ST.

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Class II Permissive Change

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing:
March 12, 2010
Test Site/Location:
PCTEST Lab, Columbia, MD, USA
Test Report Serial No.:

0Y1003110363.BEJ

FCC ID: BEJGS390

APPLICANT: LG ELECTRONICS USA

Application Type: Class II Permissive Change

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §22(H), §24(E)

EUT Type: 850/1900 GSM/GPRS/EDGE Phone with Bluetooth

Model(s): GS390GO, GS390, GS390GO1

Tx Frequency Range: 824.20 - 848.80MHz (Cell. GSM) / 1850.20 - 1909.80MHz (PCS GSM)

Max. RF Output Power: 1.288 W ERP Cell. GSM (31.1 dBm) / 0.692 W EIRP PCS GSM (28.4 dBm)

0.832 W ERP EDGE850 (29.2 dBm) / 0.389 W EIRP EDGE1900 (25.9 dBm)

Test Device Serial No.: identical prototype [S/N: N/A]

Class II Permissive Change: Please see Change Document

Original Grant Date: December 30, 2009

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: BEJGS390	PCTEST	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago . oo

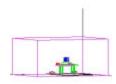


TABLE OF CONTENTS

FCC	PART 2	22 & 24 MEASUREMENT REPORT	3
1.0	INTE	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRC	DDUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.3	CELLULAR - MOBILE FREQUENCY BLOCKS	6
	3.4	PCS - BASE FREQUENCY BLOCKS	7
	3.5	PCS - MOBILE FREQUENCY BLOCKS	7
	3.6	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	7
4.0	TES	T EQUIPMENT CALIB RATION DATA	8
5.0	SAM	IPLE CALCULATIONS	9
6.0	TES	T RESULTS	10
	6.1	SUMMARY	10
	6.2	EFFECTIVE RADIATED POWER OUTPUT DATA	11
	6.3	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	12
	6.4	CELLULAR GSM RADIATED MEASUREMENTS	13
	6.5	PCS GSM RADIATED MEASUREMENTS	16
7.0	CON	NCLUSION	19

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	(1) LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		

MEASUREMENT REPORT FCC Part 22 & 24

§2.1033 General Information

APPLICANT: LG Electronics USA APPLICANT ADDRESS: 1000 Sylvan Avenue

Englewood Cliffs, NJ 07632, United States

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

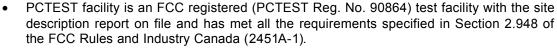
FCC RULE PART(S): §2; §22(H), §24(E)

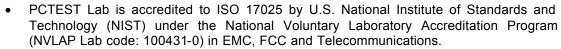
IC SPECIFICATION(S): RSS-132 Issue 2; RSS-133 Issue 5

BASE MODEL: GS390GO FCC ID: BEJGS390

FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)

MODE: GSM / EDGE


FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)


Test Device Serial No.: N/A ☐ Production ☐ Pre-Production Engineering

DATE(S) OF TEST: March 12, 2010 **TEST REPORT S/N:** 0Y1003110363.BEJ

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.

30.54 (mg/SFO) Fig. 10.54 (mg/SFO) William Market M	PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago o oo
© 2010 PCTEST Engineering	Laboratory, Inc.			REV 1.0GFI

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 28, 2009.

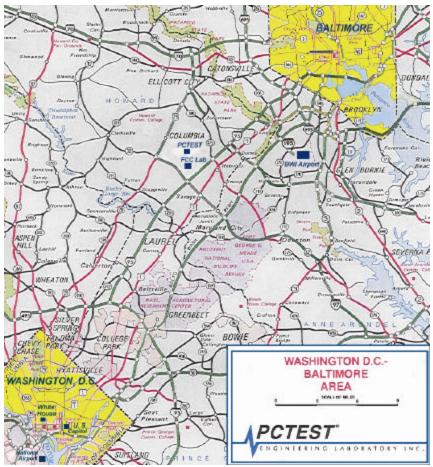


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	(t) LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 19		
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth				
© 2010 DCTEST Engineerin	© 2010 PCTEST Engineering Laboratory, Inc.					

© 2010 PCTEST Engineering Laboratory, Inc.

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG 850/1900 GSM/GPRS/EDGE Phone with Bluetooth **FCC ID: BEJGS390**. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
LG / Model: GS390GO	BEJGS390	850/1900 GSM/GPRS/EDGE Phone with Bluetooth

Table 2-1, EUT Equipment Description

2.2 **EMI Suppression Device(s)/Modifications**

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 **Labeling Requirements**

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		

© 2010 PCTEST Engineering Laboratory, Inc.

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3-meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

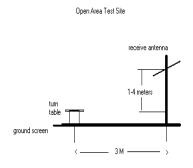
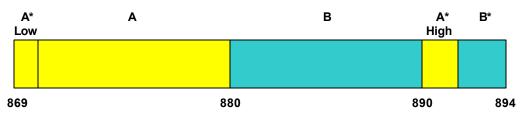



Figure 3-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure.....None

3.2 Cellular - Base Frequency Blocks

BLOCK 1: 869 - 880 MHz (A* Low + A)

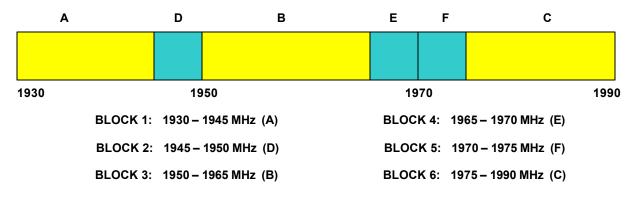
BLOCK 3: 890 - 891.5 MHz (A* High)

BLOCK 2: 880 - 890 MHz (B)

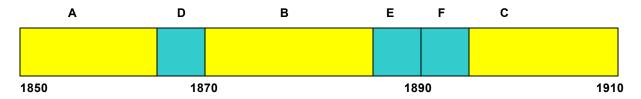
BLOCK 4: 891.5 - 894 MHz (B*)

3.3 Cellular - Mobile Frequency Blocks

BLOCK 1: 824 – 835 MHz (A* Low + A)


BLOCK 3: 845 – 846.5 MHz (A* High)

BLOCK 2: 835 – 845 MHz (B) BLOCK 4: 846.5 – 849 MHz (B*)


FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago o oo

3.4 PCS - Base Frequency Blocks

3.5 PCS - Mobile Frequency Blocks

BLOCK 1: 1850 - 1865 MHz (A) BLOCK 4: 1885 - 1890 MHz (E)

BLOCK 2: 1865 – 1870 MHz (D) BLOCK 5: 1890 – 1895 MHz (F)

BLOCK 3: 1870 – 1885 MHz (B) BLOCK 6: 1895 – 1910 MHz (C)

3.6 Radiated Power and Radiated Spurious Emissions §2.1053, 22.913(a)(2), 22.917(a), 24.232(c), 24.238(a); RSS-132 (4.5.1), RSS-133 (6.5.1)

Radiated power and radiated spurious emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested in all configurations and the highest power is reported in GSM voice mode while using a Power Control Level of "5" in the Cellular band and "0" in the PCS band.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago . oo

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	11713A	Attenuation/Switch Driver	12/2/2009	Annual	12/2/2010	3439A02645
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/2/2009	Annual	12/2/2010	3008A00985
Agilent	8495A	(0-70dB) DC-4GHz Attenuator	N/A		N/A	N/A
Agilent	85650A	Quasi-Peak Adapter	12/2/2009	Annual	12/2/2010	3303A01872
Agilent	85650A	Quasi-Peak Adapter	3/24/2009	Annual	3/24/2010	2043A00301
Agilent	8566B	(100Hz-22GHz) Spectrum Analyzer	12/2/2009	Annual	12/2/2010	3638A08713
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	9/28/2009	Annual	9/28/2010	US39210313
Agilent	E4432B	ESG-D Series Signal Generator	9/10/2009	Annual	9/10/2010	US40053896
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	10/1/2009	Annual	10/1/2010	US42510244
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/25/2009	Annual	8/25/2010	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/25/2009	Biennial	3/25/2011	MY45470194
Agilent	E8267C	Vector Signal Generator	9/29/2009	Biennial	9/29/2011	US42340152
Agilent	N9020A	MXA Signal Analyzer	10/22/2009	Annual	10/22/2010	US46470561
Anritsu	ML2495A	Power Meter	10/12/2009	Annual	10/12/2010	941001
Emco	3115	Horn Antenna (1-18GHz)	10/14/2009	Biennial	10/14/2011	9704-5182
Espec	ESX-2CA	Environmental Chamber	3/30/2009	Annual	3/30/2010	17620
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	9/11/2009	Annual	9/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	9/4/2009	Annual	9/4/2010	109892
Rohde & Schwarz	CMU200	Base Station Simulator	6/12/2009	Annual	6/12/2010	836536/0005
Rohde & Schwarz	FSQ 26	Spectrum Analyzer	9/19/2009	Annual	9/19/2010	200452
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/25/2009	Annual	8/25/2010	100976
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307

Table 4-1. Test Equipment

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		

5.0 SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

Spurious Radiated Emission - PCS Band

Example: Channel 512 PCS Mode 2nd Harmonic (3700.40 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N: 0Y1003110363.BEJ	Test Dates: March 12, 2010	EUT Type: 850/1900 GSM/GPRS/EDGE Phone with Bluetooth		Page 9 of 19

© 2010 PCTEST Engineering Laboratory, Inc.

6.0 TEST RESULTS

6.1 Summary

Company Name: <u>LG Electronics USA</u>

FCC ID: BEJGS390

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

Mode(s): GSM / EDGE

FCC Part Section(s)	Test Description	Test Limit Test Condition		Test Result	Reference
TRANSMITTER	MODE (TX)				
22.913(a)(2)	Effective Radiated Power	< 7 Watts max. ERP (<6.3 Watts max. ERP (IC))		PASS	Section 6.2
24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.3
2.1053, 22.917(a), 24.238(a)	Undesirable Emissions	< 43 + log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Sections 6.4, 6.5

Table 6-1. Summary of Test Results

FCC ID: BEJGS390	PCTEST	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago

6.2 Effective Radiated Power Output Data

§22.913(a)(2); RSS-132 (4.4) [SRSP-503(5.1.3)]

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
824.20	GSM850	-7.100	31.10	0.00	Н	31.10	1.288	Standard
836.60	GSM850	-7.600	30.60	0.00	Н	30.60	1.148	Standard
848.80	GSM850	-7.500	30.70	0.00	Н	30.70	1.175	Standard
824.20	EDGE850	-9.000	29.20	0.00	Н	29.20	0.832	Standard

Table 6-2. Effective Radiated Power Output Data

NOTES:

<u>Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 11 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago o

6.3 **Equivalent Isotropic Radiated Power Output Data** §24.232(c); RSS-133 (6.4) [SRSP-510 (5.1.2)]

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1850.20	GSM1900	-14.100	20.40	8.00	Н	28.40	0.692	Standard
1880.00	GSM1900	-14.600	19.90	8.00	Н	27.90	0.617	Standard
1909.80	GSM1900	-14.700	19.80	8.00	Н	27.80	0.603	Standard
1850.20	EDGE1900	-16.600	17.90	8.00	Н	25.90	0.389	Standard

Table 6-3. Equivalent Isotropic Radiated Power Output Data

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago 00

6.4 Cellular GSM Radiated Measurements

§2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.20 MHz

CHANNEL: 128

MEASURED OUTPUT POWER: ______ 31.100 ____ dBm = _____ 1.288 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ meters

LIMIT: 43 + 10 log10 (W) = 44.10 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1648.40	-58.11	6.08	-52.03	Н	83.1
2472.60	-49.56	6.53	-43.03	Н	74.1
3296.80	-48.92	6.87	-42.05	Н	73.1
4121.00	-54.61	7.21	-47.40	Н	78.5
4945.20	-90.35	8.37	-81.97	Н	113.1

Table 6-4. Radiated Spurious Data (Cellular GSM Mode - Ch. 128)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago .o oo

Cellular GSM Radiated Measurements (Cont'd)

§2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.60 MHz

MEASURED OUTPUT POWER: 31.100 dBm = 1.288 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ meters

LIMIT: 43 + 10 log10 (W) = 44.10 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1673.20	-55.37	6.09	-49.29	Н	80.4
2509.80	-54.52	6.55	-47.96	Н	79.1
3346.40	-53.33	6.89	-46.44	Н	77.5
4183.00	-91.74	7.43	-84.30	Н	115.4
5019.60	-89.99	8.35	-81.65	Н	112.7

Table 6-5. Radiated Spurious Data (Cellular GSM Mode - Ch. 190)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago oo

Cellular GSM Radiated Measurements (Cont'd)

§2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.80 MHz

CHANNEL: <u>251</u>

MEASURED OUTPUT POWER: ______ 31.100 ____ dBm = _____ 1.288 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ meters

LIMIT: 43 + 10 log10 (W) = 44.10 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1697.60	-53.64	6.09	-47.55	Н	78.6
2546.40	-57.20	6.57	-50.63	Н	81.7
3395.20	-55.74	6.91	-48.83	Н	79.9
4244.00	-91.93	7.65	-84.28	Н	115.4
5092.80	-89.71	8.33	-81.38	Н	112.5

Table 6-6. Radiated Spurious Data (Cellular GSM Mode - Ch. 251)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago .o oo

6.5 PCS GSM Radiated Measurements

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1850.20 MHz

CHANNEL: 512

MEASURED OUTPUT POWER: ______ dBm = _____ 0.692 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ meters

LIMIT: $43 + 10 \log 10 (W) = 41.40$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-46.11	9.02	-37.10	Н	65.5
5550.60	-51.74	10.40	-41.34	Н	69.7
7400.80	-86.54	10.50	-76.04	Н	104.4
9251.00	-49.34	11.85	-37.50	Н	65.9
11101.20	-83.76	12.76	-71.00	Н	99.4

Table 6-7. Radiated Spurious Data (PCS GSM Mode - Ch. 512)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: ________661

MEASURED OUTPUT POWER: 28.400 dBm = 0.692 W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ meters

LIMIT: 43 + 10 log10 (W) = 41.40 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-45.27	8.99	-36.28	Н	64.7
5640.00	-52.35	10.40	-41.95	Н	70.4
7520.00	-86.58	10.62	-75.96	Н	104.4
9400.00	-49.58	11.70	-37.88	Н	66.3
11280.00	-82.98	12.69	-70.29	Н	98.7

Table 6-8. Radiated Spurious Data (PCS GSM Mode - Ch. 661)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago oo

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1909.80 MHz

CHANNEL: 810

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: 43 + 10 log10 (W) = 41.40 dBd

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3819.60	-45.54	8.97	-36.57	Н	65.0
5729.40	-52.76	10.40	-42.36	Н	70.8
7639.20	-86.51	10.71	-75.80	Н	104.2
9549.00	-48.16	11.64	-36.52	Н	64.9
11458.80	-82.21	12.62	-69.60	Н	98.0

Table 6-9. Radiated Spurious Data (PCS GSM Mode - Ch. 810)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago .o oo

7.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **LG 850/1900 GSM/GPRS/EDGE Phone with Bluetooth FCC ID: BEJGS390** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules and RSS-132 and RSS-133 of the Industry Canada rules.

FCC ID: BEJGS390	PCTEST*	FCC Pt. 22/24 GSM / EDGE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	⊕ LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 19
0Y1003110363.BEJ	March 12, 2010	850/1900 GSM/GPRS/EDGE Phone with Bluetooth		. ago .o oo