

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

SAR COMPLIANCE EVALUATION REPORT

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States **Date of Testing:** 08/04/10 - 08/18/10 **Test Site/Location:**

PCTEST Lab, Columbia, MD, USA

Test Report Serial No.: 0Y1008021266.BEJ

FCC ID: BEJGU297

IC CERTIFICATION NO: 2703C-GU297

APPLICANT: LG ELECTRONICS USA

EUT Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth

Application Type: Certification

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001]

IC Specification(s): RSS-102, Issue 4; Health Canada Safety Code 6

FCC Classification: Licensed Transmitter Held to Ear (PCE)
Radio Equipment Type: Cellular Communications Apparatus
GU297, LG-GU297, GU297a, LG-GU297a
LG-GU297, GU297, LG-GU297a, GU297a

Tx Frequency: 824.20 - 848.80 MHz (GSM 850)

1850.20 - 1909.80 MHz (GSM 1900) 826.40 - 846.60 MHz (UMTS V) 1712.4 - 1752.5 MHz (AWS WCDMA)

Conducted Power: 32.88 dBm GSM 850 / 30.00 dBm GSM 1900

23.23 dBm UMTS V / 23.31 dBm UMTS IV

Max. SAR0.80 W/kg GSM 850 Head SAR / 0.60 W/kg GSM 850 Body SARMeasurement:0.63 W/kg GSM 1900 Head SAR / 0.41 W/kg GSM 1900 Body SAR0.59 W/kg UMTS V Head SAR / 0.35 W/kg UMTS V Body SAR

0.68 W/kg UMTS IV Head SAR / 0.35 W/kg UMTS V Body SAR 0.68 W/kg UMTS IV Head SAR / 0.15 W/kg UMTS IV Body SAR

Test Device Serial No.: Pre-Production [S/N: SAR]

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	à	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dog 1 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	1	Page 1 of 37

TABLE OF CONTENTS

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES	9
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	10
8	DEFINITION OF REFERENCE POINTS	11
9	TEST CONFIGURATION POSITIONS	12
10	RF EXPOSURE LIMITS	15
11	MEASUREMENT UNCERTAINTIES	16
12	SYSTEM VERIFICATION	17
13	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	20
14	FCC 3G MEASUREMENT PROCEDURES	21
15	SAR DATA SUMMARY	23
16	EQUIPMENT LIST	28
17	CONCLUSION	29
18	REFERENCES	30
19	SAR TEST SETUP PHOTOGRAPHS	32

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	SMOGREEIAN LARRATRY, TWO	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 2 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 2 of 37
© 2010 DCTECT Engineering	aharatani laa		DEV 0.EM

1 INTRODUCTION

The FCC and Industry Canada has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz[2] and Health Canada RF Exposure Guidelines Safety Code 6 [26]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [3] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1-1 SAR Mathematical Equation

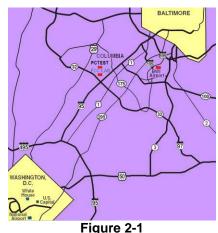
SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)


NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 2 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 3 of 37
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia. Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

Map of the Greater Baltimore and Metropolitan Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006. PCTEST facility is an IC registered (2451-A) test laboratory with the site description filed to Industry Canada in accordance with Radio Standards Specifications (RSS).

2.2 **Test Facility / Accreditations:**

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 4 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 4 of 37
© 2010 DCTCCT Facing aring	Laboraton: Inc		DEV/ 0 EM

3

3.1 **Robotic System**

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.1 **System Hardware**

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

3.2 **System Electronics**

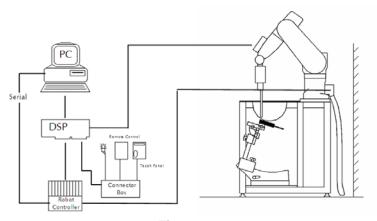


Figure 3-1 **SAR Measurement System Setup**

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo F of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 5 of 37
@ 2010 DCTEST Engineering	Laboratory Inc		DEV/ 0 EM

3.3 **Automated Test System Specifications**

Positioner

Robot: Stäubli Unimation Corp. Robot RX60L

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: DASY4, SEMCAD software

Connecting Lines: Optical Downlink for data and status info

Optical upload for commands and clock

PC Interface Card

Function: Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

SAM Twin Phantom (V4.0) Type:

Shell Material: Composite Thickness: $2.0 \pm 0.2 \text{ mm}$

Figure 3-2 **DASY4 SAR Measurement System**

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 6 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 6 of 37
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM

4 DASY E-FIELD PROBE SYSTEM

4.1 **Probe Measurement System**

Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration [7] (see Figure 4-3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the

maximum using a 2nd order curve fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.1 **Probe Specifications**

Model: ES3DV3, EX3DV4

Frequency 10 MHz - 6.0 GHz (EX3DV4) 10 MHz - 4 GHz (ES3DV3) Range:

In head and body simulating tissue at Calibration: Frequencies from 835 up to 5800MHz ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4 Linearity:

> ± 0.2 dB (30 MHz to 4 GHz) for ES3DV3 10 mW/kg - 100 W/kg

Probe Length: 330 mm

Probe Tip

Dynamic Range:

20 mm Length:

Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9mm for ES3DV3) 1 mm (2.0 mm for ES3DV3) Tip-Center: Application: SAR Dosimetry Testing

> Compliance tests of mobile phones Dosimetry in strong gradient fields

Figure 4-2 **Near-Field Probe**

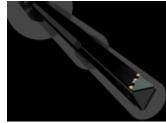


Figure 4-3 Triangular Probe Configuration

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 7 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 7 of 37
@ 2010 DCTEST Engineering	Laboratory Inc		DEV/ 0 EM

5.1 **Dosimetric Assessment Procedure**

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 **Temperature Assessment**

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)}.$

= heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

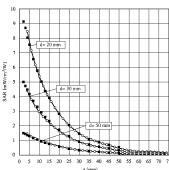


Figure 5-1 E-Field and Temperature measurements at 900MHz [7]

$$SAR = \frac{\left| \mathbf{E} \right|^2 \cdot \sigma}{\rho}$$

where:

 σ = simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

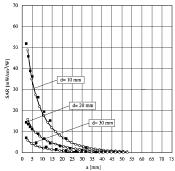


Figure 5-2 E-Field and temperature measurements at 1.9GHz [7]

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 9 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 8 of 37
© 0040 DOTEOT Familia and	Labaratan, bas		DEVACIN

6

PHANTOM AND EQUIVALENT TISSUES

6.1 SAM Phantoms

Figure 6-1 **SAM Phantoms**

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population [11][12]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as bodyworn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

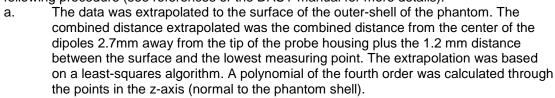
6.1 **Head & Body Simulating Mixture Characterization**

Figure 6-2 **SAM Phantom with Simulating Tissue**

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The head tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

Table 6-1 Composition of the Head & Body Tissue Equivalent Matter

Composition of the flead & body fissue Equivalent Matter						
Frequency (MHz)	835	835	1750	1750	1900	1900
Tissue	Head	Body	Head	Body	Head	Body
Ingredients (% 1	y weight)					
Bactericide	0.1	0.1				
DGBE			47	31	44.92	29.44
HEC	1	1				
NaCl	1.45	0.94	0.4	0.2	0.18	0.39
Sucrose	57	44.9				
Triton X-100						
Water	40.45	53.06	52.6	68.8	54.9	70.16


FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 0 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 9 of 37
© 0040 DOTEOT Familia and	. I alcanatam. Inc		DEV 0 EM

DOSIMETRIC ASSESSMENT & PHANTOM SPECS

7.1 **Measurement Procedure**

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head was measured at a distance of 3.0mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- The point SAR measurement was taken at the maximum SAR 2. region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution Sample SAR Area Scan volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual for more details):

- After the maximum interpolated values were calculated between the points in the b. cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- All neighboring volumes were evaluated until no neighboring volume with a higher C. average value was found.
- The SAR reference value, at the same location as step 2, was re-measured after the zoom 4. scan was complete. If the value deviated by more than 5%, the evaluation was repeated.

7.2 Specific Anthropomorphic Manneguin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.

Figure 7-2 **SAM Twin Phantom Shell**

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dags 10 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 10 of 37
© 2010 PCTEST Engineering	Laboratory Inc		REV/ 8.5M

© 2010 PCTEST Engineering Laboratory, Inc.

Figure 7-1

8.1 EAR REFERENCE POINT

Figure 8-1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 8-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 8-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

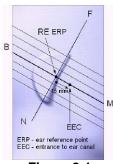


Figure 8-1 Close-Up Side view of ERP

8.1 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 8-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 8-2 Front, back and side view of SAM Twin Phantom

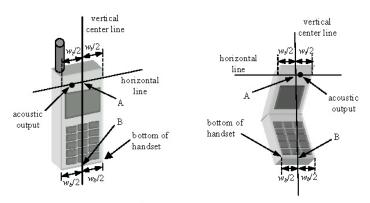


Figure 8-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dog 11 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 11 of 37	
© 2010 PCTEST Engineering	Laboratory Inc		DE\/ Q 5M	

9 TEST CONFIGURATION POSITIONS

9.1 **Device Holder**

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

9.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 9-1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 9-2)

9.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 9-3).

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 12 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 12 of 37	
© 0040 DOTEOT Familia and	. I alcanatam. Inc		DEV O EM	

Figure 9-2 Front, Side and Top View of Ear/15° Tilt Position

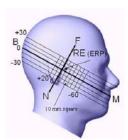


Figure 9-3 Side view w/ relevant markings

Figure 9-4 Body SAR Sample Photo (Not Actual EUT)

9.1 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. It has been known for some time that there are SAR measurement difficulties in these regions of the SAM phantom. SAR probes are calibrated in tissue equivalent liquids with sufficient separation between the probe sensors and nearby physical boundaries to ensure scattering does not affect probe calibration. When the probe tip is moved into tight regions with multiple boundaries surrounding its sensors, probe calibration and measurement accuracy can become questionable. In addition, these measurement locations often require a probe to be tilted at steep angles, where it may no longer comply with calibration requirements and measurement protocols, or satisfy the required measurement uncertainty. In some situations it is not feasible to tilt the probe or rotate the phantom, as suggested by measurement standards, to conduct these measurements.

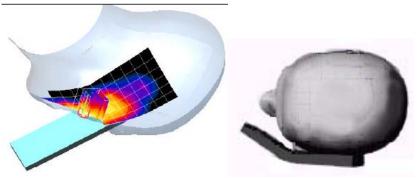


Figure 9-5 SAR Scans near the Jaw/Mouth

In order to ensure there is sufficient conservativeness for ensuring compliance until practical solutions are available, additional measurement considerations are necessary to address these technical difficulties. When measurements are required near the mouth, nose, jaw or similar tight regions of the SAM phantom,

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 12 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 13 of 37	
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM	

area or zoom scans are often unable to fully enclose the peak SAR location as required by IEEE 1528 and Supplement C, due to probe orientation and positioning difficulties. Even when limited measurements are possible, the test results could be questionable due to probe calibration and measurement uncertainty issues. Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document publication 648474. The SAR required in these regions of SAM should be measured using a flat phantom. Rectangular shaped phones should be positioned with its bottom edge positioned from the flat phantom with the same distance provided by the cheek touching position using SAM. The ear reference point (ERP, as defined for SAM) of the phone should be positioned ½ cm from the flat phantom shell. Clam-shell phones should be positioned with the hinge against a smooth edge of the flat phantom where the upper half of the phone is unfolded and extended beyond the phantom side wall. The lower half of the phone is secured in the test device holder at a fixed distance below the flat phantom determined by the minimum separation along the lower edge of the phone in the cheek touching position using SAM. Any case with substantial variation in separation distance along the lower edge of a clam shell is discussed with the FCC for best-to-use methodology.

The flat phantom data should allow test results to be compared uniformly across measurement systems. until suitable solutions are available in measurement standards to address certain probe calibration and positioning issues, due to implementation differences between horizontal and upright SAM configurations. These flat phantom procedures are only applicable for stand-alone SAR evaluation in tight regions of the SAM phantom, where measurement is not feasible or test results can be questionable due to probe calibration and accessibility issues. Details on device positioning and photos showing how separation distances are determined are included in the SAR report Photographs. SAR for other regions of the head must be evaluated using SAM; therefore, a phone with antennas at different locations may require flat and SAM phantom evaluation for the different antennas.

9.2 **Body Holster /Belt Clip Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9-5). A device with a headset output is tested with a headset connected to the device.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 14 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 14 of 37	
@ 2010 DCTECT Engineering	Laboratory Inc		DEV/ 0 EM	

10 RF EXPOSURE LIMITS

10.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

10.1 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada
Safety Code 6 (2.2.1 & 2.2.2)

Salety Code o (2.2.1 & 2.2.2)							
HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT					
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)					
SPATIAL PEAK SAR Brain	1.6	8.0					
SPATIAL AVERAGE SAR Whole Body	0.08	0.4					
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20					

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 15 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 15 of 37	
© 2010 DOTECT Engineering	Laboratorii Ina		DEV/ 0.EM	

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

11 MEASUREMENT UNCERTAINTIES

Applicable for 835 - 2450 MHz.

а	b	С	d	e=	f	g	h =	i=	k
ű			"			9			ı,
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
Management Cyatan							(± %)	(± %)	
Measurement System	F 0.4	F F	NI.	1	1.0	1.0	<i>F F</i>		
Probe Calibration	E.2.1	5.5	N	1		1.0	5.5	5.5	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6 E.2.7	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time		0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	8
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	œ
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	- oo
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				11.8	11.5	299
Expanded Uncertainty			k=2				23.7	23.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)		LG	Reviewed by: Quality Manager
Filename:	Test Date	es:	EUT Type:		Dogg 16 of 27
0Y1008021266.BEJ	08/04/10 -	08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone	with Bluetooth	Page 16 of 37

12

Tissue Verification 12.1

Table 12-1 Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
		820	0.860	43.33	0.898	41.571	-4.23%	4.23%
08/12/2010	835H	835	0.871	43.21	0.900	41.500	-3.22%	4.12%
		850	0.886	42.90	0.916	41.500	-3.28%	3.37%
		820	0.865	42.54	0.898	41.571	-3.67%	2.33%
08/17/2010	835H	835	0.877	42.41	0.900	41.500	-2.56%	2.19%
		850	0.892	42.19	0.916	41.500	-2.62%	1.66%
		820	0.949	54.66	0.969	55.284	-2.06%	-1.13%
08/17/2010	835B	835	0.963	54.46	0.970	55.200	-0.72%	-1.34%
		850	0.977	54.31	0.988	55.154	-1.11%	-1.53%
		1710	1.385	39.52	1.348	40.136	2.74%	-1.53%
08/16/2010	1750H	1750	1.427	39.35	1.370	40.100	4.16%	-1.87%
		1790	1.463	39.17	1.394	40.020	4.95%	-2.12%
		1710	1.498	52.95	1.460	53.540	2.60%	-1.10%
08/16/2010	1750B	1750	1.525	52.84	1.490	53.430	2.35%	-1.10%
		1790	1.577	52.68	1.510	53.330	4.44%	-1.22%
		1850	1.371	38.31	1.400	40.000	-2.07%	-4.22%
08/04/2010	1900H	1880	1.400	38.16	1.400	40.000	-0.03%	-4.60%
		1910	1.433	38.04	1.400	40.000	2.36%	-4.90%
		1850	1.461	52.44	1.520	53.300	-3.88%	-1.61%
08/04/2010	1900B	1880	1.501	52.37	1.520	53.300	-1.25%	-1.74%
		1910	1.534	52.24	1.520	53.300	0.92%	-1.99%
		1850	1.408	41.33	1.400	40.000	0.57%	3.33%
08/18/2010	1900H	1880	1.437	41.09	1.400	40.000	2.64%	2.73%
		1910	1.461	40.97	1.400	40.000	4.36%	2.43%

Note: KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 17 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 17 of 37	
© 2010 DOTECT Engineering	Laboraton: Inc		DEV/ 0.EM	

12.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity, for example from the below equation (Pournaropoulos and

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $i = \sqrt{-1}$.

Justification for Extended SAR Dipole Calibrations 12.3

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 450824:

D1765V2 SN: 1008							
			i Loss 3)	Δ%	Impedance (Ω)	ΔΩ	
5/19/20	09	-24	.2		44.8		
8/19/20	10	-23	.2	-4%	46.5	1.7	
		D	1900	V2 SN:5	02		
Date of Cal	Return Loss (dB)		Δ%		Impedance (Ω)	ΔΩ	
1/20/2009	-26	-26.8		47.1			
8/19/2010	-27	7.2	1.5%		48.9	1.8	
		D8	35V2	SN: 4d	047		
Date of Measureme		eturn Lo (dB)	Δ%		Impedance (Ω)	ΔΩ	
1/19/2009	9	-28.4			50.9		
8/19/2010)	-25.6		-10%	48.9	-2	
D1900V2 SN:5d080							
Date of Cal		rn Loss dB)			Impedance (Ω)	ΔΩ	
8/18/2009	-2	4.3			50		
8/19/2010	-2	2.4	-7	.8%	51	1.0	

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 19 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 18 of 37	
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM	

12.4 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

Table 12-2 System Verification Results

					stem Veri GET & ME	fication ASURED				
Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Tissue Frequency (MHz)	Dipole SN	Tissue Type	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR ₁₉ (W/kg)	Deviation (%)
08/12/2010	23.7	21.8	0.063	835	4d047	Head	0.649	9.700	10.30	6.20%
08/04/2010	23.8	22.1	0.100	1900	502	Head	4.14	39.900	41.40	3.76%
08/16/2010	24.2	22.8	0.100	1765	1008	Head	3.57	38.200	35.70	-6.54%
08/17/2010	23.0	21.1	0.065	835	4d047	Head	0.664	9.700	10.28	5.97%
08/18/2010	23.8	22.6	0.040	1900	5d080	Head	1.61	40.100	40.25	0.37%

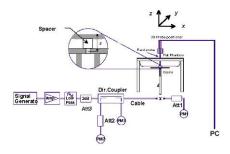


Figure 12-1 System Verification Setup Diagram

Figure 12-2 System Verification Setup Photo

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297			Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 10 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 19 of 37

13.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" v01r03 from May 2008 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. The RSS-102 Issue 4 §3.13 refers to this recommended procedure.

13.2 FCC Power Tables & Conditions

	2.45	5.15 - 5.35	5.47 - 5.85	GHz					
P_{Ref}	12	6	5	mW					
Device output power should be rounded to the nearest mW to compare with values specified in this table.									

Figure 13-1 **Output Power Thresholds for Unlicensed Transmitters**

	In dividual Tr ansmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — o output ≤ 60/f. SAR not required o output ≤ 60/f. SAR not required When there is simultaneous transmission — Stand-alone SAR not required when o output ≤ 2-P _{Bef} and antenna is ≥ 5.0 cm from other antennas o output ≤ P _{Bef} and antenna is ≥ 2.5 cm from other antennas o output ≤ P _{Bef} and antenna is < 2.5 cm from other antennas, each with either output power ≤ P _{Bef} or 1-g SAR < 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is no required and antenna is ≥ 5 en from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peal location separation ratio ≥ 0.3; test in only required for the configuration that results in the highest SAR is transland-alone configuration that results in the highest SAR is stand-alone configuration for end wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and and only can be different for different style phones; therefore, different tes requirements may apply

Figure 13-2 **SAR Evaluation Requirements for Multiple Transmitter Handsets**

Multiple Antenna/Transmission Information for GU297, LG-GU297, 13.3 GU297a, LG-GU297a

The separation between the main antenna and the Bluetooth Antenna is 73.53 mm. RF Conducted Power of Bluetooth Tx is 2.042 mW.

Conclusion 13.4

Based on the output power, antenna separation distance and the Body SAR of the dominant transmitter, a stand-alone Bluetooth SAR test is not required.

A simultaneous SAR evaluation is not required due to the SAR summation of the transmitters.

Simult Tx	Configuration	2G/3G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Body SAR	Body	0.60	0	0.60

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dags 20 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 20 of 37
© 2010 PCTEST Engineering	Laboratory Inc		REV/ 8.5M

14 FCC 3G MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

14.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4]. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, it was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

14.2 SAR Measurement Conditions for UMTS

14.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

14.2.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

14.2.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

14.2.4 Handsets with HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 21 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 21 of 37	
C COLLO DOTTOT E : :			DE\/ 0 EM	

14.3 RF Conducted Powers

14.3.1 **GSM Conducted Powers**

		RF Conducted Power Table								
		Voice		GPRS	S Data			EDGE	Data	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	32.84	32.81	30.78	28.88	27.74	26.91	26.92	26.89	26.88
Cellular	190	32.82	32.79	30.74	28.85	27.68	26.91	26.87	26.85	26.86
	251	32.88	32.85	30.78	28.90	27.74	26.97	26.94	26.92	26.85
	512	29.83	29.81	27.85	25.91	24.91	25.90	25.93	25.88	25.91
PCS	661	29.94	29.95	27.92	25.96	24.97	26.07	26.05	26.02	26.02
	810	29.98	30.00	27.95	26.00	24.95	26.09	26.08	26.06	26.03

GSM Class: B

GPRS Multislot class: 12 (max 4 Tx Uplink slots) **EDGE Multislot class:** 12 (max 4 Tx Uplink slots)

DTM Multislot Class: N/A

14.3.2 HSDPA Conducted Powers

UMTS RF Conducted Power Table									
		HSDPA	Inactive	HSDPA Active					
Band	Channel	12.2 kbps RMC [dBm]	12.2 kbps AMR [dBm]	12.2 kbps RMC [dBm]	12.2 kbps AMR [dbm]				
	4132	22.94	23.16	22.98	23.15				
V (Cellular)	4183	23.23	23.25	23.11	23.05				
	4233	23.15	23.15	23.08	23.03				
	1312	23.07	23.17	22.97	22.89				
IV (AWS)	1412	23.31	23.33	23.01	23.27				
	1862	23.20	23.23	22.99	23.13				

Figure 14-1 **Power Measurement Setup**

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST SHOREERIAD LABORATHAY, TWO	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 22 of 37
		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	raye 22 01 37
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM

Table 15-1 GSM 850 Head SAR Results

			MEA	IENT RES	SULTS				
FREQUI	ENCY	Mode/Band	C_Pow	er[dBm]	Side	Test	Test Slider Battery Type		SAR (1g)
MHz	Ch.	Wode/Band	Start	End	Side	Position	Config.	Battery Type	(W/kg)
836.60	190	GSM 850	32.82	32.76	Right	Touch	ln	Standard	0.799
836.60	190	GSM 850	32.82	32.71	Right	Tilt	ln	Standard	0.459
836.60	190	GSM 850	32.82	32.73	Left	Touch	ln	Standard	0.756
836.60	190	GSM 850	32.82	32.94	Left	Tilt	ln	Standard	0.467
836.60	190	GSM 850	32.82	32.85	Right	Touch	Out	Standard	0.710
836.60	190	GSM 850	32.82	32.85	Right	Tilt	Out	Standard	0.366
836.60	190	GSM 850	32.82	32.82	Left	Touch	Out	Standard	0.762
836.60	190	GSM 850	32.82	32.41	Left	Tilt	Out	Standard	0.392
		EEE C95.1 19 Spatia Iled Exposur	l Peak	;	1.6 W/k	ain g (mW/g) over 1 gram			

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297		SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	G	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Daga 22 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetoot	th	Page 23 of 37

Table 15-2 GSM 1900 Head SAR Results

			MEA	IENT RES	BULTS						
FREQUI	FREQUENCY		C_Powe	er[dBm]	Side	Test	Slider	Battery Type	SAR (1g)		
MHz	Ch.	Mode/Band	Start	End	Side	Position	Config.	Battery Type	(W/kg)		
1880.00	661	GSM 1900	29.94	29.84	Right	Touch	ln	Standard	0.622		
1880.00	661	GSM 1900	29.94	30.06	Right	Tilt	ln	Standard	0.296		
1880.00	661	GSM 1900	29.94	29.86	Left	Touch	ln	Standard	0.461		
1880.00	661	GSM 1900	29.94	29.93	Left	Tilt	ln	Standard	0.261		
1880.00	661	GSM 1900	29.94	29.95	Right	Touch	Out	Standard	0.627		
1880.00	661	GSM 1900	29.94	29.93	Right	Tilt	Out	Standard	0.396		
1880.00	661	GSM 1900	29.94	29.93	Left	Touch	Out	Standard	0.393		
1880.00	661	GSM 1900	29.94	29.90	Left	Tilt	Out	Standard	0.418		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Brain			
Spatial Peak							1.6 W/kg (mW/g)				
U	Uncontrolled Exposure/General Population							averaged over 1 gram			

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Dogo 24 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 24 of 37	
C COLLO DOTTOT E : :			DE\/ 0 EM	

Table 15-3 UMTS V Head SAR Results

	MEASUREMENT RESULTS									
FREQUI	ENCY	Mode/Band	C_Powe	er[dBm]	Side	Test Position	Slider Config.	Battery Type	SAR (1g)	
MHz	Ch.	Wode/Ballu	Start	End	Side			Battery Type	(W/kg)	
836.60	4183	UMTS V	23.23	23.24	Right	Touch	In	Standard	0.570	
836.60	4183	UMTS V	23.23	23.21	Right	Tilt	In	Standard	0.372	
836.60	4183	UMTS V	23.23	23.28	Left	Touch	In	Standard	0.552	
836.60	4183	UMTS V	23.23	23.20	Left	Tilt	ln	Standard	0.356	
836.60	4183	UMTS V	23.23	23.18	Right	Touch	Out	Standard	0.589	
836.60	4183	UMTS V	23.23	23.28	Right	Tilt	Out	Standard	0.340	
836.60	4183	UMTS V	23.23	23.26	Left	Touch	Out	Standard	0.555	
836.60	4183	UMTS V	23.23	23.19	Left	Tilt	Out	Standard	0.324	
		EEE C95.1 199 Spatial	Brain 1.6 W/kg (mW/g)							
	Jncontro	lled Exposure	/General F	Population		averaged over 1 gram				

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 7. WCDMA mode was tested under RMC 12.2 kbps with HSDPA Inactive.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 25 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 25 of 37	
© 2010 DOTECT Engineering	Laboraton: Inc		DEV/ 0.EM	

Table 15-4 UMTS IV Head SAR Results

	MEASUREMENT RESULTS									
FREQUI	ENCY	Mode	C_Pow	er[dBm]	Side	Test Position	Slider Config.	Battery Type	SAR (1g)	
MHz	Ch.	Wode	Start	End	Side			вапегу туре	(W/kg)	
1730.40	1412	UMTS IV	23.31	23.32	Right	Touch	In	Standard	0.279	
1730.40	1412	UMTS IV	23.31	23.16	Right	Tilt	In	Standard	0.179	
1730.40	1412	UMTS IV	23.31	23.25	Left	Touch	In	Standard	0.224	
1730.40	1412	UMTS IV	23.31	23.30	Left	Tilt	ln	Standard	0.193	
1730.40	1412	UMTS IV	23.31	23.35	Right	Touch	Out	Standard	0.678	
1730.40	1412	UMTS IV	23.31	23.26	Right	Tilt	Out	Standard	0.591	
1730.40	1412	UMTS IV	23.31	23.17	Left	Touch	Out	Standard	0.527	
1730.40	1412	UMTS IV	23.31	23.34	Left	Tilt	Out	Standard	0.551	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Brain 1.6 W/kg (mW/g) averaged over 1 gram			

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 7. WCDMA mode was tested under RMC 12.2 kbps with HSDPA Inactive.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 26 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 26 of 37	
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM	

Table 15-5 Body SAR Results

				M	EASUR	RESULTS						
FREQUE	NCY	Mode	Service	C_Power[dBm]		Position	Spacing	Slider	Battery Type	Slots	Side	SAR (1g)
MHz	Ch.			Start	End		Sparing.	Config.			0.00	(W/kg)
836.60	190	GSM 850	GPRS	30.74	30.37	Body	2.0 cm	In	Standard	2	back	0.564
836.60	190	GSM 850	GPRS	28.85	28.77	Body	2.0 cm	In	Standard	3	back	0.598
836.60	190	GSM 850	GPRS	27.68	27.65	Body	2.0 cm	In	Standard	4	back	0.566
836.60	190	GSM 850	EDGE	26.85	26.87	Body	2.0 cm	In	Standard	3	back	0.385
836.60	190	GSM 850	EDGE	26.86	27.13	Body	2.0 cm	In	Standard	4	back	0.463
1880.00	661	GSM 1900	GPRS	27.92	27.93	Body	2.0 cm	In	Standard	2	back	0.331
1850.20	512	GSM 1900	GPRS	28.85	29.06	Body	2.0 cm	In	Standard	3	back	0.312
1880.00	661	GSM 1900	GPRS	27.68	27.72	Body	2.0 cm	In	Standard	4	back	0.325
1880.00	661	GSM 1900	EDGE	26.05	26.25	Body	2.0 cm	In	Standard	2	back	0.211
1880.00	661	GSM 1900	EDGE	26.02	25.98	Body	2.0 cm	In	Standard	3	back	0.316
1880.00	661	GSM 1900	EDGE	26.02	25.98	Body	2.0 cm	In	Standard	4	back	0.407
836.60	4183	UMTS V	RMC	23.23	23.27	Body	2.0 cm	In	Standard	N/A	back	0.353
1730.40	1730.40 1412 UMTS IV RMC 23.31 23.28 Body							In	Standard	N/A	back	0.151
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Body 1.6 W/kg (i averaged ove	mW/g)		

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C June 2001], IEEE 1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Batteries are fully charged for all readings.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Device was tested using a fixed spacing.
- 7. WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSDPA Inactive.
- 8. Justification for reduced test configurations per KDB 941225: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worst-case reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation.
- 9. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 27 of 27	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 27 of 37	
© 2010 DOTECT Engineering	Laboraton, Inc		DEV/ 0.EM	

16

EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	3/31/2010	Annual	3/31/2011	JP38020182
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/25/2009	Annual	8/25/2010	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
Index SAR	IXTL-010	Dielectric Measurement Kit	N/A		N/A	N/A
Index SAR	IXTL-030	30MM TEM line for 6 GHz	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	9/11/2009	Annual	9/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	9/4/2009	Annual	9/4/2010	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	8/20/2008	Biennial	8/20/2010	101695
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/5/2008	Biennial	12/5/2010	100155
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	12/5/2008	Biennial	12/5/2010	100004
SPEAG	D1450V2	1450 MHz SAR Dipole	5/20/2009	Biennial	5/20/2011	1025
SPEAG	D1765V2	1765 MHz SAR Dipole	5/19/2009	Biennial	5/19/2011	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	1/20/2009	Biennial	1/20/2011	502
SPEAG	D1900V2	1900 MHz SAR Dipole	8/18/2009	Biennial	8/18/2011	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/27/2009	Biennial	8/27/2011	719
SPEAG	D2450V2	2450 MHz SAR Dipole	1/8/2009	Biennial	1/8/2011	797
SPEAG	D2600V2	2600 MHz SAR Dipole	8/12/2009	Biennial	8/12/2011	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/19/2009	Biennial	8/19/2011	1007
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/15/2009	Biennial	1/15/2011	1057
SPEAG	D835V2	835 MHz SAR Dipole	1/19/2009	Biennial	1/19/2011	4d047
SPEAG	D835V2	835 MHz SAR Dipole	8/24/2009	Biennial	8/24/2011	4d026
SPEAG	DAE3	Dasy Data Acquisition Electronics	9/17/2009	Annual	9/17/2010	455
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/22/2010	Annual	3/22/2011	704
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/21/2010	Annual	4/21/2011	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/22/2010	Annual	1/22/2011	649
SPEAG	ES3DV2	SAR Probe	9/18/2009	Annual	9/18/2010	3022
SPEAG	EX3DV4	SAR Probe	1/26/2010	Annual	1/26/2011	3550
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/8/2010	Annual	7/8/2011	859
SPEAG	D750V3	750 MHz Dipole	2/19/2009	Biennial	2/19/2011	1003
SPEAG	ES3DV3	SAR Probe	3/16/2010	Annual	3/16/2011	3213
SPEAG	ES3DV3	SAR Probe	4/20/2010	Annual	4/20/2011	3209
Rohde & Schwarz	SMIQ03B	Signal Generator	4/1/2010	Annual	4/1/2011	DE27259
SPEAG	D1640V2	1640 MHz Dipole	8/21/2008	Biennial	8/21/2010	321
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/25/2009	Annual	8/25/2010	100976
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5318
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	5442
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	1190013
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	98150041
Agilent	8648D	Signal Generator	4/1/2010	Annual	4/1/2011	3629U00687
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	1070030
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5821
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	8013
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	2400
Aprel	ALS-PR-DIEL	Dielectric Probe Kit	N/A		N/A	260-00959
Agilent	E5515C	Wireless Communications Tester	4/14/2010	Annual	4/14/2011	US41140256
SPEAG	ES3DV3	SAR Probe	2/10/2010	Annual	2/10/2011	3173

Justification for 2-year calibration cycle for SAR dipoles is found in Section 12.3.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST SHOREHARD LARGESTERY, INC.	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager		
Filename:	Test Dates:	Dates: EUT Type:			
0Y1008021266.BEJ 08/04/10 - 08/		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 28 of 37		
© 2010 PCTEST Engineering	Laboratory Inc		REV/ 8.5M		

17 CONCLUSION

17.1 **Measurement Conclusion**

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PCTEST SHOULD HAVE THE	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
			EUT Type:	Page 29 of 37
			850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Fage 29 01 37
	© 0040 DOTEOT E	Labanatan, bas		DEV 0 EM

18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments. IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	SMORRERIAN LARCHATERY, INC.	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Page 30 of 37	
0Y1008021266.BEJ 08/04/10 - 08/18/10		850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	rage 30 01 37	
@ 2010 DCTECT Engineering	laharatani laa		DEV 0 EM	

- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz - 3 GHz, KDB 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.

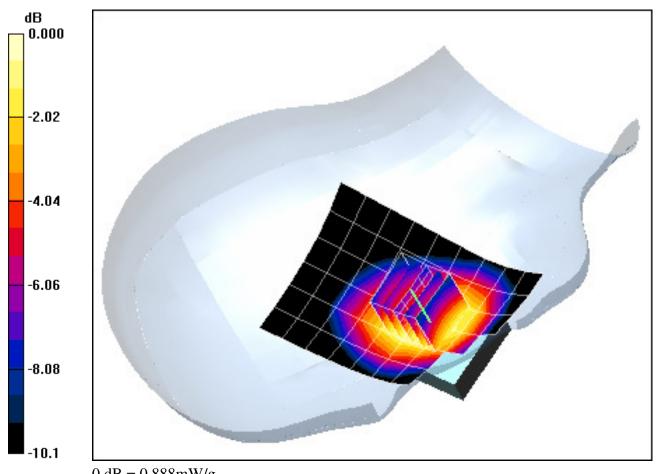
FCC ID: BEJGU297 IC CERT NO: 2703C-GU297	PETEST'	SAR COMPLIANCE REPORT INDUSTRY CANADA TECHNICAL REPORT (RSS-102)	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 21 of 27
0Y1008021266.BEJ	08/04/10 - 08/18/10	850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth	Page 31 of 37
© 2010 PCTFCT Engineering Laboratory, Inc.			DEV/ 0.EM

APPENDIX A: SAR TEST DATA

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.873 mho/m; ε_r = 43.2; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C


Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704: Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Slide In, Touch, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.8 V/m; Power Drift = -0.061 dB Peak SAR (extrapolated) = 1.02 W/kgSAR(1 g) = 0.799 mW/g; SAR(10 g) = 0.587 mW/g

0 dB = 0.888 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

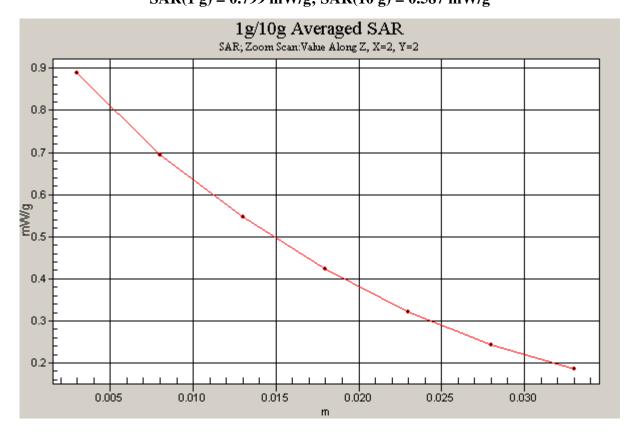
Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.8 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.799 mW/g; SAR(10 g) = 0.587 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

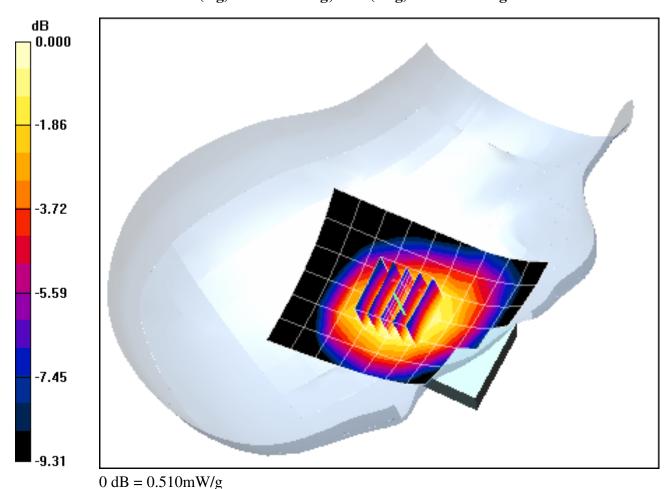
Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Slide In, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.8 V/m; Power Drift = -0.114 dB

Peak SAR (extrapolated) = 0.592 W/kg

SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.338 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellluar/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.756 mW/g; SAR(10 g) = 0.559 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellluar/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

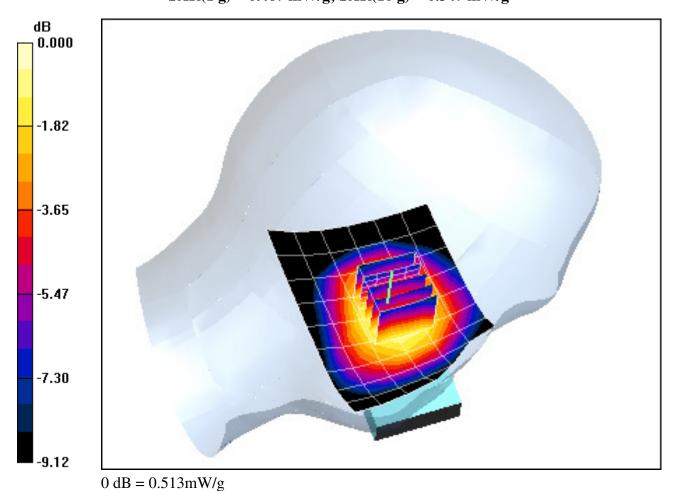
Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Slide In, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.467 mW/g; SAR(10 g) = 0.347 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellluar/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

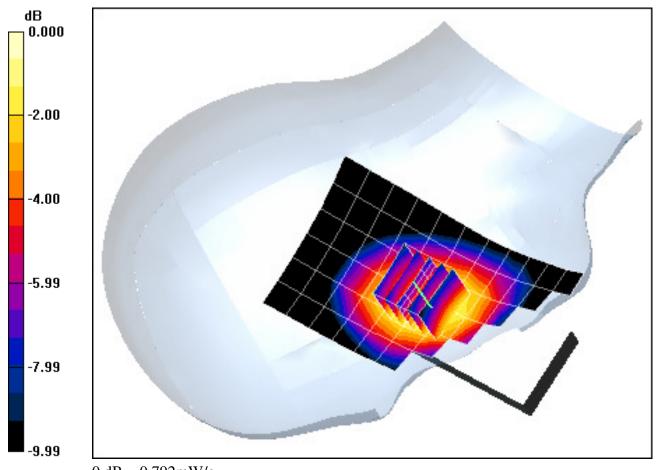
Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Slide Out, Touch, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.0 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.917 W/kg

SAR(1 g) = 0.710 mW/g; SAR(10 g) = 0.510 mW/g

0 dB = 0.792 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Slide Out, Tilt, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.5 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.507 W/kg

SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.266 mW/g

0 dB = 0.420 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellluar/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

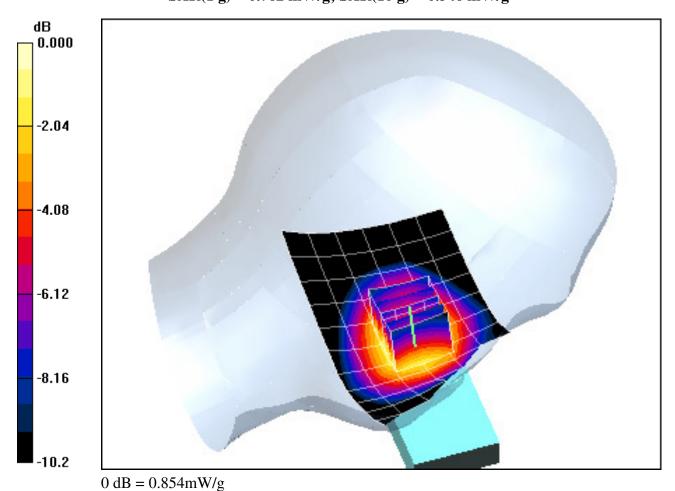
Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Slide Out, Touch, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.51 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 0.986 W/kg

SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.546 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellluar/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.873 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

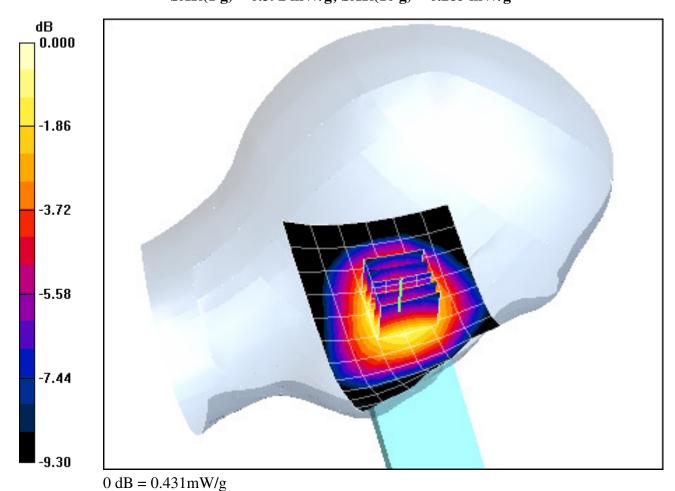
Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Slide Out, Tilt, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

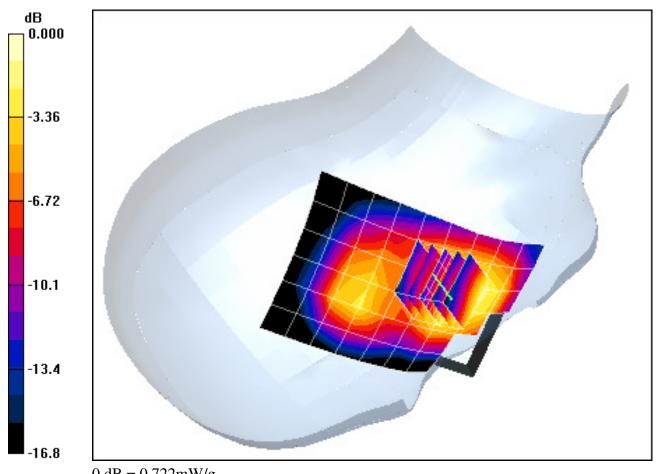
Reference Value = 14.0 V/m; Power Drift = -0.410 dB

Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.285 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 38.2; ρ = 1000 kg/m³ Phantom section: Right Section


Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Slide In, Touch, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.8 V/m; Power Drift = -0.100 dB Peak SAR (extrapolated) = 0.953 W/kgSAR(1 g) = 0.622 mW/g; SAR(10 g) = 0.370 mW/g

0 dB = 0.722 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

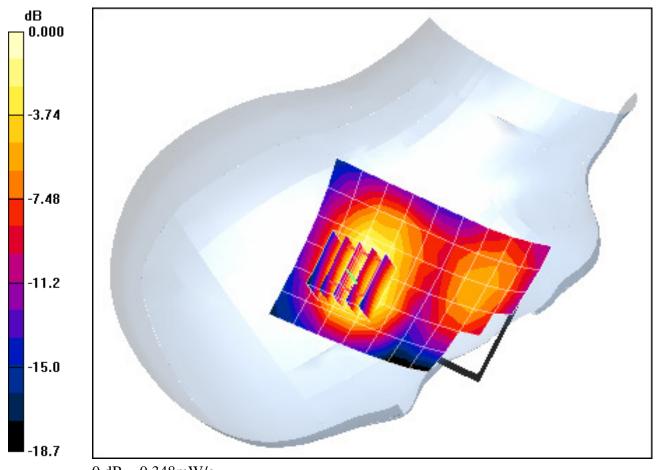
Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Slide In, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = 0.124 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.296 mW/g; SAR(10 g) = 0.180 mW/g

0 dB = 0.348 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

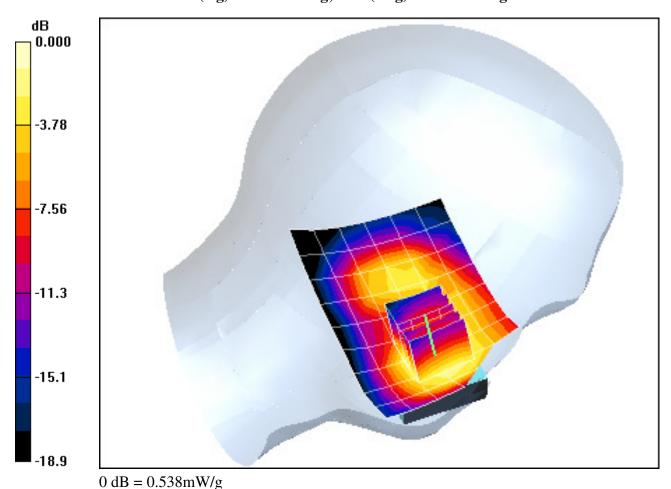
Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = -0.082 dB

Peak SAR (extrapolated) = 0.647 W/kg

SAR(1 g) = 0.461 mW/g; SAR(10 g) = 0.288 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

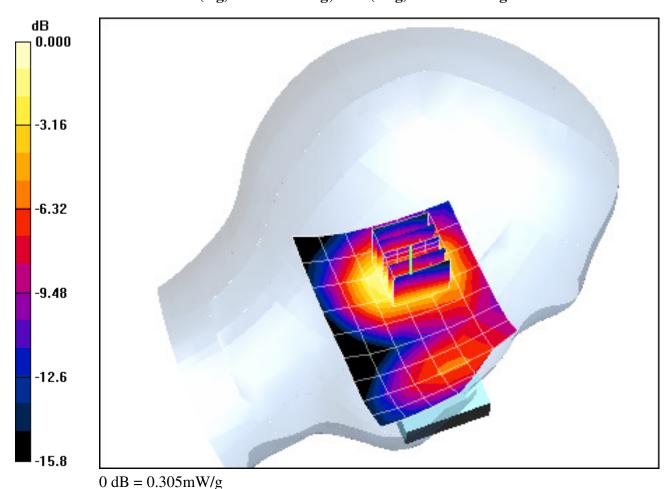
Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Slide In, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.391 W/kg

SAR(1 g) = 0.261 mW/g; SAR(10 g) = 0.163 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

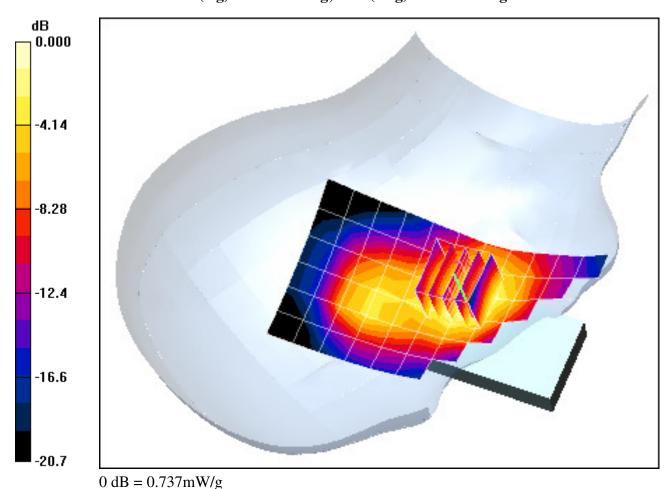
Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Slide Out, Touch, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.2 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.967 W/kg

SAR(1 g) = 0.627 mW/g; SAR(10 g) = 0.381 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

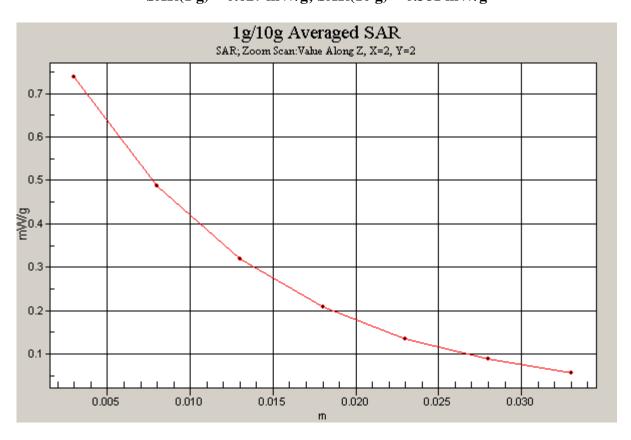
Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Slide Out, Touch, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.2 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.967 W/kg

SAR(1 g) = 0.627 mW/g; SAR(10 g) = 0.381 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

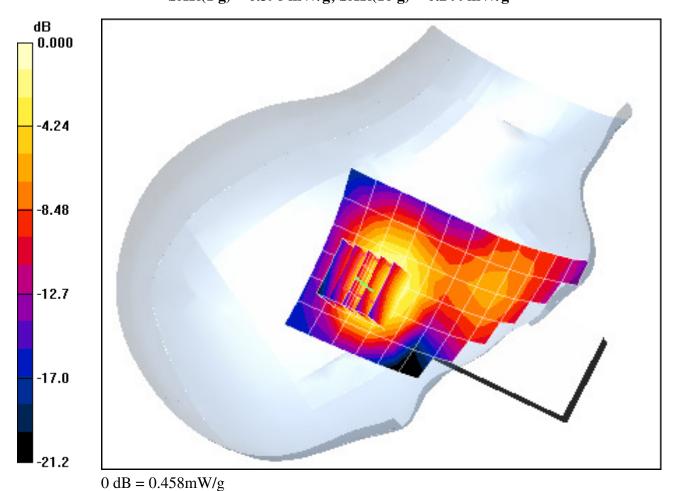
Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Slide Out, Tilt, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.2 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.581 W/kg

SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.244 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

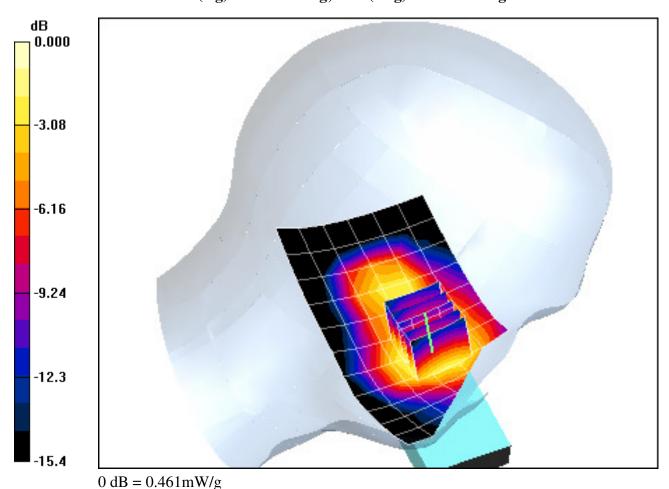
Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.4 \text{ mho/m}; \ \epsilon_r = 38.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Slide Out, Touch, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.8 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.249 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Brain Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.44 \text{ mho/m}; \ \epsilon_r = 41.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

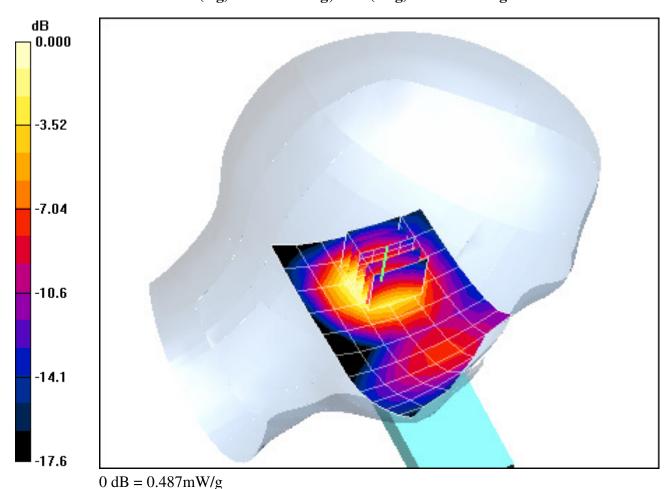
Test Date: 08-18-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(6.81, 6.81, 6.81); Calibrated: 1/26/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 1/22/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Slide Out, Tilt, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.6 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.629 W/kg

SAR(1 g) = 0.418 mW/g; SAR(10 g) = 0.257 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ mho/m}; \ \epsilon_r = 42.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

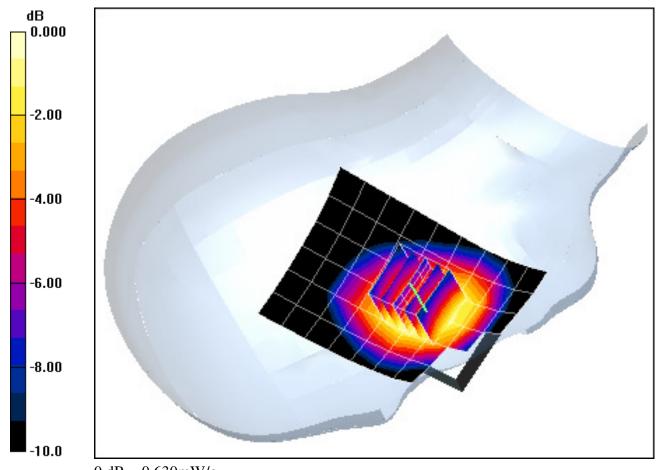
Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Right Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.1 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.718 W/kg

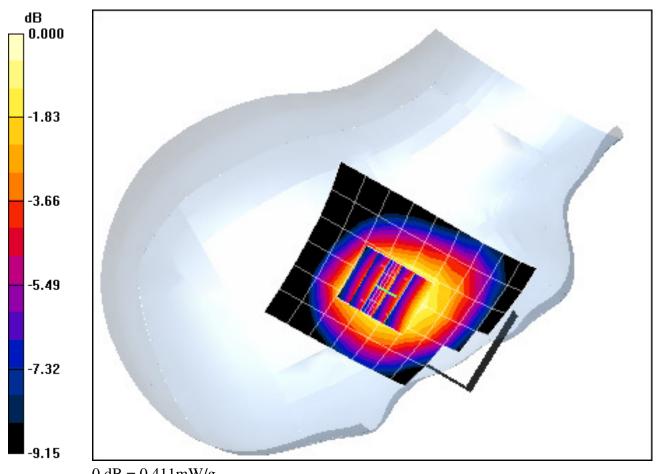
SAR(1 g) = 0.570 mW/g; SAR(10 g) = 0.420 mW/g

0 dB = 0.630 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.879 mho/m; ε_r = 42.4; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C


Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Right Head, Slide In, Tilt, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.4 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 0.484 W/kgSAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.273 mW/g

0 dB = 0.411 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ mho/m}; \ \epsilon_r = 42.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

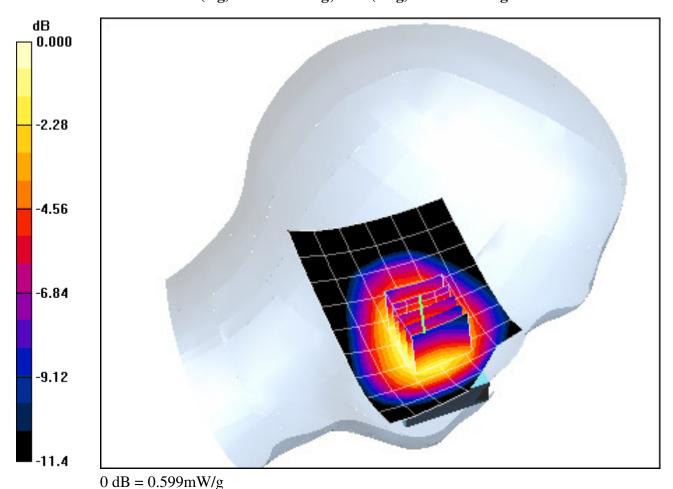
Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Left Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.69 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.689 W/kg

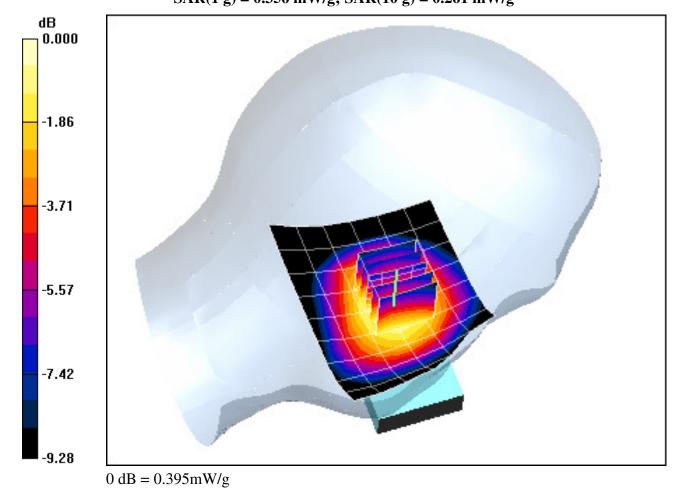
SAR(1 g) = 0.552 mW/g; SAR(10 g) = 0.408 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ mho/m}; \ \epsilon_r = 42.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Left Head, Slide In, Tilt, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = -0.0255 dBPeak SAR (extrapolated) = 0.462 W/kgSAR(1 g) = 0.356 mW/g; SAR(10 g) = 0.261 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ mho/m}; \ \epsilon_r = 42.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

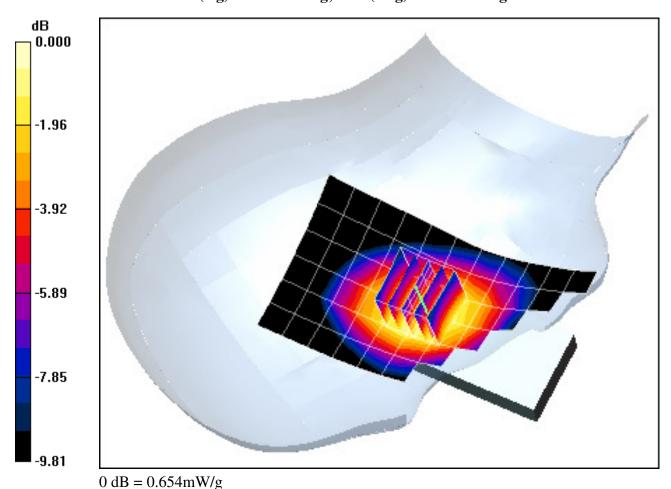
Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °CC

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Right Head, Slide Out, Touch, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.051 dB

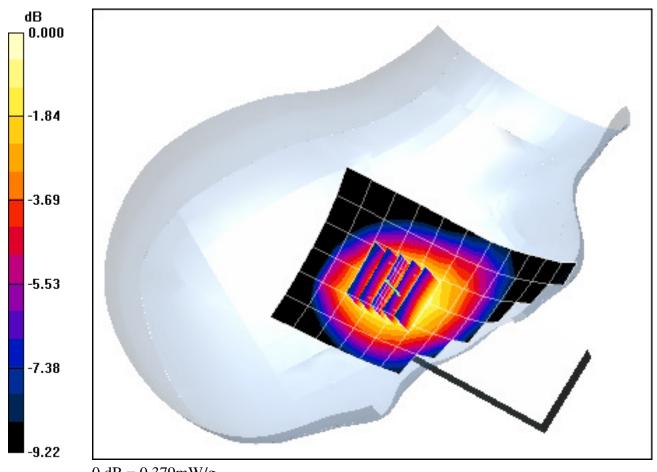
Peak SAR (extrapolated) = 0.763 W/kg

SAR(1 g) = 0.589 mW/g; SAR(10 g) = 0.428 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.879 mho/m; ε_r = 42.4; ρ = 1000 kg/m³ Phantom section: Right Section

Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C


Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704: Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Right Head, Slide Out, Tilt, Mid.ch

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.5 V/m; Power Drift = 0.048 dB Peak SAR (extrapolated) = 0.450 W/kgSAR(1 g) = 0.340 mW/g; SAR(10 g) = 0.246 mW/g

0 dB = 0.379 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ mho/m}; \ \epsilon_r = 42.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

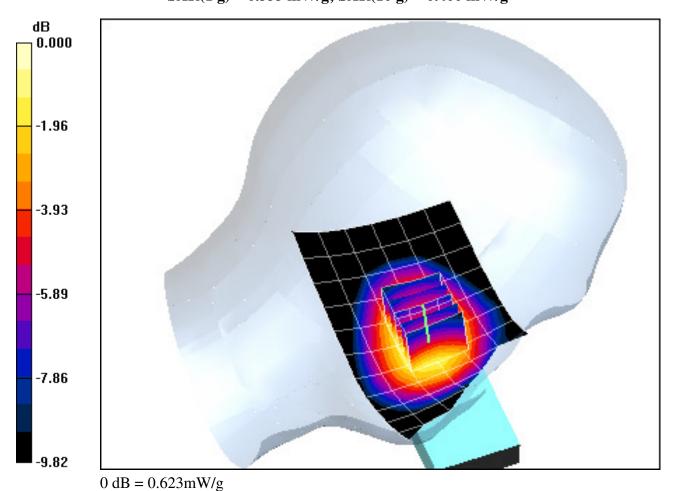
Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Left Head, Slide Out, Touch, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.02 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.724 W/kg

SAR(1 g) = 0.555 mW/g; SAR(10 g) = 0.400 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ mho/m}; \ \epsilon_r = 42.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

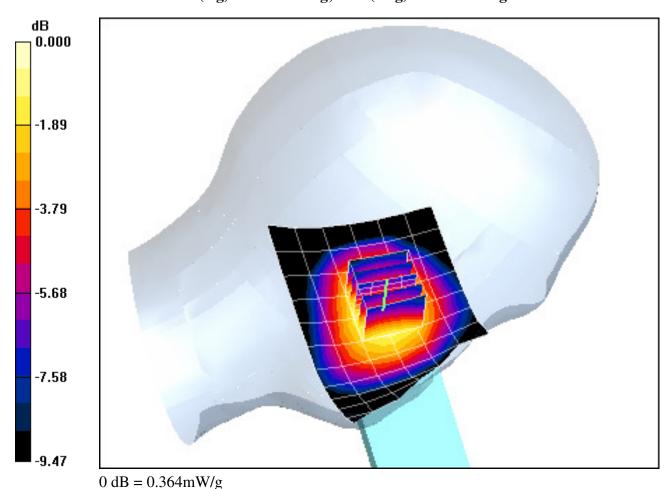
Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Left Head, Slide Out, Tilt, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.324 mW/g; SAR(10 g) = 0.234 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

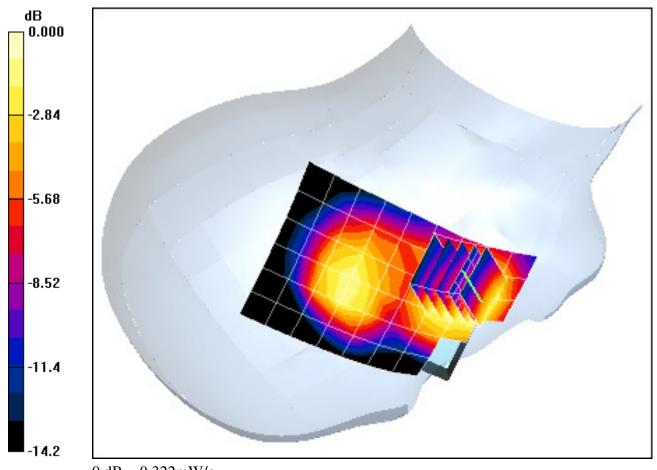
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Right Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.436 W/kg

SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.177 mW/g

0 dB = 0.322 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

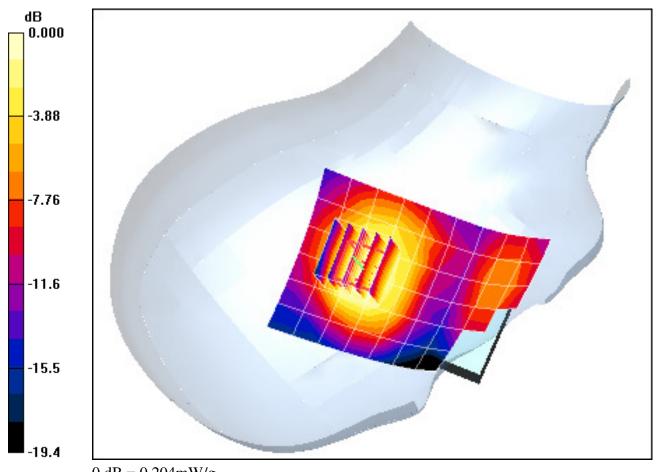
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Right Head, Slide In, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.148 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.113 mW/g

0 dB = 0.204 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

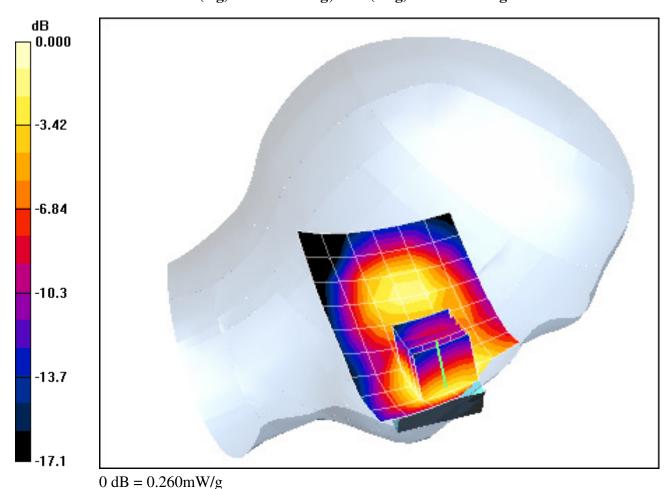
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Left Head, Slide In, Touch, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.224 mW/g; SAR(10 g) = 0.144 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

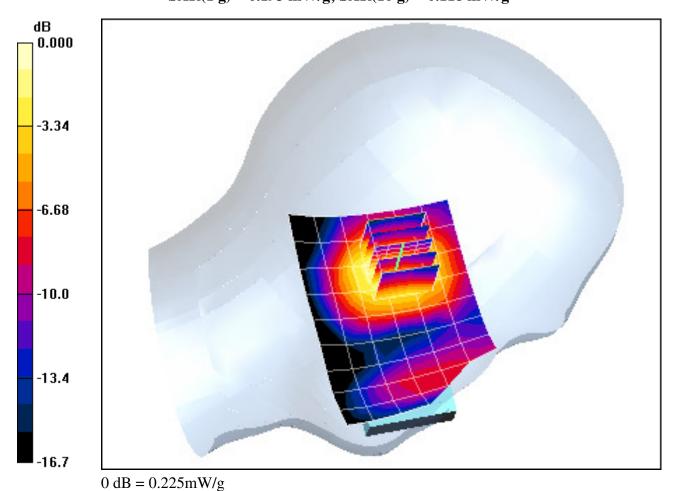
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Left Head, Slide In, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 0.294 W/kg

SAR(1 g) = 0.193 mW/g; SAR(10 g) = 0.118 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

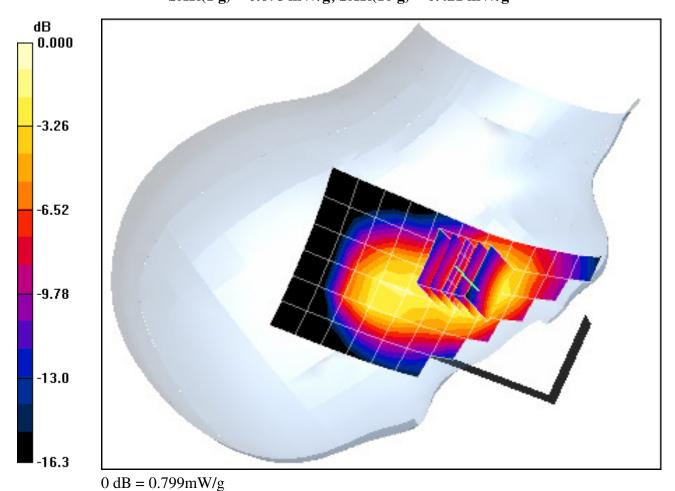
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Right Head, Slide Out, Touch, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.9 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.421 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

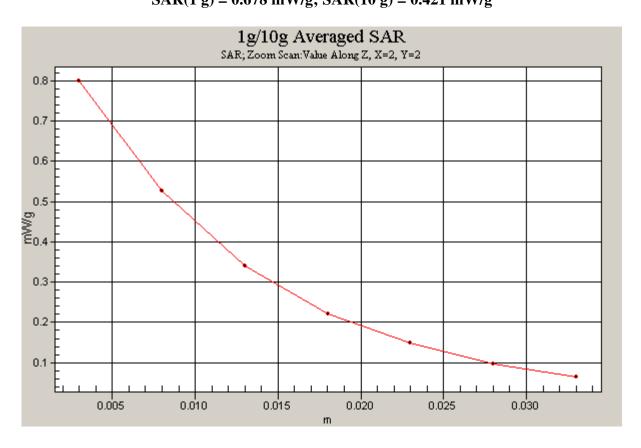
Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/21/2010
Phontom: SAM with CRP: Type: SAM: Social TP1275

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA AWS, Right Head, Slide Out, Touch, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

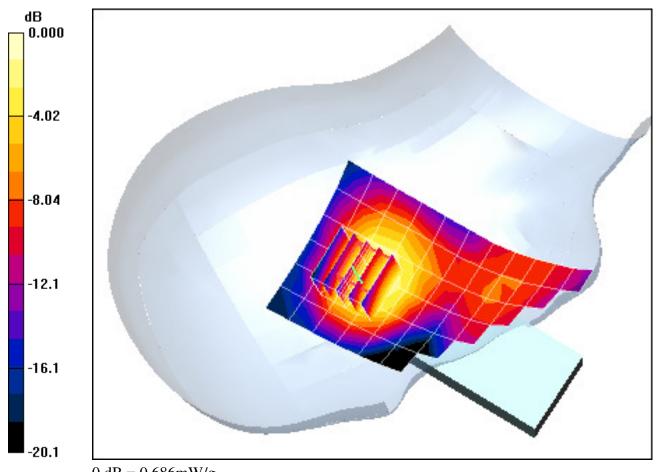
Reference Value = 22.9 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.421 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): f = 1730.4 MHz; σ = 1.41 mho/m; ε_r = 39.4; ρ = 1000 kg/m³ Phantom section: Right Section


Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Right Head, Slide Out, Tilt, Mid.ch

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.8 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 0.876 W/kgSAR(1 g) = 0.591 mW/g; SAR(10 g) = 0.367 mW/g

0 dB = 0.686 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

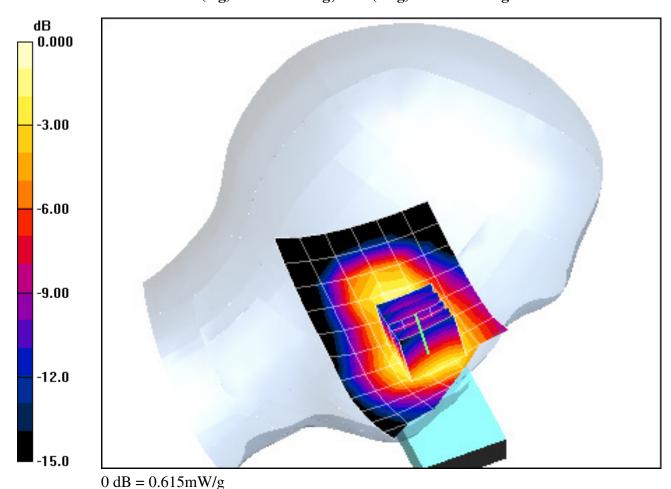
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Left Head, Slide Out, Touch, Mid.ch


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.777 W/kg

SAR(1 g) = 0.527 mW/g; SAR(10 g) = 0.335 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

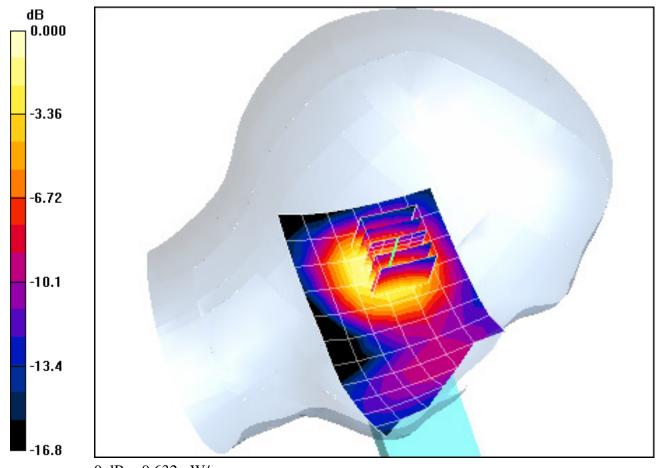
Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.41 \text{ mho/m}; \ \epsilon_r = 39.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA AWS, Left Head, Slide Out, Tilt, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.805 W/kg

SAR(1 g) = 0.551 mW/g; SAR(10 g) = 0.348 mW/g

0 dB = 0.632 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

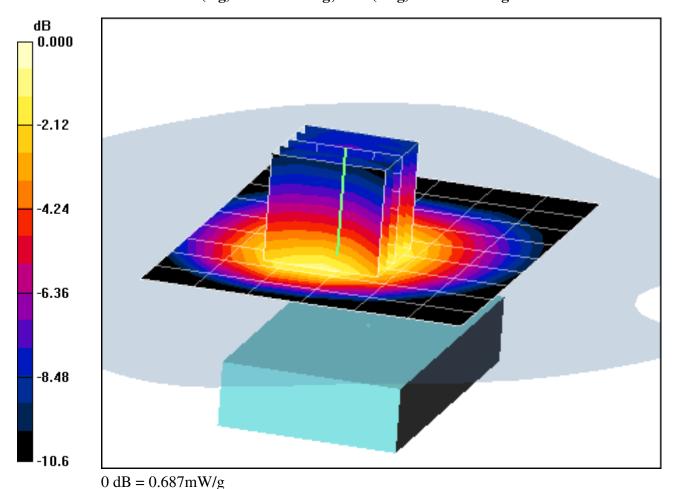
Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Muscle Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.964 \text{ mho/m}; \ \epsilon_r = 54.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.0 cm

Test Date: 08-17-2010; Ambient Temp: 23.3 °C; Tissue Temp: 21.7 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Slide In, Mid.ch, 3 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.3 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.831 W/kg

SAR(1 g) = 0.598 mW/g; SAR(10 g) = 0.415 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.76 Medium: 835 Muscle Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.964 \text{ mho/m}; \ \epsilon_r = 54.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.0 cm

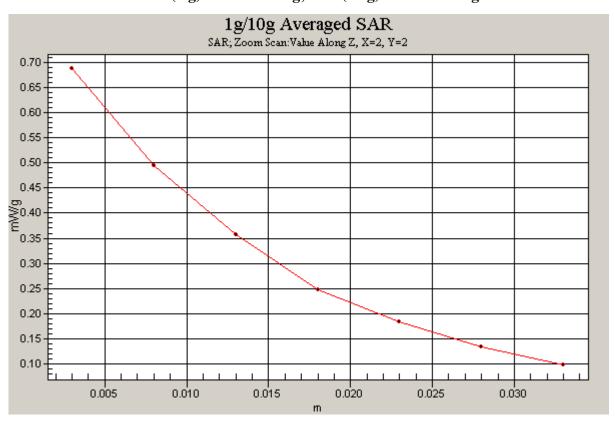
Test Date: 08-17-2010; Ambient Temp: 23.3 °C; Tissue Temp: 21.7 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Slide In, Mid.ch, 3 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.3 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.831 W/kg

SAR(1 g) = 0.598 mW/g; SAR(10 g) = 0.415 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM1900 EGPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076

Medium: 1900 Muscle Medium parameters used:

f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 2.0 cm

Test Date: 08-04-2010; Ambient Temp: 22.9 °C; Tissue Temp: 21.2 °C

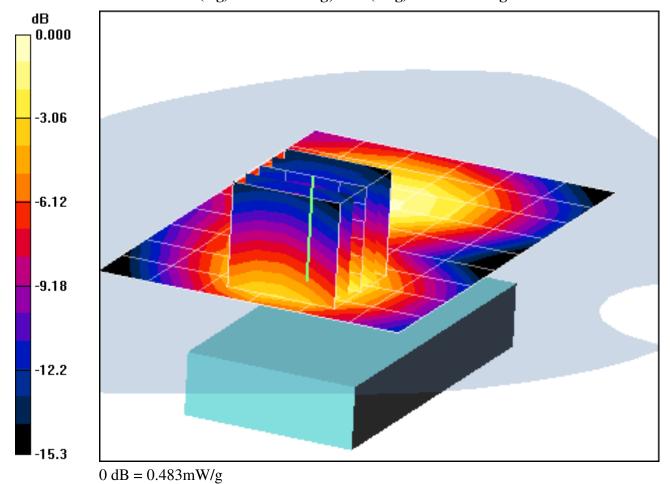
Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: EGPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.7 V/m; Power Drift = -0.0375 dB

Peak SAR (extrapolated) = 0.638 W/kg

SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.241 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: GSM1900 EGPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076

Medium: 1900 Muscle Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 2.0 cm

Test Date: 08-04-2010; Ambient Temp: 22.9 °C; Tissue Temp: 21.2 °C

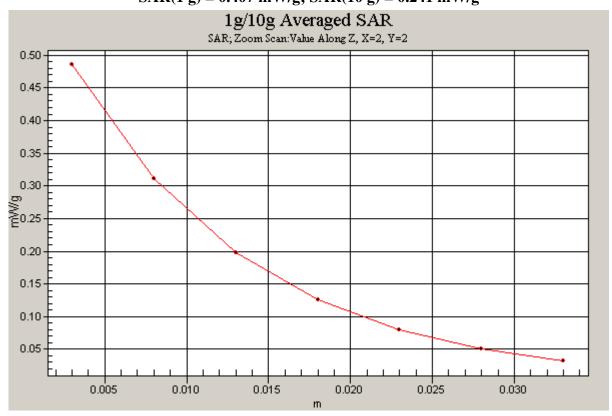
Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: EGPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.7 V/m; Power Drift = -0.0375 dB

Peak SAR (extrapolated) = 0.638 W/kg

SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.241 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

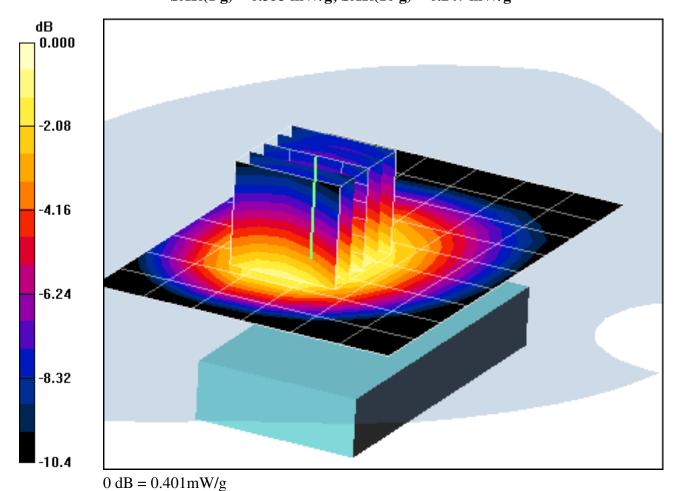
Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Muscle Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.964 \text{ mho/m}; \ \epsilon_r = 54.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.0 cm

Test Date: 08-17-2010; Ambient Temp: 23.3 °C; Tissue Temp: 21.7 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: Cellular WCDMA, Body SAR, Back side, Slide In, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.2 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.353 mW/g; SAR(10 g) = 0.247 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

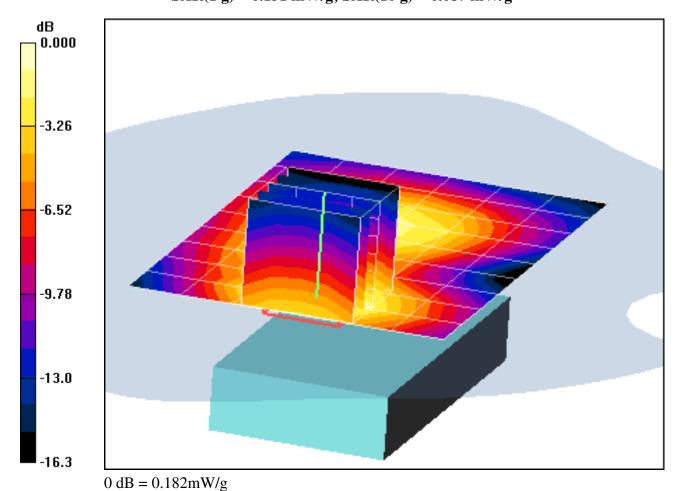
Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Muscle Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.51 \text{ mho/m}; \ \epsilon_r = 52.9; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.0 cm

Test Date: 08-16-2010; Ambient Temp: 23.7 °C; Tissue Temp: 22.5 °C

Probe: ES3DV3 - SN3209; ConvF(4.85, 4.85, 4.85); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Body SAR, Back side, Slide In, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.242 W/kg

SAR(1 g) = 0.151 mW/g; SAR(10 g) = 0.087 mW/g

DUT: BEJGU297; Type: 850/1900 GSM/GPRS/EDGE and Cellular/AWS WCDMA Phone with Bluetooth; Serial: SAR

Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Muscle Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.51 \text{ mho/m}; \ \epsilon_r = 52.9; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.0 cm

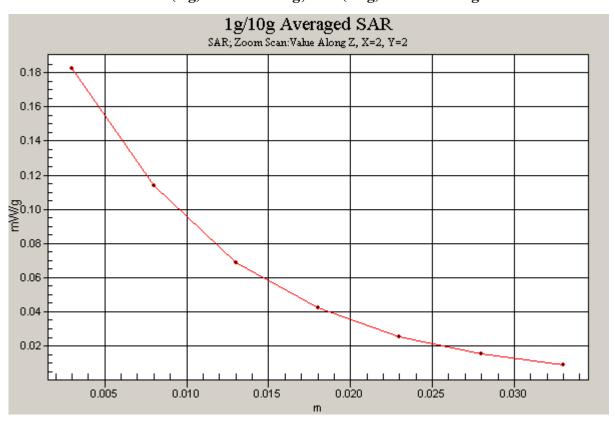
Test Date: 08-16-2010; Ambient Temp: 23.7 °C; Tissue Temp: 22.5 °C

Probe: ES3DV3 - SN3209; ConvF(4.85, 4.85, 4.85); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: AWS WCDMA, Body SAR, Back side, Slide In, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.242 W/kg

SAR(1 g) = 0.151 mW/g; SAR(10 g) = 0.087 mW/g

APPENDIX B: DIPOLE VALIDATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

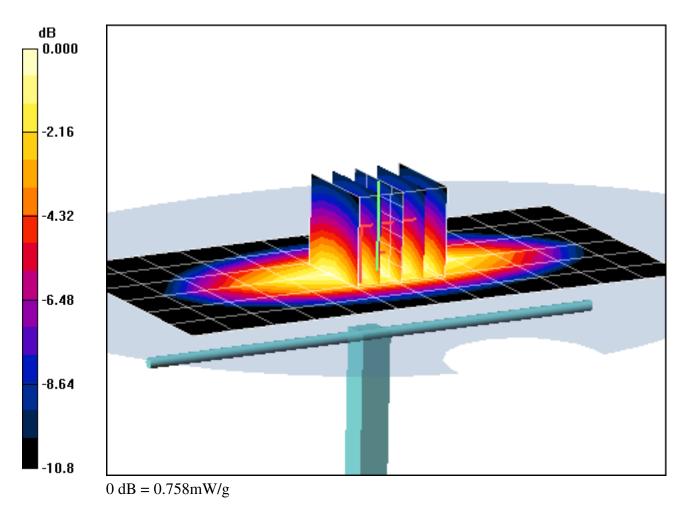
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Brain Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.871 \text{ mho/m}; \ \epsilon_r = 43.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-12-2010; Ambient Temp: 23.7 °C; Tissue Temp: 21.8 °C

Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 18.0 dBm (63.0 mW)

SAR(1 g) = 0.649 mW/g; SAR(10 g) = 0.422 mW/g

Deviation = 6.20 %

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Brain Medium parameters used:

f = 835 MHz; σ = 0.877 mho/m; ε_r = 42.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-17-2010; Ambient Temp: 23.0 °C; Tissue Temp: 21.1 °C

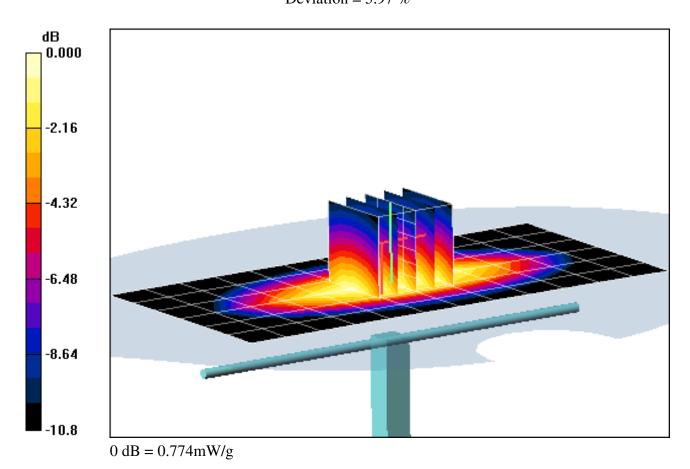
Probe: ES3DV3 - SN3213; ConvF(5.98, 5.98, 5.98); Calibrated: 3/16/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 18.1 dBm (64.6 mW)

SAR(1 g) = 0.664 mW/g; SAR(10 g) = 0.431 mW/g

Deviation = 5.97 %

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: 1008

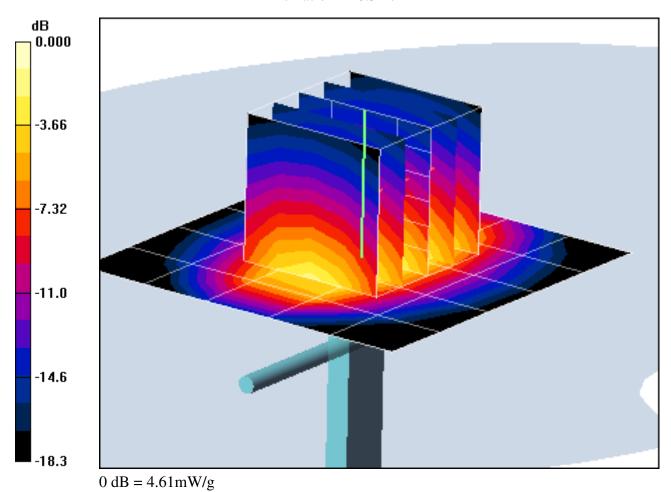
Communication System: CW; Frequency: 1765 MHz; Duty Cycle: 1:1 Medium: 1750 Brain Medium parameters used (interpolated): $f = 1765 \text{ MHz}; \ \sigma = 1.44 \text{ mho/m}; \ \epsilon_r = 39.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-16-2010; Ambient Temp: 24.2 °C; Tissue Temp: 22.8 °C

Probe: ES3DV3 - SN3209; ConvF(5.34, 5.34, 5.34); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1765MHz System Verification


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

SAR(1 g) = 3.57 mW/g; SAR(10 g) = 1.84 mW/g

Deviation = -6.54 %

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502

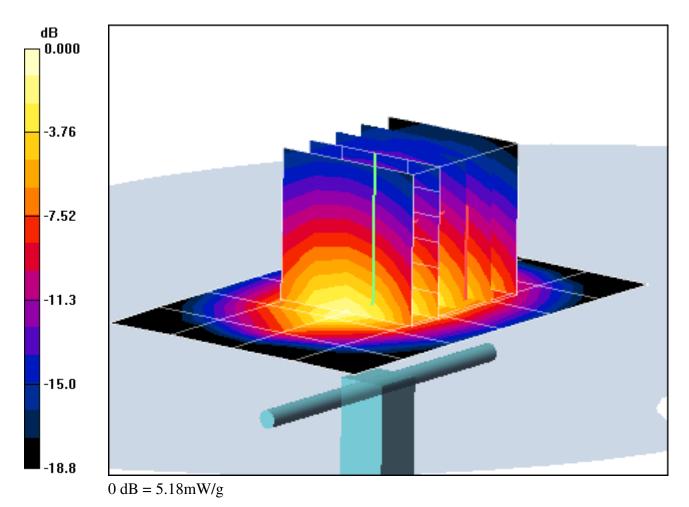
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Brain Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.42 \text{ mho/m}; \ \epsilon_r = 38.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-04-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(5.16, 5.16, 5.16); Calibrated: 4/20/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/21/2010 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

SAR(1 g) = 4.14 mW/g; SAR(10 g) = 2.15 mW/g

Deviation = 3.76 %

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Brain Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.45 \text{ mho/m}; \ \epsilon_r = 41; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

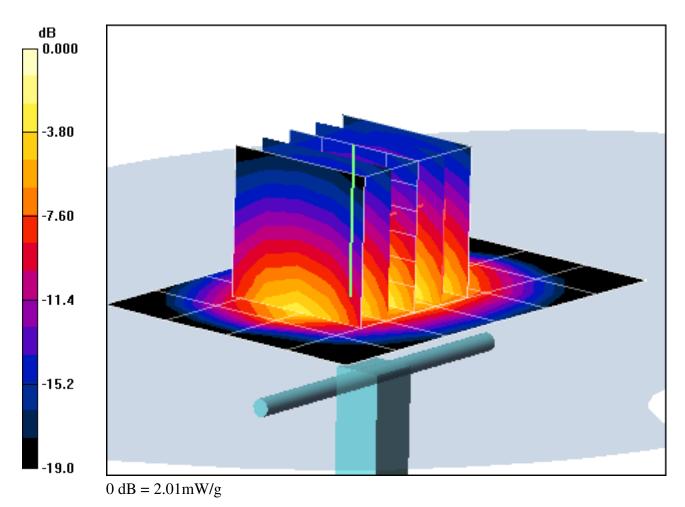
Test Date: 08-18-2010; Ambient Temp: 23.8 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(6.81, 6.81, 6.81); Calibrated: 1/26/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16.0 dBm (40 mW)

SAR(1 g) = 1.61 mW/g; SAR(10 g) = 0.822 mW/g

Deviation = 0.37 %

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Issued: April 22, 2010

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3209 Apr10

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE Object ES3DV3 - SN:3209 Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes Calibration date: April 20, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Calibrated by: Marcel Fehr Laboratory Technician Approved by: Kalja Pokovic Technical Manager

Certificate No: ES3-3209_Apr10 Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signator.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3209_Apr10 Page 2 of 11

Probe ES3DV3

SN:3209

Manufactured: October 14, 2008
Last calibrated: April 15, 2009
Recalibrated: April 20, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Page 3 of 11

Certificate No: ES3-3209_Apr10

DASY - Parameters of Probe: ES3DV3 SN:3209

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.35	1.35	1.15	± 10.1%
DCP (mV) ^B	94.4	93.7	94.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical finearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

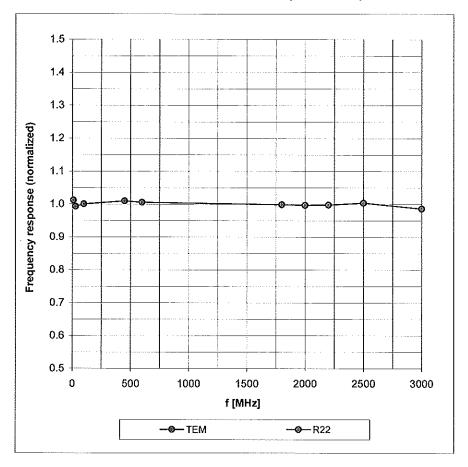
DASY - Parameters of Probe: ES3DV3 SN:3209

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.39	6.39	6.39	0.99	1.03 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.12	6.12	6.12	0.92	1.07 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.34	5.34	5.34	0.62	1.33 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	5.16	5.16	5.16	0.48	1.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.56	4.56	4.56	0.47	1.66 ± 11.0%

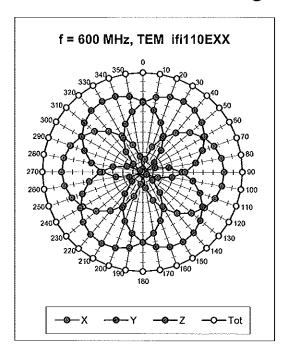
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

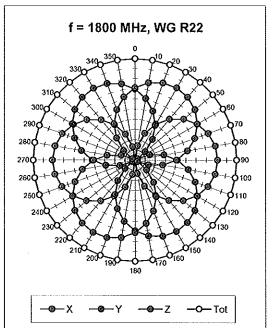
DASY - Parameters of Probe: ES3DV3 SN:3209

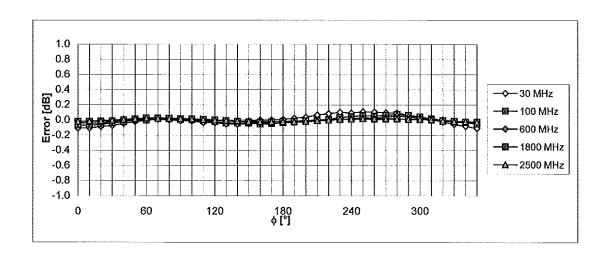

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	6.24	6.24	6.24	0.99	1.08 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.09	6.09	6.09	0.89	1.15 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.85	4.85	4.85	0.32	2.16 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.65	4.65	4.65	0.36	2.14 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.35	4.35	4.35	0.74	1.25 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.25	4.25 -	4.25	0.99	1.06 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

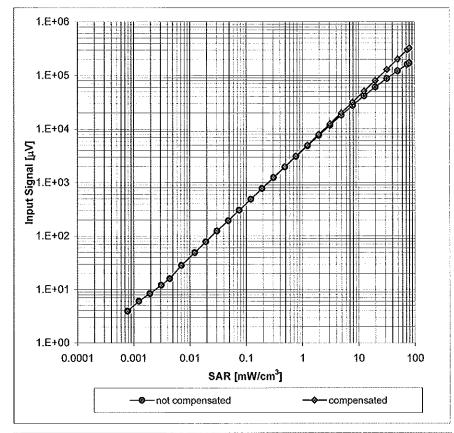

Frequency Response of E-Field

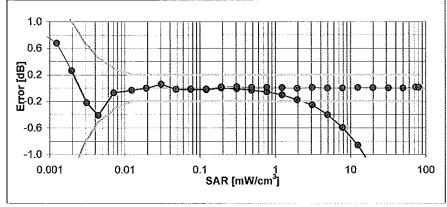

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

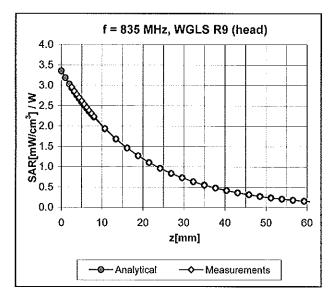
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

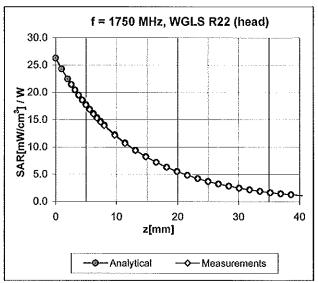




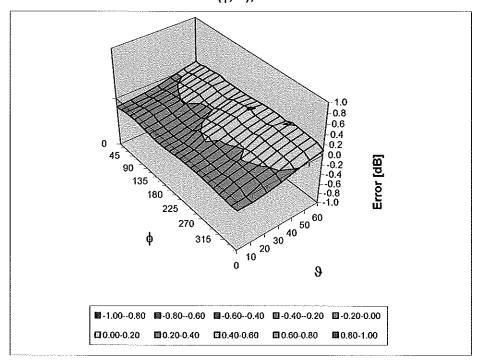
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3209_Apr10

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3209_Apr10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Issued: March 19, 2010

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3213 Mar10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE Object ES3DV3 - SN:3213 Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes Calibration date: March 16, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 MY41495277 Power sensor E4412A 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 Secondary Standards Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name **Function** Signature Calibrated by: Jeton Kastrati **Laboratory Technician** Approved by: Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3213

Manufactured: October 14, 2008
Last calibrated: April 15, 2009
Recalibrated: March 16, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3213_Mar10 Page 3 of 11

DASY - Parameters of Probe: ES3DV3 SN:3213

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.24	1.40	1.36	± 10.1%
DCP (mV) ^B	93.8	93.1	91.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: ES3DV3 SN:3213

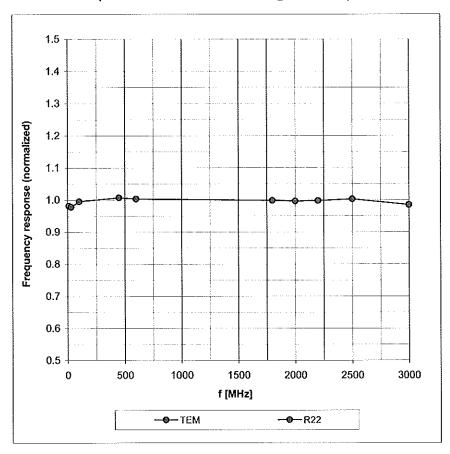
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.30	6.30	6.30	0.99	1.04 ± 13.3%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	5.98	5.98	5.98	0.96	1.07 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.11	5.11	5.11	0.50	1.38 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.92	4.92	4.92	0.53	1.39 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.36	4.36	4.36	0.46	1.62 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

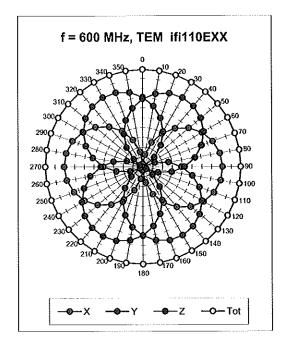
Certificate No: ES3-3213_Mar10 Page 5 of 11

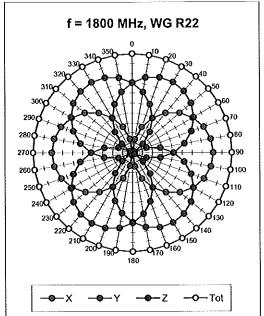
DASY - Parameters of Probe: ES3DV3 SN:3213

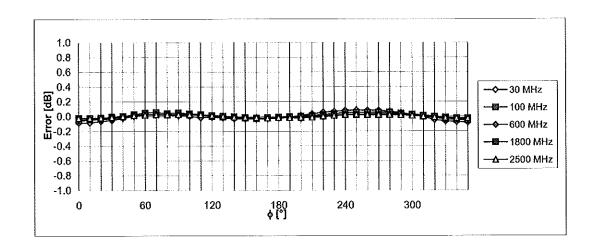

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	ıvFY Co	onvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	5.97	5.97	5.97	0.77	1.16 ± 13.3%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.91	5.91	5.91	0.85	1.17 ± 11.0%
1640	± 50 / ± 100	53.8 ± 5%	1.40 ± 5%	5.04	5.04	5.04	0.35	1.97 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4,80	4.80	4.80	0.42	1.82 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.61	4.61	4.61	0.41	1.97 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.27	4.27	4.27	0.70	1.36 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.16	4.16	4.16	0.92	1.17 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

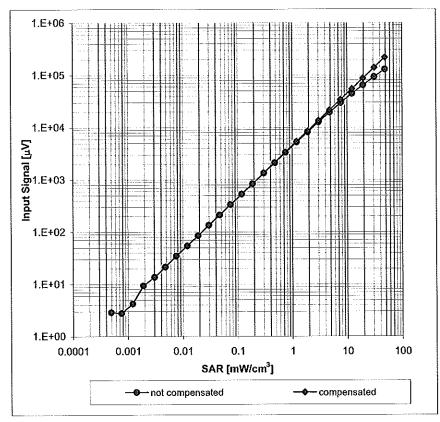

Frequency Response of E-Field

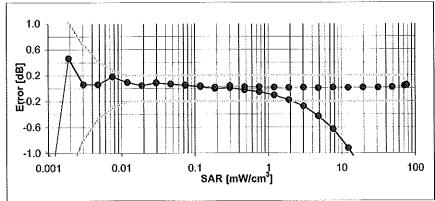

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

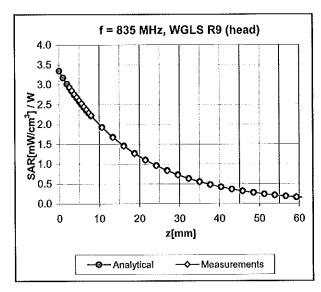


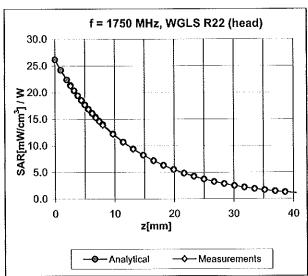


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

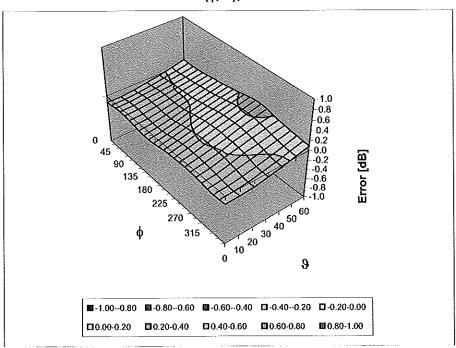
(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

March 16, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3213
Place of Assessment:	Zurich
Date of Assessment:	April 13, 2010
Probe Calibration Date:	March 16, 2010

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1750 MHz.

Assessed by:

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3213

Conversion factor (± standard deviation)

 $1640 \pm 50 \text{ MHz}$

ConvF

 $5.27 \pm 7\%$

 $\varepsilon_r = 40.2 \pm 5\%$

 $\sigma = 1.31 \pm 5\%$ mho/m

(head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY4 Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: EX3-3550 Jan10

CALIBRATION CERTIFICATE Object EX3DV4 - SN:3550 QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes January 26, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Арг-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 SN: S5086 (20b) Reference 20 dB Attenuator 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Маг-10 Reference Probe ES3DV2 SN: 3013 Dec-10 30-Dec-09 (No. ES3-3013 Dec09) DAE4 SN: 660 29-Sep-09 (No. DAE4-660 Sep09) Sep-10 ID# Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 US37390585 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-09) In house check: Oct10 Function Name Calibrated by: Katja Pokovic **Technical Manager** Approved by: Fin Bomholt **R&D Director** Issued: January 26, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3550_Jan10 Page 2 of 11

Probe EX3DV4

SN:3550

Manufactured: May 19, 2004
Last calibrated: January 21, 2009
Recalibrated: January 26, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3550

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.48	0.47	0.48	± 10.1%
DCP (mV) ^B	92.9	88.4	91.4	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300	± 1.5%
			Υ	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter, uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

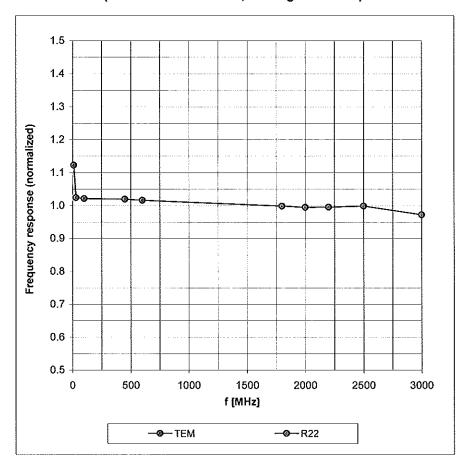
DASY - Parameters of Probe: EX3DV4 SN:3550

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	NFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	8.28	8.28	8.28	0.45	0.70 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	7.03	7.03	7.03	0.39	0.75 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	6.81	6.81	6.81	0.32	0.81 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.21	6.21	6.21	0.22	1.07 ± 11.0%

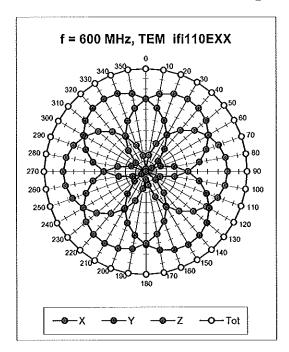
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

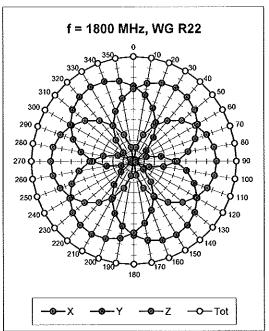
DASY - Parameters of Probe: EX3DV4 SN:3550

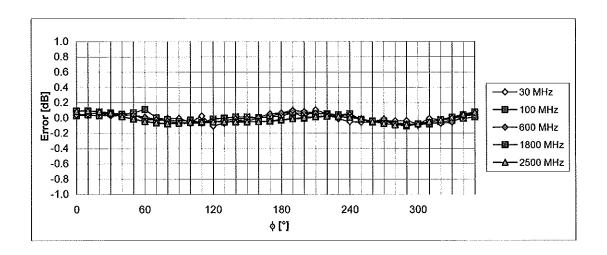

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	ConvF Y	ConvF Z	Alpha	Depth Unc (k≃2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.30	8.30	8.30	0.47	0.76 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	6.90	6.90	6.90	0.49	0.69 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	6.63	6.63	6.63	0.76	0.54 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.40	6.40	6.40	0.22	1.09 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.26	6.26	6.26	0.19	1.42 ± 11.0%
4950	± 50 / ± 100	49.4 ± 5%	5.01 ± 5%	3.64	3.64	3.64	0.50	1.75 ± 13.1%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	3.73	3.73	3.73	0.50	1.75 ± 13.1%
5300	± 50 / ± 100	48.5 ± 5%	5.42 ± 5%	3.52	3.52	3.52	0.52	1.75 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.65 ± 5%	3.26	3.26	3.26	0.55	1.80 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.16	3.16	3.16	0.65	1.80 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.30	3.30	3.30	0.60	1.75 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

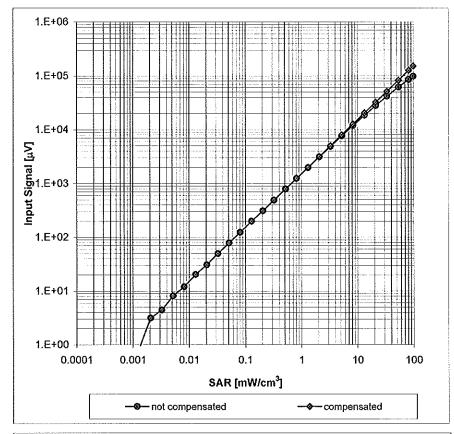

Frequency Response of E-Field

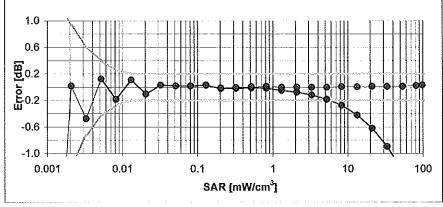

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

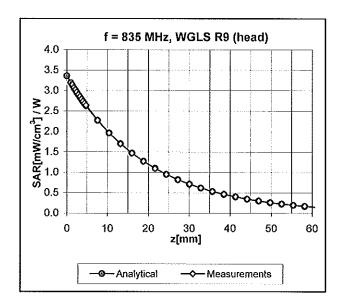
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

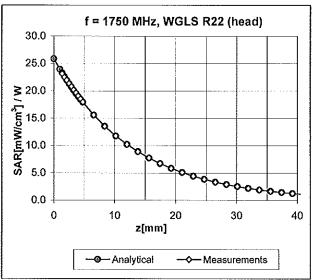




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3550_Jan10 Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular				
Connector Angle (°)	Not applicable				
Mechanical Surface Detection Mode	enabled				
Optical Surface Detection Mode	disabled				
Probe Overali Length	337 mm				
Probe Body Diameter	10 mm				
Tip Length	9 mm				
Tip Diameter	2.5 mm				
Probe Tip to Sensor X Calibration Point	1 mm				
Probe Tip to Sensor Y Calibration Point	1 mm				
Probe Tip to Sensor Z Calibration Point	1 mm				
Recommended Measurement Distance from Surface	2 mm				