

SAR TEST REPORT

HCT CO., LTD

EUT Type:	PCS GSM/ EDGE Phone GPRS Class 12 and GPI			M, but not simultaneously)				
FCC ID:	BEJKT770							
Model:	KT770	KT770 Trade Name LG						
Date of Issue:	Dec.16, 2008							
Test report No.:	HCT-IA0811-2401							
Test Laboratory:	HCT CO., LTD. SAN 136-1, AMI-RI, BUE TEL: +82 31 639 8565			KI-DO, 467-701, KOREA				
Applicant :	LG Electronics, Inc. 60-39, Gasan-Dong, Gumchon-Gu, Seoul 153-023, Korea Tel: +82-2-2033-1113 Fax: +82-2-2033-1222							
Testing has been carried out in accordance with:		FCC OET Bulletin 65(Edition 97-01), Supplement C (Edition 01-01) ANSI/ IEEE C95.1 – 2005						
Test result:	subject to the test. The	test results and sta	atements relate	respect of all parameters e only to the items tested rout written approval of the				
Signature	Report prepared by : Sun-Hee Kim Test Engineer of SA			/ed by Vook Kang er of SAR Part				

Table of Contents

1. INTRODUCTION		3
2. DESCRIPTION OF DEVICE		4
3. DESCRIPTION OF TEST EQUIPMENT		5
3.1 SAR MEASUREMENT SETUP		5
3.2 DASY E-FIELD PROBE SYSTEM		
3.3 PROBE CALIBRATION PROCESS		
3.4 SAM Phantom		
3.5 Device Holder for Transmitters		
3.6 Brain & Muscle Simulating Mixture Characterization		
3.7 SAR TEST EQUIPMENT		
4. SAR MEASUREMENT PROCEDURE		
5. DESCRIPTION OF TEST POSITION	1	3
5.1 HEAD POSITION		
5.2 Body Holster/Belt Clip Configurations		
6. MEASUREMENT UNCERTAINTY	1	5
7. ANSI/ IEEE C95.1 - 2005 RF EXPOSURE LIMITS	1	6
8. SYSTEM VERIFICATION	1	7
8.1 Tissue Verification	1	7
8.2 System Validation	1	7
9. TEST CONFIGURATIONS	.1	8
10. RF CONDUCTED POWER	1	9
10.1 Procedures Used to Establish RF Signal for SAR	1	9
11. SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas	2	0
11.1 SAR Evaluation Considerations	2	0
12. SAR TEST DATA SUMMARY	2	1
12.1 Measurement Results (GSM1900 Head SAR Touch Slide Up)	2	1
12.2 Measurement Results (GSM1900 Head SAR Touch Slide Down)		
12.3 Measurement Results (GSM1900 Head SAR Tilt Slide Up)	2	3
12.4 Measurement Results (GSM1900 Head SAR Tilt Slide Down)		
12.5 Measurement Results (GSM1900 Body SAR)		
12.6 Measurement Results (802.11b Module Body SAR)		
13. CONCLUSION		
14.REFERENCES	2	8
Attachment 1. – SAR Test Plots	2	9
Attachment 2. – Dipole Validation Plots	4	8
Attachment 3. – Probe Calibration Data	5	6
Attachment 4 - Dinole Calibration Data	6	6

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

 $\sigma E^2/\rho$ SAR where: conductivity of the tissue-simulant material (S/m) mass density of the tissue-simulant material (kg/m³) P E Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

2. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	PCS GSM/EDGE Phone with Bluetooth/WLAN GPRS Class 12 and GPRS mode class B (GPRS and GSM, but not simultaneously)
FCC ID	BEJKT770
Model(s)	KT770
Trade Name	LG
Serial Number(s)	#1
Application Type	Certification
Modulation(s)	GSM1900
Tx Frequency	1 850.20 – 1 909.80 MHz (GSM1900) 2 412- 2 462 MHz (DSSS/ OFDM)
Rx Frequency	1 930.20 – 1 989.80 MHz (GSM1900) 2 412- 2 462 MHz (DSSS/ OFDM)
FCC Classification	Licensed Portable Transmitter Held to Ear (PCE)
Production Unit or Identical Prototype	Prototype
Max SAR	0.363 W/kg GSM1900 Head SAR 0.752 W/kg GSM1900 Body SAR 0.002 W/kg Wi-Fi 802.11b
Date(s) of Tests	Dec.15, 2008
Antenna Type	Intenna

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

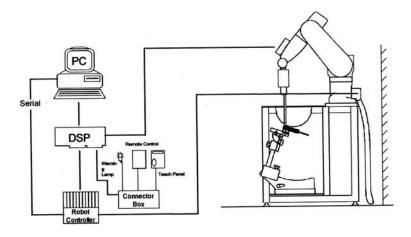


Figure 3.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

3.2 DASY E-FIELD PROBE SYSTEM

3.2.1 ES3DV3 Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors

Built-in shielding against static charges PEEK enclosure

material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air Conversion Factors (CF)

for HSL 900 and HSL 1810 Additional CF for other liquids and

frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz Figure 4.1 Photograph of the probe and the Phantom

Dosimetry in strong gradient fields Compliance tests of mobile phones

Figure 4.2 ES3DV3 E-field Probe

The SAR measurements were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 PROBE CALIBRATION PROCESS

3.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than ± 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

exposure time (30 seconds), $\Delta t =$

heat capacity of tissue (brain or muscle), C =

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

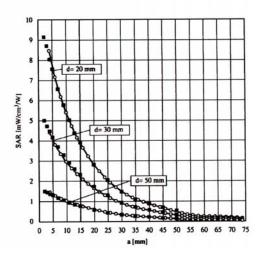


Figure 3.4 E-Field and Temperature measurements at 900 MHz

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where:

= simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

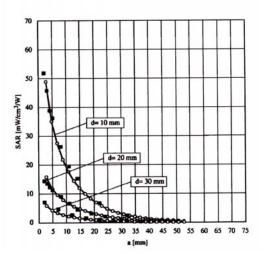


Figure 3.5 E-Field and temperature measurements at 1.8 GHz

3.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
 with
$$V_{i} = \text{compensated signal of channel i} \qquad \text{(i=x,y,z)}$$

$$U_{i} = \text{input signal of channel i} \qquad \text{(i=x,y,z)}$$

$$cf = \text{crest factor of exciting field} \qquad \text{(DASY parameter)}$$

$$dcp_{i} = \text{diode compression point} \qquad \text{(DASY parameter)}$$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{\,\,2} \cdot \frac{\sigma}{\rho \cdot 1000} \qquad \qquad \begin{array}{ll} \text{with} & \text{SAR} & = \text{local specific absorption rate in W/g} \\ & E_{tot} & = \text{total field strength in V/m} \\ & \sigma & = \text{conductivity in [mho/m] or [Siemens/m]} \\ & \rho & = \text{equivalent tissue density in g/cm}^3 \end{array}$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{proc} = \frac{E_{tot}^2}{3770}$$
 with P_{pwe} = equivalent power density of a plane wave in W/cm² = total electric field strength in V/m

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

3.4 SAM Phantom

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Figure 3.6 SAM Phantom

Shell Thickness 2.0 mm Filling Volume about 30 L

Dimensions 810 mm x 1 000 mm x 500 mm (H x L x W)

3.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.7 Device Holder

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

3.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)										
(% by weight)	450		83	835		915		1 900		50	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 3.1 Composition of the Tissue Equivalent Matter

3.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4	869	Sept. 03, 2008	Annual	Sept. 03, 2009
SPEAG	DAE3	466	July 17, 2008	Annual	July 17, 2009
SPEAG	E-Field Probe ES3DV3	3161	April 7, 2008	Annual	April 7, 2009
SPEAG	E-Field Probe ES3DV6	1798	Mar. 20, 2008	Annual	Mar. 20, 2009
SPEAG	E-Field Probe ES3DV6	1630	Aug. 25, 2008	Annual	Aug. 25, 2009
SPEAG	Validation Dipole D450V2	1007	July 15, 2008	Annual	July 15, 2009
SPEAG	Validation Dipole D835V2	441	May 19, 2008	Annual	May 19, 2009
SPEAG	Validation Dipole D900V2	130	Aug. 25, 2008	Annual	Aug. 25, 2009
SPEAG	Validation Dipole D1800V2	2d007	May 20, 2008	Annual	May 20, 2009
SPEAG	Validation Dipole D1900V2	5d032	July 22, 2008	Annual	July 22, 2009
SPEAG	Validation Dipole D2450V2	743	Aug. 27, 2008	Annual	Aug. 27, 2009
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 05, 2008	Annual	Nov. 05, 2009
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 05, 2008	Annual	Nov. 05, 2009
HP	Dielectric Probe Kit 85070C	00721521	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	Nov. 05, 2008	Annual	Nov. 05, 2009
R&S	Base Station CMU200	110740	July 26, 2008	Annual	July 26, 2009
Agilent	Base Station E5515C	GB44400269	Feb. 10, 2008	Annual	Feb. 10, 2009
НР	Signal Generator E4438C	MY42082646	Dec. 24, 2007	Annual	Dec. 24, 2008
НР	Network Analyzer 8753ES	JP39240221	Apr. 11, 2008	Annual	Apr. 11, 2009
EM POWER	Power Amp BBS3Q7ELU	1009D/C0028	Nov. 05, 2008	Annual	Nov. 05, 2009
Tescom	TC-3000/ Bluetooth	3000A4900112	Jan. 11, 2008	Annual	Jan. 11, 2009

NOTE:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by HCT Lab. before each test. The brain simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

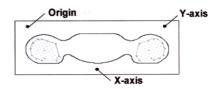


Figure 4.1 SAR Measurement Point in Area Scan

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

5. DESCRIPTION OF TEST POSITION

5.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

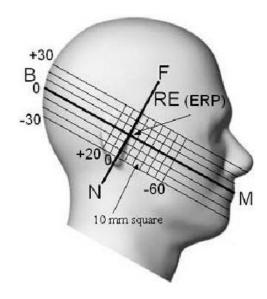


Figure 5.1 Side view of the phantom

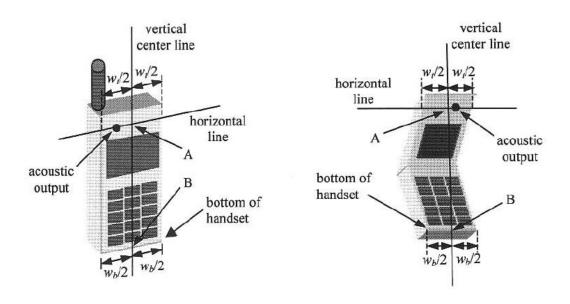


Figure 5.2 Handset vertical and horizontal reference lines

5.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 2.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

www.hct.co.kr

6. MEASUREMENT UNCERTAINTY

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than 15 % - 25 %.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of 1 dB to \pm 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least \pm 2 dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to \pm 3 dB.

Error Description	Uncertainty value [%]	Probability Distribution	Divisor	ci	ci^2	Standard Uncertainty [%]	Stand Uncert^2	(Stand Uncert^2) X (ci^2)	Vi & Ve#
1. Measurement System									
Probe Calibration	5.5	Normal	1.00	1	1	5.50	30.25	30.25	8
Axial Isotropy	4.7	Rectangular	1.73	0.7	0.49	2.71	7.36	3.61	6
Hemispherical Isotropy	9.6	Rectangular	1.73	0.7	0.49	5.54	30.72	15.05	8
Linearity	4.7	Rectangular	1.73	1	1	2.71	7.36	7.36	в
System Detection limits	1.0	Rectangular	1.73	1	1	0.58	0.33	0.33	8
Boundary effect	1.0	Rectangular	1.73	1	1	0.58	0.33	0.33	8
Response time	0.8	Rectangular	1.73	1	1	0.46	0.21	0.21	
RF Ambient conditions	3.0	Rectangular	1.73	1	1	1.73	3.00	3.00	6
Readout Electronics	0.3	Normal	1.00	1	1	0.30	0.09	0.09	6
Integration time	2.6	Rectangular	1.73	1	1	1.50	2.25	2.25	60
Probe positioner	0.4	Rectangular	1.73	1	1	0.23	0.05	0.05	6
Probe positionering	2.9	Rectangular	1.73	1	1	1.67	2.80	2.80	6
Maximum SAR evaluation	1.0	Rectangular	1.73	1	1	0.58	0.33	0.33	
2.Test Sample Related	4.4		2			Sub Tot	al	65.69	
Device Positioning	1.8	Normal	1.00	1	1	1.81	3.28	3.28	9
Device Holder	3.6	Normal	1.00	1	1	3.60	12.96	12.96	в
Power Drift	5.0	Rectangular	1.73	1	1	2.89	8.33	8.33	
3. Phantom and Setup		2		25	45 4	Sub Tot	al	24.57	i.
Phantom Uncertainty	4.0	Rectangular	1.73	1	1	2.31	5.33	5.33	
Liquid conductivity (target)	5.0	Rectangular	1.73	0.5	0.25	2.89	8.33	2.08	
Liquid conductivity (measurement error)	2.5	Normal	1.00	0.5	0.25	2.50	6.25	1.56	
Liquid permittivity (target)	5.0	Rectangular	1.73	0.5	0.25	2.89	8.33	2.08	
Liquid permittivity (measurement error)	2.5	Normal	1.00	0.5	0.25	2.50	6.25	1.56	
						Sub Tot	al	12.63	
Combined standard uncertainty [%]						10.14		102.88).

Table 6.1 Breakdown of Errors

7. ANSI/ IEEE C95.1 - 2005 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 7.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

8. SYSTEM VERIFICATION

8.1 Tissue Verification

Freq. [MHz]	Date	Liquid	Liquid Temp.[°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
1 000	1 900 Dec.15, 2008 Head	Hood	21.3	εr	40.0	40.3	+ 0.75	± 5
1 900		пеац	21.3	σ	1.40	1.38	- 1.43	± 5
1 000	1 900 Dec.15, 2008 Body	Rody	Body 21.3	εr	53.3	52.8	- 0.94	± 5
1 900		Бойу		σ	1.52	1.52	0.00	± 5
2 450	Dec.15, 2008	Head	21.3	εr	39.2	39.4	0.51	± 5
2 450	Dec. 15, 2006	неаа		σ	1.80	1.82	1.11	± 5
2.450	2 450 Dec.15, 2008 Bo	Rody	Body 21.3	εr	52.7	51.8	- 1.71	± 5
2 450		ьоау		σ	1.95	1.95	0.00	± 5

8.2 System Validation

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 1 900 MHz/ 2 450 MHz by using the system validation kit. (Graphic Plots Attached)

*Input Power: 100 m W

Freq. [MHz]	Date	Liquid	Liquid Temp. [°C]	SAR Average	Target Value (SPEAG) (mW/g)	*Measured Value (mW/g)	Deviation [%]	Limit [%]
1 900	Dec.15, 2008	Head	21.3	1 g	37.7	3.78	+ 0.27	± 10
2 450	Dec.15, 2008	Head	21.3	1 g	52.4	5.28	+ 0.76	± 10

9. TEST CONFIGURATIONS

SAR Testing with IEEE 802.11 a/b/g Transmitters

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

9.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.2 Frequency Channel Configurations

80.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 80.211 b/g modes are tested on channels 1, 6 and 11.802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; Channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz § 15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11,15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels.

These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

				-	"Do	fault Test	Channel	e,"
Mo	de	GHz	Channel	Turbo	§15			
				Channel	802.11b	802.11g	UNII	
		2.412	1		√	∇		
802.1	1 b/g	2.437	6	6	- √	∇		
		2.462	11		√	∇		
		5.18	36				- √	
		5.20	40	42 (5.21 GHz)				*
		5.22	44					*
		5.24	48	50 (5.25 GHz)			√	
		5.26	52				-√	
		5.28	56	58 (5.29 GHz)				*
		5.30	60	36 (3.29 G112)				
		5.32	64				1	
		5.500	100					
	UNII	5.520	104				√	
		5.540	108					*
802.11a		5.560	112					
002.11a		5.580	116				- √	
		5.600	120	Unknown				
		5.620	124				- √	
		5.640	128					*
		5.660	132					*
		5.680	136				√	
		5.700	140					*
	UNII	5.745	149		√		√	
	or	5.765	153	152 (5.76 GHz)		*		*
	§15.247	5.785	157		√			*
		5.805	161	160 (5.80 GHz)		*	√	
	§15.247	5.825	165		√			

802.11 Test Channels per FCC Requirements

10. RF CONDUCTED POWER

Power measurements were performed using a base station simulator under digital average power

10.1 Procedures Used to Establish RF Signal for SAR

The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR[4] SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more then 5 % occurred, the tests were repeated.

		Voice GPRS Data					EDGE Data				
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)	
	512	29.78	29.75	29.73	29.70	29.65	26.13	26.11	26.09	26.07	
1900	661	29.99	29.96	29.92	29.87	29.85	26.34	26.33	26.30	26.28	
.300	810	29.87	29.81	29.77	29.72	29.66	26.21	26.19	29.17	26.14	

Table 10.1 GSM Conducted output powers

Band	Channel	Mbps							
Bana	Onamici	1 2		5.5	11				
	1	20.21	21.00	24.62	23.89				
802.11b	6	20.72	21.26	24.51	24.23				
802.110	11	20.87	21.36	24.17	25.09				

Table 10.2 IEEE 802.11b Conducted output power

Band	Channel	Mbps								
Build	Gildillioi	6	9	12	18	24	36	48	54	
	1	20.37	20.47	20.01	19.87	20.57	20.54	20.84	21.12	
802.11g	6	20.94	20.85	20.56	20.40	21.21	20.94	21.41	21.62	
002.11g	11	20.92	21.12	20.80	20.61	21.26	20.95	21.39	21.57	

Table 10.3 IEEE 802.11g Conducted output power

11. SAR Evaluation Considerations for Handsets with

Multiple Transmitters and Antennas

11.1 SAR Evaluation Considerations

These procedures were followed according to FCC "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", May 2008. The procedures are applicable to phones with built-in unlicensed transmitters, such as 802.11 a/b/g and Bluetooth devices.

	2.45	5.15 - 5.35	5.47 - 5.85	GHz		
P _{Ref}	12	6	5	mW		
Device output power should be rounded to the nearest mW to compare with values specified in this						

Table. 11.1 Output Power Thresholds for Unlicensed Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission $-$ ○ output $\le 60/f$: SAR not required ○ output $\ge 60/f$: stand-alone SAR required When there is simultaneous transmission $-$ Stand-alone SAR not required when ○ output $\le 2.P_{Ref}$ and antenna is ≥ 5.0 cm from other antennas ○ output $\le P_{Ref}$ and antenna is ≥ 2.5 cm from other antennas, each with either output power $\le P_{Ref}$ and antenna is < 2.5 cm from other antennas, each with either output power $\le P_{Ref}$ or $1-g$ SAR < 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required ○ test SAR on highest output channel for each wireless mode and exposure condition ○ if SAR for highest output channel is $> 50\%$ of SAR limit, evaluate all channels according to normal procedures	when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition. Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test.
Jaw, Mouth	Flat phantom SAR required o when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation	When simultaneous transmission SAR testing is required, contact the FCC
and Nose	o position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	Laboratory for interim guidance.

Table. 11.2 SAR Evaluation Requirements for Cellphones with Multiple Transmitters

FCC ID: BEJKT770

BT Max. RF output power: 1.40 dBm = 1.38 mW

Antenna separation distance: 8.2 cm

Because the conducted output power level of the BT transmitter is less than 2^*P_{ref} , and the BT antenna is more than 5.0 cm from the Main antenna, neither simultaneous SAR nor stand-alone BT SAR are required for the EUT. Based on the output power and antenna separation distance, a stand-alone WLAN SAR test is required. The GSM-to-WLAN ratio is (0.752 + 0.00184) = 0.754 < 1.6. Therefore a simultaneous SAR evaluation is not required.

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

12. SAR TEST DATA SUMMARY

12.1 Measurement Results (GSM1900 Head SAR Touch Slide Up)

Fred	Frequency		Conducted Power (dBm)		Battery	Phantom Position	Antenna Type	SAR(mW/g)
MHz	Channel		Begin	End		Position	туре	
1 880.0	661 (Mid)	GSM1900	29.99	29.97	Standard	Left Ear	Intenna	0.216
1 880.0	661 (Mid)	GSM1900	29.99	30.05	Standard	Right Ear	Intenna	0.363

ANSI/ IEEE C95.1 2005 – Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Head
1.6 W/kg (mW/g)
Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

-	110000 parameters	and temperatures are note	a on the of the plot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully of	harged for all readings.	

- 6 Test Signal Call Mode ☐ Manual Test cord ☒ Base Station Simulator
- 7 Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

12.2 Measurement Results (GSM1900 Head SAR Touch Slide Down)

Fred	quency	Modulation Conducted Power (dBm)		Battery	Phantom Position	Antenna	SAR(mW/g)	
MHz	Channel		Begin	End		POSITION	Туре	
1 880.0	661 (Mid)	GSM1900	29.99	29.91	Standard	Left Ear	Intenna	0.360
1 880.0	661 (Mid)	GSM1900	29.99	30.02	Standard	Right Ear	Intenna	0.276

ANSI/ IEEE C95.1 2005 - Safety Limit **Spatial Peak Uncontrolled Exposure/ General Population**

Head 1.6 W/kg (mW/g)

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- All modes of operation were investigated and the worst-case are reported.
- Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- Tissue parameters and temperatures are listed on the SAR plot.
- □ Slim 5 **Battery Type** Standard □ Extended Batteries are fully charged for all readings.
- 6 Test Signal Call Mode ☐ Manual Test cord
- Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD.

12.3 Measurement Results (GSM1900 Head SAR Tilt Slide Up)

Fred	quency	Conducted Power Modulation (dBm)		Phantom Battery Position	Antenna Type	SAR(mW/g)		
MHz	Channel		Begin	End		1 OSITION	Туре	
1 880.0	661 (Mid)	GSM1900	29.99	29.92	Standard	Left Tilt 15°	Intenna	0.260
1 880.0	661 (Mid)	GSM1900	29.99	30.04	Standard	Right Tilt 15°	Intenna	0.190

ANSI/ IEEE C95.1 2005 - Safety Limit **Spatial Peak Uncontrolled Exposure/ General Population**

Head 1.6 W/kg (mW/g)

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- All modes of operation were investigated and the worst-case are reported.
- Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- Tissue parameters and temperatures are listed on the SAR plot.
- □ Slim 5 **Battery Type** Standard □ Extended Batteries are fully charged for all readings.
- 6 Test Signal Call Mode ☐ Manual Test cord
- Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD.

12.4 Measurement Results (GSM1900 Head SAR Tilt Slide Down)

Fred	quency	Modulation		ed Power Bm)	Battery	Phantom Position	Antenna Type	SAR(mW/g)
MHz	Channel		Begin	End		1 OSITION	Туре	
1 880.0	661 (Mid)	GSM1900	29.99	30.09	Standard	Left Tilt 15°	Intenna	0.267
1 880.0	661 (Mid)	GSM1900	29.99	29.89	Standard	Right Tilt 15°	Intenna	0.241

ANSI/ IEEE C95.1 2005 - Safety Limit **Spatial Peak Uncontrolled Exposure/ General Population**

Head 1.6 W/kg (mW/g)

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- All modes of operation were investigated and the worst-case are reported.
- Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- Tissue parameters and temperatures are listed on the SAR plot.
- □ Slim 5 **Battery Type** Standard □ Extended Batteries are fully charged for all readings.
- 6 Test Signal Call Mode ☐ Manual Test cord
- Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD.

Dec.16, 2008 HCT-IA0811-2401 FCC ID: BEJKT770 Date of Issue: Report No.:

12.5 Measurement Results (GSM1900 Body SAR)

Fred	quency	Modulation	Conducted Power Modulation (dBm)		Configuration	Phantom Position	Antenna	SAR(mW/g)
MHz	Channel		Begin	End		Position	Туре	
1 880.0	661 (Mid)	GPRS 4TX	29.85	29.71	Front	2.0 cm without Holster	Intenna	0.452
1 880.0	661 (Mid)	GPRS 4TX	29.85	29.82	Rear	2.0 cm without Holster	Intenna	0.752
1 880.0	661 (Mid)	GPRS 3TX	29.87	29.89	Rear	2.0 cm without Holster	Intenna	0.580
1 880.0	661 (Mid)	GPRS 2TX	29.92	30.09	Rear	2.0 cm without Holster	Intenna	0.405
1 880.0	661 (Mid)	GPRS 1TX	29.96	30.01	Rear	2.0 cm without Holster	Intenna	0.210
1 880.0	661 (Mid)	GSM1900	29.99	29.83	Rear	2.0 cm without Holster	Intenna	0.216
ANSI/ IEEE C95.1 2005 – Safety Limit						1 6 W	Body	//a)

Spatial Peak **Uncontrolled Exposure/ General Population** 1.6 W/kg (mW/g) Averaged over 1 gram

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
2	All modes of operation were investigated and the worst-case are reported.
_	

3	Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
4	Tissue parameters and temperatures are listed on the SAR plot

_	rissue parameters	and temperatures are liste	a on the orall plot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully of	harged for all readings.	

- ☐ Manual Test cord Test Signal Call Mode 6
- Both side of the phone were tested and the worst-case side is reported. 7
- 8 HEADSET was connected.
- **Test Configuration** ☐ With Holster
- 10 Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

HCT CO., LTD. SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525 www.hct.co.kr

12.6 Measurement Results (802.11b Module Body SAR)

Frequency		Modulation	Conducted Power (dBm)		Configuration	Separation	Data Rate	SAR(mW/g)
MHz	Channel		Begin	End		Distance		
2 462	11(High)	WLAN	25.09	25.29	Rear	0 cm	11 Mbps	0.00184
2 462	11(High)	WLAN	25.09	25.09	Front	0 cm	11 Mbps	0.000

ANSI/ IEEE C95.1 2005 – Safety Limit Spatial Peak Uncontrolled Exposure/ General Population

Body
1.6 W/kg (mW/g)
Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 6 Test Signal Call Mode

 ☐ Manual Test code ☐ Base Station Simulator
- 7 IEEE 802.11g SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.

HCT CO., LTD. SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA

www.hct.co.kr

TEL: +82 31 639 8565 FAX: +82 31 639 8525

13. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 2005.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

14.REFERENCES

- [1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.
- [2] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [4] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [5] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9]K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zörich, Dosimetric Evaluation of the Cellular Phone.
- [21] FCC SAR Considerations for Cell Phones with Multiple Transmitters #648474, Sept. 2008.

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

Attachment 1. - SAR Test Plots

29 of **77**

Date of Issue: HCT-IA0811-2401 FCC ID: BEJKT770 Dec.16, 2008 Report No.:

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 ℃ Ambient Temperature: $21.5~^{\circ}\text{C}$ Dec.15, 2008 Test Date:

DUT: KT770; Type: Slide up; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

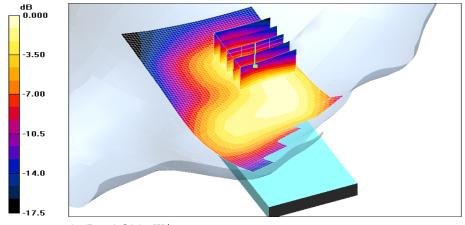
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left touch 661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.243 mW/g


Left touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.216 mW/g; SAR(10 g) = 0.129 mW/g

Maximum value of SAR (measured) = 0.236 mW/g

0 dB = 0.236 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide up; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

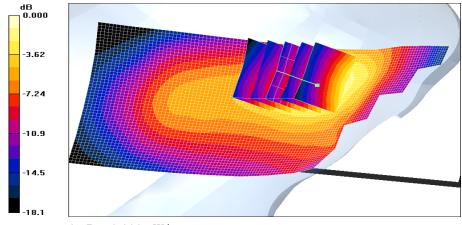
- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.404 mW/g


Right touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.363 mW/g; SAR(10 g) = 0.208 mW/g

Maximum value of SAR (measured) = 0.399 mW/g

0 dB = 0.399 mW/g

Date of Issue: HCT-IA0811-2401 FCC ID: BEJKT770 Dec.16, 2008 Report No.:

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 ℃ Ambient Temperature: $21.5~^{\circ}\text{C}$ Dec.15, 2008 Test Date:

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

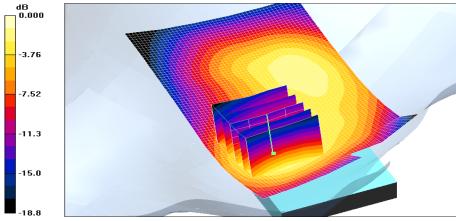
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left touch 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.395 mW/g


Left touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = -0.082 dB

Peak SAR (extrapolated) = 0.599 W/kg

SAR(1 g) = 0.360 mW/g; SAR(10 g) = 0.207 mW/g

Maximum value of SAR (measured) = 0.394 mW/g

0 dB = 0.394 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

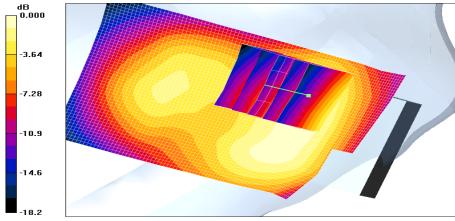
- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.289 mW/g


Right touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 0.440 W/kg

SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.303 mW/g

0 dB = 0.303 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide up; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

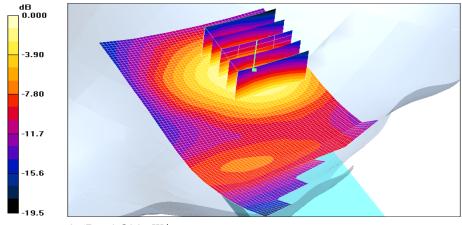
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left tilt 661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.306 mW/g


Left tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.99 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.424 W/kg

SAR(1 g) = 0.260 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 0.286 mW/g

0 dB = 0.286 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide up; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right tilt 661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.226 mW/g


Right tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.05 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.204 mW/g

0 dB = 0.204 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f=1880 MHz; $\sigma=1.36$ mho/m; $\epsilon_r=40.3$; $\rho=1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

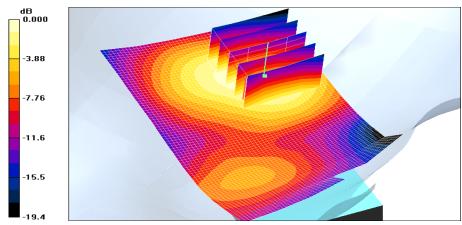
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left tilt 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.303 mW/g


Left tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.80 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 0.418 W/kg

SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.292 mW/g

0 dB = 0.292 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f=1880 MHz; $\sigma=1.36$ mho/m; $\epsilon_r=40.3$; $\rho=1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

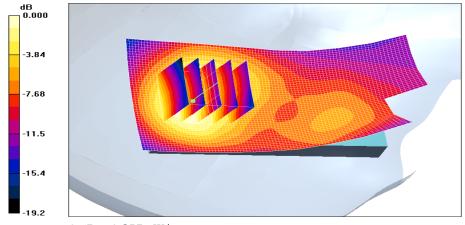
- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right tilt 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.274 mW/g


Right tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.1 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.391 W/kg

SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.142 mW/g

Maximum value of SAR (measured) = 0.257 mW/g

0 dB = 0.257 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

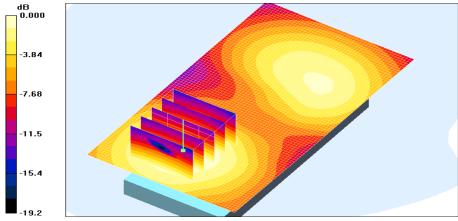
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.502 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.143 dB

Peak SAR (extrapolated) = 0.739 W/kg

SAR(1 g) = 0.452 mW/g; SAR(10 g) = 0.277 mW/g

Maximum value of SAR (measured) = 0.484 mW/g

0 dB = 0.484 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

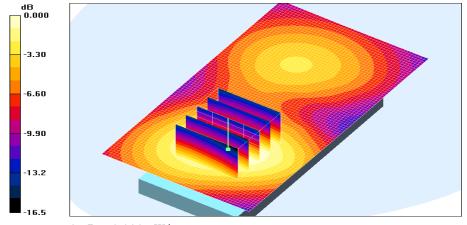
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.818 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.752 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.808 mW/g

0 dB = 0.808 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

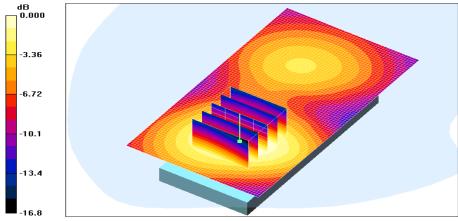
- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

- Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.623 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = 0.076 dB

Peak SAR (extrapolated) = 0.973 W/kg

SAR(1 g) = 0.580 mW/g; SAR(10 g) = 0.345 mW/g

Maximum value of SAR (measured) = 0.628 mW/g

0 dB = 0.628 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

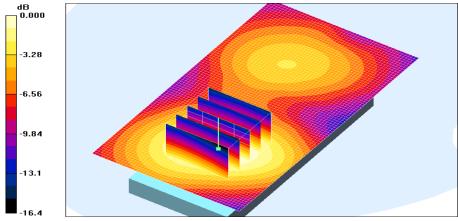
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.430 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.186 dB

Peak SAR (extrapolated) = 0.688 W/kg

SAR(1 g) = 0.405 mW/g; SAR(10 g) = 0.240 mW/g

Maximum value of SAR (measured) = 0.436 mW/g

0 dB = 0.436 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

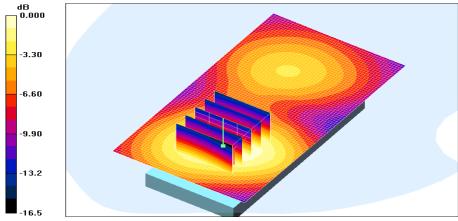
- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

- Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.224 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.75 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.210 mW/g; SAR(10 g) = 0.125 mW/g

Maximum value of SAR (measured) = 0.225 mW/g

0 dB = 0.225 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

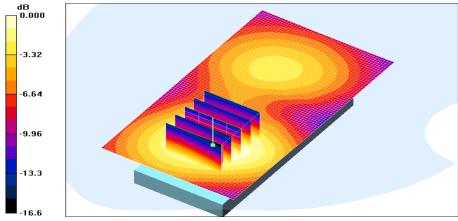
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.233 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = -0.159 dB

Peak SAR (extrapolated) = 0.365 W/kg

SAR(1 g) = 0.216 mW/g; SAR(10 g) = 0.128 mW/g

Maximum value of SAR (measured) = 0.231 mW/g

0 dB = 0.231 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 ℃ Ambient Temperature: $21.5~^{\circ}\text{C}$ Test Date: Dec.15, 2008

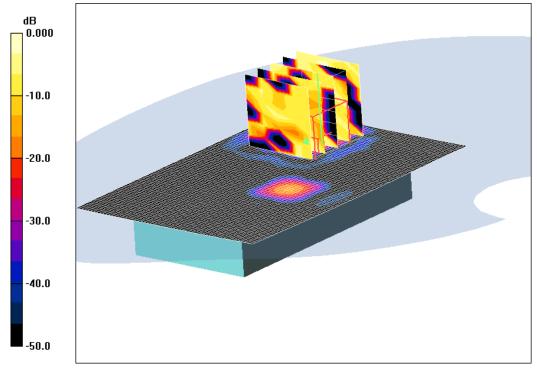
DUT: KT770; Type: Bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.98 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

- DASY4 Configuration:
 Probe: ES3DV3 SN3161; ConvF(4.15, 4.15, 4.15); Calibrated: 2008-04-07
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2008-09-03
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b WiFi 11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 0.003 mW/g

802.11b WiFi 11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.974 V/m; Power Drift = 0.198 dB Peak SAR (extrapolated) = 0.009 W/kg

SAR(1 g) = 0.00184 mW/g; SAR(10 g) = 0.000288 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.004 mW/g

0 dB = 0.004 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

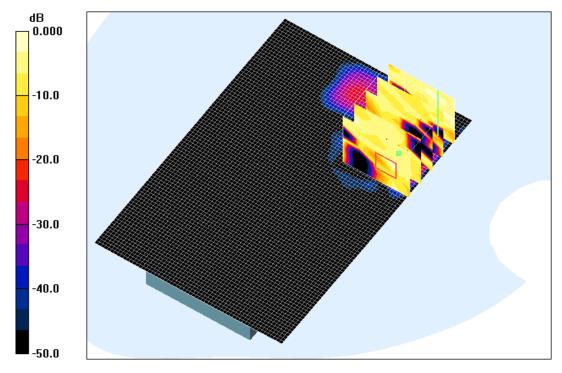
Liquid Temperature: 21.3 ℃ Ambient Temperature: $21.5~^{\circ}\text{C}$ Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.98 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Phanton section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

- DASY4 Configuration:
 Probe: ES3DV3 SN3161; ConvF(4.15, 4.15, 4.15); Calibrated: 2008-04-07
 Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03 - Phantom: 1800/1900 Phantom; Type: SAM 802.11b WiFi 11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.001 mW/g

802.11b WiFi 11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.000 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 0.002 W/kg SAR(1 g) = 0.000116 mW/g; SAR(10 g) = 2.18e-005 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.003 mW/g

0 dB = 0.003 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 ℃ Ambient Temperature: $21.5~^{\circ}\text{C}$ Test Date: Dec.15, 2008

DUT: KT770; Type: Slide up; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.36 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 176

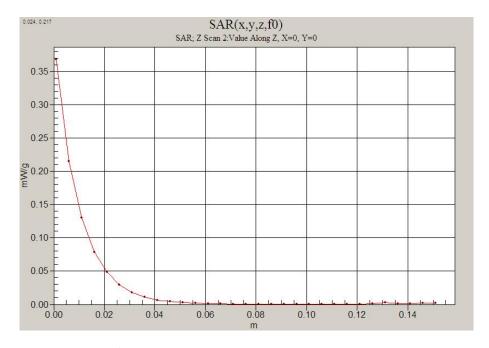
DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07

- Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 661/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.404 mW/g

Right touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.363 mW/g; SAR(10 g) = 0.208 mW/gMaximum value of SAR (measured) = 0.399 mW/g

0 dB = 0.399 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: PCS GSM/ EDGE Phone with Bluetooth/WLAN

GPRS Class 12 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Dec.15, 2008

DUT: KT770; Type: Slide down; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8

Build 176

DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(4.68, 4.68, 4.68); Calibrated: 2008-04-07

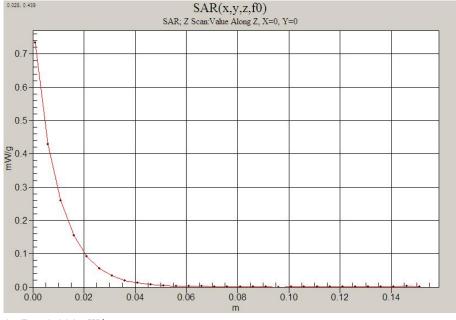
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.818 mW/g


GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.752 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.808 mW/g

0 dB = 0.808 mW/g

 Report No.:
 HCT-IA0811-2401
 FCC ID:
 BEJKT770
 Date of Issue:
 Dec.16, 2008

Attachment 2. – Dipole Validation Plots

Validation Data (1900 MHz Head)

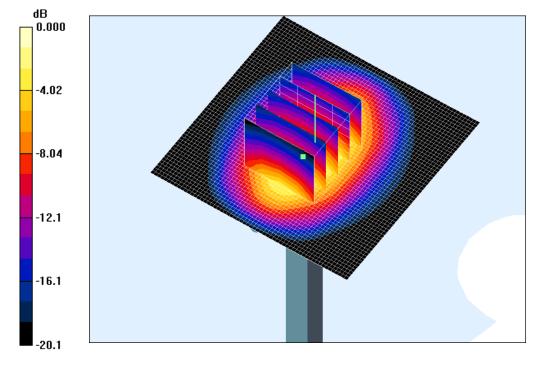
Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp.: 21.3 ℃

Test Date: Dec.15, 2008

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.38 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176


DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.04, 5.04, 5.04); Calibrated: 2008-04-07 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

Validation 1900MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.47~mW/g

Validation 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.6 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 7.40 W/kg SAR(1 g) = 3.78 mW/g; SAR(10 g) = 1.91 mW/gMaximum value of SAR (measured) = 4.15 mW/g

0 dB = 4.15 mW/g

Validation Data (2450 MHz Head)

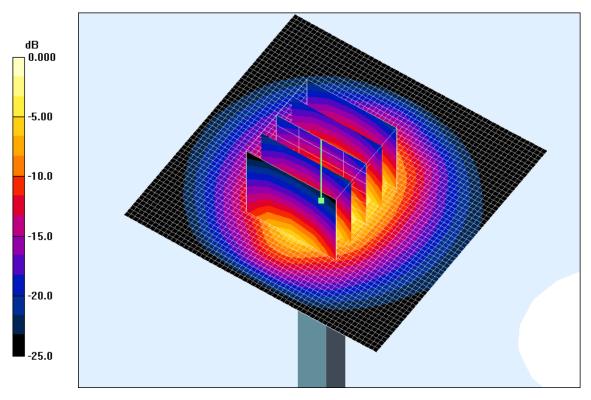
HCT CO., LTD Test Laboratory: Input Power 100 mW (20 dBm)

Liquid Temp: 21.3 ℃

Test Date: Dec.15, 2008

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.82 mho/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176


DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.47, 4.47, 4.47); Calibrated: 2008-04-07 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

Validation 2450MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.62 mW/g

Validation 2450MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.9 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.28 mW/g; SAR(10 g) = 2.36 mW/g Maximum value of SAR (measured) = 5.81 mW/g

0 dB = 5.81 mW/g

■ Dielectric Parameter (1900 MHz Head)

Title: KT770

SubTitle: GSM 1900(HEAD)

December 15, 2008 10:52 AM

Frequency	e'	e''
1.850000000 GHz	40.3977	12.8339
1.855000000 GHz	40.4157	12.8428
1.860000000 GHz	40,3856	12.8795
1.865000000 GHz	40.3715	12,8938
1.870000000 GHz	40.3459	12,9036
1.875000000 GHz	40.3493	12.9577
1.880000000 GHz	40.3282	12,9735
1.885000000 GHz	40.2821	13,0056
1.890000000 GHz	40.3020	13,0097
1.895000000 GHz	40.2730	13,0667
1.900000000 GHz	40.2759	13,0668
1.905000000 GHz	40,1965	13.0912
1.910000000 GHz	40,1936	13,1042
1.915000000 GHz	40,2030	13,1626
1.920000000 GHz	40.1393	13.1413
1.925000000 GHz	40.1410	13,1868
1.930000000 GHz	40.1143	13,1532
1.935000000 GHz	40.1041	13,1798
1.940000000 GHz	40.0531	13.2159
1.945000000 GHz	40.0085	13.2211
1.950000000 GHz	40.0107	13.2426

■ Dielectric Parameter (1900 MHz Body)

Title: KT770

SubTitle: GSM 1900(BODY)

December 15, 2008 10/58 AM

Frequency	e'	e''
1.850000000 GHz	52.9162	14.2989
1.855000000 GHz	52.9066	14.3530
1.860000000 GHz	52.9204	14.3717
1,865000000 GHz	52.9178	14.3795
1,870000000 GHz	52.8902	14.3954
1.875000000 GHz	52.8897	14,4086
1.880000000 GHz	52.8827	14,4060
1.885000000 GHz	52,8683	14,4028
1,890000000 GHz	52.8269	14.4134
1,895000000 GHz	52.7664	14.4343
1.900000000 GHz	52.7875	14.4171
1.905000000 GHz	52.7154	14.4203
1,910000000 GHz	52,6986	14,4163
1,915000000 GHz	52.6720	14,4287
1,920000000 GHz	52.6164	14,4718
1.925000000 GHz	52,5695	14.4924
1.930000000 GHz	52,5638	14.5257
1.935000000 GHz	52.5182	14.5311
1.940000000 GHz	52.5168	14.5678
1.945000000 GHz	52,5230	14,6083
1.950000000 GHz	52,4987	14.6232

■ Dielectric Parameter (2450 MHz Head)

Title: KT770

SubTitle: 2450 MHz (HEAD)

December 15, 2008 10:52 AM

Frequency	e'	e''
2.400000000 GHz	39,5963	13.1944
2.405000000 GHz	39.6323	13.1937
2.410000000 GHz	39.5790	13.2069
2.415000000 GHz	39.5352	13.2375
2.420000000 GHz	39.5222	13.2447
2.425000000 GHz	39,4812	13.2647
2.430000000 GHz	39,4635	13.2986
2.435000000 GHz	39,4490	13.3129
2.440000000 GHz	39,4329	13.3120
2.445000000 GHz	39,3976	13,3668
2,450000000 GHz	39,3884	13.3767
2.455000000 GHz	39,3765	13,4059
2.460000000 GHz	39,3612	13,4016
2.465000000 GHz	39,3283	13,4156
2.470000000 GHz	39,3044	13,4526
2.475000000 GHz	39,2909	13,4497
2.480000000 GHz	39,2545	13,4782
2.485000000 GHz	39.2100	13.4970
2.490000000 GHz	39,2395	13,5073
2.495000000 GHz	39.1770	13.5114
2.500000000 GHz	39.1724	13.4983

■ Dielectric Parameter (2450 MHz Body)

Title: KT770

SubTitle: 2450 MHz (BODY)

December 15, 2008 10:52 AM

Frequency	e'	e"
2.400000000 GHz	52.1146	14.0238
2.405000000 GHz	52.0933	14.0608
2.410000000 GHz	52.0329	14.1022
2.415000000 GHz	51,9888	14.1232
2.420000000 GHz	51.9350	14.1719
2,425000000 GHz	51.9046	14.1913
2.430000000 GHz	51.8873	14.2207
2.435000000 GHz	51,8369	14.2622
2.440000000 GHz	51.8271	14.2939
2.445000000 GHz	51.7900	14.3304
2.450000000 GHz	51,7618	14.3557
2.455000000 GHz	51.7378	14.3723
2,460000000 GHz	51.7220	14.4274
2.465000000 GHz	51.7252	14.4322
2.470000000 GHz	51,7079	14.4295
2.475000000 GHz	51,6965	14.4722
2,480000000 GHz	51.7027	14.5224
2.485000000 GHz	51,6483	14.5341
2.490000000 GHz	51.6559	14.5640
2.495000000 GHz	51,6447 E1,6520	14.5617
2.500000000 GHz	51,6530	14.5683

Validation Data (2450 MHz Head)

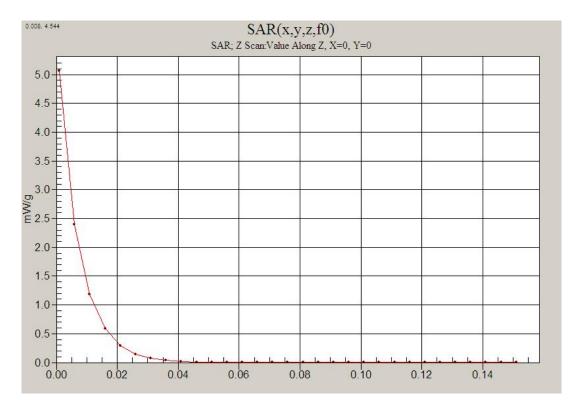
Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 21.3 ℃

Test Date: Dec.15, 2008

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.82 mho/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176


DASY4 Configuration:

- Probe: ES3DV3 - SN3161; ConvF(4.47, 4.47, 4.47); Calibrated: 2008-04-07 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn869; Calibrated: 2008-09-03

- Phantom: 1800/1900 Phantom; Type: SAM

Validation 2450MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.62 mW/g

Validation 2450MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.9 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.28 mW/g; SAR(10 g) = 2.36 mW/g Maximum value of SAR (measured) = 5.81 mW/g

www.hct.co.kr

Attachment 3. – Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

H-CT (Dymsted	;)	Certific	ate No: ES3-3161_Apr08
CALIBRATION C	CERTIFICAT	Έ	
Object	ES3DV3 - SN:3	161	
Calibration procedure(s)		and QA CAL-23.v3 edure for dosimetric E-field pr	robes
Calibration date:	April 7, 2008		
Condition of the calibrated item	In Tolerance		
	cted in the closed laborat	probability are given on the following pag ory facility: environment temperature (22	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 654	20-Apr-07 (No. DAE4-654_Apr07)	Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	The My
Approved by:	Niels Kuster	Quality Manager	1/1
		n full without written approval of the labor	Issued: April 7, 2008

Certificate No: ES3-3161_Apr08

Page 1 of 9

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3161_Apr08 Page 2 of 9

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

ES3DV3 SN:3161

April 7, 2008

Probe ES3DV3

SN:3161

Manufactured: Calibrated:

October 8, 2007 April 7, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3161_Apr08

Page 3 of 9

ES3DV3 SN:3161

April 7, 2008

DASY - Parameters of Probe: ES3DV3 SN:3161

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.09 ± 10.1%	$\mu V/(V/m)^2$	DCP X	90 mV
NormY	1.26 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	0.94 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	9.7	5.5	
SAR _{be} [%]	With Correction Algorithm	8.0	0.5	

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.8	6.5
SAR _{be} [%]	With Correction Algorithm	0.9	0.8

Sensor Offset

Probe Tip to Sensor Center

2.0 mm

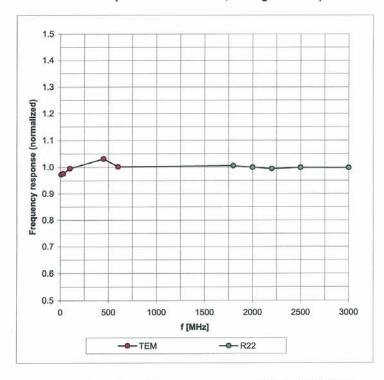
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3161_Apr08

Page 4 of 9

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.



ES3DV3 SN:3161

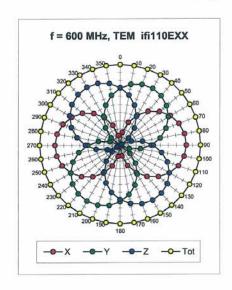
April 7, 2008

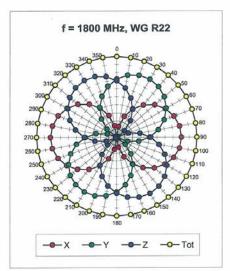
Frequency Response of E-Field

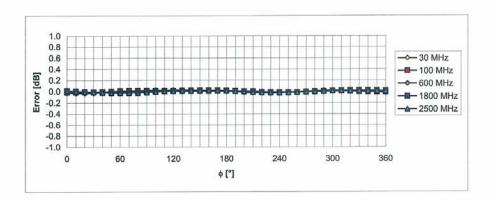
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3161_Apr08


Page 5 of 9




ES3DV3 SN:3161

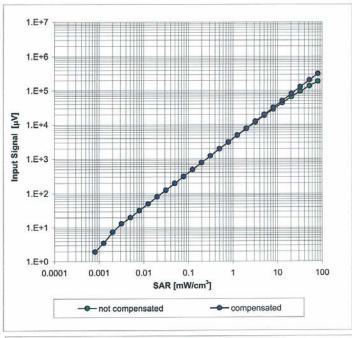
April 7, 2008

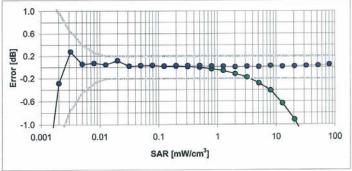
Receiving Pattern (ϕ), ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3161_Apr08

Page 6 of 9



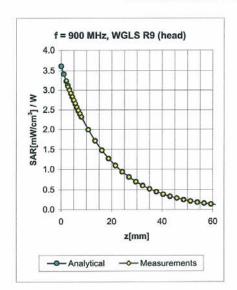

ES3DV3 SN:3161

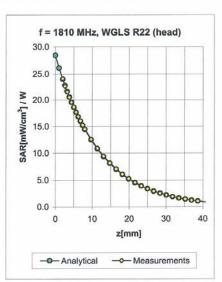
April 7, 2008

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ES3-3161_Apr08


Page 7 of 9

ES3DV3 SN:3161 April 7, 2008

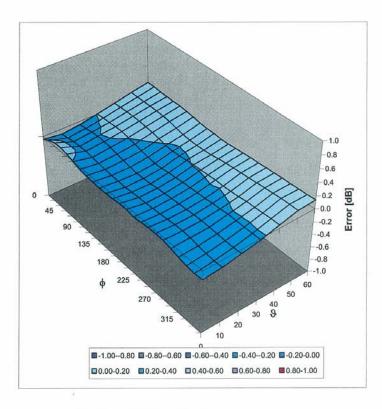
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.00	1.12	6.07	± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.86	1.19	5.04	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.76	1.26	4.77	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.70	1.32	4.47	± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	1.00	1.17	5.63	± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.81	1.22	5.07	± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.74	1.31	4.68	± 11.0% (k=2)
2300	± 50 / ± 100	Body	52.8 ± 5%	1.85 ± 5%	0.56	1.65	4.32	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.60	1.52	4.15	± 11.0% (k=2)
2600	± 50 / ± 100	Body	52.5 ± 5%	2.16 ± 5%	0.61	1.50	3.97	± 11.0% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3161_Apr08

Page 8 of 9



ES3DV3 SN:3161

April 7, 2008

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3161_Apr08

Page 9 of 9

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

Client

Certificate No: D1900V2-5d032-Jul08 H-CT (Dymstec) CALIBRATION CERTIFICATE D1900V2 - SN: 5d032 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: July 22, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 04-Oct-07 (No. 217-00736) Oct-08 U\$37292783 04-Oct-07 (No. 217-00736) Oct-08 Power sensor HP 8481A 0 I-Jul-05 (No. 217-00564) Jul-09 Reference 20 dB Attenuator SN: 5086 (20g) Type-N mismatch combination Jul-09 SN: 5047.2 / 06327 01-Jul-08 (No. 217-00887) Reference Probe ES3DV2 SN: 3025 28-Apr-08 (No. ES3-3025_Apr08) Apr-09 SN: 601 14-Mar-08 (No. DAE4-601 Mar08) Mar-09 DAE4 Check Date (in house) Scheduled Check Secondary Standards ID # MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 Power sensor HP 8481A RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Name Function Signature Jeton Kastrati Laboratory Technician Calibrated by: Katja Pokovic Technical Manager Approved by: Issued: July 22, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d032_Jul08

Page 1 of 6

HCT CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525 www.hct.co.kr

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

S Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d032_Jul08 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	222	1222

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.82 mW / g
SAR normalized	normalized to 1W	39.3 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	37.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.05 mW / g
SAR normalized	normalized to 1W	20.2 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	19.7 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d032_Jul08

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.5 \Omega + 4.9 J\Omega$	
Return Loss	- 24.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.185 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the

second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 17, 2003

Certificate No: D1900V2-5d032_Jul08

Page 4 of 6

HCT CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA TEL: +82 31 639 8565 FAX: +82 31 639 8525 www.hct.co.kr

DASY4 Validation Report for Head TSL

Date/Time: 22.07.2008 10:06:43

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

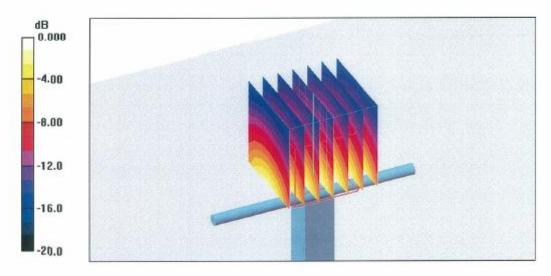
Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.2 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.05 mW/gMaximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

Certificate No: D1900V2-5d032 Jul08

Page 5 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

S

		Certificate No.	
CALIBRATION O	CERTIFICATE		
Object	D2450V2 - SN: 7	43	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	August 27, 2008		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	d are part of the certificate.
		ry facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
Calibration Equipment used (M&			C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736)	
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736)	Scheduled Calibration Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736)	Scheduled Calibration Oct-08 Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: S5086 (20g)	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 55086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID #	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (In house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Certificate No: D2450V2-743_Aug08 Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108 inatories to the EA

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-743_Aug08

Page 2 of 6

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW/g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	52.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.17 mW/g
SAR normalized	normalized to 1W	24.7 mW/g
SAR for nominal Head TSL parameters ¹	normalized to 1W	24.4 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-743_Aug08

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.8 \Omega + 3.8 j\Omega$	
Return Loss	- 25.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

TE 9.55

Certificate No: D2450V2-743_Aug08 Page 4 of 6

DASY5 Validation Report for Head TSL

Date/Time: 27.08.2008 11:29:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 28.04.2008

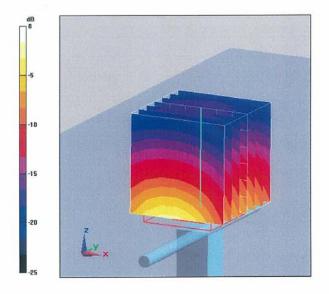
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

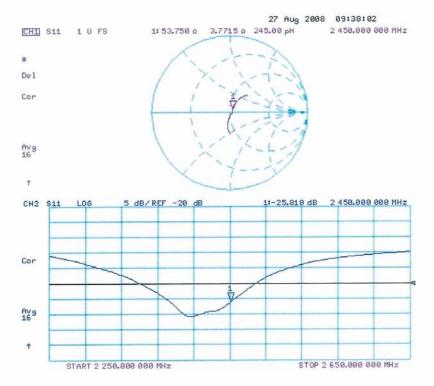

dz=5mm

Reference Value = 96.6 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.17 mW/g

Maximum value of SAR (measured) = 16 mW/g


0 dB = 16 mW/g

Certificate No: D2450V2-743_Aug08

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-743_Aug08

Page 6 of 6