

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

: OT-199-RWD-032 Test Report No.

AGR No. : A194A-167

Applicant : LG Electronics USA

Address : 1000 Sylvan Avenue, Englewood Cliffs, New Jersey, 07632, United States

Manufacturer : LG Electronics Inc.

Address : 10, Magokjungang 10-ro, Gangseo-gu, Seoul, Korea

: CID (Central Information Display) system **Type of Equipment**

FCC ID : BEJCOGD14FGA01

: COGD14FGA01 **Model Name**

Multiple Model Name: N/A

Serial number : N/A

Total page of Report: 18 pages (including this page)

Date of Incoming : August 14, 2019

Date of Issuing : Septmeber 19, 2019

SUMMARY

The equipment complies with the requirements of FCC CFR 47 PART 15 SUBPART C Section 15.225

This test report contains only the result of a single test of the sample supplied for the examination.

It is not a general valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Tae-Ho, Kim / Senior Manager ONETECH Corp.

Approved by:

Ki-Hong, Nam / Chief Engineer ONETECH Corp.

CONTENTS

1. VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2 Model Differences:	
2.3 RELATED SUBMITTAL(S) / GRANT(S)	
2.4 PURPOSE OF THE TEST	
2.5 TEST METHODOLOGY	
2.6 TEST FACILITY	
3. SYSTEM TEST CONFIGURATION	7
3.1 JUSTIFICATION	7
3.2 PERIPHERAL EQUIPMENT	7
3.3 MODE OF OPERATION DURING THE TEST	7
3.4 EQUIPMENT MODIFICATIONS	7
3.5 CONFIGURATION OF TEST SYSTEM	8
3.6 ANTENNA REQUIREMENT	8
4. PRELIMINARY TEST	8
4.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	8
4.2 RADIATED EMISSIONS TESTS	8
5. FINAL RESULT OF MEASUREMENT	9
5.1 RADIATED EMISSION TEST	g
5.1.1 Operation frequency band: (13.553 ~ 13.567) MHz	9
5.1.2 Operation frequency band: Below 13.553 MHz and above 13.567 MHz	10
5.2 SPURIOUS EMISSION TEST	11
5.2.1 Spurious Radiated Emission Below 30 MHz	11
5.2.2 Spurious Radiated Emission below 1 GHz	12
5.3 20 DB BANDWIDTH	13
5.3.1 Operating environment	13
5.3.2 Test set-up	13
5.3.3 Test data	14
5.4 FREQUENCY STABILITY WITH TEMPERATURE VARIATION	15
5.4.1 Operating environment	

Report No.: OT-199-RWD-032

Page

5.4.2 Test set-up	14
5.4.3 Test data	
5.5 FREQUENCY STABILITY WITH VOLTAGE VARIATION	
5.5.1 Operating environment	16
5.5.2 Test set-up	16
5.5.3 Test data	16
6. FIELD STRENGTH CALCULATION	17
7. LIST OF TEST EQUIPMENT	18

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-199-RWD-032	Septmeber 19, 2019	Initial Release	All

1. VERIFICATION OF COMPLIANCE

-. APPLICANT : LG Electronics USA

-. ADDRESS : 1000 Sylvan Avenue, Englewood Cliffs, New Jersey, 07632, United States

-. CONTACT PERSON : Kyung-Su, Han / Director, Standards & Compliance

-. TELEPHONE NO : 201-472-2623

-. FCC ID : BEJCOGD14FGA01

-. MODEL NO/NAME : COGD14FGA01

-. SERIAL NUMBER : N/A

-. DATE : Septmeber 19, 2019

DEVICE TYPE	DXX – Low Power Communication Device Transmitter
E.U.T. DESCRIPTION	CID (Central Information Display) system
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT	
AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED	FGG CFD47 D + 15 G 1 + + G G + + + 15 225
UNDER FCC RULES PART(S)	FCC CFR47 Part 15 Subpart C Section 15.225
MODIFICATIONS ON THE EQUIPMENT	Name
TO ACHIEVE COMPLIANCE	None
FINAL TEST WAS CONDUCTED ON	10 m Semi Anechoic Chamber

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The LG Electronics USA, Model COGD14FGA01 (referred to as the EUT in this report) is an CID (Central Information Display) system, Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	CID (Central Information Display) system
TRANSMITTING FREQUENCY	13.560 7 MHz
MODULATION	ASK
ANTENNA TYPE	FPCB Antenna
LIST OF EACH OSC. or CRY.	
FREQ.(FREQ. >= 1 MHz)	10 MHz, 20 MHz, 24 MHz, 25 MHz, 26 MHz, 27 MHz, 27.12 MHz

2.2 Model Differences:

-. None

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.225.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiate d testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/ C-14617/ G-10666 / T-1842

IC (Industry Canada) - Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
CID Board	N/A	N/A	N/A
CLUSTER Board	N/A	N/A	N/A
SUB Board (1)	N/A	N/A	N/A
SUB Board (2)	N/A	N/A	N/A
LED Board	N/A	N/A	N/A

3.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested: None

Model	Manufacturer	acturer Description				
COGD14FGA01	LG Electronics USA	CID (Central Information Display) system (EUT)	-			
PCS14-CDG1	LG ELECTRONICS INC.	Cluster	EUT			
GP-4303D	LG Precision Co.,Ltd	DC Power Supply	EUT			

3.3 Mode of operation during the test

-. The EUT has 13.560 7 MHz RF boards for reading Card and program was used for making continuous transmission mode during the test.

3.4 Equipment Modifications

-. None

Page 8 of 18 Report No.: OT-199-RWD-032

3.5 Configuration of Test System

Radiated Emission Test : Preliminary radia

Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions. The radiated emissions measurements were performed on the 10 m Semi Anechoic Chamber.

For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field. The measuring antenna is an electrically screened loop antenna.

The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

3.6 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The transmitter antenna of the EUT is a FPCB Antenna so there is no consideration of replacement by the user.

4. PRELIMINARY TEST

4.1 AC Power line Conducted Emissions Tests

As this product is only using DC power, AC conducted emission test has not been performed.

4.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	X

Page 9 of 18 Report No.: OT-199-RWD-032

5. FINAL RESULT OF MEASUREMENT

Preliminary test was done in normal operation mode. And the final measurement was selected for the maximized emission level.

5.1 RADIATED EMISSION TEST

5.1.1 Operation frequency band: (13.553 ~ 13.567) MHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : 45 % R.H. Temperature: 23 ℃

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Result : <u>PASSED</u>

EUT : CID (Central Information Display) system Date: August 14, 2019 ~ August 23, 2019

Operating Condition: Transmitting Mode

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 9 kHz)

Distance : 3 m

Radiated	Emission	Ant	Correction Factors		Total	FCC	
Freq. (MHz)	Amplitud (dBµV)	Pol.	Antenna (dB/m)	Cable (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
13.560 7	32.04	Н	19.78	0.3	52.12	124	71.88
13.560 7	27.76	V	19.78	0.3	47.84	124	76.16

Remark. The EUT was tested at 3 m, so conversation factor was included at above limit.

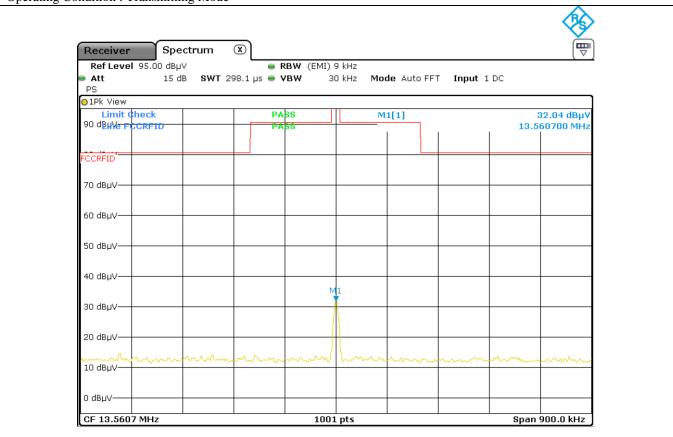
Tested by: Ju Yun Park/ Assistant Manager

Page 10 of 18 Report No.: OT-199-RWD-032

5.1.2 Operation frequency band: Below 13.553 MHz and above 13.567 MHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : 45 % R.H. Temperature: 23 ℃


Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Result : <u>PASSED</u>

EUT : CID (Central Information Display) system Date: August 14, 2019 ~ August 23, 2019

Operating Condition: Transmitting Mode

cc. to above test data, the field strength level of 13.560 7MHz is 32.04 dBuV/m and the worst limit subject to 15.225 (b) and (c) is 80.5 dBuV/m, so the EUT meets the requirement.

Tested by: Ju Yun Park / Assistant Manager

Page 11 of 18 Report No.: OT-199-RWD-032

5.2 SPURIOUS EMISSION TEST

5.2.1 Spurious Radiated Emission Below 30 MHz

Humidity Level : 45 % R.H. Temperature: 23 ℃

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Frequency Range : 9 kHz ~ 30 MHz

Result : <u>PASSED</u>

EUT : CID (Central Information Display) system Date: August 14, 2019 ~ August 23, 2019

Operating Condition: Transmitting Mode

Distance : 3 m

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	$(dB\mu V/m)$	(dB)

It was not observed any emissions from the EUT.

Tested by: Ju Yun Park/ Assistant Manager

Page 12 of 18 Report No.: OT-199-RWD-032

5.2.2 Spurious Radiated Emission below 1 GHz

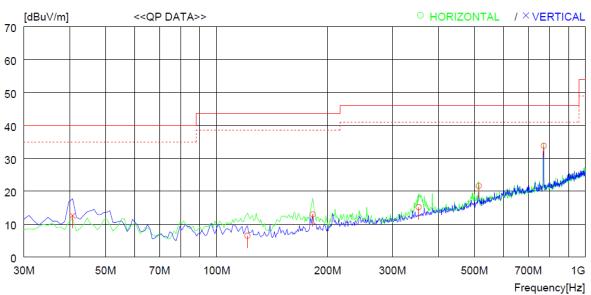
The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : 45 % R.H. Temperature: 23 ℃

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Frequency range : 30 MHz ~ 1 000 MHz


Result : <u>PASSED</u>

ONETECH

EUT : CID (Central Information Display) system Date: August 14, 2019 ~ August 23, 2019

Operating Condition: Transmitting Mode

Distance : 3 m

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizo	ontal								
_	514.03 771.07 121.18 182.29 353.01	3 40.7 0 27.2 0 33.5	17.8 20.9 10.2 10.0 14.9	5.4 2.2 2.6	33.1 33.1	2 33.8 1 6.5 1 13.0	46.0 46.0 43.5 43.5 46.0	24.4 12.2 37.0 30.5 30.9	100 400 400	2 274 0 259 359
	Vertic	cal								
6	40.67	0 30.1	14.2	1.4	33.	1 12.6	40.0	27.4	100	0

Tested by: Ju Yun Park/ Assistant Manager

5.3 20 dB BANDWIDTH

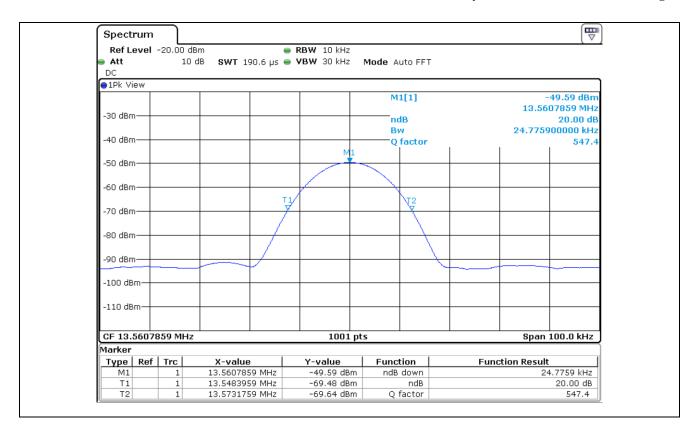
5.3.1 Operating environment

Temperature : 23 °C

Relative humidity : 45 % R.H.

5.3.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 10 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.


5.3.3 Test data

-. Test Date : August 14, 2019 ~ August 23, 2019

-. Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Operating Freq. (MHz)	Measured Value (kHz)	Assigned Operating Frequency Band (kHz)	Result
13.560 7	24.78	900	PASS

Tested by: Ju Yun Park/Assistant Manager

5.4 FREQUENCY STABILITY WITH TEMPERATURE VARIATION

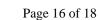
5.4.1 Operating environment

Temperature : 23 °C

Relative humidity : 46 % R.H.

5.4.2 Test set-up

Turn EUT off and set chamber temperature to -20 °C and then allow sufficient time (approximately 20 to 30 minutes after chamber reach the assigned temperature) for EUT to stabilize. Turn ON EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from -20 °C to +50 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.


5.4.3 Test data

-. Test Date : August 14, 2019 ~ August 23, 2019

-. Result : PASSED

Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Margin (Hz)	Limit (Hz)
-20	13,560,700	13,560,861	161	
-10		13,560,849	149	
0		13,560,811	111	
10		13,560,808	108	1 4 2 7 5 2 7
20		13,560,799	99	± 1 356.07
30		13,560,767	67	
40		13,560,755	55	
50		13,560,747	47	

Tested by: Ju Yun Park/ Assistant Manager

5.5 FREQUENCY STABILITY WITH VOLTAGE VARIATION

5.5.1 Operating environment

Temperature : 23 °C

Relative humidity : 45 % R.H.

5.5.2 Test set-up

An external DC power supply was connected to the input of the EUT. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

5.5.3 Test data

-. Test Date : August 14, 2019 ~ August 23, 2019

-. Result : <u>PASSED</u>

Voltage (Vac)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Margin (Hz)	Limit (Hz)
17.25(115 %)		13,560,799	99	
15.0(100 %)	13,560,700	13,560,796	96	± 1 356.07
12.75(85 %)		13,560,797	97	

Tested by: Ju Yun Park / Assistant Manager

6. FIELD STRENGTH CALCULATION

Meter readings are compared to the specification limit correcting for antenna and cable losses.

+ Meter reading	$(dB\mu V)$			
- Amplifier Gain	(dB)			
+ Cable Loss	(dB)			
- Antenna Factor	(dB/m)			
= Corrected Result	$\left(dB\mu V/m\right)$			
Margin (dB) Specification Limit (dBuV/m)				
- Corrected Result	(dBuV/m)			
= dB Relative to Spec	(± dB)			

7. LIST OF TEST EQUIPMENT

No.	EQUIPMENTS	MFR.	MODEL	SER. NO.	LAST CAL	DUE CAL	USE
1.		R/S	ESCI	101012	Oct. 22, 2018	One Year	-
2.	Test receiver	R/S	ESR	101470	Oct. 22, 2018	One Year	
3.	3.	R/S	ESPI	101278	Oct. 20, 2018	One Year	-
4.	Spectrum analyzer	R/S	FSV30	101372	Jul. 24, 2019	One Year	
5.	Amplifier	Sonoma Instrument	310N	312544	Mar. 18, 2019	One Year	
6.	Amplifier	Sonoma Instrument	310N	312545	Mar. 18, 2019	One Year	-
7.	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-255	Jun. 05, 2018	Two Year	
8.	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-419	Aug. 09, 2018	Two Year	-
9.	Controller	Innco System	CO3000	CO3000/904/ 37211215/L	N/A	N/A	
10.	LISN	ЕМСО	3825/2	9109-1867	Mar. 27, 2019	One Year	-
				9109-1869	Mar. 19, 2019	One Year	-
		Schwarzbeck	NNLK8121	804	Oct. 22, 2018	One Year	-
		Schwarzbeck	NSLK8128	8128-216	Mar. 20, 2019	One Year	-
11.	Turn Table	Innco System	DT3000	930611	N/A	N/A	
12.	Antenna Master	Innco System	MA4000-EP	MA4000/332	N/A	N/A	-
13.	Antenna Master	Innco System	MA-4000XPET	MA4000/509	N/A	N/A	
14.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-235	May 13, 2018	Two Year	
15.	Frequency Counter	HP	53152A	US39270295	Jul. 25, 2019	One Year	
16.	Environmental Test Chamber	ESPEC	PSL-2KP	14009407	Feb. 22, 2019	One Year	•
17.	DC Power Supply	LG Precision Co.,Ltd	GP-4303D	5071069	Jan. 10, 2019	One Year	