

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. +1.410.290.6652 / Fax +1.410.290.6554 http://www.pctestlab.com

SAR COMPLIANCE EVALUATION REPORT

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 04/29/11 - 06/08/11 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1104260821-R1.BEJ

FCC ID: BEJC729

APPLICANT: LG ELECTRONICS USA

EUT Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN

Application Type: Certification

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001]

Model(s): C729, LG-C729

Tx Frequency: 824.20 - 848.80 MHz (GSM 850) / 1850.20 - 1909.80 MHz (GSM 1900)

1712.4 - 1752.5 MHz (AWS WCDMA) / 2412 - 2462 MHz (WLAN)

Conducted 32.46 dBm GSM 850 / 30.49 dBm GSM 1900 **Power:** 23.49 dBm UMTS IV / 16.55 dBm 2.4 GHz WLAN

Max. SAR 0.18 W/kg GSM 850 Head SAR

Measurement: 0.26 W/kg GSM 850 Body-Worn SAR / 0.43 W/kg GSM 850 Hotspot Body SAR

0.22 W/kg GSM 1900 Head SAR

0.62 W/kg GSM 1900 Body-Worn SAR / 0.62 W/kg GSM 1900 Hotspot Body SAR

0.71 W/kg UMTS IV Head SAR

1.37 W/kg UMTS IV Body- Worn SAR / 1.37 W/kg UMTS IV Hotspot Body SAR

0.10 W/kg 2.4 GHz WLAN Head SAR

0.07 W/kg 2.4 GHz WLAN Body-Worn SAR / 0.07 W/kg 2.4 GHz WLAN Body Hotspot SAR

Test Device S/N: Pre-Production [S/N: SAR #1]

All models are electrically identical per the manufacturer.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

Note: This revised Test Report (S/N: 0Y1104260821-R1.BEJ) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 1 of 17
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 1 of 47

TABLE OF CONTENTS

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES	g
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	10
8	DEFINITION OF REFERENCE POINTS	11
9	TEST CONFIGURATION POSITIONS	12
10	FCC RF EXPOSURE LIMITS	15
11	FCC 3G MEASUREMENT PROCEDURES	16
12	SAR TESTING WITH IEEE 802.11 TRANSMITTERS	20
13	FCC PERSONAL WIRELESS ROUTER CONFIGURATIONS	23
14	SYSTEM VERIFICATION	25
15	SAR DATA SUMMARY	28
16	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	35
17	EQUIPMENT LIST	37
18	MEASUREMENT UNCERTAINTIES	38
19	CONCLUSION	39
20	REFERENCES	40
21	SAR TEST SETUP PHOTOGRAPHS	42

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 2 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 2 of 47

INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1-1 **SAR Mathematical Equation**

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) = mass density of the tissue-simulating material (kg/m³)

Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [6]

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LUI	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 2 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 3 of 47
@ 2011 DOTECT Engineering	a Laboraton Lloo		DEV/ 0.0.4M

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC.

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

Figure 2-1
Map of the Greater Baltimore and Metropolitan
Washington, D.C. area

04/07/2011

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

(3)

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), Battery Safety, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA)
 Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 4 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 4 of 47
© 2011 PCTEST Engineering	g Laboratory, Inc.		REV 8.9.1M

3

3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

3.3 **System Electronics**

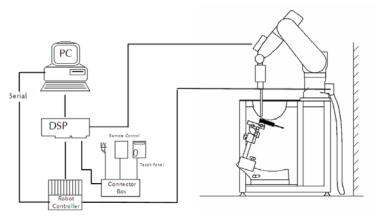


Figure 3-1 **SAR Measurement System Setup**

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LIGHT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo F of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 5 of 47
© 2011 PCTEST Engineerin	a Laboratory Inc		REV/ 8 Q 1M

3.4 **Automated Test System Specifications**

Test Software: SPEAG DASY4 version 4.7 Measurement Software

Robot: Stäubli Unimation Corp. Robot RX60L

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: SEMCAD software

Connecting Lines: Optical Downlink for data and status info Optical upload for commands and clock

PC Interface Card

Function: Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

SAM Twin Phantom (V4.0) Type:

Shell Material: Composite Thickness: $2.0 \pm 0.2 \text{ mm}$

Figure 3-2 **SAR Measurement System**

FCC ID: BEJC729	PCTES	SAR CUMPLIANCE REPORT MEDICAL	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 6 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 6 of 47
@ 2011 DCTCCT Carries aris	a Labaratani Ina		DEV/ 0.0 4M

4 DASY E-FIELD PROBE SYSTEM

4.1 Probe Measurement System

Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration (see Figure 4-3) and optimized for dosimetric evaluation [9]. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the

maximum using a 2nd order curve fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.2 Probe Specifications

 Model(s):
 ES3DV2, ES3DV3, EX3DV4

 Frequency
 10 MHz - 6.0 GHz (EX3DV4)

 Range:
 10 MHz - 4 GHz (ES3DV3)

Calibration: In head and body simulating tissue at Frequencies from 300 up to 6000MHz
± 0.2 dB (30 MHz to 6 GHz) for EX3DV4

 \pm 0.2 dB (30 MHz to 4 GHz) for ES3DV3 **Dynamic Range:** 10 mW/kg - 100 W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm

Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9mm for ES3DV3)
Tip-Center: 1 mm (2.0 mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones Dosimetry in strong gradient fields

Figure 4-2 Near-Field Probe

Figure 4-3
Triangular Probe
Configuration

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 7 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 7 of 47

5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

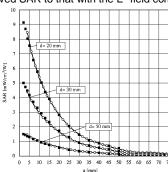


Figure 5-1 E-Field and Temperature measurements at 900MHz [9]

$$SAR = \frac{\left| E \right|^2 \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

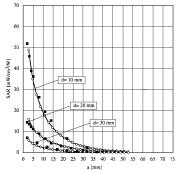


Figure 5-2 E-Field and temperature measurements at 1.9GHz [9]

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE COMPLETE COMPLIENT COMPLETE COMPLETE COMPLETE COMPLIENT COMPLETE COMPLIENT COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COM	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 0 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 8 of 47

6

PHANTOM AND EQUIVALENT TISSUES

6.1 SAM Phantoms

Figure 6-1 **SAM Phantoms**

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population [12][13]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as bodyworn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

6.2 **Tissue Simulating Mixture Characterization**

Figure 6-2 **SAM Phantom with Simulating Tissue**

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

Table 6-1 **Composition of the Tissue Equivalent Matter**

Frequency (MHz)	835	835	1750	1750	1900	1900	2450	2450
Tissue	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (%	by weight)							
Bactericide	0.1	0.1						
DGBE			47	31	44.92	29.44	7.99	26.7
HEC	1	1						
NaCl	1.45	0.94	0.4	0.2	0.18	0.39	0.16	0.1
Sucrose	57	44.9						
Triton X-100							19.97	
Water	40.45	53.06	52.6	68.8	54.9	70.17	71.88	73.2

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dage 0 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 9 of 47
@ 2011 DCTEST Engineerin	a Laboratory Inc		DEV/ 9.0.4M

DOSIMETRIC ASSESSMENT & PHANTOM SPECS

7.1 **Measurement Procedure**

or the DASY manual for more details):

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references

Figure 7-1 Sample SAR Area Scan

- The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a leastsquares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- After the maximum interpolated values were calculated between the points in the cube. b. the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- All neighboring volumes were evaluated until no neighboring volume with a higher C. average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete. If the value deviated by more than 5%, the evaluation was repeated.

7.2 Specific Anthropomorphic Manneguin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.

Figure 7-2 SAM Twin Phantom Shell

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dags 10 of 17
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 10 of 47

8.1 EAR REFERENCE POINT

Figure 8-1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 8-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 8-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

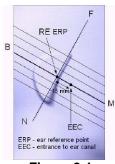


Figure 8-1 Close-Up Side view of ERP

8.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 8-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 8-2 Front, back and side view of SAM Twin Phantom

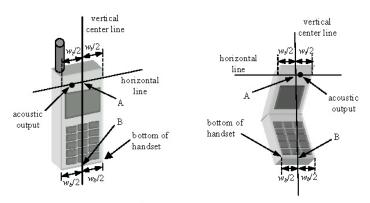


Figure 8-3 **Handset Vertical Center & Horizontal Line Reference Points**

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 11 of 17	
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 11 of 47	
@ 2011 PCTEST Engineerin	a Laboratory Inc		REV/891M	

9 TEST CONFIGURATION POSITIONS

9.1 **Device Holder**

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

9.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 9-1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 9-2).

Positioning for Ear / 15° Tilt 9.3

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 9-2).

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 12 of 47	
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 12 of 47	
@ 2011 DCTECT Engineerin	a Laboratory Inc		DEV/ 9 O 1M	

Figure 9-2 Front, Side and Top View of Ear/15º Tilt Position

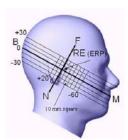


Figure 9-3
Side view w/ relevant markings

Figure 9-4 Body SAR Sample Photo (Not Actual EUT)

9.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. It has been known for some time that there are SAR measurement difficulties in these regions of the SAM phantom. SAR probes are calibrated in tissue equivalent liquids with sufficient separation between the probe sensors and nearby physical boundaries to ensure scattering does not affect probe calibration. When the probe tip is moved into tight regions with multiple boundaries surrounding its sensors, probe calibration and measurement accuracy can become questionable. In addition, these measurement locations often require a probe to be tilted at steep angles, where it may no longer comply with calibration requirements and measurement protocols, or satisfy the required measurement uncertainty. In some situations it is not feasible to tilt the probe or rotate the phantom, as suggested by measurement standards, to conduct these measurements.

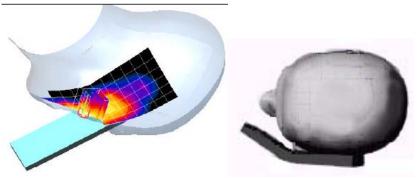


Figure 9-5 SAR Scans near the Jaw/Mouth

In order to ensure there is sufficient conservativeness for ensuring compliance until practical solutions are available, additional measurement considerations are necessary to address these technical difficulties. When measurements are required near the mouth, nose, jaw or similar tight regions of the SAM phantom,

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LUI	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 13 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 13 01 47

area or zoom scans are often unable to fully enclose the peak SAR location as required by IEEE 1528 and Supplement C, due to probe orientation and positioning difficulties. Even when limited measurements are possible, the test results could be questionable due to probe calibration and measurement uncertainty issues. Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document publication 648474. The SAR required in these regions of SAM should be measured using a flat phantom. Rectangular shaped phones should be positioned with its bottom edge positioned from the flat phantom with the same distance provided by the cheek touching position using SAM. The ear reference point (ERP, as defined for SAM) of the phone should be positioned ½ cm from the flat phantom shell. Clam-shell phones should be positioned with the hinge against a smooth edge of the flat phantom where the upper half of the phone is unfolded and extended beyond the phantom side wall. The lower half of the phone is secured in the test device holder at a fixed distance below the flat phantom determined by the minimum separation along the lower edge of the phone in the cheek touching position using SAM. Any case with substantial variation in separation distance along the lower edge of a clam shell is discussed with the FCC for best-to-use methodology.

The flat phantom data should allow test results to be compared uniformly across measurement systems. until suitable solutions are available in measurement standards to address certain probe calibration and positioning issues, due to implementation differences between horizontal and upright SAM configurations. These flat phantom procedures are only applicable for stand-alone SAR evaluation in tight regions of the SAM phantom, where measurement is not feasible or test results can be questionable due to probe calibration and accessibility issues. Details on device positioning and photos showing how separation distances are determined are included in the SAR report Photographs. SAR for other regions of the head must be evaluated using SAM; therefore, a phone with antennas at different locations may require flat and SAM phantom evaluation for the different antennas.

9.5 **Body Holster /Belt Clip Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9-4). A device with a headset output is tested with a headset connected to the device.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT (1) LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 14 of 47	
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 14 of 47	
© 2011 DCTEST Engineerin	a Laboratory Inc		DEV/ Q Q 1M	

10 FCC RF EXPOSURE LIMITS

10.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

10.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS								
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)						
SPATIAL PEAK SAR Brain	1.6	8.0						
SPATIAL AVERAGE SAR Whole Body	0.08	0.4						
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20						

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT (1) LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dog 15 of 17	
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 15 of 47	
© 2011 DCTEST Engineerin	a Laboratory Inc		DEV/ Q Q 1M	

11 FCC 3G MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4]. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, it was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If SAR deviations of more than 5% occurred, the tests were repeated.

11.2 SAR Measurement Conditions for UMTS per FCC KDB Publication 941225

11.2.1 **Output Power Verification**

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s". Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH) is tabulated in the test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations is identified.

11.2.2 **Head SAR Measurements for Handsets**

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

11.2.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

11.2.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogg 16 of 17	
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 16 of 47	
© 2011 PCTEST Engineerin	a Laboratory Inc		REV 8 9 1M	

the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of βc=9 and βd=15, and power offset parameters of ΔACK= ΔNACK =5 and ΔCQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

11.2.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βε	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_{c} = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_{c}$.

Note 2: CM = 1 for \$\textit{\rho}_c/\textit{\rho}_d = 12/15\$, \$\textit{\rho}_{ls}/\textit{\rho}_c=24/15\$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_a ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_s/β_a ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

11.3 RF Conducted Powers

11.3.1 GSM Conducted Powers

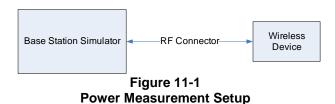
		Maximum Burst-Averaged Output Power					
		Voice GPRS/EDGE Date (GMSK)			e EDGE Data (8-PSK)		
Band	Band Channel		GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	
	128	32.46	32.29	30.32	27.11	25.90	
Cellular	190	32.34	32.13	30.29	26.59	25.44	
	251	32.27	31.96	30.18	25.95	24.85	
	512	30.47	30.49	28.36	24.50	25.05	
PCS	661	30.19	30.19	28.32	25.05	24.52	
	810	30.42	30.45	28.29	25.56	25.00	

		Calculated Maximum Frame-Averaged Output Power					
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)		
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS GPRS [dBm] [dBm] 1 Tx Slot 2 Tx Slot		EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	
	128	23.43	23.26	24.30	18.08	19.88	
Cellular	190	23.31	23.10	24.27	17.56	19.42	
	251	23.24	22.93	24.16	16.92	18.83	
	512	21.44	21.46	22.34	15.47	19.03	
PCS	661	21.16	21.16	22.30	16.02	18.50	
	810	21.39	21.42	22.27	16.53	18.98	

Note: Frame-averaged powers were calculated from the measured burst average powers. The bolded GPRS/EDGE modes were selected for SAR testing according to the highest frame-averaged output power table according to KDB 941225 D03.

GSM Class: B

GPRS Multislot class: 10 (max 2 Tx Uplink slots)
EDGE Multislot class: 10 (max 4Tx Uplink slots)
DTM Multislot Class: N/A


FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT TO THE COMPLETE OF THE C	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 10 of 17
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 18 of 47

11.3.2 **HSPA Conducted Powers**

3GPP Release	Mode	3GPP 34.121 AWS Band [dBm] Subtest		βc	βd	MPR		
Version		Gustest	1312	1412	1862			
99	WCDMA	12.2 kbps RMC	23.49	23.43	23.47	•	-	•
99	VVCDIVIA	12.2 kbps AMR	23.44	23.45	23.49	•	-	
6	HSDPA	Subtest 1	23.42	23.49	23.44	2	15	0
6		Subtest 2	23.42	23.50	23.55	11	15	0
6		Subtest 3	23.00	23.07	23.05	15	8	0.5
6		Subtest 4	23.08	23.07	23.00	15	4	0.5
6		Subtest 1	23.35	22.55	22.56	10	15	0
6		Subtest 2	21.74	21.61	21.68	6	15	2
6	HSUPA	Subtest 3	22.63	22.34	22.44	15	9	1
6		Subtest 4	21.88	22.24	21.78	2	15	2
6		Subtest 5	22.79	22.63	22.78	14	15	0

MPR for some HSUPA subtests may be more than expected (i.e. up to 1 dB more power reduction possible than 3GPP expected MPR, but also as low as 0 dB power reduction according to the Qualcomm chipset implementation in this model. Detailed information is included in the operational description explaining how the MPR is applied for this model.

WCDMA mode was tested under RMC 12.2 kbps with HSPA Inactive per FCC KDB Publication 941225.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT (1) LG	Reviewed by: Quality Manager		
Filename:	Test Dates:	EUT Type:	Dogg 10 of 17		
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 19 of 47		
© 2011 PCTEST Engineering Laboratory, Inc.					

12 SAR TESTING WITH IEEE 802.11 TRANSMITTERS

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

12.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

12.2 Frequency Channel Configurations [27]

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

Table 12-1 802.11 Test Channels per FCC Requirements

				Turbo	"Default Test Channels"			
Mo	de	GHz	Channel	Channel		.247	UN	ш
				Спаппет	802.11b	802.11g	O.	'II
802.11 b/g		2.412	1		√	∇		
		2.437	6	6	1	∇		
		2.462	11		- √	∇		
		5.18	36				- √	
		5.20	40	42 (5.21 GHz)				
		5.22	44	42 (3.21 GHZ)				*
		5.24	48	50 (5.25 GHz)			- √	
		5.26	52	30 (3.23 GIIZ)			1	
		5.28	56	58 (5.29 GHz)				*
	UNII	5.30	60	30 (3.23 GIIE)				*
		5.32	64				-√	
		5.500	100					
		5.520	104				- √	
		5.540	108					*
802.11a		5.560	112					*
002.114		5.580	116				- √	
		5.600	120	Unknown				*
		5.620	124				- √	
		5.640	128					
		5.660	132					
		5.680	136				- √	
		5.700	140					*
	UNII	5.745	149		√		-√	
	or	5.765	153	152 (5.76 GHz)		*		*
	§15.247	5.785	157		- √			*
	_	5.805	161	160 (5.80 GHz)		*	-√	
	§15.247	5.825	165		√			

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 20 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 20 of 47

Table 12-2 IEEE 802.11b Average RF Power

Freq [MHz]	Channel	Data Rate [Mbps]	Average Power (dBm)
2412	1	1	15.29
		2	15.26
		5.5	15.36
		11	15.28
2437	6	1	16.10
		2	16.05
		5.5	16.09
		11	16.13
2462	11	1	16.55
		2	16.53
		5.5	16.64
		11	16.62

Table 12-3 IEEE 802.11g Average RF Power

Freq [MHz]	Channel	Data Rate [Mbps]	Average Power (dBm)
2412	1	6	11.24
		9	11.30
		12	11.33
		18	11.31
		24	11.35
		36	11.09
		48	11.34
		54	11.33
2437	6	6	12.10
		9	12.12
		12	12.05
		18	12.10
		24	12.08
		36	12.05
		48	12.13
		54	12.07
2462	11	6	12.68
		9	12.69
		12	12.60
		18	12.75
		24	12.65
		36	12.67
		48	12.57
		54	12.75

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE COMPLETE COMPLIENT COMPLETE COMPLETE COMPLETE COMPLIENT COMPLETE COMPLIENT COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COM	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 24 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 21 of 47

Table 12-4
IEEE 802.11n Average RF Power

Freq [MHz]	Channel	Data Rate [Mbps]	Average Power (dBm)
2412	1	6.5/7.2	10.62
		13/14.40	10.56
		19.5/21.70	10.53
		26/28.90	10.61
		29/43.3	10.45
		52/57.80	10.51
		58.50/65	10.51
		65/72.2	10.58
2437	6	6.5/7.2	11.46
		13/14.40	11.61
		19.5/21.70	11.54
		26/28.90	11.58
		29/43.3	11.54
		52/57.80	11.54
		58.50/65	11.53
		65/72.2	11.58
2462	11	6.5/7.2	11.95
		13/14.40	11.98
		19.5/21.70	11.83
		26/28.90	12.03
		29/43.3	12.06
		52/57.80	12.07
		58.50/65	12.03
		65/72.2	11.98

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.

Figure 12-1
Power Measurement Setup

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 22 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 22 of 47

13 FCC PERSONAL WIRELESS ROUTER CONFIGURATIONS

13.1 Personal Wireless Router Considerations

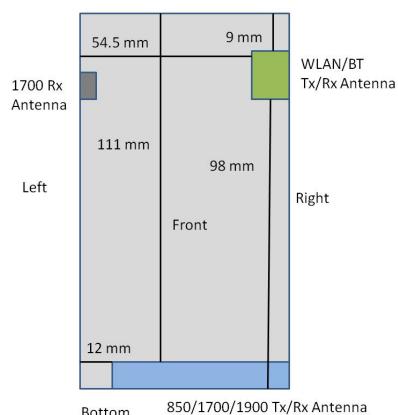
Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations are based on a composite test separation distance of 10 mm from the edges, front and back of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

13.2 SAR Test Setup for Personal Wireless Router Features

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. Therefore, the measurements were performed for each standalone transmitter for the required exposure conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were valid within a single transmission frequency.

13.3 Power Reduction for Portable Hotspot Mode

This model does not support any power reduction for portable hotspot mode.


FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 23 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	raye 23 01 47

13.4 SAR Test Configurations

Table 13-1 Mobile Hotspot Sides for SAR Testing

Mobile Hotspot Sides for SAR Testing							
Mode	Back	Front	Тор	Bottom	Right	Left	
GPRS 850	Yes	Yes	No	Yes	Yes	Yes	
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes	
UMTS IV	Yes	Yes	No	Yes	Yes	Yes	
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No	

Bottom Figure 13-1 Identification of Sides for SAR Testing

Note: Per FCC KDB Publication 941225 D06, the edges with antennas within 2.5 cm are required to be evaluated for SAR. See Figure 13-1 for distances of the actual device.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LIGHT	Reviewed by: Quality Manager			
Filename:	Test Dates:	EUT Type:	Dags 24 of 47			
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 24 of 47			
© 2011 PCTEST Engineerin	2011 PCTEST Engineering Laboratory, Inc.					

14 SYSTEM VERIFICATION

14.1 Tissue Verification

Table 14-1 Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
		820	0.858	39.75	0.898	41.571	-4.45%	-4.38%
05/04/2011	835H	835	0.866	39.77	0.900	41.500	-3.78%	-4.17%
		850	0.879	39.71	0.916	41.500	-4.04%	-4.31%
		820	0.947	53.20	0.969	55.284	-2.27%	-3.77%
05/04/2011	835B	835	0.957	53.13	0.970	55.200	-1.34%	-3.75%
		850	0.969	53.21	0.988	55.154	-1.92%	-3.52%
		1710	1.367	40.37	1.348	40.136	1.41%	0.58%
05/10/2011	1750H	1750	1.416	40.28	1.370	40.100	3.36%	0.45%
		1790	1.451	39.95	1.394	40.020	4.09%	-0.17%
		1710	1.462	51.88	1.460	53.540	0.14%	-3.10%
04/29/2011	1750B	1750	1.496	51.75	1.490	53.430	0.40%	-3.14%
		1790	1.523	51.59	1.510	53.330	0.86%	-3.26%
	1750B	1710	1.488	51.09	1.460	53.540	1.92%	-4.58%
06/08/2011		1750	1.519	50.98	1.490	53.430	1.95%	-4.59%
		1790	1.567	50.69	1.510	53.330	3.77%	-4.95%
	1900H	1850	1.410	40.64	1.400	40.000	0.71%	1.60%
05/02/2011		1880	1.436	40.43	1.400	40.000	2.57%	1.08%
		1910	1.463	40.44	1.400	40.000	4.50%	1.10%
		1850	1.477	52.57	1.520	53.300	-2.83%	-1.37%
05/02/2011	1900B	1880	1.504	52.43	1.520	53.300	-1.05%	-1.63%
		1910	1.532	52.29	1.520	53.300	0.79%	-1.89%
	_	2401	1.824	37.64	1.758	39.298	3.75%	-4.22%
05/03/2011	2450H	2450	1.885	37.44	1.800	39.200	4.72%	-4.49%
		2499	1.939	37.18	1.852	39.135	4.70%	-5.00%
		2401	1.949	50.46	1.903	52.765	2.42%	-4.37%
05/02/2011	2450B	2450	2.008	50.18	1.950	52.700	2.97%	-4.78%
		2499	2.078	50.05	2.019	52.638	2.92%	-4.92%

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 25 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 25 of 47

14.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity, for example from the below equation (Pournaropoulos and

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $i = \sqrt{-1}$.

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

D1765V2 SN: 1008								
	Head				Body			
Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
5/19/2009	-29.9		48.4		-24.2		44.8	
3/2/2011	-30.1	0.7%	49	0.6	-24.0	-1%	47	2.2

The above tables represent RL and Impedance checks to ensure extended calibrations are still acceptable per KDB Publication 450824 D02.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LUI	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 26 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 26 01 47
© COMA DOTEOT E	n Labanatan, Inc		DEV/004M

14.4 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

Table 14-2 System Verification Results

	System Verification TARGET & MEASURED										
Date: Amb. Temp (°C) Liquid Temp (°C) Tissue Frequency (W) Tissue Frequency (MHz) Tissue Type Measured SAR _{1g} (W/kg) SAR _{1g} (W/kg) SAR _{1g} (W/kg)								Deviation (%)			
05/04/2011	24.0	22.6	0.063	835	4d047	Head	0.571	9.530	9.063	-4.90%	
05/04/2011	24.2	22.4	0.063	835	4d047	Body	0.617	9.850	9.794	-0.57%	
05/10/2011	23.8	22.4	0.040	1765	1008	Head	1.46	38.200	36.500	-4.45%	
04/29/2011	24.2	22.7	0.040	1765	1008	Body	1.55	37.300	38.750	3.89%	
06/08/2011	24.3	22.9	0.100	1750	1051	Body	3.99	37.000	39.900	7.84%	
05/02/2011	23.9	22.8	0.040	1900	502	Head	1.63	40.200	40.750	1.37%	
05/02/2011	24.0	22.8	0.040	1900	502	Body	1.66	41.100	41.500	0.97%	
05/03/2011	23.3	22.0	0.025	2450	797	Head	1.41	53.300	56.400	5.82%	
05/02/2011	24.4	22.5	0.025	2450	797	Body	1.33	52.300	53.200	1.72%	

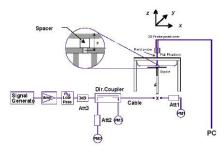


Figure 14-1 System Verification Setup Diagram

Figure 14-2
System Verification Setup Photo

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Daga 27 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 27 of 47

Table 15-1 GSM 850 Head SAR Results

	MEASUREMENT RESULTS								
FREQUENCY		Mode/Band	Conducted Power	Power	Side	Test	SAR (1g)		
MHz	Ch.	mouc, Bana	[dBm]	Drift [dB]	old o	Position	(W/kg)		
836.60	190	GSM 850	32.34	0.01	Right	Touch	0.181		
836.60	190	GSM 850	32.34	-0.04	Right	Tilt	0.140		
836.60	190	GSM 850	32.34	0.02	Left	Touch	0.179		
836.60	190	GSM 850	32.34	0.00	Left	Tilt	0.135		
ANS	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Head			
	Spatial Peak					W/kg (mW/	' g)		
Uncon	trolled	Exposure/Ge	neral Popu	lation	avera	ged over 1 g	gram		

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard battery was used.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

FCC ID: BEJC729	PCTES SHOULD INDICATE IN THE PROPERTY OF THE P	SAR COMPLIANCE REPORT IN THE LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 29 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 28 of 47
O COLLA DOTTOT E : :			DEV. 0.0.414

Table 15-2 GSM 1900 Head SAR Results

	MEASUREMENT RESULTS								
FREQUI	ENCY		Conducted Power [dBm]	Power			SAR (1g)		
MHz	Ch.	Mode/Band		Drift [dB]	Side	Test Position	(W/kg)		
1880.00	661	GSM 1900	30.19	0.01	Right	Touch	0.222		
1880.00	661	GSM 1900	30.19	0.03	Right	Tilt	0.182		
1880.00	661	GSM 1900	30.19	-0.01	Left	Touch	0.214		
1880.00	661	GSM 1900	30.19	-0.01	Left	Tilt	0.214		
ANS	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Head			
	Spatial Peak					6 W/kg (mW/g	1)		
Uncor	Uncontrolled Exposure/General Population					aged over 1 gı	ram		

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard battery was used.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

FCC ID: BEJC729	PCTES SHOULD INDICATE IN THE PROPERTY OF THE P	SAR COMPLIANCE REPORT IN THE LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 20 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 29 of 47
O COLLA DOTTOT E : :			DEV. 0.0.414

Table 15-3 UMTS IV Head SAR Results

	MEASUREMENT RESULTS									
FREQUE	ENCY	Mode/Band	Conducted	Power Drift	Side	Test	SAR (1g)			
MHz	Ch.	Wioue/Dailu	Power [dBm]	[dB]	oluc	Position	(W/kg)			
1730.40	1412	UMTS IV	23.43	0.03	Right	Touch	0.595			
1730.40	1412	UMTS IV	23.43	-0.01	Right	Tilt	0.573			
1730.40	1412	UMTS IV	23.43	0.05	Left	Touch	0.708			
1730.40	1412	UMTS IV	23.43	-0.01	Left	Tilt	0.662			
Al	NSI / IEE	E C95.1 1992 -	SAFETY LIM	IT		Head				
	Spatial Peak					W/kg (mW	/g)			
Unc	ontrolle	d Exposure/Ge	neral Popula	tion	avera	ged over 1	gram			

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard battery was used.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 7. WCDMA mode was tested under RMC 12.2 kbps with HSPA Inactive per FCC KDB Publication 941225 D01.
- 8. SAR was measured with a probe calibrated at 1750 Mhz and is valid for measuring SAR from 1700MHz 1800MHz with software version Dasy 4.7. The 1750MHz specific head liquid was verified with specific probe calibration factors as required per FCC KDB Publication 450824.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LUI	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Daga 20 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 30 of 47

Table 15-4 2.4 GHz WLAN Head SAR Results

	MEASUREMENT RESULTS									
FREQU	ENCY	Mode	Service	Conduction	Power	Side	Test	Data Rate	SAR (1g)	
MHz	Ch.	Wiode	Service	Power [dBm]	Drift [dB]	Side	Position	(Mbps)	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.55	0.01	Right	Touch	1	0.066	
2462	11	IEEE 802.11b	DSSS	16.55	-0.05	Right	Tilt	1	0.085	
2462	11	IEEE 802.11b	DSSS	16.55	0.08	Left	Touch	1	0.102	
2462	11	IEEE 802.11b	DSSS	16.55	-0.02	Left	Tilt	1	0.103	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						He	ad		
	Spatial Peak						1.6 W/kg	(mW/g)		
	Unco	ntrolled Exposu	re/General Po	opulation			averaged o	ver 1 gram		

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard battery was used.4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 7. WLAN transmission was verified using a spectrum analyzer.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE COMPLETE COMPLIENT COMPLETE COMPLETE COMPLETE COMPLIENT COMPLETE COMPLIENT COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COM	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 24 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 31 of 47

Table 15-5 GPRS Hotspot Body SAR Results

MEASUREMENT RESULTS										
FREQUE	NCY	Mode	Service	Conduction	Power Drift	Spacing	# of GPRS	Side	SAR (1g)	
MHz	Ch.			Power [dBm]	[dB]		Slots		(W/kg)	
836.60	190	GSM 850	GPRS	30.29	-0.02	1.0 cm	2	back	0.258	
836.60	190	GSM 850	GPRS	30.29	-0.03	1.0 cm	2	front	0.259	
836.60	190	GSM 850	GPRS	30.29	0.00	1.0 cm	2	bottom	0.054	
836.60	190	GSM 850	GPRS	30.29	-0.01	1.0 cm	2	right	0.417	
836.60	190	GSM 850	GPRS	30.29	0.01	1.0 cm	2	left	0.427	
1880.00	661	GSM 1900	GPRS	28.32	0.00	1.0 cm	2	back	0.623	
1880.00	661	GSM 1900	GPRS	28.32	0.01	1.0 cm	2	front	0.247	
1880.00	661	GSM 1900	GPRS	28.32	0.06	1.0 cm	2	bottom	0.241	
1880.00	661	GSM 1900	GPRS	28.32	0.01	1.0 cm	2	right	0.145	
1880.00	661	GSM 1900	GPRS	28.32	-0.05	1.0 cm	2	left	0.125	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Во	dy		
Spatial Peak							1.6 W/kg	(mW/g)		
U	Incontro	olled Exposu	re/Genera	I Population	1	а	veraged o	ver 1 grar	n	

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Batteries are fully charged for all readings. Standard battery was used.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Device was tested using a fixed spacing.
- 7. Justification for reduced test configurations per KDB Publication 941225: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worst-case reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation.
- 8. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 9. Top Edge was not tested since the antenna distance from the edge was greater than 2.5 cm per FCC KDB Publication 941225 D06 guidance (see Section 13.4).
- 10. SAR evaluation requires a single frequency of measurement for valid measurements using the SAR probe and tissue calibrated which are calibrated for specific limited frequency ranges. Therefore, during SAR evaluation it was ensured that the WIFI transmission was disabled by the manufacturer to assess the standalone SAR to be evaluated for SAR. WIFI SAR was separately evaluated to account for the WIFI SAR for portable hotspot exposure conditions (See Section 13).
- 11. Per FCC KDB Publication 941225 D06, when the same wireless modes and device transmission configurations are required for body-worn accessories and hotspot mode, it is not necessary to additionally test body-worn accessory SAR for the same device orientation. Therefore, the hotspot data for the back side configuration additionally shows body-worn compliance.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT TO THE COMPLETE OF THE C	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dog 22 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 32 of 47

Table 15-6 WCDMA Hotspot Body SAR Results

	MEASUREMENT RESULTS											
FREQUE	NCY	Mode	Service	Conduction	Power Drift	Spacing	Side	SAR (1g)				
MHz	Ch.			Power [dBm]	[dB]	3		(W/kg)				
1712.40	1312	UMTS IV	RMC	23.49	-0.10	1.0 cm	back	1.340				
1712.40	1312	UMTS IV	RMC + HSDPA	23.42	0.00	1.0 cm	back	1.370				
1730.40	1412	UMTS IV	RMC	23.43	0.07	1.0 cm	back	1.310				
1752.50	1862	UMTS IV	RMC	23.47	0.07	1.0 cm	back	1.280				
1730.40	1412	UMTS IV	RMC	23.43	-0.02	1.0 cm	front	0.613				
1730.40	1412	UMTS IV	RMC	23.43	0.06	1.0 cm	bottom	0.236				
1730.40	1412	UMTS IV	RMC	23.43	-0.08	1.0 cm	right	0.268				
1730.40	1412	UMTS IV	RMC	23.43	-0.02	1.0 cm	left	0.407				
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											
	Spatial Peak						W/kg (mV	V/g)				
	Unco	ntrolled Expo	sure/General Po	pulation		averaç	ged over 1	gram				

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Batteries are fully charged for all readings. Standard battery was used.
- 5. Liquid tissue depth was at least 15.0 cm.
- 6. Device was tested using a fixed spacing.
- 7. Per KDB Publication 941225 D01, WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive. WCDMA with HSDPA Active (Subtest 1) was additionally tested in the worst case body condition since SAR was more than 1.2 W/kg.
- 8. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 9. Top Edge was not tested since the antenna distance from the edge was greater than 2.5 cm per FCC KDB Publication 941225 D06 guidance (see Section 12.2).
- 10. SAR was measured with a probe calibrated at 1750 Mhz and is valid for measuring SAR from 1700MHz 1800MHz with software version Dasy 4.7. The 1750MHz specific body liquid was verified with specific probe calibration factors as required per FCC KDB Publication 450824.
- 11. SAR evaluation requires a single frequency of measurement for valid measurements using the SAR probe and tissue calibrated which are calibrated for specific limited frequency ranges. Therefore, during SAR evaluation it was ensured that the WIFI transmission was disabled by the manufacturer to assess the standalone SAR to be evaluated for SAR. WIFI SAR was separately evaluated to account for the WIFI SAR for portable hotspot exposure conditions (See Section 13).
- 12. Per FCC KDB Publication 941225 D06, when the same wireless modes and device transmission configurations are required for body-worn accessories and hotspot mode, it is not necessary to additionally test body-worn accessory SAR for the same device orientation. Therefore, the hotspot data for the back side configuration additionally shows body-worn compliance.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT TO THE COMPLETE OF THE C	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 33 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Fage 33 01 47

Table 15-7 Hotspot 2.4 GHz Body SAR Results

MEASUREMENT RESULTS											
FREQU	ENCY	Mode	Service	Conducted	Power Drift	Spacing	Data Rate	Side	SAR		
MHz	Ch.			Power [dBm]	[dB]	1, 3	(Mbps)		(W/kg)		
2462	11	IEEE 802.11b	DSSS	16.55	0.03	1.0 cm	1	back	0.073		
2462	11	IEEE 802.11b	DSSS	16.55	-0.09	1.0 cm	1	front	0.025		
2462	11	IEEE 802.11b	DSSS	16.55	0.01	1.0 cm	1	top	0.026		
2462	11	IEEE 802.11b	DSSS	16.55	0.00	1.0 cm	1	right	0.056		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Во	dy			
Spatial Peak							1.6 W/kg	(mW/g)			
	Unco	ntrolled Exposur	e/General	Population		а	veraged o	ver 1 grar	n		

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard battery was used.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is was at least 15.0 cm.
- 6. Device was tested using a fixed spacing.
- 7. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 8. WLAN transmission was verified using a spectrum analyzer.
- 9. Bottom and Left Edges were not tested since the antenna distance from the edge was greater than 2.5 cm per FCC KDB Publication 941225 (see Section 12.2)
- 10. Per FCC KDB Publication 941225 D06, when the same wireless modes and device transmission configurations are required for body-worn accessories and hotspot mode, it is not necessary to additionally test body-worn accessory SAR for the same device orientation. Therefore, the hotspot data for the back side configuration additionally shows body-worn compliance.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 34 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Fage 34 01 47

16.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" FCC KDB Publication 648474 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

16.2 FCC Power Tables & Conditions

	2.45	5.15 - 5.35	5.47 - 5.85	GHz				
P_{Ref}	12	6	5	mW				
Device output power should be rounded to the nearest mW to compare with values specified in this table.								

Figure 16-1 **Output Power Thresholds for Unlicensed Transmitters**

	Individual Transmitter	Simultaneous Transmission	
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only	
Unlicensed Transmitters	When there is no simultaneous transmission — o output \leq 60/f: SAR not required o output \geq 60/f: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when o output \leq 2·P _{Ref} and antenna is \geq 5.0 cm from other antennas o output \leq P _{Ref} and antenna is \geq 2.5 cm from other antennas o output \leq P _{Ref} and antenna is \leq 2.5 cm from other antennas, each with either output power \leq P _{Ref} or 1-g SAR \leq 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required test SAR on highest output channel for each wireless mode and exposure condition if SAR for highest output channel is \geq 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is no required and antenna is ≥ 5 en from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is 1.6 W/kg for all simultaneou transmitting antennas o when SAR to peak location separation ratio of simultaneou transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peal location separation ratio ≥ 0.3; test i only required for the configuration that results in the highest SAR is and-alone configuration for each wireless mode and exposure condition. Note: simultaneous transmission exposure conditions for head an body can be different for different testyle phones; therefore, different test requirements may apply	

Figure 16-2 **SAR Evaluation Requirements for Multiple Transmitter Handsets**

16.3 **Multiple Antenna/Transmission Information**

The separation between the main antenna and the Bluetooth and WLAN antennas is 86.5 mm. RF Conducted Power of Bluetooth Tx is 14.555 mW. RF Conducted Power of WLAN is 46.13 mW.

16.4 Simultaneous Transmission Analysis

Based on the output power, antenna separation distance and the Body SAR of the dominant transmitter, a stand-alone Bluetooth SAR test is not required while for WLAN it is required.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 25 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 35 of 47
© 2011 PCTEST Engineerin	a Laboratory Inc		REV 8 9 1M

Table 16-1 Simultaneous Transmission Scenario (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	WIFI SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GSM 1900 SAR (W/kg)	WIFI SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.181	0.066	0.247		Right Cheek	0.222	0.066	0.288
Head SAR	Right Tilt	0.140	0.085	0.225	Head SAR	Right Tilt	0.182	0.085	0.267
Head SAK	Left Cheek	0.179	0.102	0.281	riedu SAN	Left Cheek	0.214	0.102	0.316
	Left Tilt	0.135	0.103	0.238		Left Tilt	0.214	0.103	0.317

Simult Tx	Configuration	UMTS IV SAR (W/kg)	WIFI SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.595	0.066	0.661
Head SAR	Right Tilt	0.573	0.085	0.658
Head SAR	Left Cheek	0.708	0.102	0.810
	Left Tilt	0.662	0.103	0.765

Table 16-2 Simultaneous Transmission Scenario (Hotspot)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	WIFI SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	WIFI SAR (W/kg)	Σ SAR (W/kg)
Body SAR	Back	0.258	0.073	0.331	Body SAR	Back	0.623	0.073	0.696
	Front	0.259	0.025	0.284		Front	0.247	0.025	0.272
	Тор	0.000	0.026	0.026		Тор	0.000	0.026	0.026
	Bottom	0.054	0.000	0.054		Bottom	0.241	0.000	0.241
	Right	0.417	0.056	0.473		Right	0.145	0.056	0.201
	Left	0.427	0.000	0.427		Left	0.125	0.000	0.125

Simult Tx	Configuration	UMTS IV	WIFI SAR	Σ SAR	
Simult 1X	Comiguration	SAR (W/kg)	(W/kg)	(W/kg)	
	Back	1.370	0.073	1.443	
	Front	0.613	0.613 0.025		
Body SAR	Тор	0.000 0.026		0.026	
BOUY SAK	Bottom	0.236	0.000	0.236	
	Right	0.268	0.056	0.324	
	Left	0.407	0.000	0.407	

Note: Per FCC KDB Publication 941225 D06, the edges with antennas more than 2.5 cm are not required to be evaluated for SAR ("0").

16.5 **Simultaneous Transmission Conclusion**

The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. Therefore, no volumetric SAR summation is required per FCC KDB Publication 648474.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN THE LUI	Reviewed by: Quality Manager			
Filename:	Test Dates:	EUT Type:	Dogo 26 of 47			
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 36 of 47			
© 2014 DOTECT Engineering Laboratory, Inc.						

17 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85070B	Dielectric Probe Kit	8/22/2010	Annual	8/22/2011	US33020316
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/13/2010	Annual	10/13/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/21/2011	Annual	4/21/2012	JP38020182
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46110872
Agilent	E5515C	Wireless Communications Test Set	10/8/2010	Annual	10/8/2011	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/13/2010	Annual	8/13/2011	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/8/2011	Annual	4/8/2012	MY45470194
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/11/2010	Annual	10/11/2011	1833460
Gigatronics	8651A	Universal Power Meter	10/11/2010	Annual	10/11/2011	8650319
Index SAR	IXTL-010	Dielectric Measurement Kit	N/A		N/A	N/A
Index SAR	IXTL-030	30MM TEM line for 6 GHz	N/A		N/A	N/A
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Pasternack	PE2209-10	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	11/11/2010	Annual	11/11/2011	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	NRVD	Dual Channel Power Meter	4/8/2011	Biennial	4/8/2013	101695
SPEAG	D1900V2	1900 MHz SAR Dipole	2/17/2011	Annual	2/17/2012	502
SPEAG	D1900V2	1900 MHz SAR Dipole	8/18/2009	Biennial	8/18/2011	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/27/2009	Biennial	8/27/2011	719
SPEAG	D2450V2	2450 MHz SAR Dipole	2/8/2011	Annual	2/8/2012	797
SPEAG	D2600V2	2600 MHz SAR Dipole	4/15/2011	Biennial	4/15/2013	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/19/2009	Biennial	8/19/2011	1007
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/11/2011	Annual	2/11/2012	1057
SPEAG	D835V2	835 MHz SAR Dipole	2/9/2011	Annual	2/9/2012	4d047
SPEAG	D835V2	835 MHz SAR Dipole	8/24/2009	Biennial	8/24/2011	4d026
SPEAG	DAE3	Dasy Data Acquisition Electronics	11/18/2010	Annual	11/18/2011	455
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/17/2011	Annual	3/17/2012	704
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/20/2011	Annual	4/20/2012	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/21/2011	Annual	2/21/2012	649
SPEAG	ES3DV2	SAR Probe	9/21/2010	Annual	9/21/2011	3022
SPEAG	EX3DV4	SAR Probe	8/19/2010	Annual	8/19/2011	3561
SPEAG	EX3DV4	SAR Probe	2/14/2011	Annual	2/14/2012	3550
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/8/2010	Annual	7/8/2011	859
SPEAG	D750V3	750 MHz Dipole	2/14/2011	Annual	2/14/2012	1003
SPEAG	ES3DV3	SAR Probe	3/24/2011	Annual	3/24/2012	3213
SPEAG	ES3DV3	SAR Probe	4/18/2011	Annual	4/18/2012	3213
Rohde & Schwarz	SMIQ03B	Signal Generator	4/6/2011	Annual	4/6/2012	DE27259
SPEAG	D1640V2	1640 MHz Dipole	8/17/2010	Biennial	8/17/2012	321
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	8/30/2010	Annual	8/30/2011	100976
Anritsu	MA2481A			Annual		
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5318 5442
		Power Sensor	2/7/2011	Annual	2/7/2012	
Anritsu	ML2438A ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1190013
Anritsu		Power Meter Signal Generator	2/7/2011	Annual	2/7/2012	98150041
Agilent	8648D	5	4/5/2011 2/7/2011		4/5/2012	3629U00687
Anritsu	ML2438A	Power Meter Power Sensor		Annual Annual	2/7/2012	1070030
Anritsu	MA2481A		2/7/2011		2/7/2012	5821
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	8013
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	2400
Aprel	ALS-PR-DIEL	Dielectric Probe Kit	N/A	A !	N/A	260-00959 CR43304447
Agilent	E5515C	Wireless Communications Test Set	8/13/2010	Annual	8/13/2011	GB43304447
Agilent	E5515C	Wireless Communications Tester	4/21/2011	Annual	4/21/2012	US41140256
Amplifier Research	5S1G4	5W, 800MHz-4.2GHz	N/A		}	17042
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	N/A		2/0/2222	N/A
Agilent	E5515C	Wireless Communications Test Set	2/8/2011	Annual	2/8/2012	GB45360985
Speag	D3700V2	3700 MHz SAR Dipole	2/16/2011	Annual	2/16/2012	1002
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	3/11/2011	Annual	3/11/2012	103962
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331322
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331323
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331330
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331332
Control Company	61220-416	Long-Stem Thermometer	3/16/2011	Biennial	3/16/2013	111391601

Justification for 2-year calibration cycle for SAR dipoles is found in Section 14.3.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 37 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 37 01 47

18 MEASUREMENT UNCERTAINTIES

Applicable for 800 - 3000 MHz.

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	c _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
·	000.	. ,					(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	8
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	8
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	8
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	8
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	8
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	8
Probe Positioner Mechanical Tolerance		0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom		2.9	R	1.73	1.0	1.0	1.7	1.7	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation		1.0	R	1.73	1.0	1.0	0.6	0.6	œ
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values		5.0	R	1.73	0.60	0.49	1.7	1.4	œ
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 38 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 36 01 47

© 2011 PCTEST Engineering Laboratory, Inc.

REV 8.9.1M 04/07/2011

19 CONCLUSION

19.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 20 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 39 of 47

20 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT IN INC.	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 40 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 40 of 47

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz - 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC D06 Hot Spot SAR v01, KDB Publication 941225.

FCC ID: BEJC729	PCTES	SAR COMPLIANCE REPORT (1) LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 44 of 47
0Y1104260821-R1.BEJ	04/29/11 - 06/08/11	850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with BT and WLAN	Page 41 of 47
© 2011 PCTEST Engineerin	a Laboratory Inc		DEV/ Q Q 1M

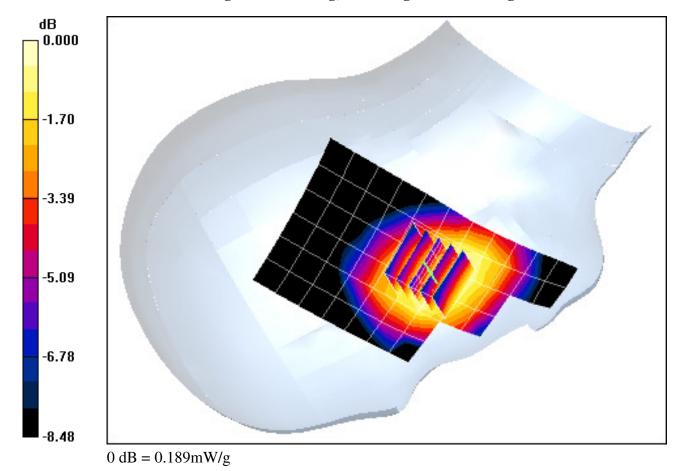
APPENDIX A: SAR TEST DATA

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.867 \text{ mho/m}; \ \epsilon_r = 39.98; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-04-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(7.96, 7.96, 7.96); Calibrated: 8/19/2010


Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Touch, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m
Peak SAR (extrapolated) = 0.221 W/kg
SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.139 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.867 \text{ mho/m}; \ \epsilon_r = 39.98; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

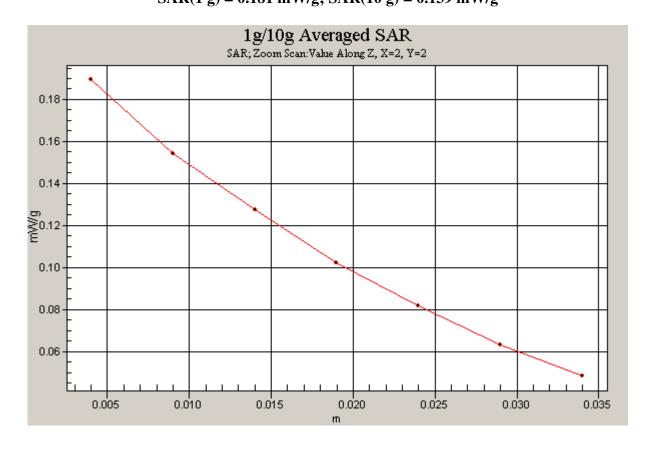
Test Date: 05-04-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(7.96, 7.96, 7.96); Calibrated: 8/19/2010 Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Touch, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m

Peak SAR (extrapolated) = 0.221 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.139 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.867 \text{ mho/m}; \ \epsilon_r = 39.98; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

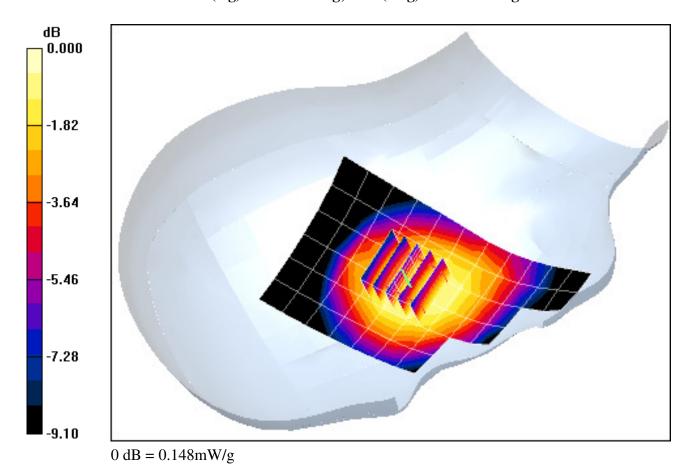
Test Date: 05-04-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(7.96, 7.96, 7.96); Calibrated: 8/19/2010 Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Tilt, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.8 V/m

Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.106 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.867 \text{ mho/m}; \ \epsilon_r = 39.98; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

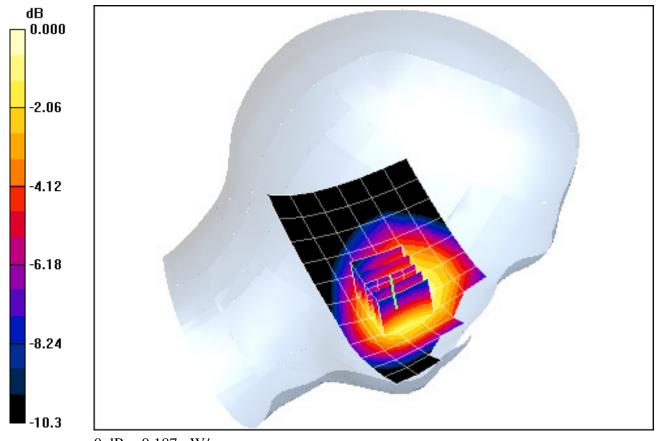
Test Date: 05-04-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(7.96, 7.96, 7.96); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Touch, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.135 mW/g

0 dB = 0.187 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.867 \text{ mho/m}; \ \epsilon_r = 39.98; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

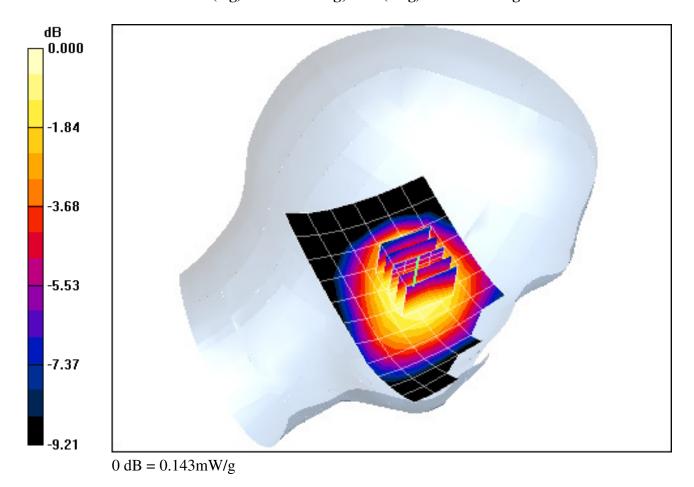
Test Date: 05-04-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(7.96, 7.96, 7.96); Calibrated: 8/19/2010 Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Tilt, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.5 V/m

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.135 mW/g; SAR(10 g) = 0.103 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head; Medium parameters used:

f = 1880 MHz; σ = 1.44 mho/m; ε_r = 40.45; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 05-02-2011; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

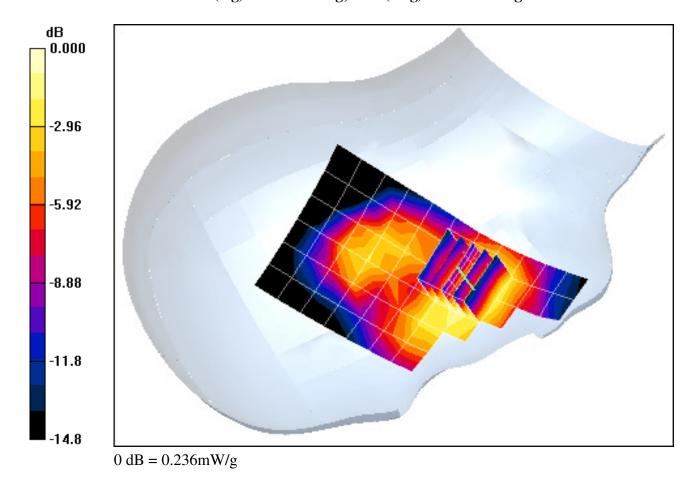
Probe: EX3DV4 - SN3550; ConvF(7.01, 7.01, 7.01); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Touch, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m

Peak SAR (extrapolated) = 0.323 W/kg

SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.141 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head; Medium parameters used:

f = 1880 MHz; σ = 1.44 mho/m; ε_r = 40.45; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 05-02-2011; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

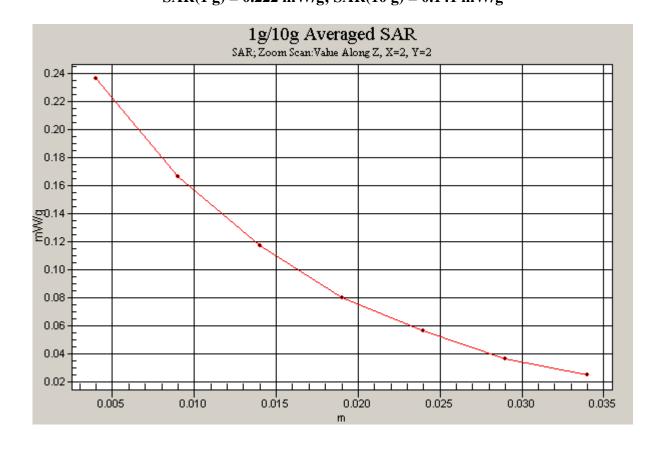
Probe: EX3DV4 - SN3550; ConvF(7.01, 7.01, 7.01); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 7/8/2010
Phontom: SAM Main: Type: SAM 4.0; Sarial: TP, 1114

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Touch, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m

Peak SAR (extrapolated) = 0.323 W/kg

SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.141 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head; Medium parameters used:

f = 1880 MHz; σ = 1.44 mho/m; ε_r = 40.45; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 05-02-2011; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

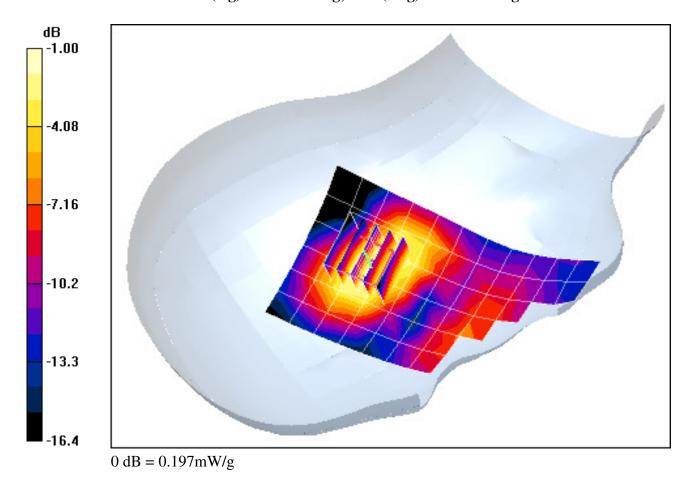
Probe: EX3DV4 - SN3550; ConvF(7.01, 7.01, 7.01); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Tilt, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.9 V/m

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.182 mW/g; SAR(10 g) = 0.107 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head; Medium parameters used:

f = 1880 MHz; σ = 1.44 mho/m; ϵ_r = 40.45; ρ = 1000 kg/m 3

Phantom section: Left Section

Test Date: 05-02-2011; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

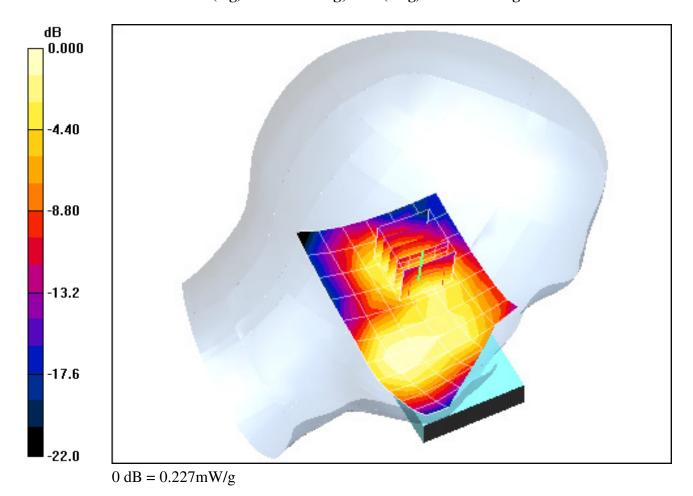
Probe: EX3DV4 - SN3550; ConvF(7.01, 7.01, 7.01); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Touch, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m

Peak SAR (extrapolated) = 0.329 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.128 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head; Medium parameters used:

f = 1880 MHz; σ = 1.44 mho/m; ϵ_r = 40.45; ρ = 1000 kg/m 3

Phantom section: Left Section

Test Date: 05-02-2011; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

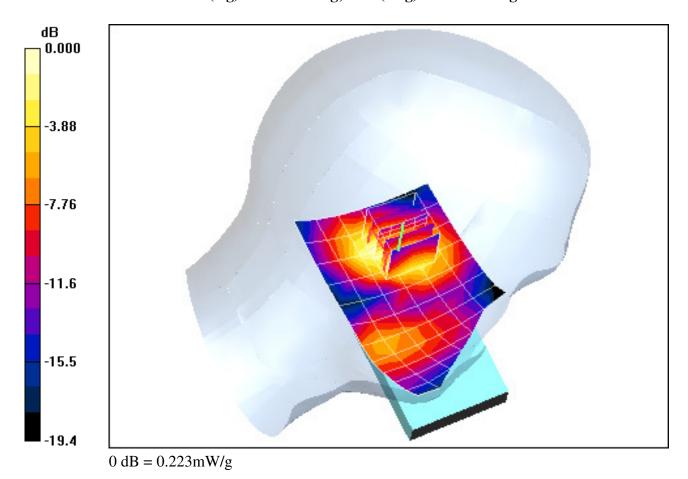
Probe: EX3DV4 - SN3550; ConvF(7.01, 7.01, 7.01); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Tilt, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.6 V/m

Peak SAR (extrapolated) = 0.345 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.128 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

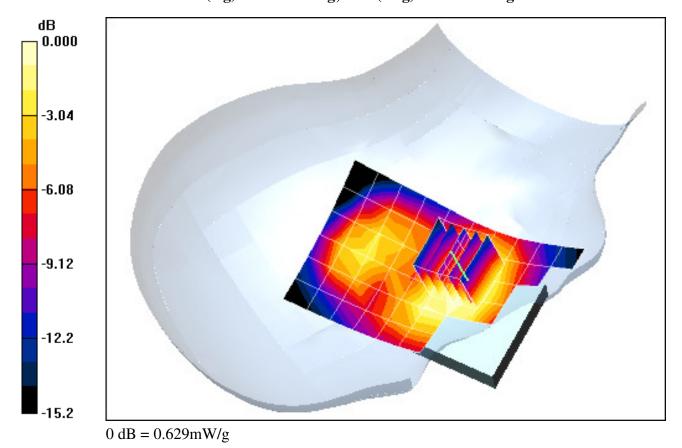
Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.39 \text{ mho/m}; \ \epsilon_r = 40.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-10-2011; Ambient Temp: 23.8 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3550; ConvF(7.33, 7.33, 7.33); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Right Head, Touch, Mid.ch


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m

Peak SAR (extrapolated) = 0.852 W/kg

SAR(1 g) = 0.595 mW/g; SAR(10 g) = 0.391 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.39 \text{ mho/m}; \ \epsilon_r = 40.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

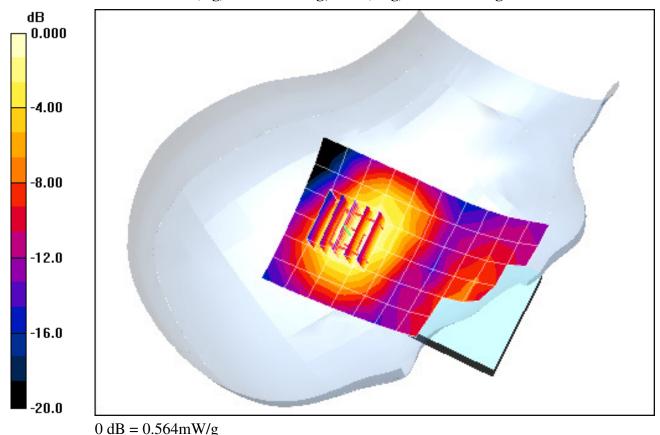
Test Date: 05-10-2011; Ambient Temp: 23.8 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3550; ConvF(7.33, 7.33, 7.33); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Right Head, Tilt, Mid.ch


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.1 V/m

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = 0.573 mW/g; SAR(10 g) = 0.341 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.39 \text{ mho/m}; \ \epsilon_r = 40.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

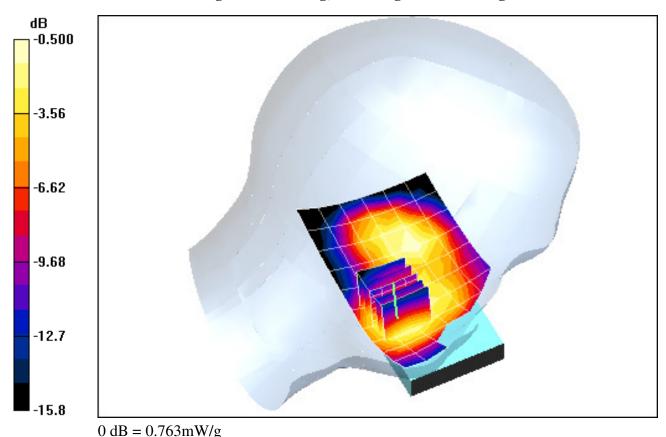
Test Date: 05-10-2011; Ambient Temp: 23.8 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3550; ConvF(7.33, 7.33, 7.33); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Left Head, Touch, Mid.ch


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.3 V/m

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.708 mW/g; SAR(10 g) = 0.441 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \sigma = 1.39 \text{ mho/m}; \varepsilon_r = 40.3; \rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

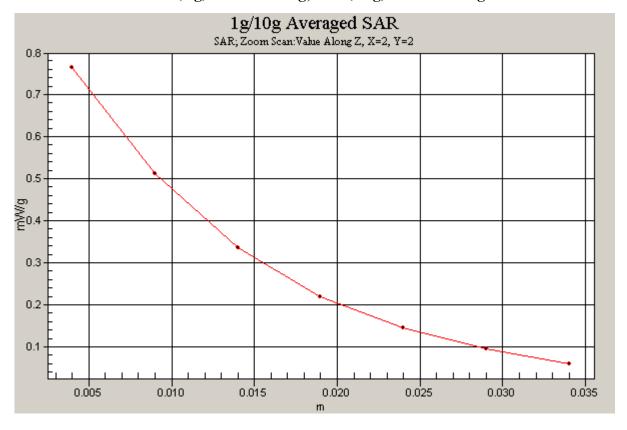
Test Date: 05-10-2011; Ambient Temp: 23.8 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3550; ConvF(7.33, 7.33, 7.33); Calibrated: 2/14/2011

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Left Head, Touch, Mid.ch


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.3 V/m

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.708 mW/g; SAR(10 g) = 0.441 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.39 \text{ mho/m}; \ \epsilon_r = 40.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

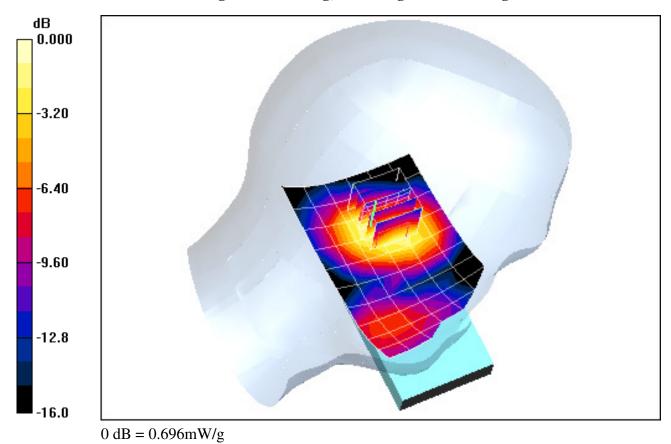
Test Date: 05-10-2011; Ambient Temp: 23.8 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3550; ConvF(7.33, 7.33, 7.33); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Left Head, Tilt, Mid.ch


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.662 mW/g; SAR(10 g) = 0.410 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.9 \text{ mho/m}; \ \epsilon_r = 37.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

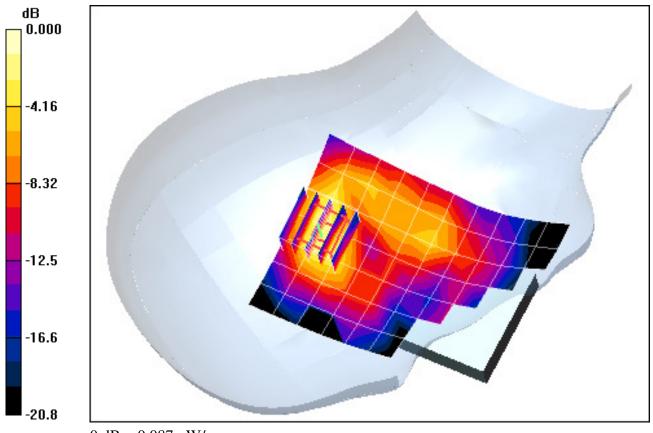
Test Date: 05-03-2011; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(6.29, 6.29, 6.29); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Right Head, Touch, Ch 11, 1 Mbps


Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.08 V/m

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.066 mW/g; SAR(10 g) = 0.032 mW/g

0 dB = 0.087 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.9 \text{ mho/m}; \ \epsilon_r = 37.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

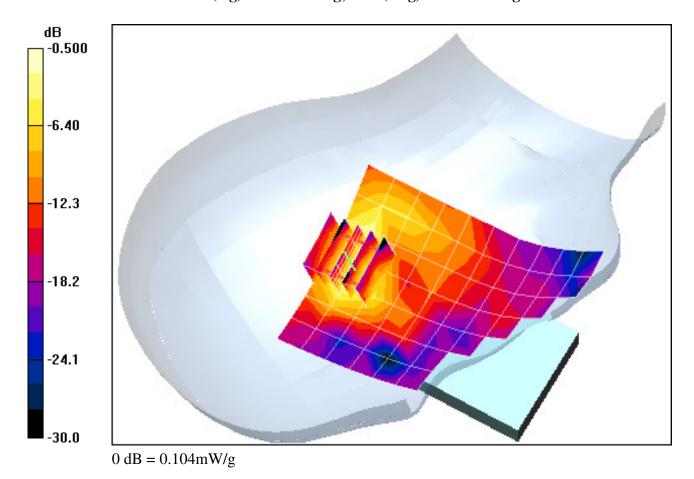
Test Date: 05-03-2011; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(6.29, 6.29, 6.29); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Right Head, Tilt, Ch 11, 1 Mbps


Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.69 V/m

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.040 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.9 \text{ mho/m}; \ \epsilon_r = 37.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

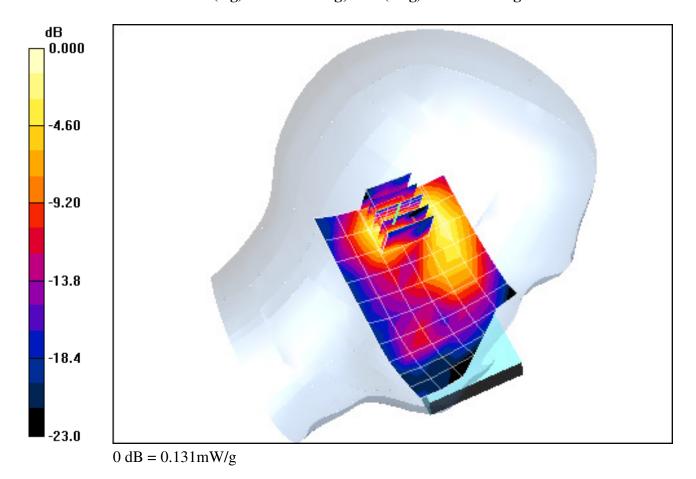
Test Date: 05-03-2011; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(6.29, 6.29, 6.29); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Left Head, Touch, Ch 11, 1 Mbps


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.36 V/m

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.044 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.9 \text{ mho/m}; \ \epsilon_r = 37.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

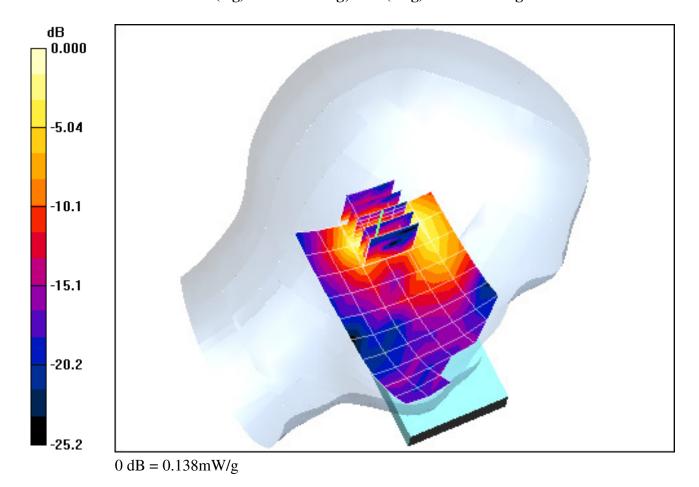
Test Date: 05-03-2011; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(6.29, 6.29, 6.29); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Left Head, Tilt, Ch 11, 1 Mbps


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.15 V/m

Peak SAR (extrapolated) = 0.197 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.046 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.9 \text{ mho/m}; \ \epsilon_r = 37.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

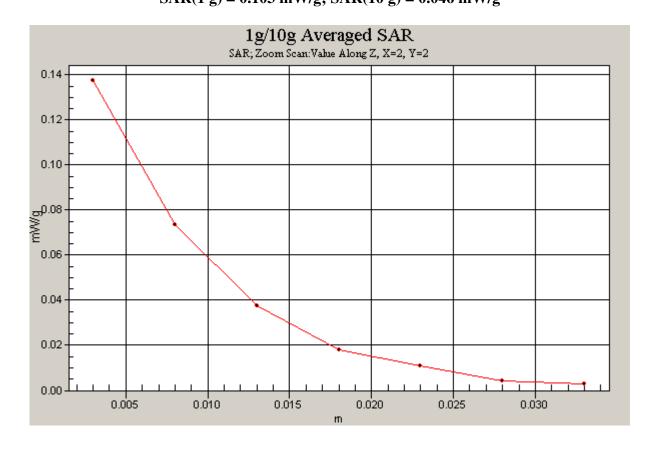
Test Date: 05-03-2011; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(6.29, 6.29, 6.29); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Left Head, Tilt, Ch 11, 1 Mbps


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.15 V/m

Peak SAR (extrapolated) = 0.197 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.046 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.958 \text{ mho/m}$; $\varepsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

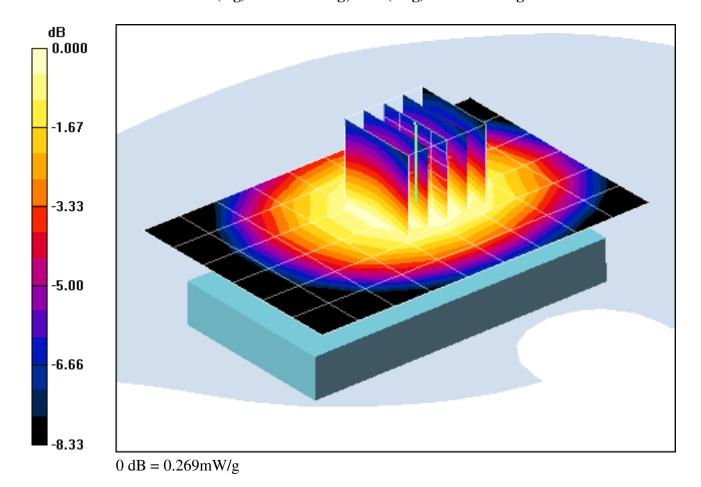
Test Date: 05-04-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.7 V/m

Peak SAR (extrapolated) = 0.327 W/kg

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.196 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.958 \text{ mho/m}$; $\varepsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

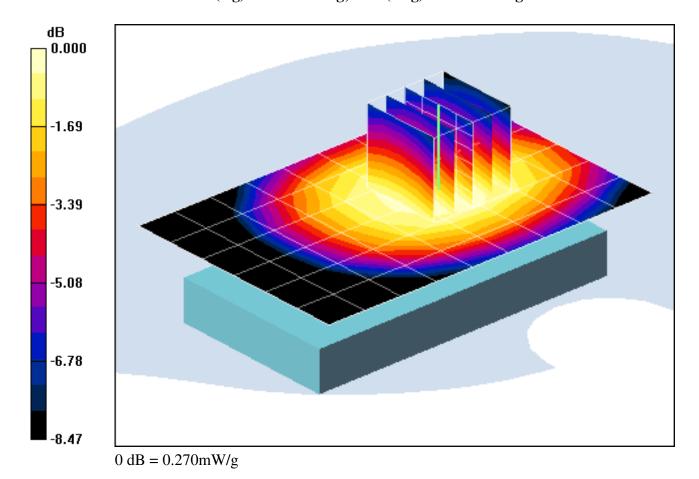
Test Date: 05-04-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Front side, Mid.ch, 2 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.9 V/m

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.259 mW/g; SAR(10 g) = 0.197 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium: 835 Body; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.958 \text{ mho/m}$; $\varepsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

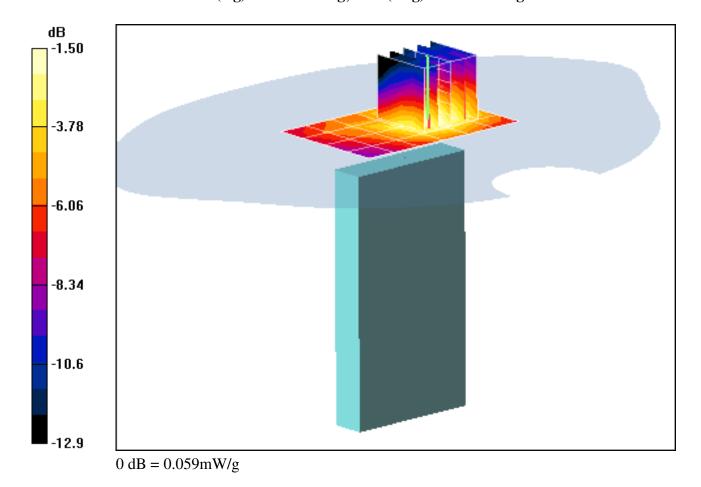
Test Date: 05-04-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Bottom Edge, Mid.ch, 2 Tx Slots


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.75 V/m

Peak SAR (extrapolated) = 0.088 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.032 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated):

 $f = 836.6 \text{ MHz}; \sigma = 0.958 \text{ mho/m}; \varepsilon_r = 53.1; \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

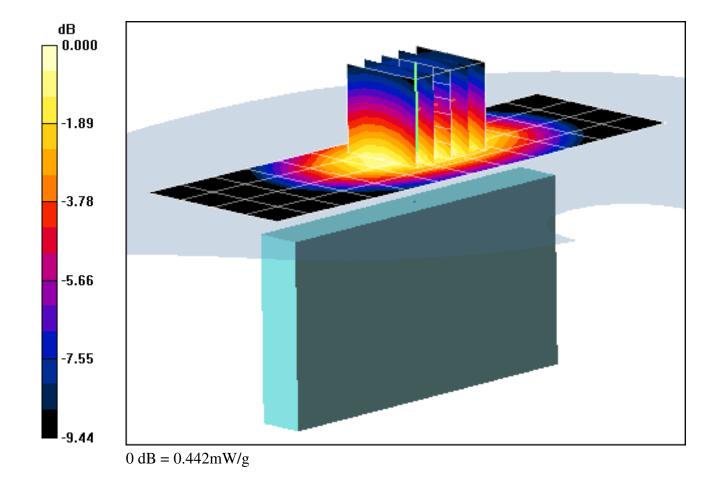
Test Date: 05-04-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Right Edge, Mid.ch, 2 Tx Slots


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.0 V/m

Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.417 mW/g; SAR(10 g) = 0.288 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Rhone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium: 835 Body; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.958 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

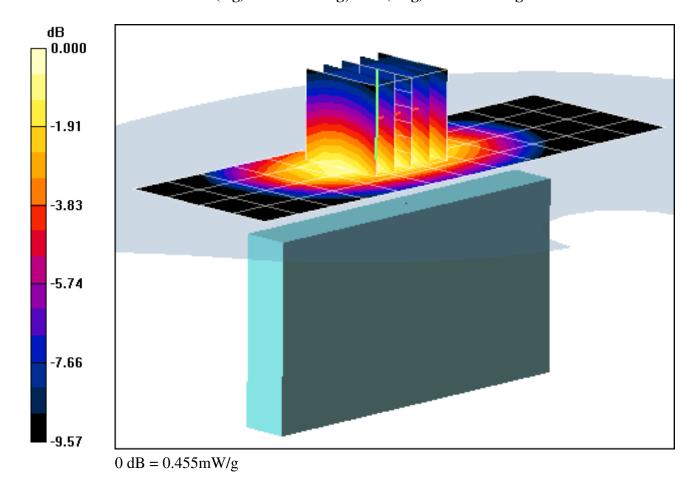
Test Date: 05-04-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Left Edge, Mid.ch, 2 Tx Slots


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.2 V/m

Peak SAR (extrapolated) = 0.600 W/kg

SAR(1 g) = 0.427 mW/g; SAR(10 g) = 0.295 mW/g

""F W<DGLE94; ='V{ r g<850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA'Rj qpg with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15

Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.958 \text{ mho/m}$; $\varepsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-04-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.4°C

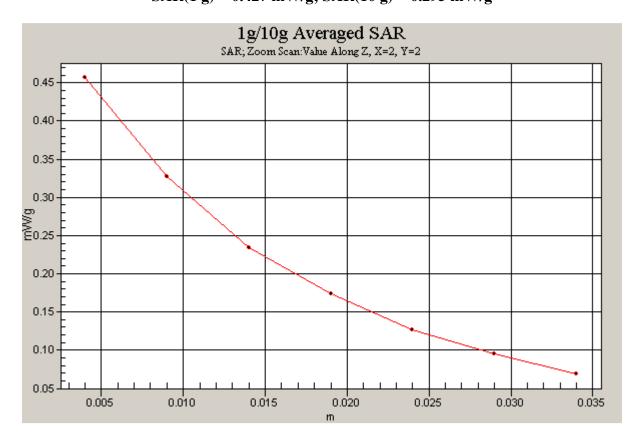
Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Left Edge, Mid.ch, 2 Tx Slots


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.2 V/m

Peak SAR (extrapolated) = 0.600 W/kg

SAR(1 g) = 0.427 mW/g; SAR(10 g) = 0.295 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

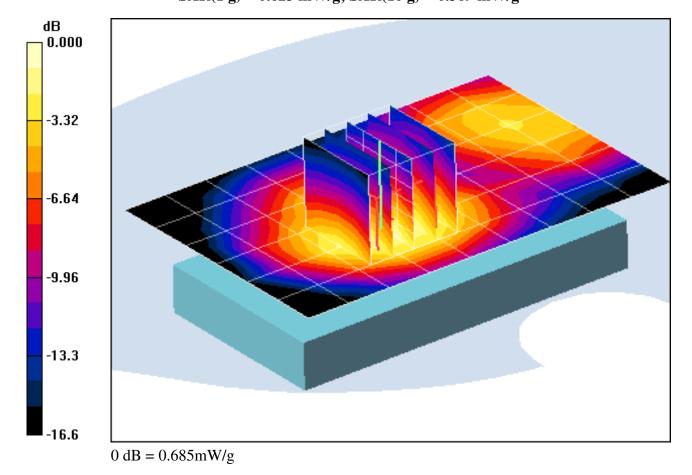
Test Date: 05-02-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.3 V/m

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.623 mW/g; SAR(10 g) = 0.369 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium: 1900 Body; Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 52.4; ρ = 1000 kg/m³

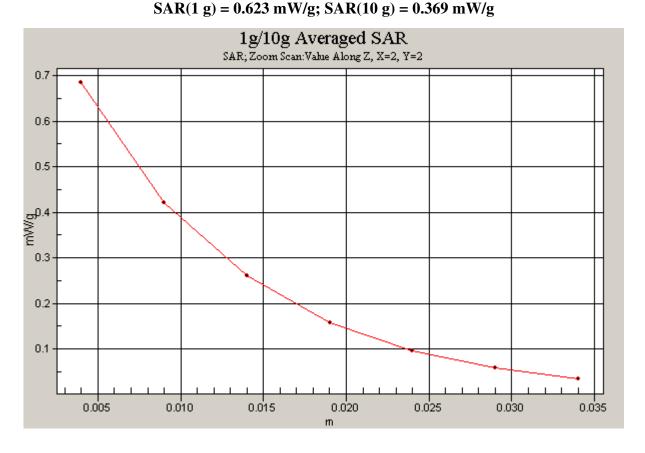
Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-02-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.3 V/m

Peak SAR (extrapolated) = 1.02 W/kg

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used:

 $f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \varepsilon_r = 52.4; \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-02-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

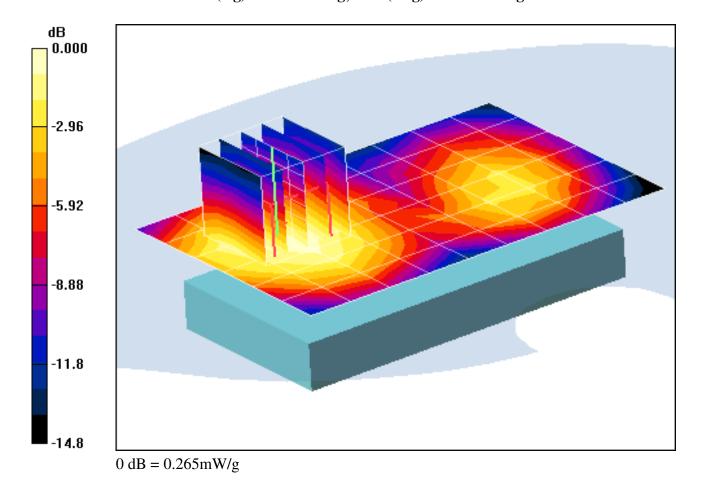
Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/21/2011
Phantom: SAM Sub: Type: SAM 4.0: Social: TP 1357

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Front side, Mid.ch, 2 Tx Slots


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.2 V/m

Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.156 mW/g

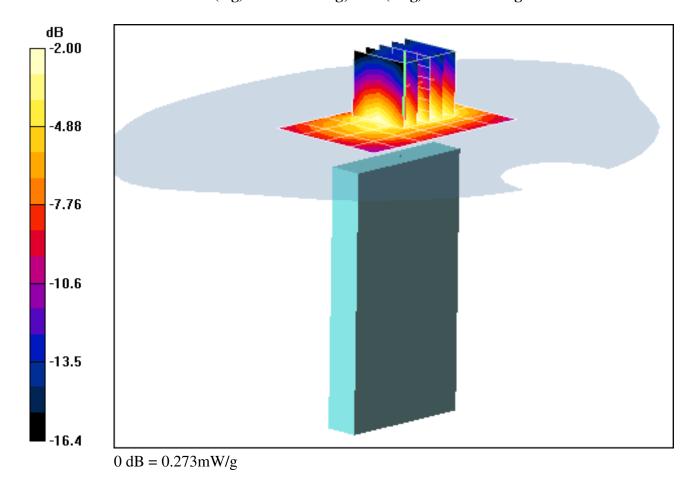
DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium: 1900 Body; Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-02-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C


Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Bottom Edge, Mid.ch, 2 Tx Slots

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.4 V/mPeak SAR (extrapolated) = 0.418 W/kgSAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.127 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used:

f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

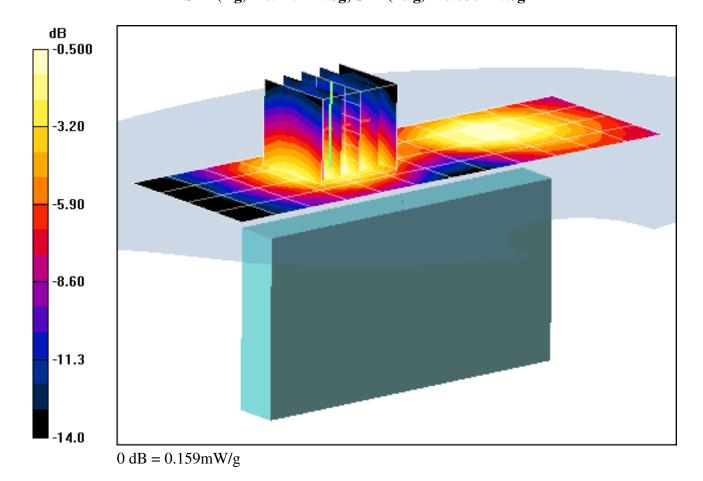
Test Date: 05-02-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Right Edge, Mid.ch, 2 Tx Slots


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.68 V/m

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.145 mW/g; SAR(10 g) = 0.086 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium: 1900 Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

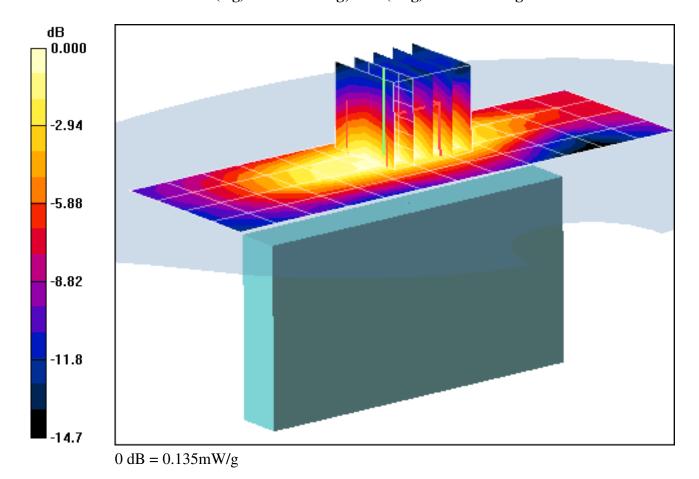
Test Date: 05-02-2011; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Left Edge, Mid.ch, 2 Tx Slots


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.71 V/m

Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.075 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

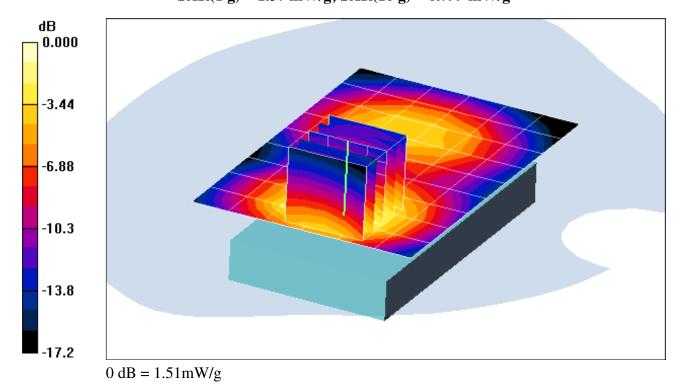
Communication System: WCDMA1700; Frequency: 1712.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1712.4 \text{ MHz}; \ \sigma = 1.49 \text{ mho/m}; \ \epsilon_r = 51.09; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-08-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.9°C

Probe: ES3DV2 - SN3022; ConvF(4.59, 4.59, 4.59); Calibrated: 9/21/2010 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/17/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Body SAR, Back side, Low.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.0 V/m

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.799 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1712.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1712.4 \text{ MHz}; \ \sigma = 1.49 \text{ mho/m}; \ \epsilon_r = 51.09; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

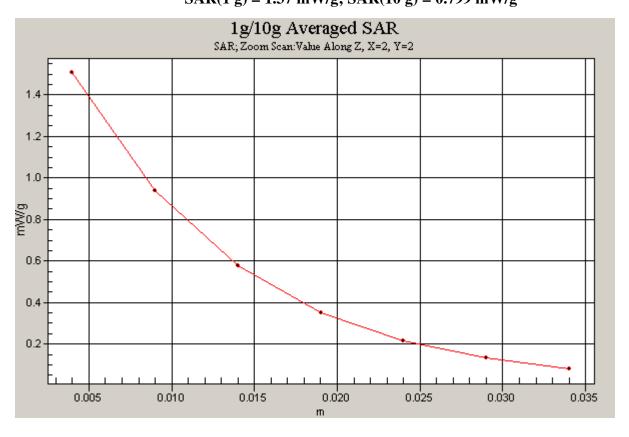
Test Date: 06-08-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.9°C

Probe: ES3DV2 - SN3022; ConvF(4.59, 4.59, 4.59); Calibrated: 9/21/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/17/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Body SAR, Back side, Low.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.0 V/m

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.799 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

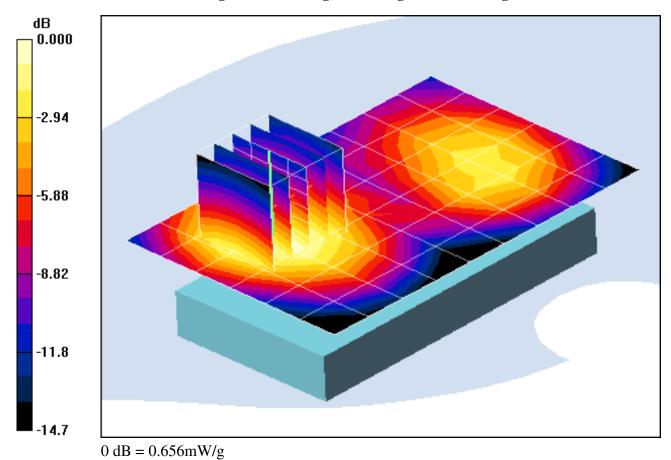
Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.48 \text{ mho/m}; \ \epsilon_r = 51.8; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-29-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.7 °C

Probe: EX3DV4 - SN3550; ConvF(7.21, 7.21, 7.21); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Body SAR, Front side, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

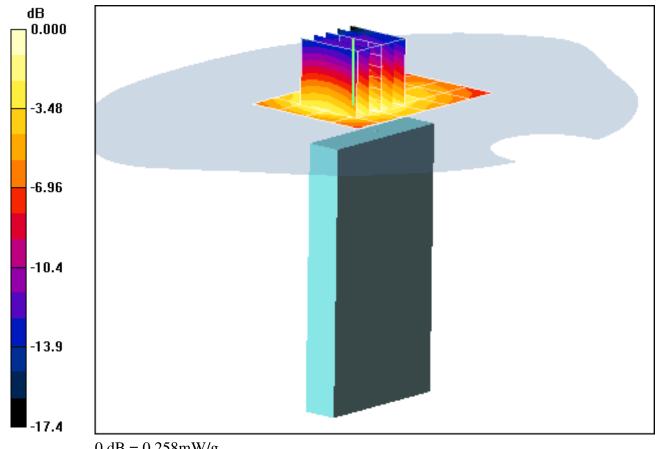
Reference Value = 21.3 V/m

Peak SAR (extrapolated) = 0.942 W/kg

SAR(1 g) = 0.613 mW/g; SAR(10 g) = 0.382 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): f = 1730.4 MHz; σ = 1.48 mho/m; $ε_r$ = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 04-29-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.7 °C

Probe: EX3DV4 - SN3550; ConvF(7.21, 7.21, 7.21); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Body SAR, Bottom Edge, Mid.ch

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.3 V/m Peak SAR (extrapolated) = 0.381 W/kgSAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.139 mW/g

0 dB = 0.258 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.48 \text{ mho/m}; \ \epsilon_r = 51.8; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section: Space: 1.0 cm

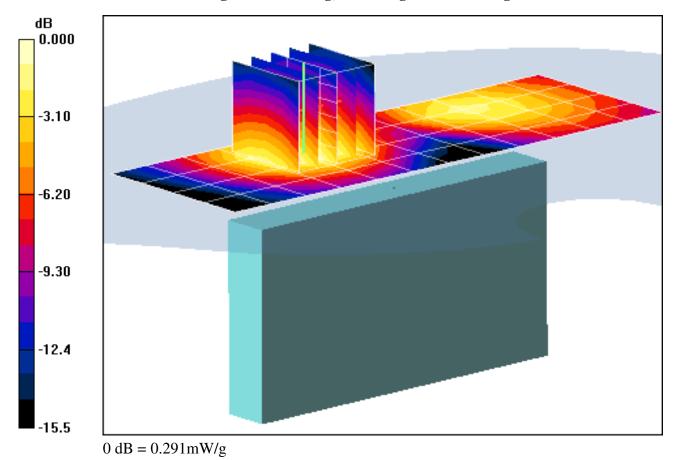
Test Date: 04-29-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.7 °C

Probe: EX3DV4 - SN3550; ConvF(7.21, 7.21, 7.21); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA CY U, Body SAR, Right Edge, Mid.ch


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.5 V/m

Peak SAR (extrapolated) = 0.421 W/kg

SAR(1 g) = 0.268 mW/g; SAR(10 g) = 0.162 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

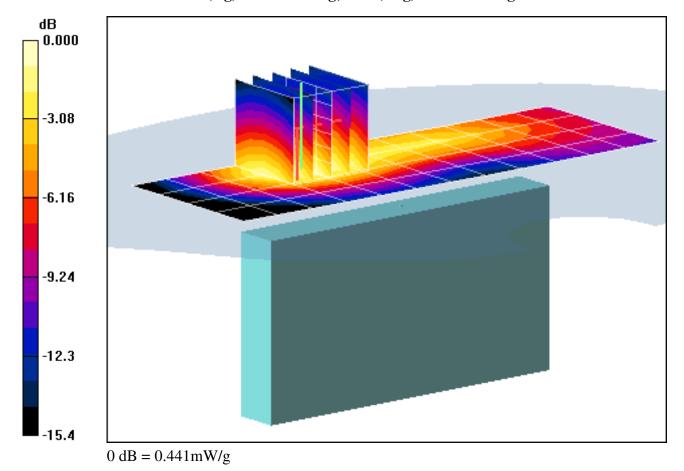
Communication System: WCDMA1700; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.48 \text{ mho/m}; \ \epsilon_r = 51.8; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section: Space: 1.0 cm

Test Date: 04-29-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.7 °C

Probe: EX3DV4 - SN3550; ConvF(7.21, 7.21, 7.21); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA AWS, Body SAR, Left Edge, Mid.ch


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m

Peak SAR (extrapolated) = 0.651 W/kg

SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.244 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

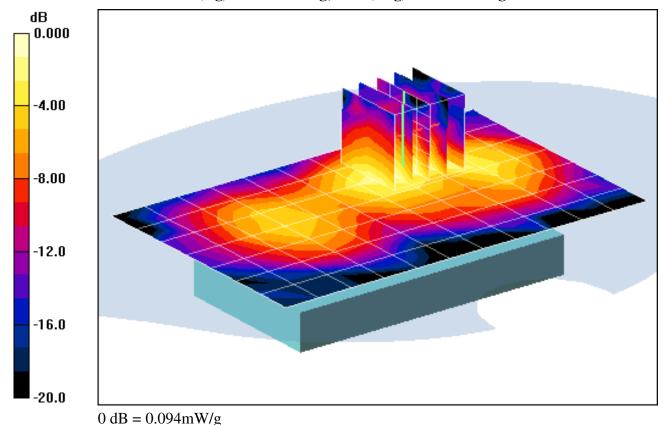
Test Date: 05-02-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3550; ConvF(6.25, 6.25, 6.25); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Back Side


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.01 V/m

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.073 mW/g; SAR(10 g) = 0.040 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

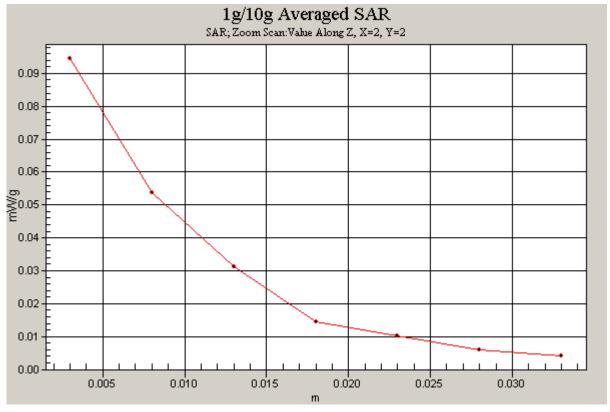
Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-02-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3550; ConvF(6.25, 6.25, 6.25); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Back Side

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.01 V/m

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.073 mW/g; SAR(10 g) = 0.040 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

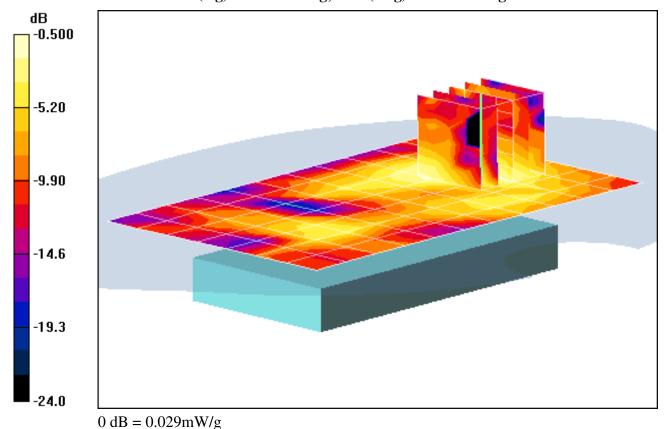
Test Date: 05-02-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3550; ConvF(6.25, 6.25, 6.25); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Front Side


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.42 V/m

Peak SAR (extrapolated) = 0.041 W/kg

SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.013 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

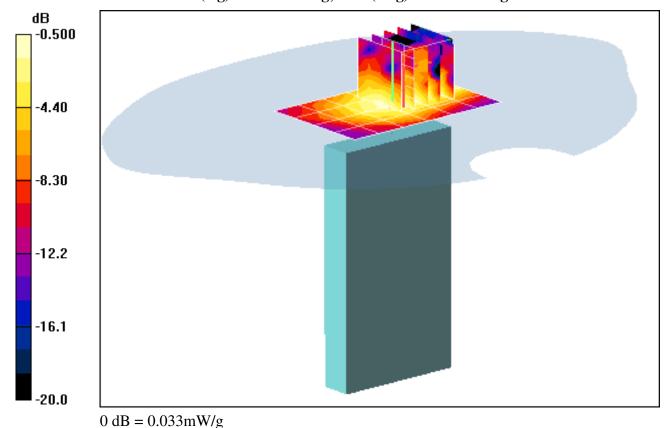
Test Date: 05-02-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3550; ConvF(6.25, 6.25, 6.25); Calibrated: 2/14/2011

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Top Edge


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.61 V/m

Peak SAR (extrapolated) = 0.069 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.013 mW/g

DUT: BEJC729; Type: 850/1900 GSM/GPRS/EDGE and AWS WCDMA/HSPA Phone with Bluetooth and WLAN; Serial: SAR #1

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

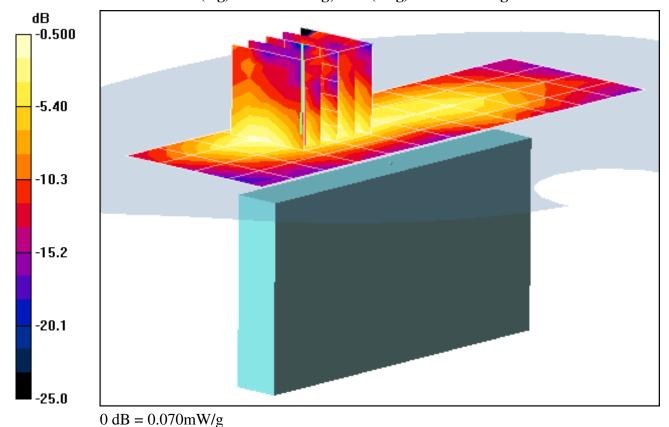
Test Date: 05-02-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3550; ConvF(6.25, 6.25, 6.25); Calibrated: 2/14/2011

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Right Edge


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.15 V/m

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.056 mW/g; SAR(10 g) = 0.031 mW/g

APPENDIX B: DIPOLE VALIDATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used:

f = 835 MHz; σ = 0.866 mho/m; $ε_r$ = 39.77; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.5 cm

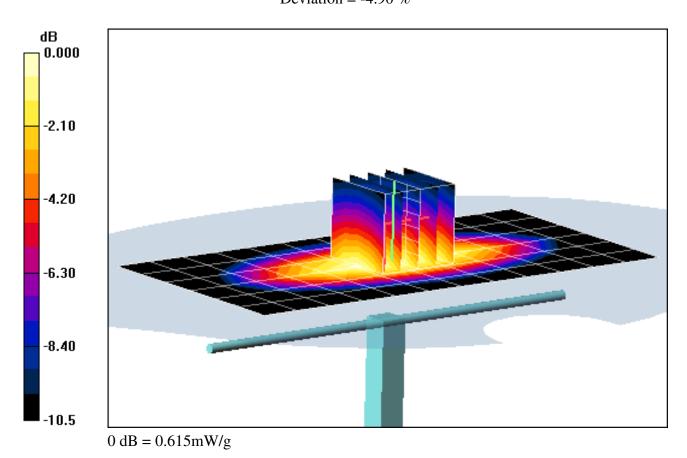
Test Date: 05-04-2011; Ambient Temp: 24.0 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3561; ConvF(7.96, 7.96, 7.96); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 18.0 dBm (63.0 mW)

SAR(1 g) = 0.571 mW/g; SAR(10 g) = 0.373 mW/g

Deviation = -4.90 %

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used:

f = 835 MHz; σ = 0.957 mho/m; $ε_r$ = 53.13; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.5 cm

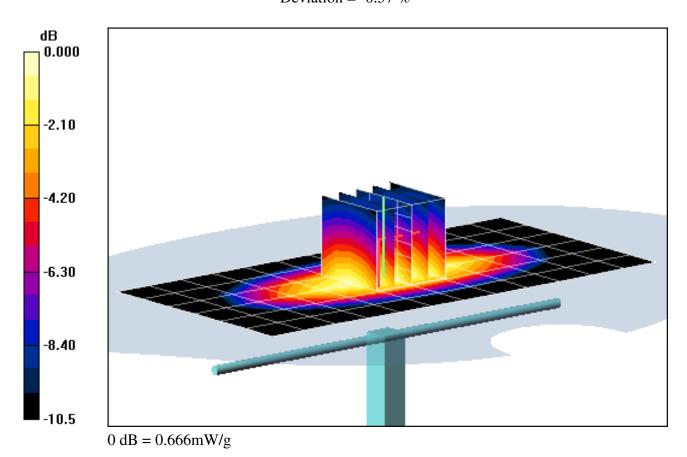
Test Date: 05-04-2011; Ambient Temp: 24.2 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 18.0 dBm (63 mW)

SAR(1 g) = 0.617 mW/g; SAR(10 g) = 0.406 mW/g

Deviation = -0.57 %

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: 1008

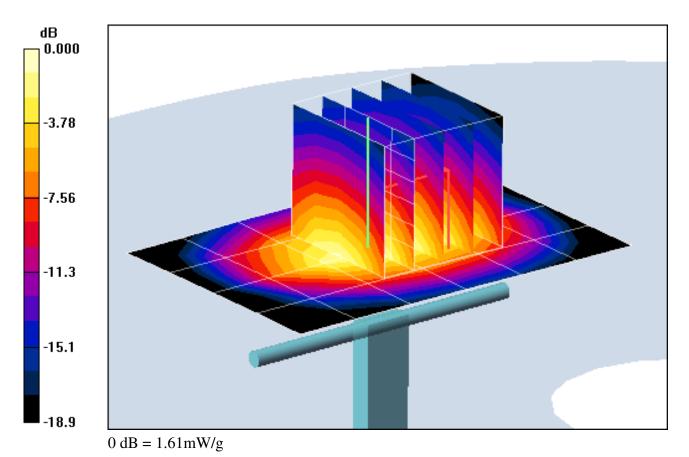
Communication System: CW; Frequency: 1765 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1765 \text{ MHz}; \ \sigma = 1.43 \text{ mho/m}; \ \epsilon_r = 40.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-10-2011; Ambient Temp: 23.8 °C; Tissue Temp: 22.4 °C

Probe: EX3DV4 - SN3550; ConvF(7.33, 7.33, 7.33); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1765 MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16.0 dBm (40 mW)

SAR(1 g) = 1.46 mW/g; SAR(10 g) = 0.751 mW/g

Deviation = -4.45 %

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: 1008

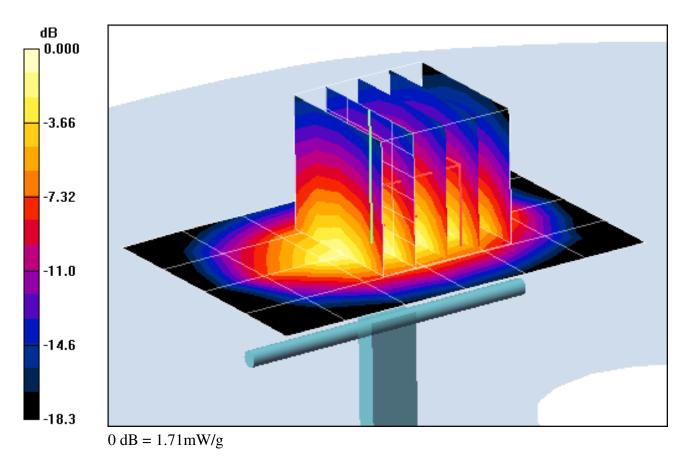
Communication System: CW; Frequency: 1765 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): f = 1765 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-29-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.7 °C

Probe: EX3DV4 - SN3550; ConvF(7.21, 7.21, 7.21); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1765 MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16.0 dBm (40 mW)

SAR(1 g) = 1.55 mW/g; SAR(10 g) = 0.801 mW/g

Deviation = 3.89 %

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.52 \text{ mho/m}; \ \epsilon_r = 51; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space 1.0 cm

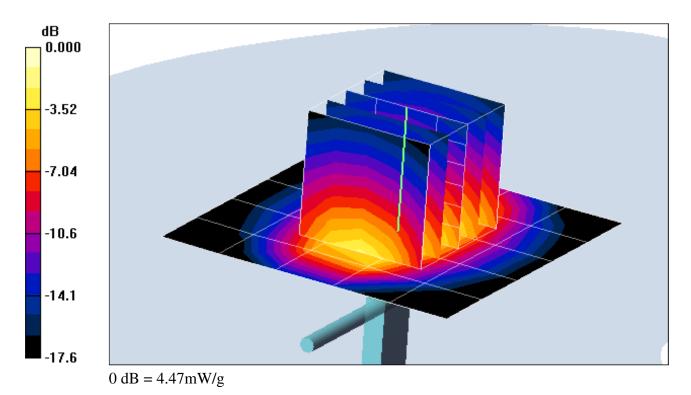
Test Date: 06-08-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.9°C

Probe: ES3DV2 - SN3022; ConvF(4.59, 4.59, 4.59); Calibrated: 9/21/2010 Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/17/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1750 MHz System Verification


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

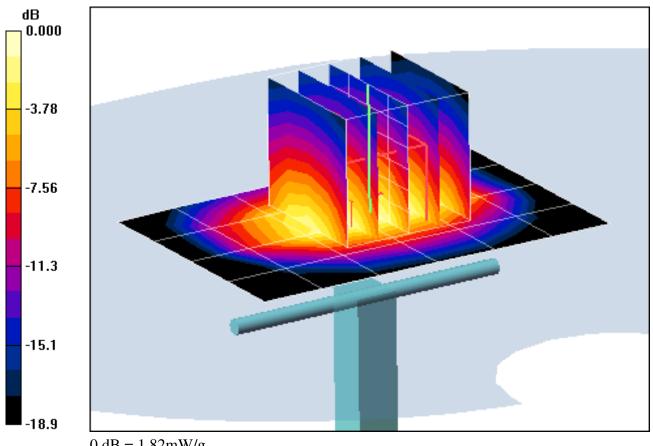
Input Power = 20.0 dBm (100 mW)

SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.09 mW/g

Deviaiton = 7.84 %

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): f = 1900 MHz; σ = 1.45 mho/m; ε_r = 40.44; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 05-02-2011; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(7.01, 7.01, 7.01); Calibrated: 2/14/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 16 dBm (40 mW)SAR(1 g) = 1.63 mW/g; SAR(10 g) = 0.825 mW/gDeviation = 1.37 %

0 dB = 1.82 mW/g

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.52 \text{ mho/m}; \ \epsilon_r = 52.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

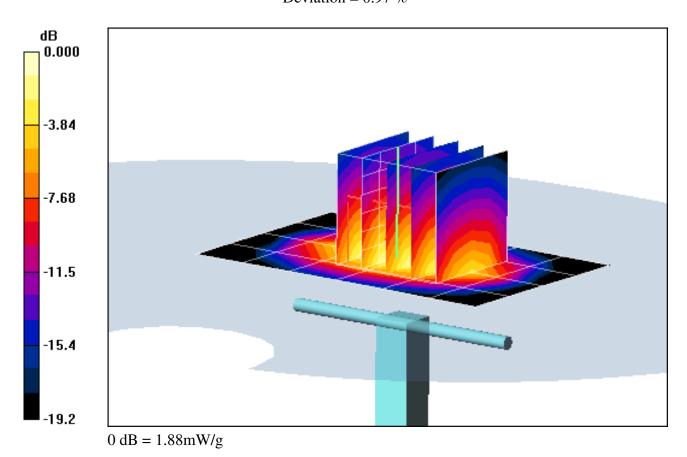
Test Date: 05-02-2011; Ambient Temp: 24.0 °C; Tissue Temp: 22.8 °C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010 Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16.0 dBm (40 mW)

SAR(1 g) = 1.66 mW/g; SAR(10 g) = 0.857 mW/g

Deviation = 0.97 %

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 797

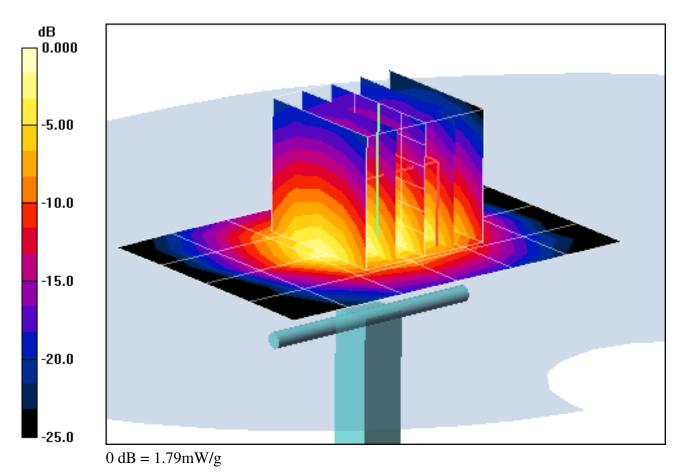
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.89 \text{ mho/m}; \ \epsilon_r = 37.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-03-2011; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(6.29, 6.29, 6.29); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 14 dBm (25 mW)

SAR(1 g) = 1.41 mW/g; SAR(10 g) = 0.642 mW/g

Deviation = 5.82 %

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.01 \text{ mho/m}; \ \epsilon_r = 50.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

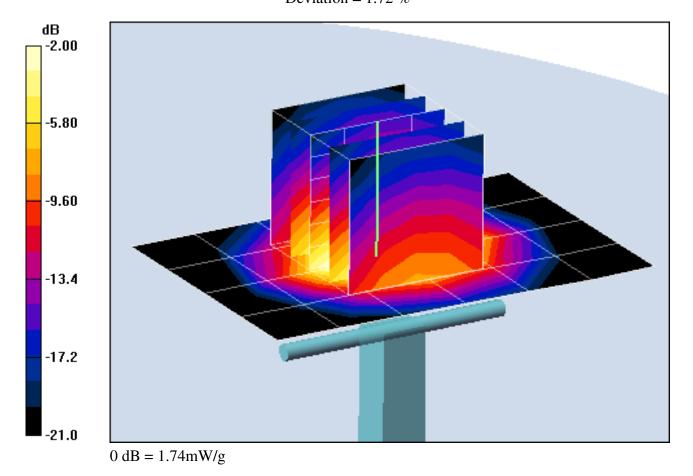
Test Date: 05-02-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.5° C

Probe: EX3DV4 - SN3550; ConvF(6.25, 6.25, 6.25); Calibrated: 2/14/2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification


Area Scan (7x5x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 14 dBm (25 mW)

SAR(1 g) = 1.33 mW/g; SAR(10 g) = 0.620 mW/g

Deviation = 1.72 %

