

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

LG Electronics USA.

1000 Sylvan Avenue Englewood Cliffs, New Jersey, United States

Dates of Tests: October 19 ~ 23, 2009 Test Report S/N: DR50110911M Test Site: DIGITAL EMC CO., LTD.

FCC ID

APPLICANT

BEJLACT10-R

LG Electronics USA.

Purpose : Original Grant

FCC Equipment Class : Part 15 Low Power Transmitter Below 1705 kHz (DCD)

Device name : Smart/RF Card Authentication System

Manufacturer : LG Electronics Inc FCC ID : BEJLACT10-R Model name : LACT10-R

Test Device Serial number : Identical prototype

FCC Rule Part(s) : FCC Part 15.209 Subpart C

ANSI C63.4-2003

Data of issue : November 19, 2009

The Test results relate only to the tested sample. It is not allowed to copy this report even partly without the allowance of DIGITAL EMC CO., LTD.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. EQUIPMENT INFORMATION	4
2.1 EQUIPMENT DESCRIPTION	4
2.2 QNCILLARY EQUIPMENT	4
3. INFORMATION ABOUT TEST ITEM	5
3.1 TESTED FREQUENCY	5
3.2 TESTED ENVIRONMENT	
3.3 TEST MODE	5
3.4 AUXILIARY EQUIPMENT	5
3.5 EMI SUPPRESSION DEVICE(S)/MODIFICATION	5
4. TEST REPORT	6
	6
4.2 TRANSMITTER REQUIREMENTS	7
4.2.1 20 dB BANDWIDTH	7
4.2.2 FIELD STRENGTH OF FUNDAMENTAL	8
4.2.3 RADIATED SPURIOUS EMISSIONS	9
4.2.4 AC LINE CONDUCTED EMISSIONS	11
4.2.5 ANTENNA REQUIREMENTS	14
APPENDIX TEST EQUIPMENT FOR TESTS	15

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail: Harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Tested by: Engineer

November 19, 2009 B.G. HAN

Date Name Signature

Reviewed by: Manager

November 19, 2009 W.J.LEE

Date Name Signature

Applicant:

Company name LG Electronics USA.

Address 1000 Sylvan Avenue Englewood Cliffs, New Jersey, United States

Dongor

Date of order September 11, 2009

2. Equipment information

BEJLACT10-R

2.1 Equipment description

Equipment model no.	LACT10-R	
Equipment serial no.	Identical prototype	
Type of equipment	Smart/RF Card Authentication System	
Frequency band	125 kHz	
Type of Modulation	ASK	
Power	DC 12.0V	
Type of antenna	☑ Internal Type: Loop Antenna☐ External Type:	

2.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
AC/DC Adapter	JPW128KA1200F03	82-31-299-1234	BridgePower Corp.	-
-	-	-	-	-

3. Information about test items

BEJLACT10-R

3.1 Tested frequency

Frequency	TX	RX
Frequency band of operation	125 kHz	125 kHz

3.2 Tested environment

Temperature	:	15 ~ 35 (°C)
Relative humidity content	:	20 ~ 75 %
Air pressure	:	86 ~ 103 kPa
Details of power supply	:	AC 120V 60Hz

3.3 Test mode

Test mode	Continuous Transmission Mode
-----------	------------------------------

3.4 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

3.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

 \rightarrow None

4. Test Report

4.1 Summary of tests

FCC Part Section(s)	Parameter	Test Condition	Status Note 1			
I. Test Items	I. Test Items					
2.1049	20 dB Bandwidth	De Este d	С			
15.209 15.205	Radiated Emission	Radiated	С			
15.207	AC Conducted Emissions	AC Line Conducted	С			
15.203	Antenna Requirements	-	С			

Note 1: **C**=Comply **NC**=Not Comply **NT**=Not Tested **NA**=Not Applicable

Note 2: The JBP(Computing device peripheral) portion was tested and approved by FCC DoC procedure.

The sample was tested according to the following specification:

ANSI C-63.4-2003

4.2 Transmitter requirements

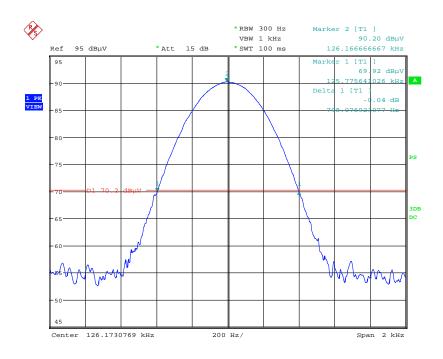
4.2.1 20dB Bandwidth

- Procedure:

The 20dB Bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

The spectrum analyzer is set to:

approximately 2 or 3 times of the 20 dB bandwidth


RBW = 1% of the span 20 dB bandwidth or more Sweep = auto

 $VBW = \geq RBW$ Detector function = peak

Trace = max hold

- Measurement Data: Comply

Tested Frequency(kHz)	Test Result(kHz)
125	0.798

Date: 21.0CT.2009 01:59:32

- Minimum Standard:

None

4.2.2 Field Strength of Fundamental

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Tested frequency = Fundamental Frequency

RBW and VBW = RBW: 200 Hz & VBW: $\geq \text{RBW}$

Detector function = Average mode Sweep = auto

Trace = max hold

- Measurement Data: Comply

Frequency [MHz]	Reading [dBuV]	Detect Mode	Ant Pol.	T.F [dB/m]	Field Strength @ 3m [dBuV/m]	Field Strength @ 300m [dBuV/m]	Limit [dBuV/m]	Margin [dB]
0.125	90.00	AV	V	-10.69	79.31	-0.69	25.67	26.36

Note 1. This test item was performed at 3m and the data were extrapolated to the specified measurement distance of 300m using the square of an inverse linear distance extrapolation factor (80 dB/decade).

• Extrapolation Factor = $20 \log_{10}(300/3)^2 = 80 dB$

Note 2. 300m Limit(dBuV/m) = $20\log(2400/F_{(kHz)})$

 $= 20\log(2400/125)$

= 25.67

Note 3. Sample Calculation.

Margin = Limit – Field Strength @ 300m / Field Strength @ 300m = Field Strength @ 3m – 80

Field Strength @ 3m = Reading + T.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

- Minimum Standard: FCC Part 15.209

Frequency (MHz)	Limit (uV/m)	Measurement Distance(m)
0.009 ~ 0.490	2400 / F(kHz)	300

4.2.3 Radiated Spurious Emissions

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to: Tested frequency = 125KHz

RBW and $\overrightarrow{V}BW = 1$. Frequency range: $9kHz \sim 150 \text{ kHz}$

RBW = 200 Hz / VBW = \geq RBW 2. Frequency range: 150kHz \sim 30MHz RBW = 9 kHz / VBW = \geq RBW

3. Frequency range: 30M ~ 1GHz

 $RBW = 120 \text{ kHz} / VBW = \geq RBW$

- Measurement Data: Comply (Refer to the next pages)
- Minimum Standard:
- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance(m)
$0.009 \sim 0.490$	2400 / F(kHz)	300
0.490 ~ 1.705	24000 / F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

	· · · · · · · · · · · · · · · · · · ·	issions are permitted in	<u> </u>	r -	
MHz	MHz	MHz	MHz	GHz	GHz
$0.009 \sim 0.110$	$8.37625 \sim 8.38675$	73 ~ 74.6	399.90 ~ 410	2.655 ~ 2.900	10.6 ~ 12.7
$0.495 \sim 0.505$	8.41425 ~ 8.41475	$74.8 \sim 75.2$	608 ~ 614	3.260 ~ 3.267	13.25 ~ 13.4
$2.1735 \sim 2.1905$	12.29 ~ 12.293	$108 \sim 121.94$	960 ~ 1240	$3.332 \sim 3.339$	14.47 ~ 14.5
$4.125 \sim 4.128$	12.51975 ~ 12.52025	123 ~ 138	$1300 \sim 1427$	$3.3458 \sim 3.358$	15.35 ~ 16.2
$4.17725 \sim 4.17775$	12.57675 ~ 12.57725	149.9 ~ 150.05	1435 ~ 1626.5	$3.6 \sim 4.4$	$17.7 \sim 21.4$
$4.20725 \sim 4.20775$	13.36 ~ 13.41	156.52475 ~ 156.52525	1645.5 ~ 1646.5	4.5 ~ 5.15	22.01 ~ 23.12
6.215 ~ 6.218	16.42 ~ 16.423	156.7 ~ 156.9	1660 ~ 1710	5.35 ~ 5.46	$23.6 \sim 24.0$
6.26775 ~ 6.26825	16.69475 ~ 16.69525	162.0125 ~ 167.17	$1718.8 \sim 1722.2$	$7.25 \sim 7.75$	31.2 ~ 31.8
$6.31175 \sim 6.31225$	$16.80425 \sim 16.80475$	167.72 ~ 173.2	$2200 \sim 2300$	8.025 ~ 8.5	36.43 ~ 36.5
8.291 ~ 8.294	25.5 ~ 25.67	$240\sim285$	$2310 \sim 2390$	9.0 ~ 9.2	Above 38.6
8.362 ~ 8.366	37.5 ~ 38.25	$322 \sim 335.4$	2483.5 ~ 2500	9.3 ~ 9.5	

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

- Measurement Data:

Tested Frequency : 125 kHz

Measurement Distance : 3 Meters

Frequency [MHz]	Reading [dBuV]	Detect Mode	ANT Pol.	T.F [dB/m]	Field Strength @3m [dBuV/m]	Distance Factor [dB]	Field Strength @30m [dBuV/m]	Field Strength @300m [dBuV/m]	Limit [dBuV/m]	Margin [dB]
0.195	61.20	AV	V	-10.84	50.36	80.00	-	-29.64	123.08	152.72
0.260	58.10	AV	V	-10.97	47.13	80.00	-	-32.87	92.31	125.18
0.379	60.00	AV	V	-11.22	48.78	80.00	-	-31.22	63.32	94.54

- Note 1. All measurements were recorded using a spectrum analyzer employing a Quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz.
 - These three bands are based on measurements employing an average detector.

 Both Vertical and Horizontal polarities of the receiver antenna were evaluated with the work.
- Note 2. Both Vertical and Horizontal polarities of the receiver antenna were evaluated with the worst case emissions being reported.
- Note 3. Sample Calculation.

Margin = Limit – Field Strength / T.F = AF + CL - AG

Distance factor = $20\log(Measurement distance / The measured distance)^2$

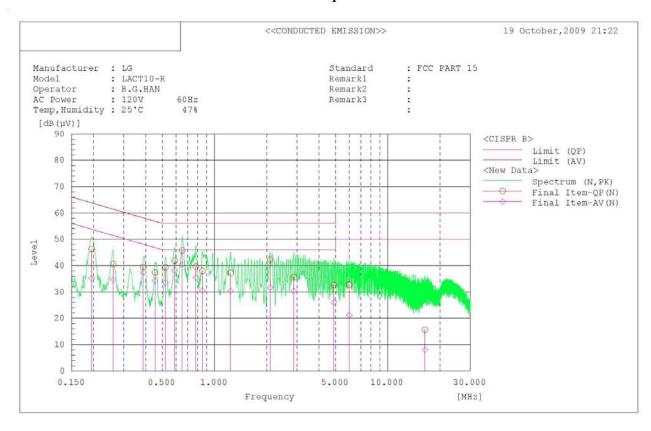
Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

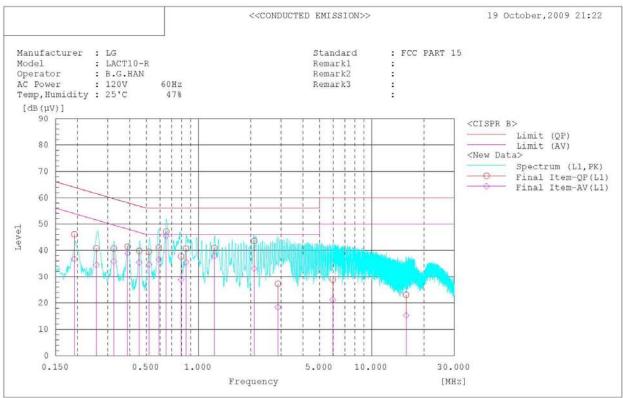
4.2.4 AC Line Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak and average detector mode with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: Comply


- Minimum Standard: FCC Part 15.207(a)/EN 55022


Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5~30	60	50			

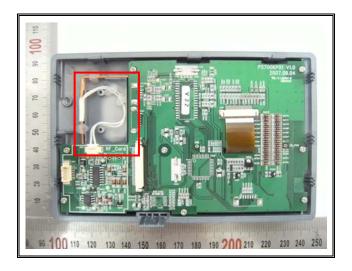
^{*} Decreases with the logarithm of the frequency

AC Line Conducted Emissions

Graph

AC Line Conducted Emissions

Data List


							< <conduc< th=""><th>TED EMISSI</th><th>ON>></th><th></th><th></th></conduc<>	TED EMISSI	ON>>		
											19 October, 2009 21:
Stan	dard	: FCC F	ART 15								
anu	facturer	: LG									
ode:	1	: LACT1	0-R								
per	ator	: B.G.H									
	ower	: 120V	60Hz								
	Humidity	: 25°C	47%								
ema:											
ema:											
ACTION.	LAJ	1									
***			*********	******	*********			********	*******		
ina	l Result										
]	N Phase										
10.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Remark
		QP	AV		QP	AV	QP	AV	QP	AV	
112	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]	
1	0.195	46.2	35.1	0.1	46.3	35.2	63.8	53.8	17.5	18.6	
2	0.260	40.5	34.6	0.1	40.6	34.7	61.4	51.4	20.8	16.7	
4	0.388	39.4	37.4 34.1	0.1	39.5 37.4	37.5	58.1 56.8	48.1	18.6	10.6	
5	0.521	39.2	33.4	0.1	39.3	33.5	56.0	46.0	16.7	12.5	
6	0.588	41.8	38.2	0.1	41.9	38.3	56.0	46.0	14.1	7.7	
7	0.650	45.7	40.2	0.1	45.8	40.3	56.0	46.0	10.2	5.7	
8	0.780	39.5	35.3	0.1	39.6	35.4	56.0	46.0	16.4	10.6	
9	0.851	37.9	30.4	0.1	38.0	30.5	56.0	46.0	18.0	15.5	
10	1.239	37.0	30.1	0.2	37.2	30.3	56.0	46.0	18.8	15.7	
11	2.096	42.1	31.5	0.2	42.3	31.7	56.0	46.0	13.7	14.3	
12	2.865	35.4	30.2	0.2	35.6	30.4	56.0	46.0	20.4	15.6	
13	4.882	32.3	25.8	0.3	32.6	26.1	56.0	46.0	23.4	19.9	
14	5.995	32.5	20.9	0.3	32.8	21.2	60.0	50.0	27.2	28.8	
15	16.403	14.7	7.0	1.0	15.7	8.0	60.0	50.0	44.3	42.0	
	Ll Phase							*****			
lo.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit	Limit AV	Margin QP	AV	Remark
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]	
1	0.651	46.6	45.0	0.5	47.1	45.5	56.0	46.0	8.9	0.5	
2	0.590	40.5	36.0	0.5	41.0	36.5	56.0	46.0	15.0	9.5	
3	0.192	45.8	36.4	0.3	46.1	36.7	63.9	53.9	17.8	17.2	
5	0.257	40.5	34.2	0.3	40.8	34.5	61.5 59.6	51.5 49.6	20.7	17.0	
6	0.390	41.0	38.5	0.4	41.4	38.9	58.1	48.1	16.7	9.2	
7	0.455	39.4	35.0	0.4	39.8	35.4	56.8	46.8	17.0	11.4	
8	0.518	39.0	34.2	0.5	39.5	34.7	56.0	46.0	16.5	11.3	
9	0.793	37.2	28.4	0.5	37.7	28.9	56.0	46.0	18.3	17.1	
10	0.846	40.2	35.0	0.5	40.7	35.5	56.0	46.0	15.3	10.5	
11	1.234	40.4	37.4	0.5	40.9	37.9	56.0	46.0	15.1	8.1	
12	2.096	43.0	32.5	0.6	43.6	33.1	56.0	46.0	12.4	12.9	
13	2.873	26.7	17.8	0.6	27.3	18.4	56.0	46.0	28.7	27.6	
14	5.956	28.2	20.5	0.7	28.9	21.2	60.0	50.0	31.1	28.8	
15	15.809	21.8	14.0	1.3	23.1	15.3	60.0	50.0	36.9	34.7	

4.2.9 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

APPENDIX TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199
	Spectrum Analyzer	Rohde Schwarz	FSQ26	05/06/09	05/06/10	200445
	Spectrum Analyzer(RE)	Н.Р	8563E	13/10/09	13/10/10	3551A04634
	Power Meter	H.P	EMP-442A	02/07/09	02/07/10	GB37170413
	Power Sensor	H.P	8481A	02/07/09	02/07/10	3318A96332
	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471
	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	20611
	Power Splitter	Anritsu	K241B	02/07/09	02/07/10	017060
	Frequency Counter	H.P	5342A	13/07/09	13/07/10	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475, US36122178
	Multifuction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404
	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251
	Signal Generator	H.P	ESG-3000A	02/07/09	02/07/10	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	02/02/09	02/02/10	100148
	Audio Analyzer	H.P	8903B	02/07/09	02/07/10	3011A09448
	Modulation Analyzer	H.P	8901B	02/07/09	02/07/10	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/09	02/07/10	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	19/05/09	19/05/10	106760
	Bluetooth Tester	TESCOM	TC-3000B	02/07/09	02/07/10	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-4
\boxtimes	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1
	DC Power Supply	НР	6622A	13/03/09	13/03/10	3448A03760
	DC Power Supply	НР	6633A	13/03/09	13/03/10	3524A06634
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2
	High-Pass Filter	ANRITSU	MP526D	06/10/09	06/10/10	M27756
	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1
	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	10
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	27
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	7
	HORN ANT	ETS	3115	17/06/09	17/06/10	6419
	HORN ANT	ETS	3115	23/09/09	23/09/10	21097
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	154
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	155

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
\boxtimes	LOOP Antenna	ETS	6502	14/09/09	14/09/10	3471
	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260700
	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260699
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	19/01/09	19/01/10	BP4387
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	446
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	02/07/09	02/07/10	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	02/07/09	02/07/10	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	02/07/09	02/07/10	112
	Amplifier (30dB)	Agilent	8449B	10/10/09	10/10/10	3008A01590
	Amplifier	EMPOWER	BBS3Q7ELU	02/02/09	02/02/10	1020
	RF Power Amplifier	OPHIRRF	5069F	02/07/09	02/07/10	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	02/02/09	02/02/10	100014
\boxtimes	BILOG ANTENNA	SCHAFFNER	CBL6112B	02/06/09	02/06/10	2737
\boxtimes	Amplifier (22dB)	H.P	8447E	05/02/09	05/02/10	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	12/05/09	12/05/10	100364
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	30/05/09	30/05/10	590
	BICONICAL ANT.	Schwarzbeck	VHA 9103	02/06/09	02/06/10	2233
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	07/10/09	07/10/10	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	13/03/09	13/03/10	1252741
	Amplifier (25dB)	Agilent	8447D	12/05/09	12/05/10	2944A10144
	Amplifier (25dB)	Agilent	8447D	03/07/09	03/07/10	2648A04922
\boxtimes	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
	LISN	Kyoritsu	KNW-407	03/07/09	03/07/10	8-317-8
\boxtimes	LISN	Kyoritsu	KNW-242	13/10/09	13/10/10	8-654-15
\boxtimes	CVCF	NF Electronic	4420	13/03/09	13/03/10	304935/337980
\boxtimes	DC BLOCK	Hyuplip	KEL-007	N/A	N/A	7-1581-5
	50 ohm Terminator	HME	CT-01	22/01/09	22/01/10	N/A
\boxtimes	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	03/07/09	03/07/10	4N-170-3