PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 01/28/10 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1001250144.BEJ

FCC ID: BEJGS500G

APPLICANT: LG ELECTRONICS USA

EUT Type: 850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth

Application Type: Certification

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [July 2001] **FCC Classification:** FCC Part 15 Frequency Hopping Spread Spectrum Transceiver

(DSS)

Model(s): GS500G

Tx Frequency Measured: 2402-2480 MHz (Bluetooth) **Max. SAR Measurement:** 0.03 W/kg Bluetooth Body SAR

Test Device Serial No.: Pre-Production [S/N: 910KPLC624728]

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Report Issued by an Accredited Laboratory

Rapport utfärdad av ett ackrediterat laboratorium

This laboratory is accredited to ISO/IEC 17025 (A2LA accreditation no. 2041.01)

FCC ID: BEJGS500G	PCTEST SHOREFIRE LABORATERY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 1 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 1 of 23

Randy Ortanez President

TABLE OF CONTENTS

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES	9
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	10
8	DEFINITION OF REFERENCE POINTS	11
9	TEST CONFIGURATION POSITIONS	12
10	RF EXPOSURE LIMITS	13
11	MEASUREMENT UNCERTAINTIES	14
12	SYSTEM VERIFICATION	15
13	SAR DATA SUMMARY	17
14	EQUIPMENT LIST	18
15	CONCLUSION	19
16	REFERENCES	20
17	SAR TEST SETUP PHOTOGRAPHS	22

FCC ID: BEJGS500G	PCTEST	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 2 of 22
0V1001250144 BE I	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 2 of 23

INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz[2] and Health Canada RF Exposure Guidelines Safety Code 6 [26]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [3] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

Figure 1-1 **SAR Mathematical Equation**

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BEJGS500G	SHOULINAS LABORATERY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 2 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 3 of 23

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia. Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

Figure 2-1 Map of the Greater Baltimore and Metropolitan Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 **Test Facility / Accreditations:**

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: BEJGS500G	SHOURISTIAN LAPORATRITY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dags 4 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 4 of 23

© 2010 PCTEST Engineering Laboratory, Inc.

3

3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium 4 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.2 **System Hardware**

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Gateway Pentium 4 2.53 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

3.3 **System Electronics**

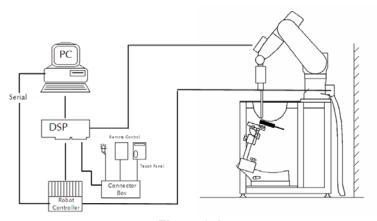


Figure 3-1 **SAR Measurement System Setup**

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [7].

FCC ID: BEJGS500G	SOUTH ST. INC.	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo F of 22	
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 5 of 23	

3.4 **Automated Test System Specifications**

Positioner

Robot: Stäubli Unimation Corp. Robot RX60L

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Cell Controller

Processor: Pentium 4 Clock Speed: 2.53 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: DASY4, SEMCAD software

Connecting Lines: Optical Downlink for data and status info

Optical upload for commands and clock

PC Interface Card

Function: 166MHz low power Pentium MMX 32MB chipdisk

Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

Type: SAM Twin Phantom (V4.0)

Shell Material: Composite Thickness: $2.0 \pm 0.2 \text{ mm}$

Figure 3-2 **DASY4 SAR Measurement System**

FCC ID: BEJGS500G	INGULERIAD LABORATRIY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo C of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 6 of 23

DASY E-FIELD PROBE SYSTEM

4.1 **Probe Measurement System**

Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe EX3DV4. designed in the classical triangular configuration [7] (see Figure 4-3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach

and looks for the maximum using a 2nd order fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.2 **Probe Specifications**

Model: ES3DV3, EX3DV4

10 MHz - 6.0 GHz (EX3DV4) Frequency 10 MHz - 4 GHz (ES3DV3) Range:

In brain and muscle simulating tissue at Calibration: Frequencies from 835 up to 5800MHz ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4 Linearity:

± 0.2 dB (30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg - 100 W/kg

Probe Length: 330 mm

Probe Tip 20 mm

Length: **Body Diameter:** 12 mm

Tip Diameter: 2.5 mm (3.9mm for ES3DV3) Tip-Center: 1 mm (2.0 mm for ES3DV3) Application: SAR Dosimetry Testing

> Compliance tests of mobile phones Dosimetry in strong gradient fields

Figure 4-2 **Near-Field Probe**

Figure 4-3 Triangular Probe Configuration

FCC ID: BEJGS500G	PCTEST SHOREHALD LABORATORY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 7 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 7 of 23

5 PROBE CALIBRATION PROCESS

5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

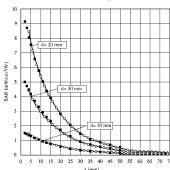


Figure 5-1 E-Field and Temperature measurements at 900MHz [7]

$$SAR = \frac{\left| E \right|^2 \cdot \sigma}{\rho}$$

where:

= simulated tissue conductivity,

p = Tissue density (1.25 g/cm3 for brain tissue)

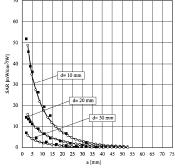


Figure 5-2 E-Field and temperature measurements at 1.9GHz [7]

FCC ID: BEJGS500G	SOUTH ST. INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dags 0 of 22	
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 8 of 23	

6.1 SAM Phantoms

Figure 6-1 **SAM Phantoms**

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [11][12]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 5.1)

6.2 **Brain & Muscle Simulating Mixture Characterization**

Figure 6-2 **Head Simulated**

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution (see Table 6-1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table. Other head and body tissue parameters that have not been specified in IEEE-1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [13].(See Table 6-1)

Table 6-1 Composition of the Brain & Muscle Tissue Equivalent Matter

	_	• • • •			_																
Frequency (MHz)	300	4	50	835		900		1450		18	100		19	000	1950	2000	23	100	24	150	3000
Recipe#	1	1	3	1	1	2	3	1	1	2	2	3	1	2	4	1	1	2	2	3	2
	Ingredient: (% by weight)																				
1,2-Pro- panediol						64.81															
Bactericide	0.19	0.19	0.50	0.10	0.10		0.50					0.50								0.50	
Diacetin			48.90				49.20					49.43								49.75	
DGBE								45.41	47.00	13.84	44.92		44.94	13.84	45.00	50.00	50.00	7.99	7.99		7.99
HEC	0.98	0.98		1.00	1.00																
NaC1	5.95	3.95	1.70	1.45	1.48	0.79	1.10	0.67	0.36	0.35	0.18	0.64	0.18	0.35				0.16	0.16		0.16
Sucrose	55.32	56.32		57.00	56.50																
Triton X-100										30.45				30.45				19.97	19.97		19.97
Water	37.56	38.56	48.90	40.45	40.92	34.40	49.20	53.80	52.64	55.36	54.90	49.43	54.90	55.36	55.00	50.00	50.00	71.88	71.88	49.75	71.88
								3	feasured.	dielectric	parameo	ers									
e' _r	46.00	43.4	44.3	41.6	41.2	41.8	42.7	40.9	39.3	41	40.4	39.2	39.9	41	40.1	37	36.8	41.1	40.3	39.2	37.9
σ(S/m)	0.86	0.85	0.9	0.9	0.98	0.97	0.99	1.21	1.39	1.38	1.4	1.4	1.42	1.38	1.41	1.4	1.51	1.55	1.88	1.82	2.46
Temp. (°C)	22	22	20	22	22	22	20	22	22	21	22	20	21	21	20	22	22	20	20	20	20
								Tar	get dielect	ric parau	eters (Ts	ble 2)									
é _r	45.30	43	.50	41.5		41.50		40.5	40.0				39	.80	3	9.2	38.5				
**						0.97		1.2		1.4 1.49 1.8 2.4											

The formulas containing Triton X-100 and corresponding measured parameters are under review and verification

FCC ID: BEJGS500G	SHOTEST INDICATED THE	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 0 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 9 of 23

DOSIMETRIC ASSESSMENT & PHANTOM SPECS

7.1 **Measurement Procedure**

The evaluation was performed using the following procedure:

- 1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.0mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7

Figure 7-1 Sample SAR Area Scan

points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Figure 7-1):

- The data at the surface was extrapolated, since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1,2mm. The extrapolation was based on a least square algorithm [15]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions) [15][16]. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- All neighboring volumes were evaluated until no neighboring volume with a higher C. average value was found.
- 4. The SAR reference value, at the same location as step 1, was re-measured. If the value changed by more than 5%, the evaluation is repeated.

7.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 7-2 **SAM Twin Phantom Shell**

FCC ID: BEJGS500G	SHORILING LADRATURY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 10 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 10 of 23

8.1 EAR REFERENCE POINT

Figure 8-1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 8-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 8-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

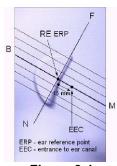


Figure 8-1 Close-Up Side view of ERP

8.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 8-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 8-2 Front, back and side view of SAM Twin Phantom

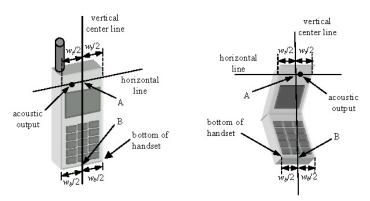


Figure 8-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: BEJGS500G	SKONLEHAD LABORATRIV, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 11 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 11 of 23

9 TEST CONFIGURATION POSITIONS

9.1 **Body Holster /Belt Clip Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9-5). A device with a headset output is tested with a headset connected to the device.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in brain fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters. SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

FCC ID: BEJGS500G	SHOTEST INDICATED THE	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 10 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 12 of 23

10 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

10.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS								
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)						
SPATIAL PEAK SAR Brain	1.6	8.0						
SPATIAL AVERAGE SAR Whole Body	0.08	0.4						
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20						

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BEJGS500G	SHOULDING LABORATORY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 12 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 13 of 23

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

11 MEASUREMENT UNCERTAINTIES

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		C _i	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
Composition	Sec.	(= ///		-	. 3		(± %)	(± %)	-'
Measurement System							(= ///	(= /0/	
Probe Calibration	E.2.1	6.6	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions		3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)		1	RSS	1	1	1	12.4	12.0	299
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				24.7	24.0	

The above measurement uncertainties are according to I \boxplus \$d. 1528-2003

FCC ID: BEJGS500G	SHOTEST SHORESTEEN, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 14 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 14 of 23

12.1 Tissue Verification

Table 12-1 Measured Tissue Properties

Calibrated Date:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
		2401	1.950	52.53	1.95	52.70	0.00%	-0.32%
01/25/2010	2450M	2450	2.019	52.35	1.95	52.70	3.54%	-0.66%
		2499	2.044	52.15	1.95	52.70	4.82%	-1.04%

Note: KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2).

12.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity, for example from the below equation (Pournaropoulos and

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $i = \sqrt{-1}$.

FCC ID: BEJGS500G	SHOULDING LABORATORY, INC.	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dags 15 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 15 of 23

12.3 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR result on the reference dipole at the time of calibration, by using the below system validation kit(s).

Table 12-2 System Verification Results

	System Verification TARGET & MEASURED								
Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Tissue Frequency (MHz)	Dipole SN	Tissue Type	Targeted SAR _{1g} (mW)	Measured SAR _{1g} (mW)	Deviation (%)
01/28/2010	23.2	22.1	0.026	2450	719	Muscle	1.34	1.38	2.87%



Figure 12-1 System Verification Setup Diagram

Figure 12-2 **System Verification Setup Photo**

FCC ID: BEJGS500G	SETEST INCIDENTAL INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 16 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 16 of 23

13.1 2.4 GHz Body SAR Results

	MEASUREMENT RESULTS									
FREQU	ENCY	Mode	Position	Service	Spacing	Battery	Drift	Side	SAR	
MHz	Ch.			00.1.00	opuog		2	0.00	(W/kg)	
2402	0	Bluetooth	Body	FHSS	0 cm	Standard	0.133	back	0.007	
2441	39	Bluetooth	Body	FHSS	0 cm	Standard	0.126	back	0.016	
2480	78	Bluetooth	Body	FHSS	0 cm	Standard	0.145	back	0.026	
2480	78	Bluetooth	Body	FHSS	0 cm	Standard	0.198	front	0.003	
ANS	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body			
	Spatial Peak					1.6 W/kg (mW/g)				
Uncor	ntrolled	Exposure/Ger	neral Pop	ulation		average	ed over 1	gram		

Notes:

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July
- 2. All modes of operation were investigated, and worst-case results are reported.
- Batteries are fully charged for all readings.
 Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm. \pm 0.1.
- 6. Device was tested using 0 cm.

FCC ID: BEJGS500G	SHOTEST SHORESTEEN, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 17 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 17 of 23

14

EQUIPMENT LIST

Manufacturer Model Description		Cal Date	Cal Interval	Cal Due	Serial Number	
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	3/25/2009	Annual	3/25/2010	JP38020182
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/25/2009	Annual	8/25/2010	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/25/2009	Biennial	3/25/2011	MY45470194
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
Index SAR	IXTL-010	Dielectric Measurement Kit	N/A		N/A	N/A
Index SAR	IXTL-030	30MM TEM line for 6 GHz	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	9/11/2009	Annual	9/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	4/6/2009	Annual	4/6/2010	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	9/4/2009	Annual	9/4/2010	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	8/20/2008	Biennial	8/20/2010	101695
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/5/2008	Biennial	12/5/2010	100155
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	12/5/2008	Biennial	12/5/2010	100004
SPEAG	D1450V2	1450 MHz SAR Dipole	5/20/2009	Biennial	5/20/2011	1025
SPEAG	D1765V2	1765 MHz SAR Dipole	5/19/2009	Biennial	5/19/2011	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	1/20/2009	Biennial	1/20/2011	502
SPEAG			8/18/2009	Biennial	8/18/2011	5d080
SPEAG	SPEAG D2300V2 2300 MHz SAR Dipole		3/6/2008	Biennial	3/6/2010	1008
SPEAG D2450V2 2450 MHz SAR Dipole		8/27/2009	Biennial	8/27/2011	719	
SPEAG			1/8/2009	Biennial	1/8/2011	797
SPEAG D2600V2 2600 MHz SAR Dipole		8/12/2009	Biennial	8/12/2011	1004	
SPEAG	SPEAG D5GHzV2 5 GHz SAR Dipole		8/19/2009	Biennial	8/19/2011	1007
SPEAG	SPEAG D5GHzV2 5 GHz SAR Dipole		1/15/2009	Biennial	1/15/2011	1057
SPEAG	SPEAG D835V2 835 MHz SAR Dipole		1/19/2009	Biennial	1/19/2011	4d047
SPEAG D835V2 835 MHz SAR Dipole		8/24/2009	Biennial	8/24/2011	4d026	
SPEAG DAE3 Dasy Data Acquisition Electronics		9/17/2009	Annual	9/17/2010	455	
SPEAG DAE4 Dasy Data Acquisition Electronics		5/14/2009	Annual	5/14/2010	704	
SPEAG DAE4 Dasy Data Acquisition Electronics		5/25/2009	Annual	5/25/2010	665	
SPEAG			9/18/2009	Annual	9/18/2010	3022
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/21/2009	Annual	7/21/2010	859
SPEAG	D750V3	750 MHz Dipole	2/19/2009	Biennial	2/19/2011	1003
Rohde & Schwarz	CMU200	Base Station Simulator	6/12/2009	Annual	6/12/2010	836536/0005
Speag	ES3DV3	SAR Probe	4/15/2009	Annual	4/15/2010	3213
Speag ES3DV3 SAR Probe		4/15/2009	Annual	4/15/2010	3209	
Rohde & Schwarz SMIQ03B Signal Generator		5/21/2009	Annual	5/21/2010	832810/021	
Speag D1640V2 1640 MHz Dipole		8/21/2008	Biennial	8/21/2010	321	
Rohde & Schwarz CMW500 LTE Base Station Simulator		8/25/2009	Annual	8/25/2010	100976	
Anritsu MA2481A Power Sensor		12/2/2009	Annual	12/2/2010	5318	
Anritsu MA2481A Power Sensor		12/3/2009	Annual	12/3/2010	5442	
Anritsu ML2438A Power Meter		12/3/2009	Annual	12/3/2010	1190013	
Anritsu ML2438A Power Meter		12/3/2009	Annual	12/3/2010	98150041	
		12/3/2009	Annual	12/3/2010	1070030	
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5821
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	8013
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	2400

Notes:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by PCTEST prior to SAR evaluation. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

FCC ID: BEJGS500G	PCTEST SHOULDING LAJORATURY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 10 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 18 of 23

15 CONCLUSION

15.1 **Measurement Conclusion**

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BEJGS500G	ENGINEERIAD LABORATRIY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 10 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 19 of 23

16

REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments. IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

FCC ID: BEJGS500G	SHOTEST INDICATED THE	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 20 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 20 of 23

- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 3, June 2009
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz - 3 GHz, KDB 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB 447498

FCC ID: BEJGS500G	SHOTEST SHORESTEEN, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dags 24 of 22
0Y1001250144.BEJ	01/28/10	850/1900 GSM/GPRS/EDGE/WCDMA/HSPA Phone with Bluetooth	Page 21 of 23

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: BEJGS500G; Type: 850/1900 GSM/GPRS/EDGE/WCDMA/HSDPA Phone with Bluetooth; Serial: 910kpn624613

Communication System: Bluetooth; Frequency: 2402 MHz;Duty Cycle: 1:1 Medium: 2450 Muscle Medium parameters used (interpolated): $f = 2480 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 52.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

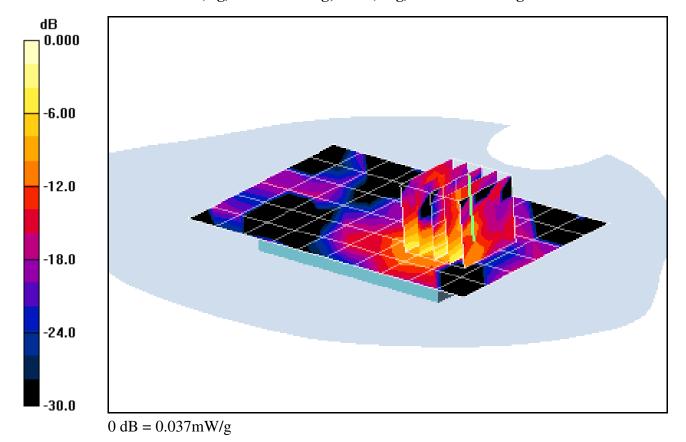
Test Date: 01-28-2010; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: ES3DV2 - SN3022; ConvF(4.05, 4.05, 4.05); Calibrated: 9/18/2009 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/21/2009 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: Bluetooth, Body SAR, High Ch, Back Side


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.02 V/m

Peak SAR (extrapolated) = 0.064 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.00995 mW/g

APPENDIX B: DIPOLE VALIDATION

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Muscle Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.02 \text{ mho/m}; \ \epsilon_r = 52.4; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space 1.0 cm

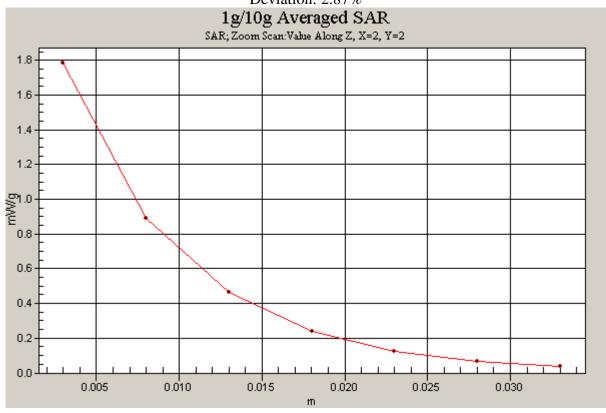
Test Date: 01-28-2010; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: ES3DV2 - SN3022; ConvF(4.05, 4.05, 4.05); Calibrated: 9/18/2009

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/21/2009 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Dipole Validation


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 14.2 dBm (26.3 mW)

SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.632 mW/g

Deviation: 2.87%

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Muscle Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.02 \text{ mho/m}; \ \epsilon_r = 52.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

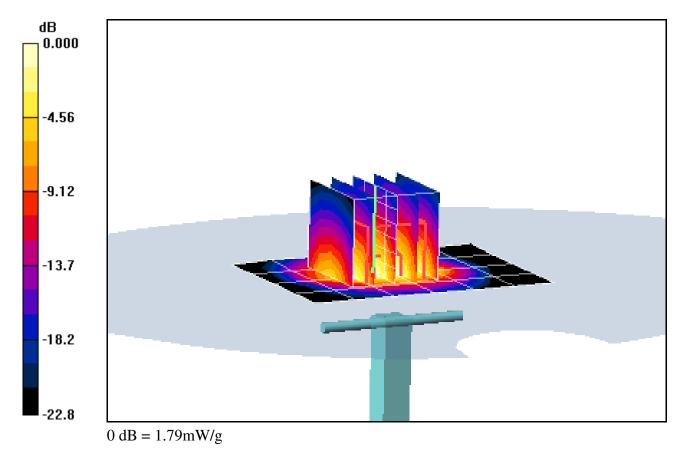
Test Date: 01-28-2010; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: ES3DV2 - SN3022; ConvF(4.05, 4.05, 4.05); Calibrated: 9/18/2009 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/21/2009 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Dipole Validation


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 14.2 dBm (26.3 mW)

SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.632 mW/g

Deviation: 2.87%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: ES3-3022_Sep09

CALIBRATION CERTIFICATE

Object ES3DV2 - SN:3022

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: September 18, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	$\mathcal{L}_{=}\mathcal{L}_{-}$
Approved by:	Kalja Pokovic	Technical Manager	120.11

Issued: September 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3022_Sep09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3022_Sep09 Page 2 of 9

Probe ES3DV2

SN:3022

Manufactured:

April 15, 2003

Last calibrated:

October 21, 2008

Recalibrated:

September 18, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3022_Sep09 Page 3 of 9

DASY - Parameters of Probe: ES3DV2 SN:3022

Sensitivity in Free Space ^A Diode Compression ^B

NormX	1.01 ± 10.1%	μV/(V/m)²	DCP X	92 mV
NormY	1.05 ± 10.1%	μV/(V/m)²	DCP Y	92 mV
NormZ	1.01 ± 10.1%	μV/(V/m)²	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

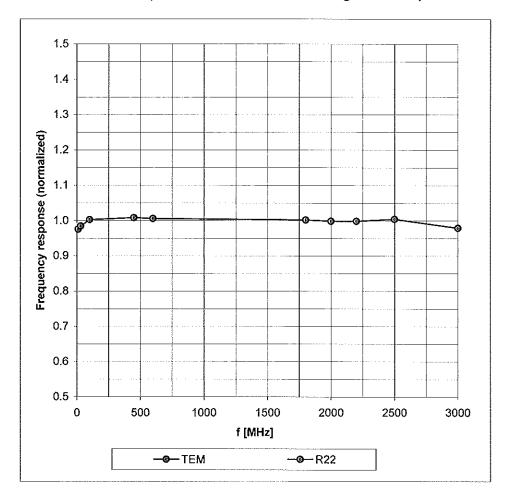
Sensor Center to	3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	8.8	5.3
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	8.7	5.7
SAR _{be} [%]	With Correction Algorithm	0.6	0.3

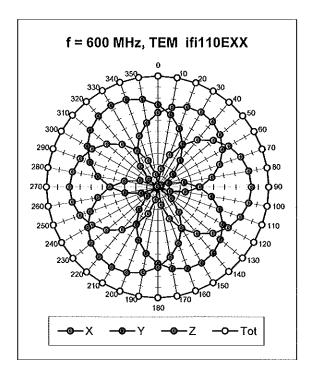
Sensor Offset

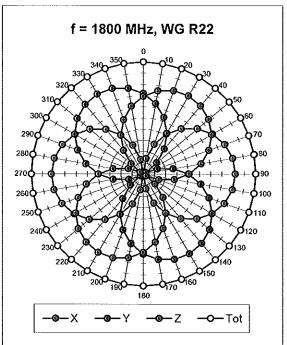
Probe Tip to Sensor Center 2.0 mm

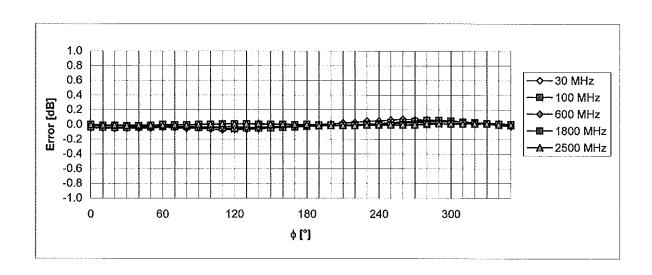

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

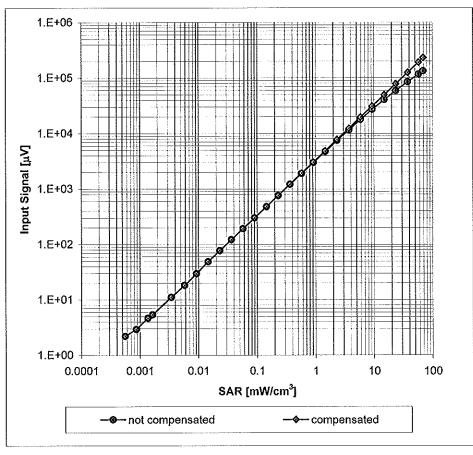

Frequency Response of E-Field

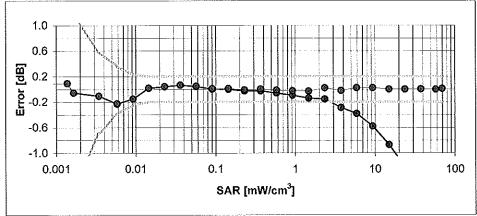

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

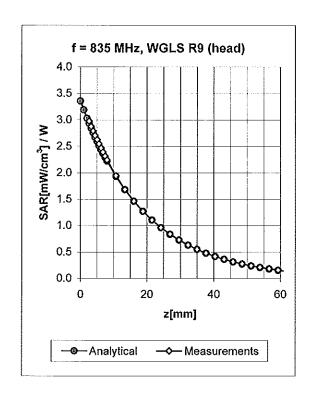
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

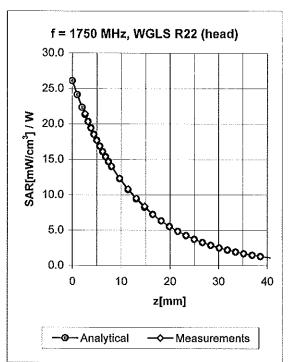




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

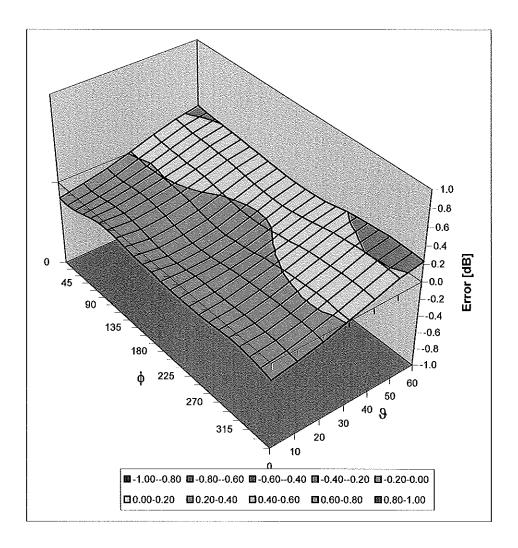
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.60	1.19	6.04 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.32	1.84	5.11 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.39	1.67	4.86 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.33	1.91	4.25 ± 11.0% (k=2)
750	± 50 / ± 100	Body	55.5 ± 5%	0.96 ± 5%	0.63	1.20	5.83 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.51	1.35	5.85 ± 11.0% (k=2)
1640	± 50 / ± 100	Body	53.8 ± 5%	1.40 ± 5%	0.27	2.64	4.93 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.28	2.76	4.66 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.26	3.47	4.42 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.48	1.45	4.05 ± 11.0% (k=2)
2600	± 50 / ± 100	Body	52.5 ± 5%	2.16 ± 5%	0.68	1.21	3.95 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

PC Test

Certificate No: D2450V2-719 Aug09

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 719

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

August 27, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	in house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jelon Kastrati	Laboratory Technician	1-1-
Approved by:	Katja Pokovic	Technical Manager	I.C.M.

Issued: August 27, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-719_Aug09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The Impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-719 Aug09 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(22.3 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	53.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.23 mW / g
SAR normalized	normalized to 1W	24.9 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.0 mW /g ± 16.5 % (k=2)

Page 3 of 9

Certificate No: D2450V2-719_Aug09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature during test	(22.5 ± 0.2) °C	40 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW/g
SAR for nominal Body TSL parameters ²	normalized to 1W	51.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 mW / g
SAR normalized	normalized to 1W	24.0 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	23.9 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-719_Aug09 Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 1.8 jΩ
Return Loss	- 28.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω + 3.9 jΩ
Return Loss	- 27.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

Certificate No: D2450V2-719_Aug09 Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 27.08.2009 11:14:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.8 \text{ mho/m}$; $\epsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

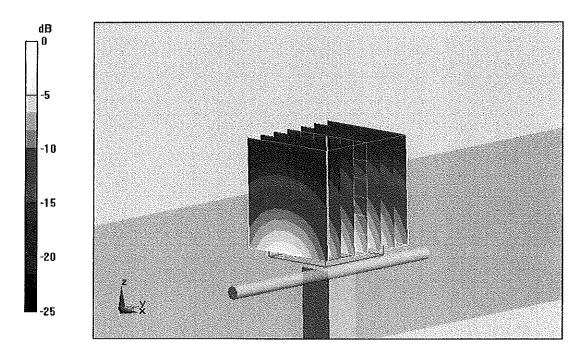
• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

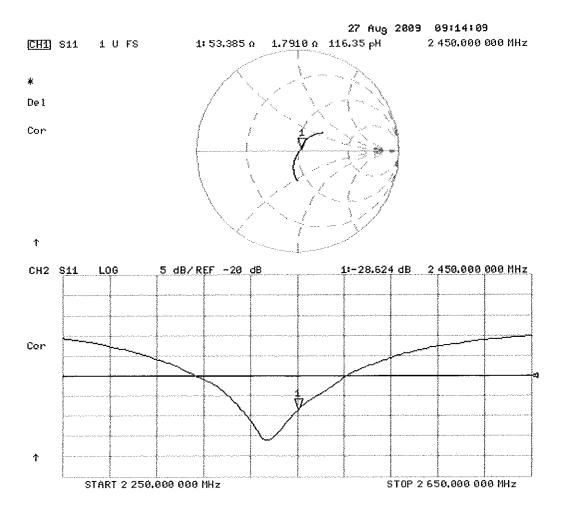
Phantom; Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 27 W/kg


SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.23 mW/g

Maximum value of SAR (measured) = 17.2 mW/g

0 dB = 17.2 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 17.08.2009 15:35:28

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

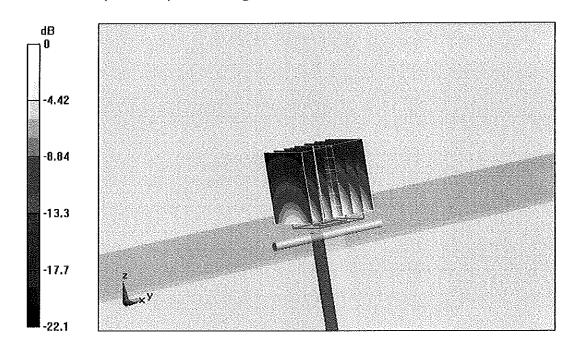
Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

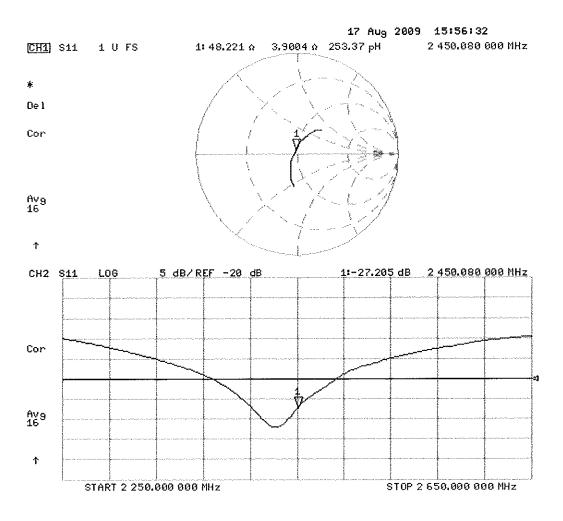
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = -0.00649 dB

Peak SAR (extrapolated) = 27.2 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6 mW/g

Maximum value of SAR (measured) = 17 mW/g

0 dB = 17 mW/g

Impedance Measurement Plot for Body TSL

