

Report Number: F690501/RF-RTL003992

Page: 1

23

TEST REPORT

of

FCC Part 24 Subpart E FCC ID: BEJL01C

Equipment Under Test : PCS GSM Phone

Model Name

: L-01C

Serial No.

: N/A

Applicant

: LG Electronics Inc.

Manufacturer

: LG Electronics Inc.

Date of Test(s)

: 2010.07.05~2010.07.13

Date of Issue

: 2010.07.13

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Grant Lee

Date

2010.07.13

Approved By

Date

2010.07.13

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003992 Page: 2 of 23

INDEX

TABLE OF CONTENTS	Page
1. General Information	3
2. RF radiated output power & spurious radiated emission	7
3. Conducted Output Power	12
4. Occupied Bandwidth 99 %	14
5. Spurious Emissions At Antenna Terminal	17
6. Band Edge	20
7. Frequency Stability	22

Report Number: F690501/RF-RTL003992 23 Page: 3 of

1. General information

1.1. Testing laboratory

SGS Testing Korea Co., Ltd.

705, Dongchun-Dong Sooji-Gu, Yongin-Shi, Kyungki-Do, South Korea.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

www.electrolab.kr.sgs.com

Telephone +82 +31 428 5700 FAX +82 +31 427 2371

1.2. Details of applicant

Applicant LG Electronics Inc.

Address 60-39, Gasan-dong, Gumchon-gu, Seoul, 153-023, Korea

Contact Person Han, Bong Hyo Phone No. +82 +2 2033 1108

1.3. Description of EUT

Kind of Product	PCS GSM Phone
Model Name	L-01C
Serial Number	N/A
Power Supply	DC 3.7 V (Li-poly Battery)
Rated Power	GSM1900: 30.00 dB m
Frequency Range	GSM1900: 1 850.2 Mb ~ 1 909.8 Mb
Number of Channels	GSM1900 : 300
Class of GPRS	Class 12

Report Number: F690501/RF-RTL003992 Page: 4 of 23

1.4. Description of test mode

		Vaine		GPI	RS Data	
Pand	Frequency	Voice GSM	GPRS	GPRS	GPRS	GPRS
Dallu	Band (MHz)		1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot
		(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
GSM	1850.2	29.65	29.64	29.61	29.60	29.59
1900	1880.0	29.78	29.78	29.75	29.71	29.70
	1909.8	29.75	29.74	29.73	29.70	29.68

GSM (850 / 1900)

We found out the test mode with the highest power level after we analyze all the data rates. So we chose **GSM1900 voice** (worst case) as a representative.

Report Number: F690501/RF-RTL003992 Page: 5 of 23

1.5. Test equipment list

Equipment	Manufacturer	Model	Cal Due.
Signal Generator	Agilent	E4438C	Mar. 31, 2011
Signal Generator	Rohde & Schwarz	SMR40	Sep. 25, 2010
Spectrum Analyzer	Rohde & Schwarz	FSV30	Mar. 31, 2011
Mobile Test Unit	Agilent	E5515C	Mar. 31, 2011
Directional Coupler	Narda	4226-20	Jan. 07, 2011
High Pass Filter	Wainwright	WHK3.0/18G-10SS	Sep. 29, 2010
DC power Supply	Agilent	U8002A	Jan. 06, 2011
Preamplifier	H.P.	8447F	Jul. 05, 2011
Preamplifier	Empower RF Systems,Inc	2002-BBS2C4AEL	Mar. 31, 2011
Test Receiver	R&S	ESU26	Apr. 08, 2011
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	Jul. 22, 2010
Horn Antenna	Rohde & Schwarz	HF 906	Oct. 08, 2011
Horn Antenna	SCHWARZBECK	BBH 9120D	Nov. 09, 2011
Dipole Antenna	VHAP/UHAP	975/958	Oct. 10, 2011
Antenna Master	EMCO	1050	N.C.R
Turn Table	Daeil EMC	DI-1500	N.C.R
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	Jan. 27, 2011

Report Number: F690501/RF-RTL003992 Page: 6 of 23

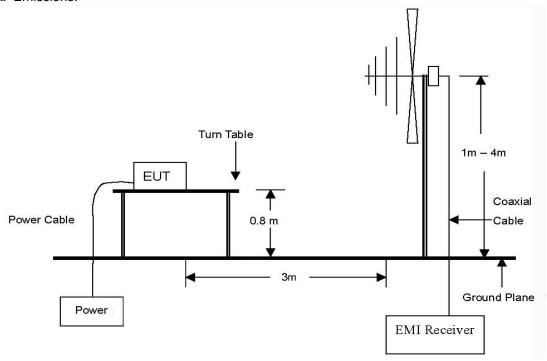
1.6. Summary of test results

The EUT has been tested according to the following specifications:

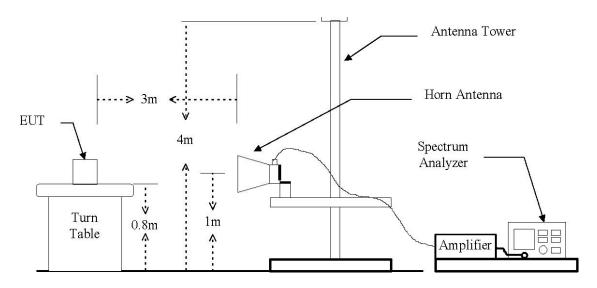
APPLIED STANDARD : FCC Part 24					
Section in FCC part	Loct Itom				
§2.1046 §24.232(b)	RF Radiated Output Power	Complied			
§2.1053 §24.238(a)	Spurious Radiated Emission	Complied			
§2.1046(a)	Conducted Output Power	Complied			
§2.1049(h) (i)	Occupied Bandwidth	Complied			
§2.1051 §24.238(a)	Spurious Emission at Antenna Terminal	Complied			
§2.1055 §24.235	Frequency Stability	Complied			
§24.238(a)	Band Edge	Complied			

1.7. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL003992	Initial



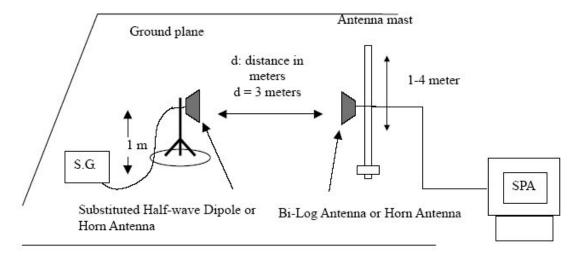
Report Number: F690501/RF-RTL003992 Page: 7 of 23


2. RF radiated output power & spurious radiated emission

2.1. Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\mathrm{Mz}$ to 1 G $\,\mathrm{Hz}$ Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 G $\rm Hz$ to 18 G $\rm Hz$ Emissions.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003992 Page: 8 of 23

The diagram below shows the test setup for substituted method

Report Number: F690501/RF-RTL003992 Page: 9 of 23

2.2. **Limit**

FCC §24.232(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

2.3. Test procedure: Based on ANSI/TIA 603C: 2004

- 1. On a test site, the EUT shall be placed at 80cm height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to he fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the resolution bandwidth was to 1 Mb and the average bandwidth was set to 1 Mb.
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole (824 ~ 849 Mb) or horn antenna (1 850 ~ 1 910 Mb) connected to a signal generator.
- 11. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase he sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dB m, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Report Number: F690501/RF-RTL003992 Page: 10 of 23

2.4. Test result for RF radiated output power

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

GSM1900

Frequency	· · · · · · · · · · · · · · · · · · ·		E.I.R.P.			
(MHz)	(H/V)	(dB m)	(dB)	(dB i)	(dB m)	(mW)
1 850.2	V	25.96	4.87	9.12	30.21	1049.18
1 850.2	Н	17.29	4.87	9.12	21.54	142.51
1 880.0	V	25.34	4.91	9.20	29.63	917.59
1 880.0	Н	14.76	4.91	9.20	19.05	80.29
1 909.8	V	27.84	4.94	9.27	32.17	1649.87
1 909.8	Н	14.56	4.94	9.27	18.89	77.53

Remark:

^{1.} $E.I.R.P = [S.G \ level + Amp.](dB \ m) - Cable \ loss(dB) + Ant. \ gain \ (dB \ d/dB \ i)$

^{2.} The E.I.R.P was measured in three orthogonal EUT position(x-axis, y-axis and z-axis). Worst cases are z-axis.

Report Number: F690501/RF-RTL003992 Page: 11 23 of

2.5. Spurious radiated emission

- Measured output Power : $32.17 \, dB \, m = 1.648 \, W$

- Modulation Signal : GSM1900

- Distance : 3 meters

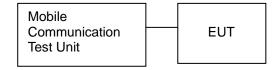
- Limit : $-(43 + 10\log_{10}(W)) = -45.17 \text{ dB } c$

Frequency (Mb)	Ant. Pol. (H/V)	S.G level (dB m)	Cable loss (dB)	Ant. gain (dB i)	E.I.R.P (dB m)	dB c	Margin (dB)
Low Channe	l(1 850.2 Mb)						
3 700.40	V	-48.54	7.13	11.85	-43.82	-75.99	30.82
3 700.40	Н	-46.46	7.13	11.85	-41.74	-73.91	28.74
Middle Chan	nel(1 880.0 M	₩)					
3 760.00	V	-45.92	7.23	11.85	-41.31	-73.48	28.31
3 760.00	Н	-46.35	7.23	11.85	-41.74	-73.91	28.74
High Channel(1 909.8 №)							
3 819.60	V	-42.47	7.33	11.84	-37.96	-70.13	24.96
3 819.60	Н	-45.84	7.33	11.84	-41.33	-73.50	28.33

Remark:

^{1.} E.I.R.P = S.G level (dBm) - Cable loss (dB) + Ant. gain (dB d/dBi) 2. No more harmonic above 3^{rd} harmonic for all channel.

Report Number: F690501/RF-RTL003992 Page: 12 of 23


3. Conducted Output Power

3.1. Limit

Requirements: CFR 47, Section §2.1046

3.2. Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The mobile was set up for the max. output power with pseudo random data modulation.
- 3. The power was measured with Mobile Communication Test unit.

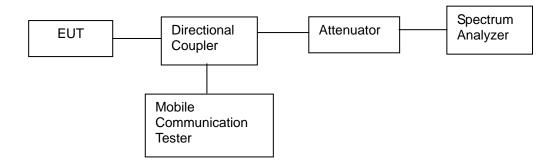
Report Number: F690501/RF-RTL003992 Page: 13 of 23

3.3. Test Result

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

		Vaine	GPRS Data				
Rand Frequency		Voice GSM	GPRS	GPRS	GPRS	GPRS	
Band	(MHz)	CON	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot	
		(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	
GSM	1850.2	29.65	29.64	29.61	29.60	29.59	
1900	1880.0	29.78	29.78	29.75	29.71	29.70	
	1909.8	29.75	29.74	29.73	29.70	29.68	

Report Number: F690501/RF-RTL003992 Page: 14 of 23


4. Occupied Bandwidth 99 %

4.1. Limit

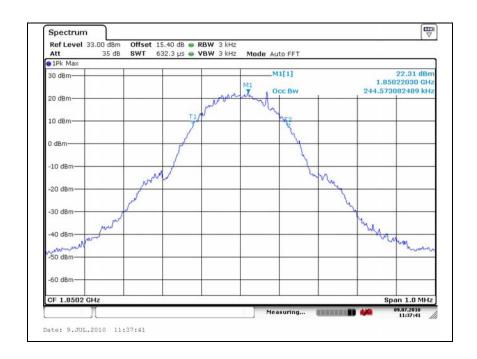
Requirements: CFR 47, Section §2.1049.

4.2. Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set. Occupied Bandwidth 99 % and -26 dB was tested under

Report Number: F690501/RF-RTL003992 Page: 15 of 23

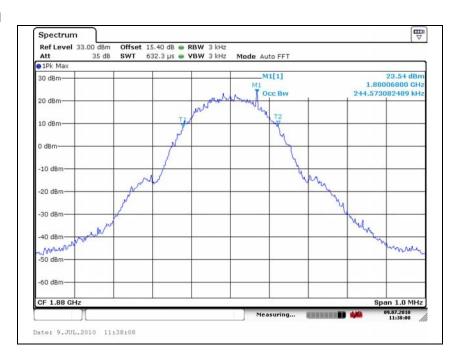
4.3 Test Results

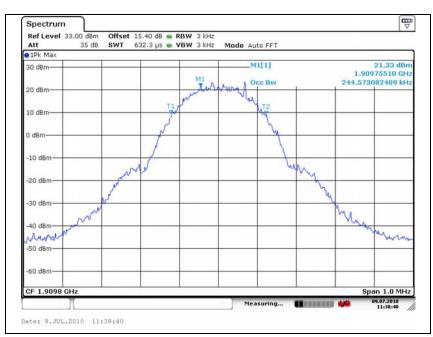

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

Band	Mode	Frequency (쌘)	Occupied Bandwidth (쌘)
		1 850.2	0.245
GSM1900	GSM Voice	1 880.0	0.245
		1 909.8	0.245

Please refer to the following plots.

GSM1900


99 % Low Channel



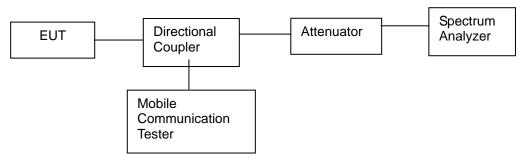
Report Number: F690501/RF-RTL003992 Page: 16 of 23

Middle Channel

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003992 Page: 17 of 23


5. Spurious Emissions at Antenna Terminal

5.1. Limit

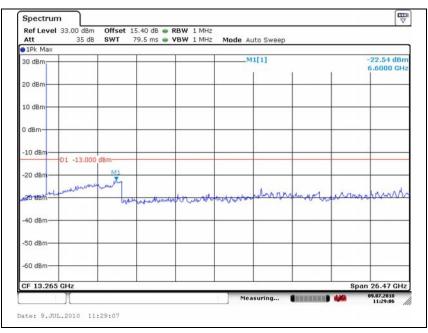
§24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency must be attenuated below the transmitting (P) by a factor of at least 43 + 10log(P)dB.

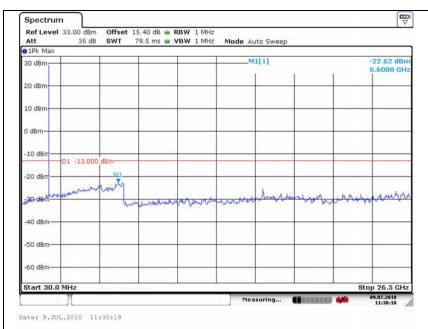
5.2. Test Procedure

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1 Mb. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.
- 3. Spurious Emission was tested

5.3. Test Results

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

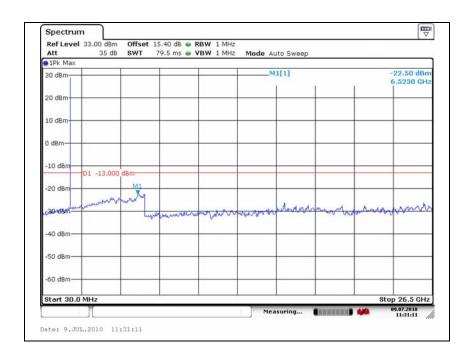

Please refer to the following plots.


Report Number: F690501/RF-RTL003992 Page: 18 of 23

GSM1900

Low Channel

Middle Channel

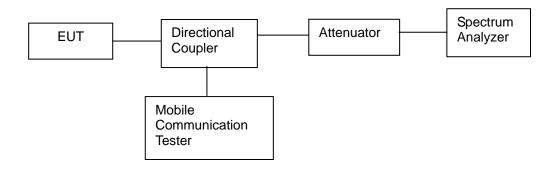


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003992 Page: 19 of 23

High Channel

Report Number: F690501/RF-RTL003992 Page: 20 of 23


6. Band Edge

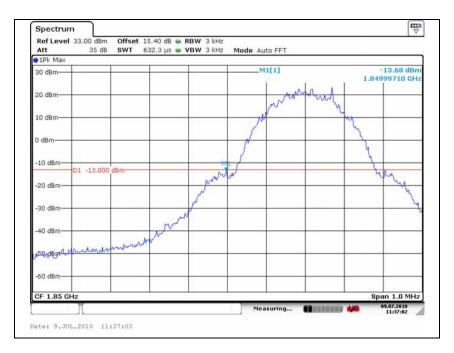
6.1. Limit

§24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency must be attenuated below the transmitting (P) by a factor of at least 43+10log(P)dB.

6.2. Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The center of the spectrum analyzer was set to block edge frequency.

6.3. Test Results


Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

Please refer to the following plots.

Report Number: F690501/RF-RTL003992 Page: 21 of 23

GSM1900 Low Channel

High Channel

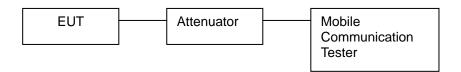
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003992 Page: 22 of 23

7. Frequency Stability

7.1. Limit

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:


According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table of this section.

For Mobile devices operating in the 824 to 849 $\,^{\text{Mb}}$ band at a power level less than or equal to 3 Watts, the limit specified in Table C-1 is +/- 2.5 ppm.

§24.235 The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

7.2. Test Procedure

- 1. Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators.
- 2. The EUT was placed inside the temperature chamber.
- 3. After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Report Number: F690501/RF-RTL003992 Page: 23 of 23

7.3. Test Results

Ambient temperature : (23 ± 2) °C Relative humidity : 46 % R.H.

GSM1900 mode at middle channel

Reference Frequency: 1 880.0 싼, Limit: 2.5 ppm

Frequency Stability versus Temperature

Environment Temperature (℃)	Power	Frequency Measure with Time Elapse		
	Supplied (Vdc)	Frequency Error (Hz)	ppm	
50		-40	-0.021	
40		-42	-0.022	
30		-38	-0.020	
23		-43	-0.023	
10	3.7	-43	-0.023	
0		-42	-0.022	
-10		-42	-0.022	
-20		-38	-0.020	
-30		-41	-0.022	

Frequency Stability versus power Supply

Environment	Power	Frequency Measure with Time Elapse		
Temperature (℃)	Supplied (Vdc)	Frequency Error (Hz)	ppm	
23	4.255	-44	-0.023	
	2.55 (batt. End point)	-38	-0.020	