14. CALIBRATION CERTIFICATES

The following pages include the probe calibration used to evaluate HAC for the DUT.

FCC ID: BEJCU405	@ PCTEST	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 39 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with	Dual-Band GSM/WCDMA Phone with Bluetooth	

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

Client

PC Test Certificate No: ER3-2332_Mar06

CALIBRATION CERTIFICATE ER3DV6 - SN:2332 Object QA CAL-02.v4 Calibration procedure(s) Calibration procedure for E-field probes optimized for close near field evaluations in air March 22, 2006 Calibration date Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 3-May-05 (METAS, No. 251-00466) May-06 3-May-05 (METAS, No. 251-00466) May-06 Power sensor F4412A MY41495277 MY41498087 Power sensor F4412A 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) May-06 SN: S5129 (30b) Reference 30 dB Attenuator 11-Aug-05 (METAS, No. 251-00500) Aug-06 Reference Probe ER3DV6 SN: 2328 3-Oct-05 (SPEAG, No. ER3-2328_Oct05) Oct-06 DAE4 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Feb-07 SN: 654 Secondary Standards # חו Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 US37390585 Network Analyzer HP 8753E 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Function Calibrated by: Katja Pokovic Technical Manager **R&D** Director Approved by: Fin Bomholt Issued: March 22, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ER3-2332_Mar06 Page 1 of 9

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 40 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone w	Dual-Band GSM/WCDMA Phone with Bluetooth	

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart).
- DCPx.v.z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2332_Mar06

Page 2 of 9

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 41 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wit	Dual-Band GSM/WCDMA Phone with Bluetooth	

Probe ER3DV6

SN:2332

Manufactured:

September 9, 2003 January 31, 2005

Last calibrated: Recalibrated:

March 22, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ER3-2332_Mar06

Page 3 of 9

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(1) LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 42 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with	Dual-Band GSM/WCDMA Phone with Bluetooth	

DASY - Parameters of Probe: ER3DV6 SN:2332

Ser	nsitivity in Free	Space $[\mu V/(V/m)^2]$	Diode Co	ompression ^A
	NormX	1.36 ± 10.1 % (k=2)	DCP X	95 mV
	NormY	1.50 ± 10.1 % (k=2)	DCP Y	95 mV
	NormZ	1.66 ± 10.1 % (k=2)	DCP Z	97 mV

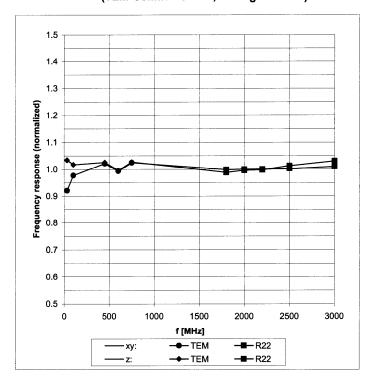
Frequency Correction

X 0.0 Y 0.0 Z 0.0

Sensor Offset (Probe Tip to Sensor Center)

X 2.5 mm Y 2.5 mm Z 2.5 mm

Connector Angle 137 °

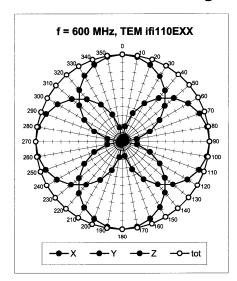

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

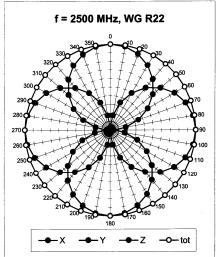
FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	L G	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 43 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with	Dual-Band GSM/WCDMA Phone with Bluetooth	

^A numerical linearization parameter: uncertainty not required

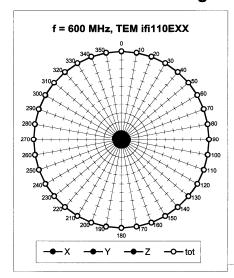
Frequency Response of E-Field

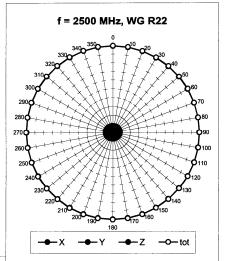
(TEM-Cell:ifi110 EXX, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

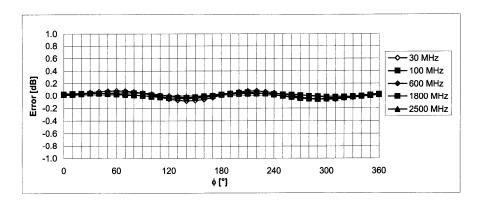

Certificate No: ER3-2332 Mar06

Page 5 of 9


FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 44 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone	Dual-Band GSM/WCDMA Phone with Bluetooth	

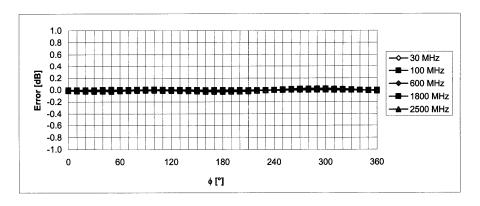

Receiving Pattern (ϕ), ϑ = 0°

Receiving Pattern (ϕ), ϑ = 90°



Certificate No: ER3-2332_Mar06

Page 6 of 9

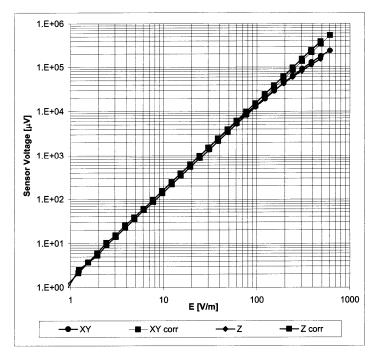

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 45 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wi	Dual-Band GSM/WCDMA Phone with Bluetooth	

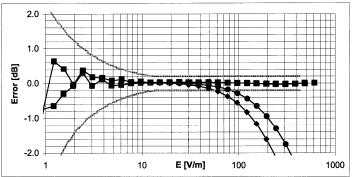
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

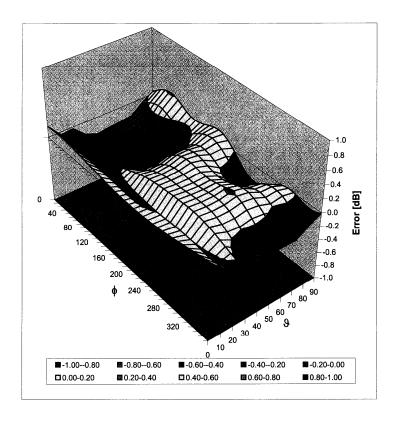

Certificate No: ER3-2332_Mar06


Page 7 of 9

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 46 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wit	Dual-Band GSM/WCDMA Phone with Bluetooth	

Dynamic Range f(E-field)

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Cortificate No. ED2 2222 MorDe

Dago 9 of 0

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	L G	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 47 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone w	Dual-Band GSM/WCDMA Phone with Bluetooth	

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2332_Mar06

Page 9 of 9

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT		LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 48 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with Bluetooth		Page 48 of 74

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Service suisse d etaionnag
Servicio svizzero di taratur
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

ient PC Test

Accreditation No.: SCS 108

Certificate No: H3-6180 Jan06

CALIBRATION CERTIFICATE Object H3DV6 - SN:6180 QA CAL-03.v4 Calibration procedure(s) Calibration procedure for H-field probes optimized for close near field evaluations in air January 20, 2006 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards ID# GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power meter E4419B May-06 Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) May-06 SN: S5129 (30b) Reference 30 dB Attenuator 11-Aug-05 (METAS, No. 251-00500) Aug-06 Reference Probe H3DV6 SN: 6182 3-Oct-05 (SPEAG, No. H3-6182_Oct05) Oct-06 SN: 654 27-Oct-05 (SPEAG, No. DAE4-654_Oct05) Oct-06 DAE4 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Function Name Technical Manager Calibrated by: Katja Pokovic **R&D Director** Approved by: Fin Bomholt Issued: January 21, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3-6180_Jan06

Page 1 of 8

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 49 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wi	Dual-Band GSM/WCDMA Phone with Bluetooth	

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space diode compression point DCP φ rotation around probe axis Polarization φ

9 rotation around an axis that is in the plane normal to probe axis (at Polarization 9

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:
a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- X,Y,Z_a0a1a2: Assessed for E-field polarization ϑ = 90 for XY sensors and ϑ = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X, Y, Z(f) a0a1a2= X, Y, Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X a0a1a2 (no uncertainty required).

Certificate No: H3-6180_Jan06 Page 2 of 8

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 50 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with	h Bluetooth	Fage 50 01 74

Probe H3DV6

SN:6180

Manufactured:

July 6, 2004

Last calibrated: Recalibrated:

October 6, 2004

January 20, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6180_Jan06

Page 3 of 8

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT		(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 51 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with	Bluetooth	rage 31 0174

DASY - Parameters of Probe: H3DV6 SN:6180

Sensitivity in Free Space [A/m / $\sqrt{(\mu V)}$]

	a0 a	a1 a	a2
X	2.491E-03	-3.848E-6	-3.016E-5 ± 5.1 % (k=2)
Υ	2.518E-03	-4.981E-6	-3.308E-5 ± 5.1 % (k=2)
Z	2.892E-03	-1.634E-5	1.708E-5 ± 5.1 % (k=2)

Diode Compression¹

DCP X 85 mV DCP Y 85 mV DCP Z 87 mV

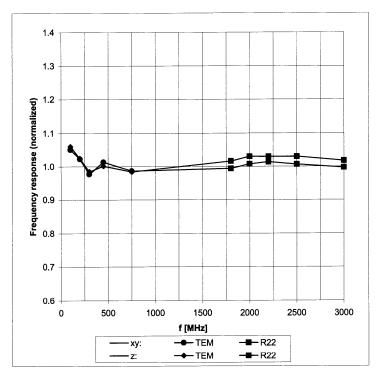
Sensor Offset (Probe Tip to Sensor Center)

X 3.0 mm Y 3.0 mm Z 3.0 mm

Connector Angle 245 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: H3-6180_Jan06

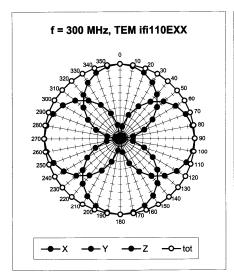

Page 4 of 8

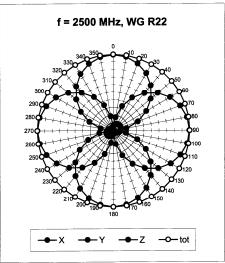
FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 52 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wit	h Bluetooth	Fage 32 01 74

¹ numerical linearization parameter: uncertainty not required

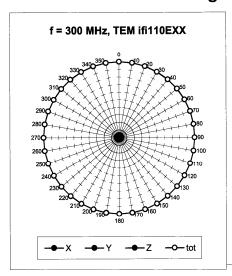
Frequency Response of H-Field

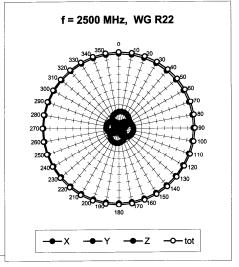
(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

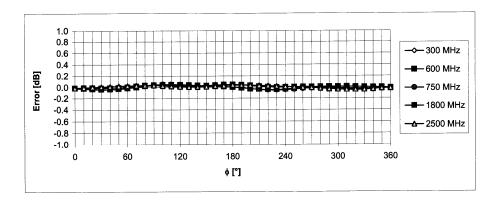

Certificate No: H3-6180_Jan06

Page 5 of 8


FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT		(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	Е	UT Type:		Page 53 of 74
0612181128	January 3 - 5, 2007	D	ual-Band GSM/WCDMA Phone with E	Bluetooth	Fage 33 01 74

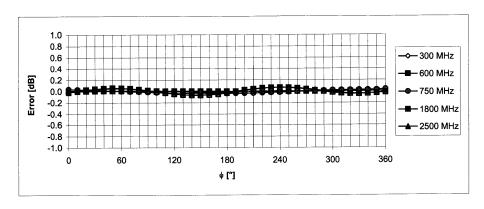

Receiving Pattern (ϕ), θ = 90°

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Certificate No: H3-6180_Jan06

Page 6 of 8

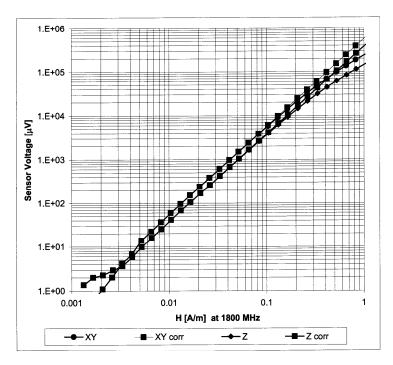

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT		LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT	Type:		Page 54 of 74
0612181128	January 3 - 5, 2007	Dual	-Band GSM/WCDMA Phone with I	Bluetooth	Fage 34 01 74

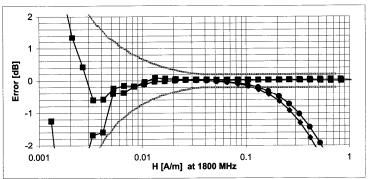
Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: H3-6180_Jan06


Page 7 of 8

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 55 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wit	h Bluetooth	Fage 33 01 74

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: H3-6180_Jan06

Page 8 of 8

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT		(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 56 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with	Bluetooth	Faye 30 01 74

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

PC Test

Certificate No: CD835V3-1082_Jul06

CALIBRATION CERTIFICATE CD835V3 - SN: 1082 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air Calibration date: July 17, 2006 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) **Primary Standards** GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power meter EPM-442A Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) Aug-06 SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Reference 20 dB Attenuator Aug-06 11-Aug-05 (METAS, No 251-00498) Reference 10 dB Attenuator SN: 5047.2 (10r) 1-Mar-06 (SPEAG, No. DAE4-660_Mar06) Calibration, Mar-07 SN: 660 DAF4 20-Dec-05 (SPEAG, No. ER3-2336_Dec05) Calibration, Dec-06 Probe ER3DV6 SN: 2336 Probe H3DV6 20-Dec-05 (SPEAG, No. H3-6065-Dec05) Calibration, Dec-06 SN: 6065 Scheduled Check Check Date (in house) ID# Secondary Standards 12-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 Power meter EPM-4419B GB43310788 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-07 MY41093312 Power sensor HP 8481A In house check: Oct-06 MY41093315 10-Aug-03 (SPEAG, in house check Oct-05) Power sensor HP 8481A 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 Network Analyzer HP 8753E US37390585 In house check: Nov-07 26-Jul-04 (SPEAG, in house check Nov-05) RF generator R&S SMT06 SN: 100005 Name Function Mike Meili Laboratory Technician Calibrated by: Fin Bomholt **Technical Director** Approved by: Issued: July 18, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD835V3-1082_Jul06

Page 1 of 6

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT		(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 57 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with	Bluetooth	rage 37 01 74

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

[1] ANSI-PC63.19-2001 (Draft 3.x, 2005)
American National Standard for Methods of Measurement of Compatibility between Wireless Communications
Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network
 Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was
 eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any
 obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

Certificate No: CD835V3-1082_Jul06 Page 2 of 6

FCC ID: BEJCU405

HAC (RF EMISSIONS) TEST REPORT

Quality Manager

HAC Filename:

0612181128

HAC (RF EMISSIONS) TEST REPORT

EUT Type:

Dual-Band GSM/WCDMA Phone with Bluetooth

Page 58 of 74

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B44
DASY PP Version	SEMCAD	V1.8 B171
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.454 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW forward power	172.3 V/m	
Maximum measured above low end	100 mW forward power	162.3 V/m	
Averaged maximum above arm	100 mW forward power	167.3 V/m	

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.7 dB	(43.5 – j12.2) Ohm
835 MHz	27.6 dB	(51.3 + j4.0) Ohm
900 MHz	16.1 dB	(57.4 – j15.4) Ohm
950 MHz	21.1 dB	(44.3 + j6.0) Ohm
960 MHz	18.0 dB	(49.0 + j12.6) Ohm

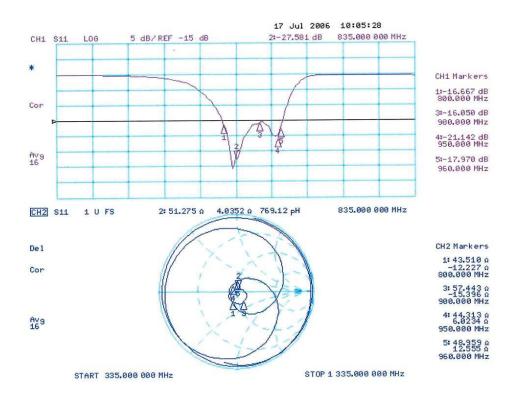
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD835V3-1082_Jul06

Page 3 of 6

FCC ID: BEJCU405	PCTEST	HAC	(RF EMISSIONS) TEST REPORT	L G	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 59 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with Bluetooth		Faye 33 01 74

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD835V3-1082_Jul06

Page 4 of 6

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	€ LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 60 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with Bluetooth		Fage 00 01 74

3.3.2 DASY4 H-field result

Date/Time: 7/17/2006 2:56:42 PM

Test Laboratory: SPEAG, Zurich, Switzerland File Name: H CD835 1082 060717.da4

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1082

Program Name: HAC H Dipole

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ mho/m, $\epsilon_r=1$; $\rho=1$ kg/m³ Phantom section: H Dipole Section

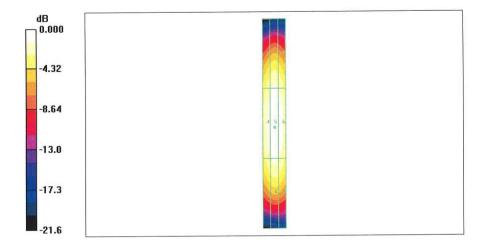
DASY4 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 12/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 3/1/2006
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of peak Total field = 0.454 A/m


Probe Modulation Factor = 1.00

Reference Value = 0.482 A/m; Power Drift = -0.014 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.372	0.402	0.386
Grid 4	Grid 5	Grid 6
0.425	0.454	0.438
Grid 7	Grid 8	Grid 9
0.379	0.404	0.388

0 dB = 0.454 A/m

Certificate No: CD835V3-1082_Jul06

Page 5 of 6

FCC ID: BEJCU405	PCTEST	HAC	C (RF EMISSIONS) TEST REPORT	L G	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 61 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with Bluetooth		Faye 01 01 74

3.3.3 DASY4 E-Field result

Date/Time: 7/17/2006 11:50:47 AM

Test Laboratory: SPEAG, Zurich, Switzerland File Name: <u>E_CD835_1082_060717.da4</u>

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1082

Program Name: HAC E Dipole

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ mho/m, $\epsilon_r=1$; $\rho=1000$ kg/m³

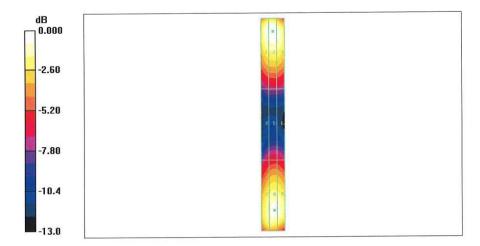
Phantom section: E Dipole Section

DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 12/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 3/1/2006
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1): Measurement grid:

dx=5mm, dy=5mm


Maximum value of peak Total field = 172.3 V/m

Probe Modulation Factor = 1.00

Reference Value = 122.7 V/m; Power Drift = -0.030 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
166.8	172.3	165.8
Grid 4	Grid 5	Grid 6
84.7	88.9	87.9
Grid 7	Grid 8	Grid 9
154.6	162.3	160.4

0 dB = 172.3 V/m

Certificate No: CD835V3-1082_Jul06

Page 6 of 6

FCC ID: BEJCU405	@PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 62 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with Bluetooth		Faye 02 01 74

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: CD1880V3-1064_Jul06

CALIBRATION CERTIFICATE

Object

CD1880V3 - SN: 1064

Calibration procedure(s)

QA CAL-20.v4 Calibration procedure for dipoles in air

Calibration date:

July 18, 2006

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
DAE4	SN: 660	1-Mar-06 (SPEAG, No. DAE4-660_Mar06)	Calibration, Mar-07
Probe ER3DV6	SN: 2336	20-Dec-05 (SPEAG, No. ER3-2336_Dec05)	Calibration, Dec-06
Probe H3DV6	SN: 6065	20-Dec-05 (SPEAG, No. H3-6065-Dec05)	Calibration, Dec-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-4419B	GB43310788	12-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06
Power sensor HP 8481A	MY41093312	10-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-07
Power sensor HP 8481A	MY41093315	10-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06
RF generator R&S SMT06	SN: 100005	26-Jul-04 (SPEAG, in house check Nov-05)	In house check: Nov-07
	Name	Function	Signature
Calibrated by:	Mike Meili	Laboratory Technician	r. Teili
Approved by:	Fin Bomholt	Technical Director	Ramboll

Certificate No: CD1880V3-1064_Jul06

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPO	RT 📵 LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 63 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone with Bluetooth		Fage 03 01 74

Issued: July 20, 2006

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-PC63.19-2001 (Draft 3.x, 2005)

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3-1064_Jul06 Page 2 of 6

FCC ID: BEJCU405	@PCTEST	НА	C (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Dogo 64 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with Bluetooth		Page 64 of 74

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.7B44
SEMCAD	V1.8 B171
HAC Test Arch	SD HAC P01 BA, #1002
10 mm	
dx, dy = 5 mm	area = 20 x 90 mm
1880 MHz ± 1 MHz	
20.0 dBm = 100mW	
< 0.05 dB	
	SEMCAD HAC Test Arch 10 mm dx, dy = 5 mm 1880 MHz ± 1 MHz 20.0 dBm = 100mW

2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.451 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW forward power	137.9 V/m	
Maximum measured above low end	100 mW forward power	131.3 V/m	
Averaged maximum above arm	100 mW forward power	134.6 V/m	

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	20.4 dB	(49.1 + j9.5) Ohm
1880 MHz	22.1 dB	(50.7 + j7.9) Ohm
1900 MHz	22.5 dB	(52.6 + j7.2) Ohm
1950 MHz	30.6 dB	(53.0 – j0.3) Ohm
2000 MHz	20.8 dB	(41.8 + j1.7) Ohm

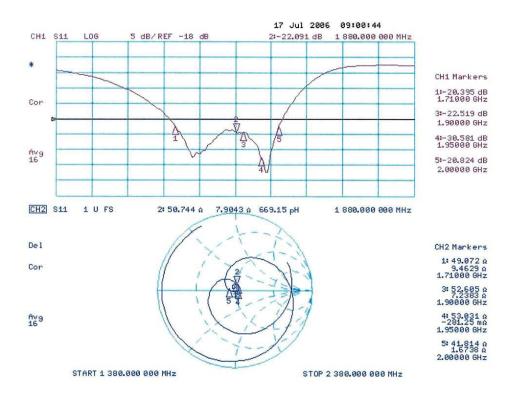
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD1880V3-1064_Jul06

Page 3 of 6

FCC ID: BEJCU405	@PCTEST	HAC (RF EMISSIONS) TEST REPORT		(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Dogo 65 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with Bluetooth		Page 65 of 74

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD1880V3-1064_Jul06

Page 4 of 6

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 66 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone	Dual-Band GSM/WCDMA Phone with Bluetooth	

3.3.2 DASY4 H-field result

Date/Time: 7/18/2006 10:16:29 AM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

DASY4 Configuration:

• Probe: H3DV6 - SN6065; Calibrated: 12/20/2005

• Sensor-Surface: (Fix Surface)

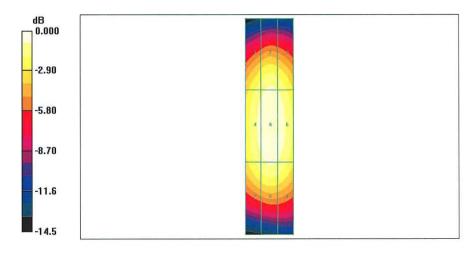
Electronics: DAE4 Sn660; Calibrated: 3/1/2006

• Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.451 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.476 A/m; Power Drift = -0.002 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3	
0.389	0.417	0.402	
Grid 4	Grid 5	Grid 6	
0.425	0.451	0.437	
Grid 7	Grid 8	Grid 9	
0.387	0.412	0.398	

0 dB = 0.451 A/m

Certificate No: CD1880V3-1064_Jul06

Page 5 of 6

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	€ LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 67 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone	Dual-Band GSM/WCDMA Phone with Bluetooth	

3.3.3 DASY4 E-Field result

Date/Time: 7/18/2006 11:51:17 AM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1000 kg/m 3

Phantom section: E Dipole Section

DASY4 Configuration:

• Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 12/20/2005

• Sensor-Surface: (Fix Surface)

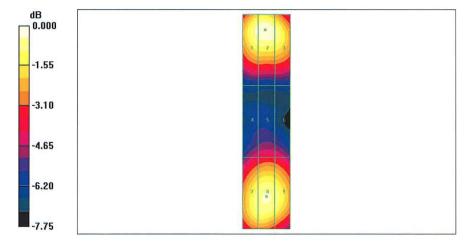
Electronics: DAE4 Sn660; Calibrated: 3/1/2006

Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 137.9 V/m

Probe Modulation Factor = 1.00

Reference Value = 132.3 V/m; Power Drift = 0.013 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
134.7	137.9	131.1
Grid 4	Grid 5	Grid 6
86.8	90.4	88.7
Grid 7	Grid 8	Grid 9
128.1	131.3	127.7

0 dB = 137.9 V/m

Certificate No: CD1880V3-1064_Jul06

Page 6 of 6

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 68 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone v	Dual-Band GSM/WCDMA Phone with Bluetooth	

15. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

Please note that the M-rating for this equipment only represents the field interference possible against a hypothetical and typical hearing aid. The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: BEJCU405	@PCTEST	HAC (RF EMISSIONS) TEST REPORT		(LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 69 of 74
0612181128	January 3 - 5, 2007		Dual-Band GSM/WCDMA Phone with Bluetooth		rage 09 01 74

16. REFERENCES

- ANSI C63.19-2006 v3.12, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, January 2006
- 2. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 3. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 4. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 5. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 7. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- 8. Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 10. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 11. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 12. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 13. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 14. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.

FCC ID: BEJCU405	PCTEST	HAC (RF EMISSIONS) TEST REPORT	LG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 70 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone	Dual-Band GSM/WCDMA Phone with Bluetooth	

- 15. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 16. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 17. Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 18. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 19. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 20. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 21. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 22. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 23. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 24. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 25. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 26. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 27. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: BEJCU405	PCTEST.	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 71 of 74
0612181128	January 3 - 5, 2007	Dual-Band GSM/WCDMA Phone wi	Dual-Band GSM/WCDMA Phone with Bluetooth	