

SAR TEST REPORT

HCT CO., LTD

	Cellular/PCS GPRS/WCDMA US	SB Modem							
EUT Type:	GPRS Class 12 and GPRS mode cla	ass B(GPRS and GSM, but not sim	ultaneously)						
FCC ID:	BEJL02C								
Model:	L-02C	Trade Name	LG						
Date of Issue:	Sep. 14, 2010								
Test report No.:	HCTA1009FS02								
Test Laboratory:	HCT CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525								
Applicant :	LG Electronics, Inc. 60-39, Gasan-Dong, Gumchon-Gu, Seoul 153-023, Korea Tel: +82-2-2033-1113 Fax: +82-2-2033-1222								
Testing has been carried out in accordance with:	47CFR §2.1093 FCC OET Bulletin 65(Edition ANSI/ IEEE C95.1 – 2005 IEEE 1528-2003	97-01), Supplement C (Edit	ion 01-01)						
Test result:	The tested device complies subject to the test. The test The test report shall not be relaboratory.	results and statements rela	te only to the items tested.						
Signature	Report prepared by : Sun-Hee Kim Test Engineer of SAR Par	Approv : Jae-S rt Manage							

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF DEVICE	4
3. DESCRIPTION OF TEST EQUIPMENT	5
3.1 SAR MEASUREMENT SETUP	5
3.2 DASY E-FIELD PROBE SYSTEM	
3.3 PROBE CALIBRATION PROCESS	
3.4 SAM Phantom	
3.5 Device Holder for Transmitters	
3.6 Brain & Muscle Simulating Mixture Characterization	
3.7 SAR TEST EQUIPMENT	
5. DESCRIPTION OF TEST POSITION	
5.1 HEAD POSITION	
5.2 Body Holster/Belt Clip Configurations	
5.3 Test Configurations	
6. MEASUREMENT UNCERTAINTY	1 6
7. ANSI/ IEEE C95.1 - 2005 RF EXPOSURE LIMITS	1 7
8. SYSTEM VERIFICATION	1 8
8.1 Tissue Verification	
8.2 System Validation	
9. 3G MEASUREMENT PROCEDURES	1 9
9.1 Procedures Used To Establish Test Signal	
9.2 SAR Measurement Conditions for UMTS	1 9
10. SAR TEST DATA SUMMARY	2 3
10.1 Measurement Results (GSM1900 Body SAR)	2 3
10.2 Measurement Results (WCDMA850 Body SAR)	
11. CONCLUSION	2 5
12. REFERENCES	2 6
Attachment 1. – SAR Test Plots	2 7
Attachment 2. – Dipole Validation Plots	3 9
Attachment 3. – Probe Calibration Data	4 4
Attachment 4. – Dipole Calibration Data	5 8

www.hct.co.kr

TEL: +82 31 639 8565 FAX: +82 31 639 8525

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

 $\sigma E^2/\rho$ SAR where: conductivity of the tissue-simulant material (S/m) O mass density of the tissue-simulant material (kg/m³) P E Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

> HCT CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525

www.hct.co.kr

2. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	Celluar/PCS GPRS/\ GPRS Class 12 and GF		dem GPRS and GSM, but not simultaneously)					
FCC ID	BEJL02C	Model(s)	L-02C					
Trade Name	LG							
Serial Number(s)	#1							
Application Type	Certification							
Modulation(s)	GSM1900/WCDMA850							
Tx Frequency	826.4 - 846.6 MHz (WCDMA850) 1 850.20 – 1 909.80 MHz (GSM1900)							
Rx Frequency	871.4 - 891.6 (WCDN 1 930.20 – 1 989.80							
FCC Classification	PCS Licensed Train	nsmitter (PCB)						
Production Unit or Identical Prototype	Prototype							
Max. SAR	0.769 W/kg GSM1900 Body SAR 0.409 W/kg WCDMA850 Body SAR							
Date(s) of Tests	Sep. 11, 2010 ~ Sep	. 12, 2010						
Antenna Type	Intenna							

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

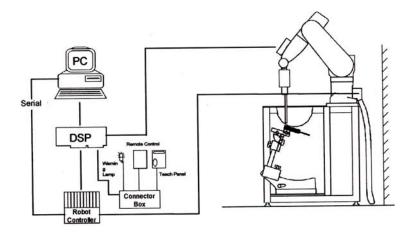


Figure 3.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

3.2 DASY E-FIELD PROBE SYSTEM

3.2.1 ES3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System

Built-in shielding against static charges

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and

1.8 GHz (accuracy: 8 %)

Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal probe axis)

Dynamic 5 $\mu N/g$ to > 100 mW/g;

Range Linearity: $\pm 0.2 \text{ dB}$

Surface \pm 0.2 mm repeatability in air and clear liquids

Detection over diffuse reflecting surfaces.

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dissymmetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Figure 3.2 Photograph of the probe and the Phantom

Figure 3.3 ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric probe ET3DV6, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

3.3 PROBE CALIBRATION PROCESS

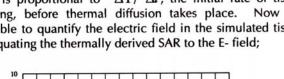
3.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than ± 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$


where:

 $\Delta t =$ exposure time (30 seconds),

heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

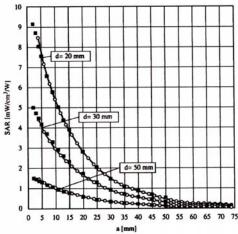


Figure 3.4 E-Field and Temperature measurements at 900 MHz

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where:

= simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

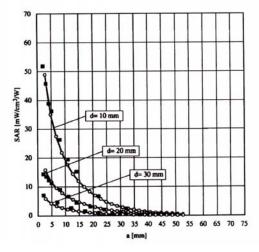


Figure 3.5 E-Field and temperature measurements at 1.8 GHz

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

3.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i$$
 = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 U_i = crest factor of exciting field (DASY parameter)
 U_i = input signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)

From the compensated input signals the primary field data for each channel can be evaluated:

 V_i = compensated signal of channel i (i = x,y,z) E-field probes: $Norm_i$ = sensor sensitivity of channel i (i = x,y,z) $E_i = \sqrt{\frac{V_i}{Norm \cdot ConvF}}$ μV/(V/m)² for E-field probes ConvF = sensitivity of enhancement in solution = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

 $SAR = E_{tot}^{2} \cdot \frac{\sigma}{\rho \cdot 1000}$ SAR = local specific absorption rate in W/g = total field strength in V/m E_{tot} = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{pwe} = \frac{E_{tot}^2}{3770}$ = equivalent power density of a plane wave in W/cm² = total electric field strength in V/m

3.4 SAM Phantom

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Figure 3.6 SAM Phantom

Shell Thickness 2.0 mm Filling Volume about 30 L

Dimensions 810 mm x 1 000 mm x 500 mm (H x L x W)

3.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.7 Device Holder

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

3.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)												
(% by weight)	450		83	835		915		1 900		150			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body			
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2			
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04			
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0			
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0			
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0			
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0			
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7			

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 3.1 Composition of the Tissue Equivalent Matter

3.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE	911	Apr. 29, 2010	Annual	Apr. 29, 2011
SPEAG	E-Field Probe ET3DV6	1798	Feb. 23, 2010	Annual	Feb. 23, 2011
SPEAG	Validation Dipole D835V2	441	May 21, 2010	Annual	May 21, 2011
SPEAG	Validation Dipole D1900V2	5d032	July 16, 2010	Annual	July 16, 2011
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 05, 2009	Annual	Nov. 05, 2010
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 05, 2009	Annual	Nov. 05, 2010
HP	Dielectric Probe Kit 85070C	00721521	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	Nov. 05, 2009	Annual	Nov. 05, 2010
R&S	Base Station CMU200	110740	July 26, 2010	Annual	July 26, 2011
Agilent	Base Station E5515C	GB44400269	Feb. 10, 2010	Annual	Feb. 10, 2011
HP	Signal Generator E4438C	MY42082646	Dec. 24, 2009	Annual	Dec. 24, 2010
HP	Network Analyzer 8753C	3310J01394	Dec. 04, 2009	Annual	Dec. 04, 2010

NOTE:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by HCT Lab. before each test. The brain simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

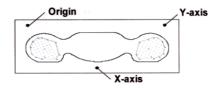


Figure 4.1 SAR Measurement Point in Area Scan

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

5. DESCRIPTION OF TEST POSITION

5.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

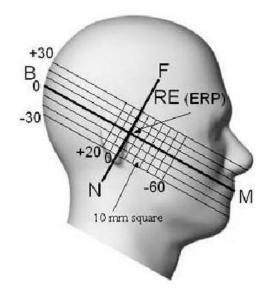


Figure 5.1 Side view of the phantom

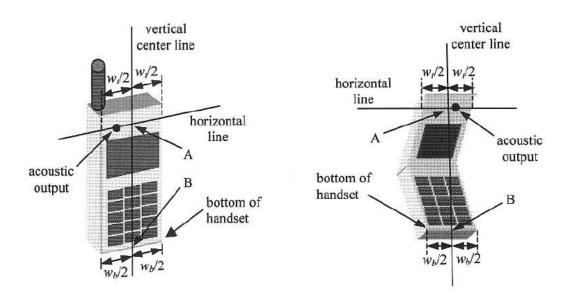


Figure 5.2 Handset vertical and horizontal reference lines

5.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 5 mm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

5.3 Test Configurations

According to KDB 447498, the device that can be connected to a host through a cable must be tested with the device positioned in all applicable orientations against the flat phantom. And a separation distance ≤ 0.5 cm is required for USB-dongle transmitters.

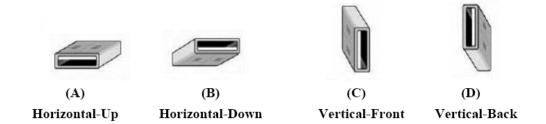


Figure 5.3 USB Connector Orientations Implemented on Laptop Computers

Therefore, the EUT was tested in following orientations;

- 1) Configuration 1: EUT was tested with the direct-connection to the host device with Horizontal-Up (A), and separation distance between EUT and Phantom is 5 mm.
- **2) Configuration 2:** EUT was connected to the host device with Horizontal-Down (B) using a USB cable, and separation distance between EUT and Phantom is 5 mm.
- **3) Configuration 3:** EUT was connected to the host device with Vertical-Front (C)using a USB cable, and separation distance between EUT and Phantom is 5 mm.
- **4) Configuration 4:** EUT was tested with the direct-connection to the host device with Vertical-Back (D), and separation distance between EUT and Phantom is 5 mm.
- **5) Configuration 5:** Top side of the EUT was tested with the direct-connection to the host device, and separation distance between EUT and Phantom is 5 mm.

For the Horizontal- Down Position, the USB dongle was positioned in accordance with 567894.

Note;

This USB cable was used to operate this unit in the highest RF performance capability for SAR testing.

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

6. MEASUREMENT UNCERTAINTY

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than 15 % - 25 %.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of 1 dB to \pm 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least \pm 2 dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to \pm 3 dB.

Uncertainty Budegt

Frequency (MHz)	Error Description	Tol (± %)	Prob.	Div.	C _i	Standard Uncertainty (± %)	v _{eff}	Combined Uncertainty (± %)	k	Expanded STD Uncertainty (± %)
	1. Measurement System									
	Probe Calibration	5.50	N	1	1	5.50	50			
	Axial Isotropy	4.70	R	1.73	0.7	1.90	50]		
	Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	500	1		
	Boundary Effects	1.00	R	1.73	1	0.58	50			
	Linearity	4.70	R	1.73	1	2.71	50	1		
	System Detection Limits	1.00	R	1.73	1	0.58	50			
	Readout Electronics	0.30	N	1.00	1	0.30	60	1		
	Response Time	0.8	R	1.73	1	0.46	∞	1		
	Integration Time	2.6	R	1.73	1	1.50	00	1		
	RF Ambient Noise	3.00	R	1.73	1	1.73	60	1		
	RF Ambient Reflection	3.00	R	1.73	1	1.73	∞	1		
	Probe Positioner	0.40	R	1.73	1	0.23	500			
	Probe Positioning	2.90	R	1.73	1	1.67	∞	7		
	Max SAR Eval	1.00	R	1.73	1	0.58	00			
	2.Test Sample Related	10	· ·	90 mm = 1	90 - 0 20 - 4	2 2		1		
	Device Positioning	1.80	N	1.00	1	1.80	9	1		
	Device Holder	3.60	N	1.00	1	3.60	5			
	Power Drift	5.00	R	1.73	1	2.89	60			
	3.Phantom and Setup]		
	Phantom Uncertainty	4.00	R	1.73	1	2.31	60			
	Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	60			
	Liquid Permitivity(target)	5.00	R	1.73	0.60	1.73	60			
835	Liquid Permitivity(meas.)	1.03	N	1	0.60	0.62	60	10.43	2	20.87
(Body)	Liquid Conductivity(meas.)	2.90	N	1	0.64	1.86	60	10.43	-	20.87
1900	Liquid Permitivity(meas.)	2.63	N	1	0.60	1.58	500	10.37	2	20.75
(Body)	Liquid Conductivity(meas.)	0.38	N	1	0.64	0.24	50	10.57	2	20.73

Table 6.1 Breakdown of Errors

7. ANSI/ IEEE C95.1 - 2005 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
SPATIAL PEAK SAR * (Brain)	1.60	8.00		
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40		
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

Table 7.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

8. SYSTEM VERIFICATION

8.1 Tissue Verification

Freq. [MHz]	Date	Liquid	Liquid Temp.[°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
925	835 Sep. 12, 2010 Body	Pody	21.1	εr	55.2	56.8	+ 2.90	± 5
835 Sep. 12, 2010	Sep. 12, 2010	Бойу		σ	0.97	0.98	+ 1.03	± 5
1 900 Sep. 11, 20	Con 11 2010	Dody	21.3	εr	53.3	53.5	+ 0.38	± 5
	Sep. 11, 2010	Body		σ	1.52	1.48	- 2.63	± 5

8.2 System Validation

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz /1 900 MHz by using the system validation kit. (Graphic Plots Attached)

**Input Power: 100 mW

Freq. [MHz]	Date	Liquid	Liquid Temp. [°C]	SAR Average	Target Value (SPEAG) (mW/g)	* Measured Value (mW/g)	Deviation [%]	Limit [%]
835	Sep. 12, 2010	Body	21.1	1 g	9.92	1.03	+3.38	± 10
1 900	Sep. 11, 2010	Body	21.3	1 g	41.5	4.23	+ 1.93	± 10

9. 3G MEASUREMENT PROCEDURES

9.1 Procedures Used To Establish Test Signal

The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more then 5% occurred, the tests were repeated.

9.2 SAR Measurement Conditions for UMTS

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

9.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3 GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s"

9.2.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

9.2.3 Body SAR Measurement

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

9.2.4 Handsets with Release 5 HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than 1/4 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

Sub-Test 1 Setup for Release 5 HSDPA

Sub-test	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (1)	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15 ⁽³⁾	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

9.2.5 Handsets with Release 6 HSPA (HSDPA/HSUPA)

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than ¼ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.1 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than ¼ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurement should be used to test for head exposure.

Sub- test	βς	β_{d}	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	- 2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.

www.hct.co.kr

Note 2: CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Average Output Power Measurement with USB cable for FCC ID: BEJL02C

	and Channel	Voice	Voice GPRS Data								
Band		GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)					
0011	512	29.59	29.61	25.56	24.89	23.36					
GSM 1900	661	29.60	29.63	25.55	25.03	23.20					
.300	810	29.40	29.42	25.59	25.05	23.45					

Table 9.2 GSM Conducted output powers

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	MPR		
Version			4132	4183	4233	
99	WCDMA	12.2 kbps RMC	23.32	23.34	23.45	-
5	HSDPA	Subtest 1	23.02	23.12	23.43	0
5		Subtest 2	22.96	23.01	23.23	0
5		Subtest 3	22.89	22.83	23.15	0.5
5		Subtest 4	22.73	22.91	23.20	0.5
6	HSUPA	Subtest 1	22.93	22.60	23.42	0
6		Subtest 2	21.80	21.69	22.12	2
6		Subtest 3	22.17	22.07	22.64	1
6		Subtest 4	22.04	21.89	22.17	2
6		Subtest 5	22.89	22.74	23.21	0

Table 9.3 WCDMA Conducted output power

10. SAR TEST DATA SUMMARY

10.1 Measurement Results (GSM1900 Body SAR)

Frequency		Modulation	Conducted Power (dBm)		Configuration	Separation	Antenna	SAR(mW/g)	
MHz	Channel		Begin	End		Distance	Туре		
1880.0	661 (Mid)	GPRS 1Tx	29.63	29.75	Horizontal up	5 mm	Intenna	0.704	
1880.0	661 (Mid)	GPRS 2Tx	25.55	25.61	Horizontal up	5 mm	Intenna	0.597	
1880.0	661 (Mid)	GPRS 3Tx	25.03	25.13	Horizontal up	5 mm	Intenna	0.769	
1880.0	661 (Mid)	GPRS 4Tx	23.20	23.19	Horizontal up	5 mm	Intenna	0.617	
1880.0	661 (Mid)	GPRS 3Tx	25.03	25.13	Horizontal down	5 mm	Intenna	0.232	
1880.0	661 (Mid)	GPRS 3Tx	25.03	25.07	Vertical Front	5 mm	Intenna	0.354	
1880.0	661 (Mid)	GPRS 3Tx	25.03	25.09	Vertical Back	5 mm	Intenna	0.486	
1880.0	661 (Mid)	GPRS 3Tx	25.03	25.09	Тор	5 mm	Intenna	0.163	
	ANSI/ IEEE C95.1 2005 – Safety Limit						Pody		

ANSI/ IEEE C95.1 2005 – Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Body
1.6 W/kg (mW/g)

Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Power Supply Power supplied through host device (TOSHIBA)
- 6 Test Signal Call Mode ☐ Manual Test cord ☐ Base Station Simulator
- 7 All side of the device were tested and the worst-case side is reported.
- 8 Test Configuration ☐ With Holster ☒ Without Holster
- 9 The EUT was fixed by using a Styrofoam to avoid perturbation due to the device holder clamps.
- 10 Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD. SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA

www.hct.co.kr

TEL: +82 31 639 8565 FAX: +82 31 639 8525

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

10.2 Measurement Results (WCDMA850 Body SAR)

Frequency		Modulation	Conducted Power (dBm)		Configuration	Separation	Antenna	SAR(mW/g)
MHz	Channel		Begin	End		Distance	Туре	
836.6	4183 (Mid)	WCDMA850	23.34	23.37	Horizontal up	5 mm	Intenna	0.409
836.6	4183 (Mid)	WCDMA850	23.34	23.42	Horizontal down	5 mm	Intenna	0.162
836.6	4183 (Mid)	WCDMA850	23.34	23.33	Vertical front	5 mm	Intenna	0.185
836.6	4183 (Mid)	WCDMA850	23.34	23.45	Vertical Back	5 mm	Intenna	0.294
836.6	4183 (Mid)	WCDMA850	23.34	23.25	Тор	5 mm	Intenna	0.093

ANSI/ IEEE C95.1 2005 – Safety Limit **Spatial Peak Uncontrolled Exposure/ General Population**

Body 1.6 W/kg (mW/g) Averaged over 1 gram

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical 1 configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm. 3
- Tissue parameters and temperatures are listed on the SAR plot. 4
- 5 **Power Supply** Power supplied through host device (TOSHIBA)
- Test Signal Call Mode 6 ☐ Manual Test cord
- All side of the device were tested and the worst-case side is reported.
- **Test Configuration** ☐ With Holster
 - The EUT was fixed by using a Styrofoam to avoid perturbation due to the device holder clamps.
- WCDMA Mode was tested under RMC 12.2 kbps and HSDPA/HSUPA Inactive. 9
- Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525

www.hct.co.kr

11. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 2005.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

12. REFERENCES

- [1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.
- [2] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [4] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [5] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9]K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zòrich, Dosimetric Evaluation of the Cellular Phone.
- [21] Mobile and Portable Device RF Exposure Equipment Authorization Procedures #447498.

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

Attachment 1. - SAR Test Plots

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn911; Calibrated: 2010-04-29
- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.807 mW/g

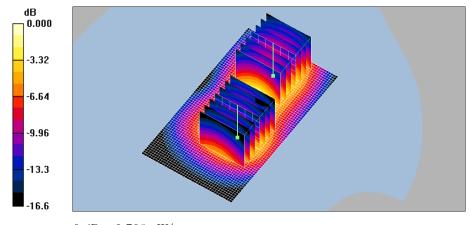
Body 661/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = 0.115 dB

Peak SAR (extrapolated) = 0.894 W/kg

SAR(1 g) = 0.588 mW/g; SAR(10 g) = 0.332 mW/g

Maximum value of SAR (measured) = 0.653 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = 0.115 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.704 mW/g; SAR(10 g) = 0.402 mW/g

Maximum value of SAR (measured) = 0.798 mW/g

0 dB = 0.798 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn911; Calibrated: 2010-04-29
- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.680 mW/g

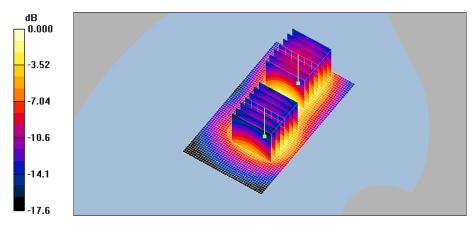
Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.855 W/kg

SAR(1 g) = 0.597 mW/g; SAR(10 g) = 0.342 mW/g

Maximum value of SAR (measured) = 0.678 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.502 mW/g; SAR(10 g) = 0.282 mW/g

Maximum value of SAR (measured) = 0.563 mW/g

0 dB = 0.563 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.892 mW/g

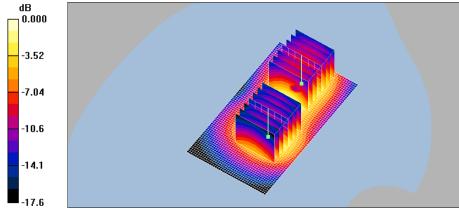
Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.9 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 2.70 W/kg

SAR(1 g) = 0.769 mW/g; SAR(10 g) = 0.444 mW/g

Maximum value of SAR (measured) = 0.864 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.9 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.619 mW/g; SAR(10 g) = 0.348 mW/g

Maximum value of SAR (measured) = 0.721 mW/g

0 dB = 0.721 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn911; Calibrated: 2010-04-29
- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.720 mW/g

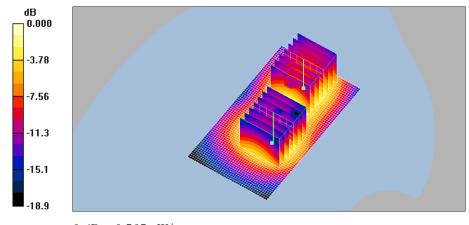
Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.2 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.873 W/kg

SAR(1 g) = 0.617 mW/g; SAR(10 g) = 0.350 mW/g

Maximum value of SAR (measured) = 0.693 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.2 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.781 W/kg

SAR(1 g) = 0.508 mW/g; SAR(10 g) = 0.286 mW/g

Maximum value of SAR (measured) = 0.565 mW/g

0 dB = 0.565 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23

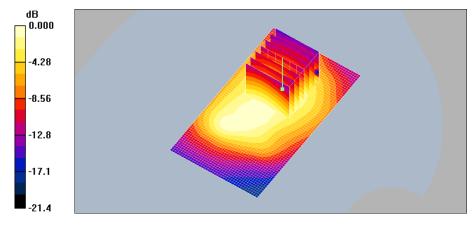
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.261 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.143 mW/g

Maximum value of SAR (measured) = 0.254 mW/g

0 dB = 0.254 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C Vertical; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23

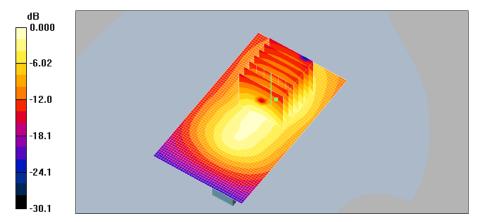
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.358 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.112 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.197 mW/g

Maximum value of SAR (measured) = 0.397 mW/g

0 dB = 0.397 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C Vertical; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

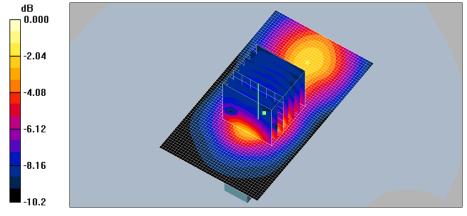
- Probe: ET3DV6 - SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23

- Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.569 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 0.803 W/kg

SAR(1 g) = 0.486 mW/g; SAR(10 g) = 0.269 mW/g

Maximum value of SAR (measured) = 0.544 mW/g

0 dB = 0.544 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Sep.11, 2010

DUT: L-02C Top; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23

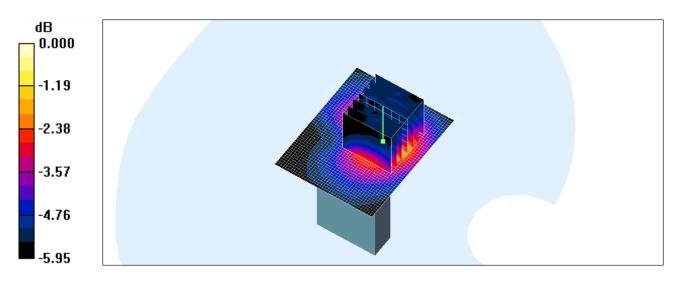
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.173 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.95 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.163 mW/g; SAR(10 g) = 0.106 mW/g

Maximum value of SAR (measured) = 0.179 mW/g

0 dB = 0.179 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.1 $^{\circ}$ C Ambient Temperature: 21.3 $^{\circ}$ C Test Date: Sep.12, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.983 \text{ mho/m}$; $\epsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(6.4, 6.4, 6.4); Calibrated: 2010-02-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn911; Calibrated: 2010-04-29

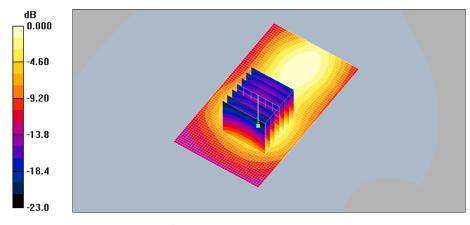
- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 4183/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.535 mW/g

Body 4183/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 19.2 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.879 W/kg

SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.202 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.442 mW/g

0 dB = 0.442 mW/g

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

21.3 ℃ Liquid Temperature: 21.5 ℃ Ambient Temperature: Test Date: Sep.11, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Body 661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.892 mW/g

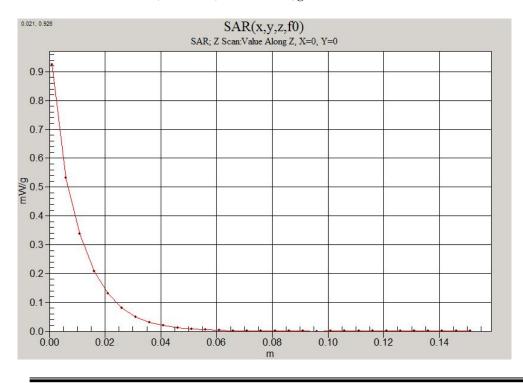
Body 661/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.9 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 2.70 W/kg

SAR(1 g) = 0.769 mW/g; SAR(10 g) = 0.444 mW/g

Maximum value of SAR (measured) = 0.864 mW/g


Body 661/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.9 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.619 mW/g; SAR(10 g) = 0.348 mW/g

Maximum value of SAR (measured) = 0.721 mW/g

www.hct.co.kr

Test Laboratory: HCT CO., LTD

EUT Type: Celluar/PCS GPRS/WCDMA USB Modem

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.1 $^{\circ}$ C Ambient Temperature: 21.3 $^{\circ}$ C Test Date: Sep.12, 2010

DUT: L-02C; Type: Bar; Serial: #1

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.983 \text{ mho/m}$; $\varepsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1798; ConvF(6.4, 6.4, 6.4); Calibrated: 2010-02-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

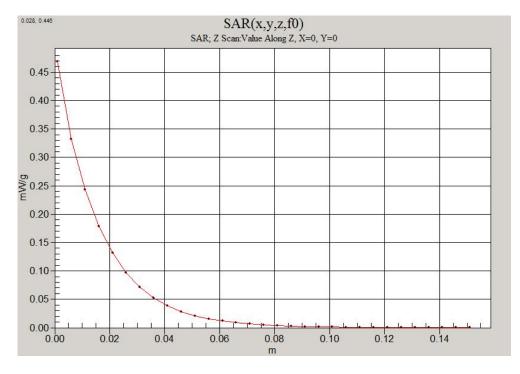
- Electronics: DAE4 Sn911; Calibrated: 2010-04-29 - Phantom: SAM 1800/1900 MHz; Type: SAM

Body 4183/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.535 mW/g

Body 4183/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 19.2 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.879 W/kg

SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.202 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.442 mW/g

www.hct.co.kr

Attachment 2. – Dipole Validation Plots

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

■ Validation Data (835 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

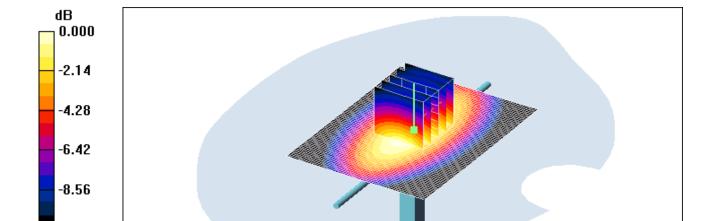
Liquid Temp: 21.1 ℃

Test Date: Sept. 12, 2010

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:441

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:


-10.7

- Probe: ET3DV6 SN1798; ConvF(6.4, 6.4, 6.4); Calibrated: 2010-02-23 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 835/900 MHz; Type: SAM

Validation 835 MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = $1.12~\rm mW/g$

Validation 835 MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.0 V/m; Power Drift = -0.026 dB Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.678 mW/g Maximum value of SAR (measured) = 1.12 mW/g

0 dB = 1.12 mW/g

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

Validation Data (1900 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

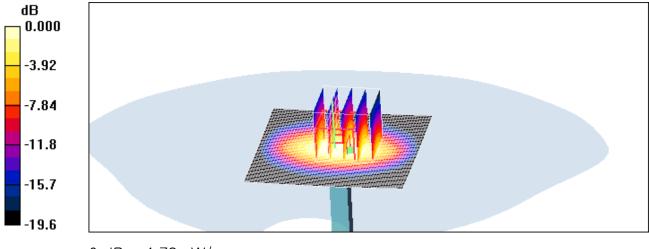
Liquid Temp: 21.1 ℃

Test Date: Sept. 11, 2010

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:


- Probe: ET3DV6 SN1798; ConvF(4.65, 4.65, 4.65); Calibrated: 2010-02-23 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn911; Calibrated: 2010-04-29

- Phantom: SAM 1800/1900 MHz; Type: SAM

Dipole 1900MHz Validation/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.07 mW/g

Dipole 1900MHz Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.3 V/m: Power Drift = 0.001 dB Peak SAR (extrapolated) = 6.72 W/kg SAR(1 g) = 4.23 mW/g; SAR(10 g) = 2.24 mW/g

Maximum value of SAR (measured) = 4.78 mW/g

0 dB = 4.78 mW/g

Dielectric Parameter (835 MHz Body)

Title L-02C

SubTitle WCDMA835(Body)

Test Date Sep.12, 2010

Frequency	e'	e''
800000000	57.0434	21.3408
805000000	57.0072	21.2859
810000000	57.0063	21.2771
815000000	56.9621	21.2456
820000000	56.9777	21.1956
825000000	56.9386	21.1939
830000000	56.9084	21.1647
835000000	56.8227	21.1394
840000000	56.8337	21.1061
845000000	56.7284	21.0570
850000000	56.7252	20.9871
855000000	56.6500	20.9944
860000000	56.5816	20.9089
865000000	56.5055	20.9401
870000000	56.3867	20.8632
875000000	56.3828	20.7918
880000000	56.2770	20.8243
885000000	56.2389	20.7738
890000000	56.1450	20.7829
895000000	56.0689	20.7603
900000000	56.0646	20.7828

■ Dielectric Parameter (1900 MHz Body)

Title L-02C

SubTitle GSM1900(Body)
Test Date Sep.11, 2010

Frequency	e'	e''
1850000000	53.6744	13.8462
1855000000	53.6883	13.8488
1860000000	53.7126	13.8689
1865000000	53.6660	13.8850
1870000000	53.6576	13.9013
1875000000	53.6182	13.9239
1880000000	53.5880	13.9494
1885000000	53.5730	13.9356
1890000000	53.5140	13.9900
1895000000	53.4934	13.9771
1900000000	53.4778	14.0156
1905000000	53.4444	14.0152
1910000000	53.4239	14.0495
1915000000	53.3625	14.0812
1920000000	53.3554	14.1124
1925000000	53.3443	14.1166
1930000000	53.3013	14.1214
1935000000	53.3494	14.1675
1940000000	53.3435	14.1605
1945000000	53.3212	14.2221
1950000000	53.3369	14.2065

Attachment 3. - Probe Calibration Data

44 of 76

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Report No.: Sep. 14, 2010

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

lient HCT (Dymstec	:)	Certifi	Certificate No: ET3-1798_Feb10		
CALIBRATION (CERTIFICAT	E			
Object	ET3DV6 - SN:1	798			
Calibration procedure(s)		QA CAL-12.v6, QA CAL-23.v edure for dosimetric E-field p			
Calibration date:	February 23, 20	10			
The measurements and the unce	ertainties with confidence	tional standards, which realize the phys probability are given on the following pa ory facility: environment temperature (2)	ages and are part of the certificate.		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10		
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10		
ower sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10		
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10		
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10		
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10		
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)			
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check		
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11		
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10		
	Name	Function	Signature		
Calibrated by:	Katja Pokovic	Technical Manager	Signature		
Janutared by.	raya r okovio	redillical mallager	Jola lly		
Approved by:	Niels Kuster	Quality Manager	i.V. F. Suchelt		
			Issued: February 24, 2010		

Certificate No: ET3-1798_Feb10

Page 1 of 11

HCT CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525 www.hct.co.kr

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1798 Feb10 Page 2 of 11

ET3DV6 SN:1798

February 23, 2010

Probe ET3DV6

SN:1798

Manufactured:

August 14, 2003 March 20, 2008

Last calibrated: Recalibrated:

February 23, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1798_Feb10

Page 3 of 11

ET3DV6 SN:1798 February 23, 2010

DASY - Parameters of Probe: ET3DV6 SN:1798

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	2.00	1.87	2.04	± 10.1%
DCP (mV) ^B	94.5	89.8	89.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1798_Feb10

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

[®] Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

ET3DV6 SN:1798

February 23, 2010

DASY - Parameters of Probe: ET3DV6 SN:1798

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	$43.5 \pm 5\%$	$0.87 \pm 5\%$	7.51	7.51	7.51	0.27	1.87 ± 13.3%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	6.37	6.37	6.37	0.26	3.11 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	$1.37\pm5\%$	5.53	5.53	5.53	0.60	2.15 ± 11.0%
1900	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.30	5.30	5.30	0.67	2.16 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	5.12	5.12	5.12	0.74	2.12 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	$1.80 \pm 5\%$	4.64	4.64	4.64	0.99	1.75 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1798_Feb10

Page 5 of 11

ET3DV6 SN:1798 February 23, 2010

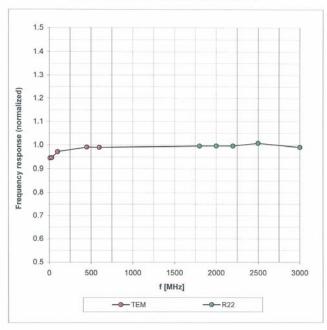
DASY - Parameters of Probe: ET3DV6 SN:1798

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	$56.7 \pm 5\%$	$0.94 \pm 5\%$	7.98	7.98	7.98	0.21	1.90 ± 13.3%
835	± 50 / ± 100	$55.2 \pm 5\%$	$0.97 \pm 5\%$	6.40	6.40	6.40	0.33	2.71 ± 11.0%
1750	± 50 / ± 100	$53.4 \pm 5\%$	$1.49\pm5\%$	4.98	4.98	4.98	0.63	2.93 ± 11.0%
1900	±50/±100	$53.3 \pm 5\%$	$1.52 \pm 5\%$	4.65	4.65	4.65	0.87	2.38 ± 11.0%
1950	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	4.76	4.76	4.76	0.97	2.21 ± 11.0%
2450	±50/±100	$52.7 \pm 5\%$	$1.95 \pm 5\%$	4.22	4.22	4.22	0.99	1.73 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1798_Feb10


Page 6 of 11

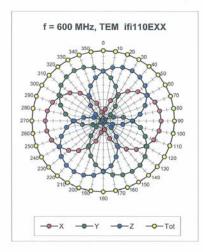
ET3DV6 SN:1798 February 23, 2010

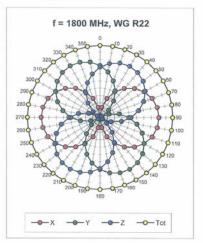
Frequency Response of E-Field

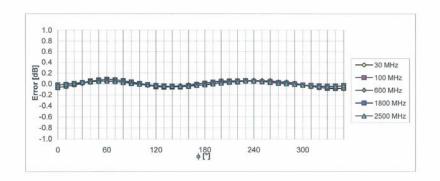
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1798_Feb10


Page 7 of 11



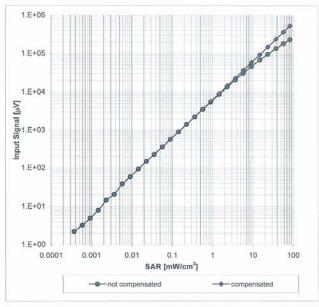

ET3DV6 SN:1798

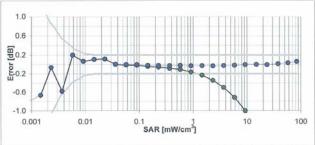
February 23, 2010

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1798_Feb10


Page 8 of 11

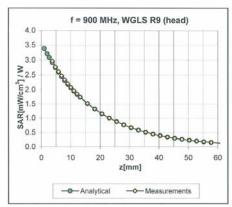


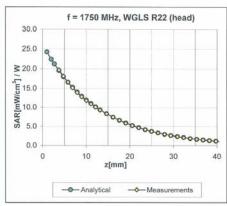
ET3DV6 SN:1798 February 23, 2010

Dynamic Range f(SAR_{head})

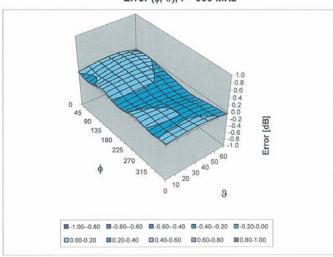
(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1798_Feb10


Page 9 of 11

ET3DV6 SN:1798 February 23, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1798_Feb10

Page 10 of 11

ET3DV6 SN:1798 February 23, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1798_Feb10

Page 11 of 11

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com **Additional Conversion Factors** for Dosimetric E-Field Probe ET3DV6 Type: Serial Number: 1798 Zurich Place of Assessment: March 30, 2010 Date of Assessment: Probe Calibration Date: February 23, 2010 Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the recalibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1750 MHz. Assessed by: ET3DV6-SN:1798 Page 1 of 2 March 30, 2010

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 - SN:1798

Conversion factor (± standard deviation)

 $835 \pm 50 \text{ MHz}$

ConvF $6.48 \pm 7\%$

 $\varepsilon_r = 41.5 \pm 5\%$

 $\sigma = 0.90 \pm 5\% \text{ mho/m}$

(head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

ET3DV6-SN:1798

Page 2 of 2

March 30, 2010

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

an a HCT (Parameters)

Accreditation No.: SCS 108

CALIBRATION ()	Certificate No	Certificate No: D835V2-441_May10		
SALIBITATION	CERTIFICATE				
Object	D835V2 - SN: 44	11			
Calibration procedure(s)	QA CAL-05.v7				
Calibration procedure(s)		dure for dipole validation kits			
	Gambration proce	date for alpoie validation kits			
Calibration date:	May 21, 2010				
This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical un	nits of measurements (SI).		
		robability are given on the following pages ar			
All collections have been send of	ata dia dia dia ata and labarata	5 TH	•		
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.		
Calibration Equipment used (M&	TE critical for calibration)				
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10		
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)			
	SN: 5086 (20g)		Oct-10		
Reference 20 dB Attenuator	514. 5000 (20g)	30-Mar-10 (No. 217-01158)	Oct-10 Mar-11		
	SN: 5047.2 / 06327				
Type-N mismatch combination Reference Probe ES3DV3		30-Mar-10 (No. 217-01158)	Mar-11		
Type-N mismatch combination Reference Probe ES3DV3	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Mar-11 Mar-11		
Type-N mismatch combination Reference Probe ES3DV3 DAE4	SN: 5047.2 / 06327 SN: 3205	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Mar-11 Mar-11 Apr-11		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5047.2 / 06327 SN: 3205 SN: 601	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10)	Mar-11 Mar-11 Apr-11 Mar-11		
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5047.2 / 06327 SN: 3205 SN: 601	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check		
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11		
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11		
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11		
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11		
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11		

Certificate No: D835V2-441_May10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-441_May10 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.66 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.29 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-441_May10

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.51 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.92 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.51 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-441_May10 Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.2 Ω - 8.2 jΩ	
Return Loss	- 20.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.3 Ω - 9.4 jΩ
Return Loss	- 19.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.375 ns
Electrical Delay (one direction)	1.375 NS

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 09, 2001

Certificate No: D835V2-441_May10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 21.05.2010 09:55:07

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:441

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

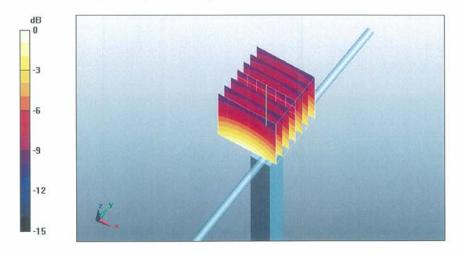
Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

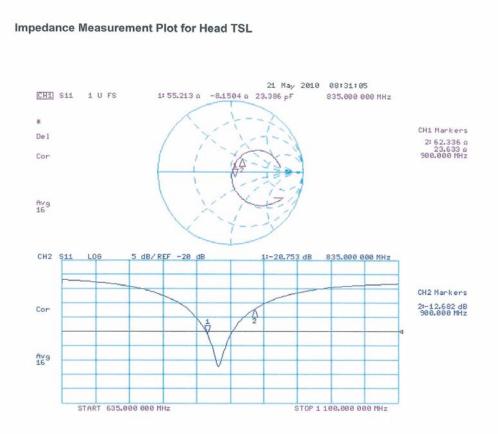

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.3 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.83 mW/g



0 dB = 2.83 mW/g

Certificate No: D835V2-441_May10

Page 6 of 9

Certificate No: D835V2-441_May10

Page 7 of 9

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Sep. 14, 2010 Report No.:

DASY5 Validation Report for Body

Date/Time: 20.05.2010 09:50:16

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:441

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³

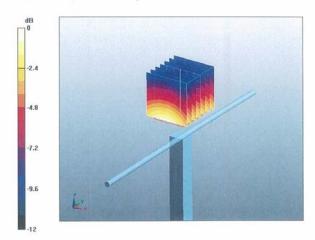
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

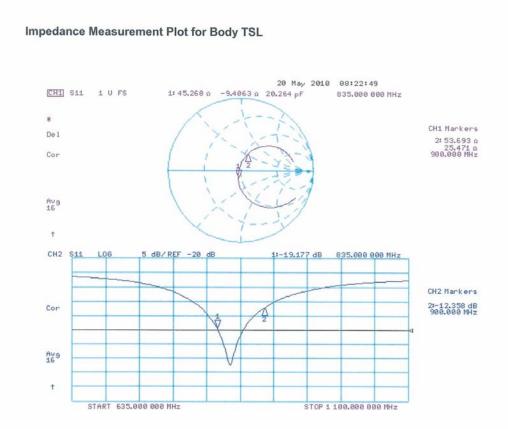

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.4 V/m; Power Drift = 0.000719 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.64 mW/g

Maximum value of SAR (measured) = 2.93 mW/g



0 dB = 2.93 mW/g

Certificate No: D835V2-441_May10

Page 8 of 9

Certificate No: D835V2-441_May10

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d032_Jul10

Object	D1900V2 - SN: 5	d032	
Calibration procedure(s)	QA CAL-05.v7	dure for dipole validation kits	
	Calibration proce	dure for dipole validation kits	
Calibration date:	July 16, 2010		
The measurements and the unce	ertainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
All calibrations have been condu	cted in the closed laborator	y lacility. environment temperature (22 ± 3) (C and number 10%.
Calibration Equipment used (M&	TE critical for calibration)		
A.20 C.	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Primary Standards Power meter EPM-442A	ID#		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID# GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID# GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID# GB37480704 US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Oct-10 Oct-10 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Oct-10 Oct-10 Mar-11 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Frype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID# MY41092317	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID# MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID# MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01152) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature

Certificate No: D1900V2-5d032_Jul10 Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d032_Jul10 Page 2 of 9

HCTA1009FS02 FCC ID: BEJL02C Date of Issue: Report No.: Sep. 14, 2010

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(22.6 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

Page 3 of 9

Certificate No: D1900V2-5d032_Jul10

HCTA1009FS02 FCC ID: BEJL02C Report No.:

Date of Issue:

Sep. 14, 2010

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.5 mW / g
SAR normalized	normalized to 1W	42.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.63 mW / g
SAR normalized	normalized to 1W	22.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.4 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d032_Jul10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω + 6.2 j Ω	
Return Loss	- 24.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.3 \Omega + 7.0 j\Omega$
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.177 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 17, 2003	

DASY5 Validation Report for Head TSL

Date/Time: 16.07.2010 12:15:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

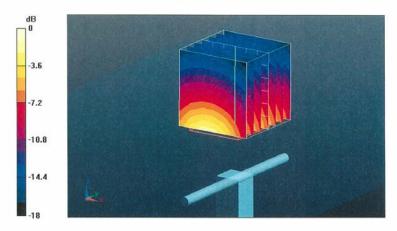
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

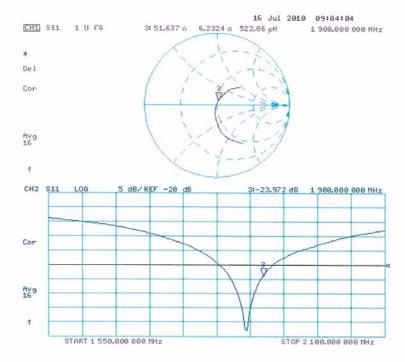

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.4 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.26 mW/g

Maximum value of SAR (measured) = 12.3 mW/g


0 dB = 12.3 mW/g

Certificate No: D1900V2-5d032_Jul10

Page 6 of 9

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 13.07.2010 12:14:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

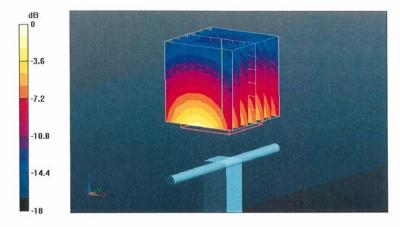
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

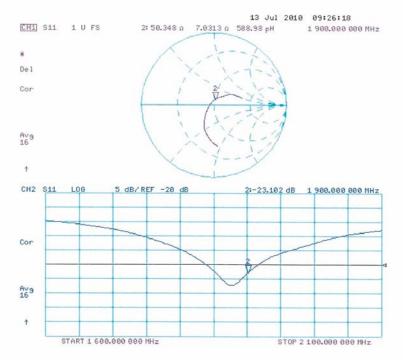

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.1 V/m; Power Drift = 0.00127 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.63 mW/g

Maximum value of SAR (measured) = 13.2 mW/g



0 dB = 13.2 mW/g

Certificate No: D1900V2-5d032_Jul10 Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d032_Jul10

Page 9 of 9