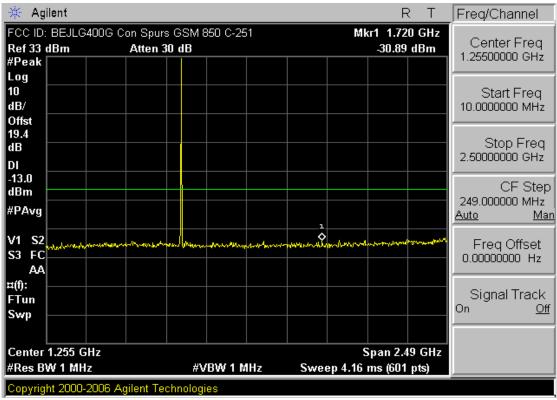

Plot 7-2. Conducted Spurious Plot (Cellular GSM Mode – Ch. 128)

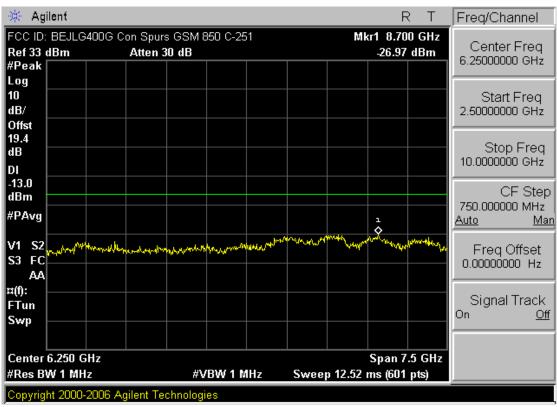
FCC ID: BEJLG400G	PCTEST:	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	① LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Page 25 01 54
2007 PCTEST Engineering Laboratory, Inc.			REV 5.9G	


Plot 7-3. Band Edge Plot (Cellular GSM Mode – Ch. 128)

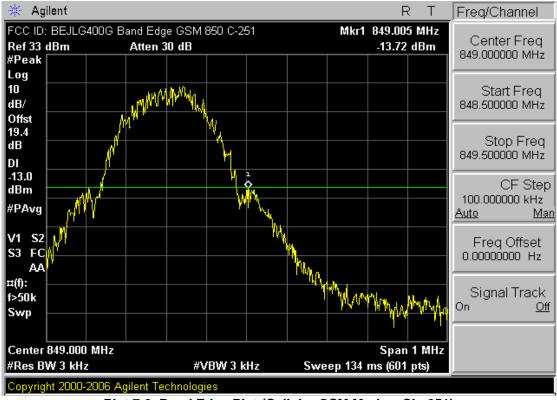
Plot 7-4. Conducted Spurious (Cellular GSM Mode - Ch. 190)

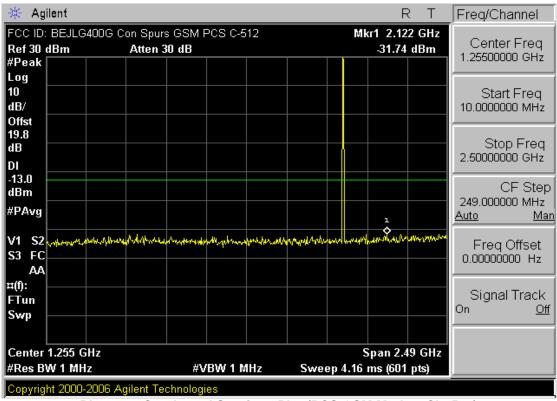
FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 20 01 34


Plot 7-5. Conducted Spurious Plot (Cellular GSM Mode - Ch. 190)

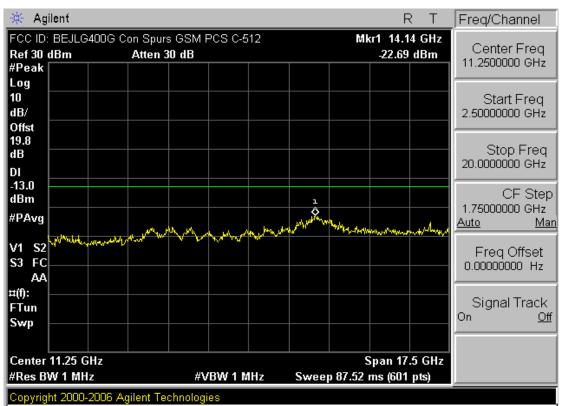

Plot 7-6, Occupied Bandwidth Plot (Cellular GSM Mode - Ch. 190)

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT	5	Reviewed by:
FCC ID. BEJLG400G	Wirelass	(CERTIFICATION)	LG LG	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Page 27 01 34


Plot 7-7. Conducted Spurious Plot (Cellular GSM Mode - Ch. 251)

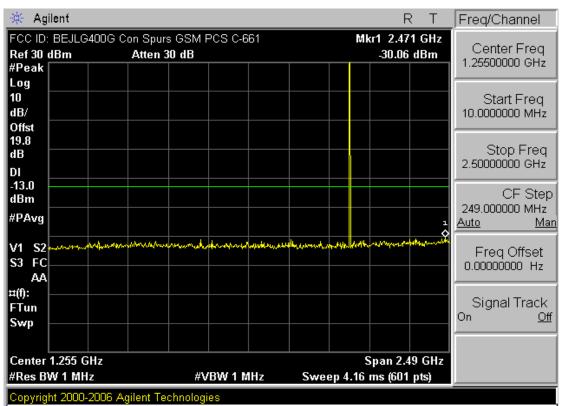

Plot 7-8. Conducted Spurious Plot (Cellular GSM Mode - Ch. 251)

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Fage 26 01 34


Plot 7-9. Band Edge Plot (Cellular GSM Mode – Ch. 251)

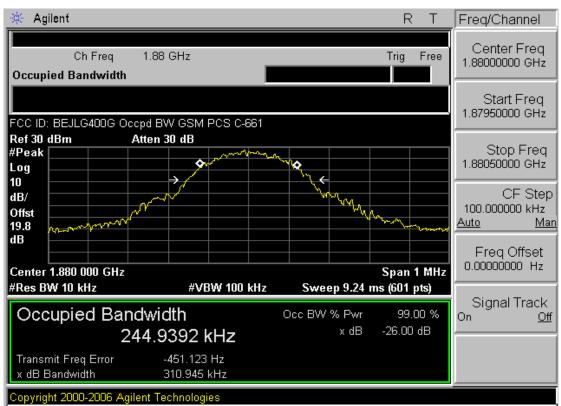

Plot 7-10. Conducted Spurious Plot (PCS GSM Mode - Ch. 512)

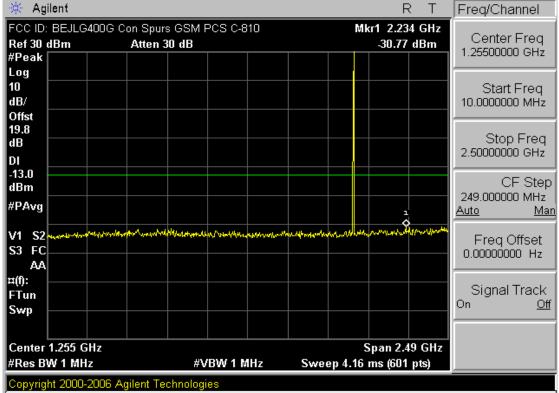
FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		Faye 23 01 34



Plot 7-12. Band Edge Plot (PCS GSM Mode - Ch. 512)

		e (,	
FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT		Reviewed by:
PCC ID. BEJEG400G		(CERTIFICATION)	LG	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 30 01 34




Plot 7-14. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

FCC ID: BEJLG400G	PCTEST	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by:
		(CERTIFICATION)		Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 31 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		1 age 31 01 34



Plot 7-16. Conducted Spurious Plot (PCS GSM Mode - Ch. 810)

FCC ID: BEJLG400G	PCTEST.	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		raye 32 01 34

FCC ID: BEJLG400G

FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)

Test Report S/N:
0709111005.BEJ

Test Dates:
September 19, 2007

Septembe

Plot 7-18. Band Edge Plot (PCS GSM Mode - Ch. 810)

CONCLUSION 8.0

The data collected show that the LG 850/1900 GSM Phone FCC ID: BEJLG400G complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.

FCC ID: BEJLG400G	PCTEST:	FCC Pt. 22/24 GSM MEASUREMENT REPORT (CERTIFICATION)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 34
0709111005.BEJ	September 19, 2007	850/1900 GSM Phone		rage 34 01 34