LG Electronics Inc. Quality & Reliability Center

36, Munlae-dong, 6-ga, Youngdungpo-gu, Seoul 150-096, Korea Tel: +82 2 2630 3077~9, Fax: +82 2 2635 5543

CERTIFICATION OF COMPLIANCE

Date of Issue: May 6, 2003 Test Report No: 00431-4521-F3098

Applicant: LG Electronics Inc.

Regulation: FCC Part 15 Class B / Canada Standard ICES-003 Class B

Test procedure: ANSI C63.4-1992 / Canada Standard ICES-003

Equipment Class: Unintentional Radiators – Digital device

EUT Type: 15"CRT Monitor

Trade Name(s): Model No.:

LG C15JA-*

This device has been verified to comply with the applicable requirements in the FCC Part 15 / Canada Standard ICES-003 and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992 / Canada Standard ICES-003.

I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Kyeom-Soon Kim / General Manager Quality and Reliability Center

LG Electronics Inc.

NVLAP Lab Code:200040-0

REPORT FOR A DIGITAL DEVICE

Scope - Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

U.S. Responsible Party: LG Electronics USA Inc.

6133 North River Road, Suite 1100 (Riverway Plasza) Address:

Rosemont, IL 60018, USA

Contact Person: P. H. Byun, General Manager **Telephone No.:** (847) 692-4630 EXT.329

LG Electronics Inc. DID Division Manufacturer:

Address: 642 Jinpyoung-dong Kumi-City Kyoungsangbuk-do,

730-360, Korea

FCC ID No.: BEJC15JA

Unintentional Radiators - Digital device **EUT Class:**

EUT Type: 15"CRT Monitor

Trade Name: LG

C15JA-* **Model No.:**

FCC Part 15 Class B / Canada Standard ICES-003 Class B **Rule Part:**

ANSI C63.4-1992 / Canada Standard ICES-003 **Test Procedure:**

Date of Test: April 30, 2003 **Date of Receipt of EUT:** April 30, 2003 **Date of Issue:** May 6, 2003

Test Report No.: 00431-4521-F3098

Test Result: Positive

Quality and Reliability Center authorizes the above-named applicant to reproduce this report provided it is reproduced in its entirety.

Quality and Reliability Center reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production unit of this model are manufactured with identical electrical and mechanical components.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

The Quality and Reliability Center was accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200040-0.

Tested by:

Reviewed by:

K. C. Paek / Research Engineer Quality and Reliability Center

LG Electronics Inc.

S. H. Ji / Senior Research Engineer Quality and Reliability Center LG Electronics Inc.

CONTENTS

	Page
1. GENERAL INFORMATION	4
1.1 DESCRIPTIONS OF EQUIPMENT UNDER TEST (EUT)	4
1.2 REGULATIONS APPLIED TO EUT	
1.4 MEASUREMENT PLACE.	
2. GENERAL TEST CONDITIONS	5
2.1 OPERATING CONDITIONS OF EUT	
2.2 STABILIZATION OF EUT OPERATING	
2.3 TEMPERATURE AND HUMIDITY	
3. TEST SITE	5
3.1 SEMI-ANECHOIC CHAMBER	
3.2 A SHIELDED ENCLOSURE	5
4. CALIBRATIONS OF MEASURING INSTRUMENTS	5
5. DESCRIPTION OF TEST CONDITION	6
5.1 POWER LINE CONDUCTED EMISSION MEASUREMENTS	6
5.2 RADIATED EMISSIONS MEASUREMENTS	7
6. MEASURING INSTRUMENTS AND SET-UP	7
6.1 POWER LINE CONDUCTED EMISSIONS	8
6.2 RADIATED EMISSIONS	8
7. TEST DATA	9
7-1. POWER LINE CONDUCTED EMISSIONS (§15.107)	9
7-2. Radiated emissions (§15.109)	10
8. LIST OF INSTRUMENTS USED	11
9. SUPPORT DEVICE & ACCESSORIES USED	12
0.1 Current private	12

APPENDIX A: TEST GRAPH

APPENDIX B: LABELLING REQUIREMENTS

APPENDIX C: BLOCK DIAGRAM

APPENDIX D: TEST SET-UP PHOTOGRAPHS

APPENDIX E: EUT PHOTOGRAPHS

APPENDIX F: USER'S MANUAL

APPENDIX G: SPECIFICATION

1. GENERAL INFORMATION

1.1 Descriptions of equipment under test (EUT)

1.1.1 Manufacturer: LG Electronics Inc. DID Division

642 Jinpyoung-dong Kumi-City Kyoungsangbuk-do, 730-360, Korea

1.1.2 EUT Type: 15"CRT Monitor

1.1.3 Model No.: C15JA-*

1.1.4 Serial No.: N/A 1.1.5 Trade Name: LG

1.1.6 FCC ID No.: BEJC15JA

1.1.7 System characteristic and descriptions

a) Max. Resolution: 1024 x 768 @ 60 Hz (Analog)

b) Sync Input: Horizontal Freq. : 30 - 54 kHz (Analog)

Vertical Freq. : 50 - 120 Hz

c) Test Mode: Display "H" pattern on the screen d) Power Supply: AC 100-240 V, 50/60 Hz, 1.5 A

e) Power Cord: Unshielded AC power cord

f) Port / Input connector: Analog - 15 pin D-sub type connector

g) Cable: 1.56 m shielded D-sub with ferrite on both ends

h) Max. Video Band Width: 65 MHz

1.2 Regulations applied to EUT

- FCC Part 15 Class B / Canada Standard ICES-003 Class B

: The limit of CISPR 22 Class B apply in this test according to part 15.107.e) and 15.109.g).

1.3 Measurement procedure

ANSI C63.4-1992 / Canada Standard ICES-003

1.4 Measurement place

LG Electronics Inc. Quality and Reliability Center

36, Munlae-dong, 6-ga, Youngdungpo-gu, Seoul 150-096, Korea

4/12 Report No.: 00431-4521-F3098

2. GENERAL TEST CONDITIONS

The test data contained in this report ware obtained by use of the measurement method recommended in FCC Rules, 47 C.F.R. § 15.31(a)(6), with equipment and at the test site filed by the Federal Communications Commission (FCC). The technical standard for a computing device is set forth in the computing devices of Part 15 of FCC Rules. The measurement for radiated emissions and power-line conducted emissions were performed in accordance with the procedures described in ANSI C63.4-1992.

2.1 Operating conditions of EUT

According to the requirements in the computing devices of Part 15, the measurement was made at each function of the EUT being connected with appropriate cables and peripherals. All measurement was investigated under operating conditions of clause 11.1 of ANSI C63.4-1992

2.2 Stabilization of EUT operating

The EUT was operated for sufficient minutes before testing to make it stabilized in a normal operating condition. The power supplied to the EUT was filtered to meet the requirements.

2.3 Temperature and humidity

The measurement data in this report was obtained at the temperature in the range of 10 to 30 °C and humidity in the range of 30 to 80%.

3. TEST SITE

3.1 Semi-anechoic chamber

Measurement of radiated emissions from EUT was made at semi-anechoic chamber that has been in compliance with Federal Communications Commissions (FCC) requirements of clause 2.948 according to ANSI C63.4-1992 on Jan. 29, 2001.

3.2 A shielded enclosure

The measurement of was made power line conducted emissions in a shielded enclosure providing sufficient shielding effectiveness.

4. CALIBRATIONS OF MEASURING INSTRUMENTS

All measurements were made with instruments calibrated according to the recommendation by manufacturer. Measurement of radiated emissions and power line conducted emissions were made with instruments conforming to American National Standard Specification, ANSI C63.4-1992. The calibration of measuring instrument, including any accessories that may affect test results, were performed according to the recommendation by manufacturer.

5/12 Report No.: 00431-4521-F3098

5. DESCRIPTION OF TEST CONDITION

5.1 Power line conducted emission measurements

5.1.1 Shielded enclosure

The measurement for power-line emissions from EUT was made in shielded enclosure that provides sufficient shielding effectiveness enough not to affect test results.

5.1.2 Detector function selection and bandwidth

During conducted emission measurement, a radio noise meter that has a CISPR quasipeak detector with 10 kHz IF bandwidth of 6 dB was utilized.

5.1.3 Frequency range to be scanned

For conducted emissions measurement, frequency range of 150 kHz to 30 MHz included, was investigated.

5.1.4 Unit of measurement

Test results for conducted emissions are reported in micro-volts.

5.1.5 Line impedance stabilization network (LISN)

A LISN with characteristics that conform to the requirements of ANSI C63.4-1992 was used for the measurement of conducted power-line radio noise; (50 micro-henries / 50 ohms). Chassis and earth-points for grounding of the LISN were earth-grounded.

5.1.6 Test conditions and configuration of EUT

The EUT was configured and operated in all modes of operation so as to find the maximum enumeration of emissions from EUT.

The EUT has designed to use the public AC lines with rated AC voltage as specified in Owner's manual and Installation' manual of EUT and filtered to meet the requirement. AC power was supplied to the EUT through LISN with characteristics described in 5.1.5 of part I of this report.

The EUT was placed on a 1 m \times 1.5 m \times 80 cm high wooden table that is place on the earth-grounded conducting surface larger than 2 square meters. The vertical conducting surface was replaced with horizontal ground plane. Length of the power lead in excess of 80 cm horizontally separating the EUT from LISN was folded back-and-forth form at the center of the power cord not exceeding 40 cm in length.

Each type of accessory provided by manufacturer or typically used and support equipment were connected to the EUT during measurement to the typical usage and applicable as nearly as practicable.

5.1.7 Measurement uncertainty

Power line conducted emission measurements: ± 3 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurement uncertainty was calculated in accordance with NAMAS NIS 81: The treatment of uncertainty in EMC measurement."

The measurement uncertainty was given with a confidence of 95%.

6/12 Report No.: 00431-4521-F3098

5.2 Radiated emissions measurements

5.2.1 Test site

Measurements were made in semi-anechoic chamber as described at 3.1 in this report.

5.2.2 Detector function selection and bandwidth

In radiated emissions measurement, a field strength meter that has a CISPR quasi-peak detector was used. The 6 dB bandwidth of the detector of instrument is 120 kHz over frequency range of 30 to 1000 MHz.

5.2.3 Unit of measurement

Test results of radiated emissions measurement are reported in micro-volts per meter at the specific distance. Using the unit of dBuV on the test instrument, the indication unit was converted to field strength unit of uV/m as following method;

$$F(uV/m) = 10^{\{(R+CL+AF)/20\}} (uV/m)$$

here.

F: Field Strength in uV/m, R: Meter Reading Level in dB(uV),

CL: Cable Loss from antenna to meter in dB,

AF: Antenna Factor of receiving antenna in dB(/m)

5.2.4 Antennas

Measurements were made using calibrated half-wave tuned dipole antenna for final measurements and biconical / log-periodic antenna in range of 30 to 1000 MHz for preliminary measurements to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization.

The horizontal distance between the receiving antenna and the closest periphery of the EUT was 3 meters as described in 8.2.3 of ANSI C63.4-1992.

5.2.5 Frequency range to be scanned

For radiated emissions measurements, the spectrum in the range of 30 to 1000 MHz was investigated. (The highest frequency generated or used by the EUT is 65 MHz, as mentioned in 1.1.7 h).)

5.2.6 Test conditions and configuration of EUT

The EUT was configured and operated in all modes of operation so as to find the maximum enumeration of emissions from EUT. The EUT was placed on a 80 cm high non metallic 1 m X 1.5 m table. The turn table containing the system was rotated and the antenna height was varied 4 m to find the maximum enumeration of emissions from EUT. Each type of accessory provided by manufacturer or typically used and support equipment were connected to the EUT during measurement to the typical usage and applicable as nearly as practicable.

5.2.7 Measurement uncertainty

Radiated emissions measurements: + 5 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurement uncertainty was calculated in accordance with NAMAS NIS 81 : The treatment of uncertainty in EMC measurement."

The measurement uncertainty was given with a confidence of 95%.

6. MEASURING INSTRUMENTS AND SET-UP

Report No.: 00431-4521-F3098

6.1 Power line conducted emissions

6.1.1 Test receiver

Rohde & Schwarz, Model ESH3 (9 kHz to 30 MHz)

Detector function: CISPR Quasi-Peak

IF Bandwidth: 9 kHz

6.1.2 Line Impedance Stabilization Network (LISN)

EUT: Rohde & Schwarz, Model ESH3-Z5 Peripheral: Rohde & Schwarz, Model ESH2-Z5

Impedance Characteristic : $50uH / 50 \Omega$

6.2 Radiated emissions

6.2.1 Test receiver

Rohde & Schwarz, Model ESCS30 (9 kHz to 2750 MHz)

Detector function: CISPR Quasi-Peak

IF Bandwidth: 120 kHz

6.2.2 Receiving Antennas.

a) Schwarzbeck, Model VHAP: Tuned dipole antenna (30 to 300 MHz)

b) Schwarzbeck, Model UHAP: Tuned dipole antenna (300 to 1000MHz)

c) Schwarzbeck, Model VHA 9103: Bi-conical Antenna (30 ~ 300 MHz)

d) Schwarzbeck, Model UHALP: Log-periodic antenna (300 \sim 1000 MHz)

8/12

Report No.: 00431-4521-F3098

7. TEST DATA

7-1. Power line conducted emissions (§ 15.107)

Product: 15"CRT Monitor Serial No.: N/A

Model: C15JA-* Test Date: April 30, 2003

Detector: Quasi-peak /Average Test Limit: CISPR 22 Class B

a) Analog Mode (1024 X768@60 Hz)

Frequency	Quasi-Peak (dBuV)			Average (dBuV)			Phase
(MHz)	Tested Level	Limit	Margin (dB)	Tested Level	Limit	Margin (dB)	(L1/L2)
5.08	45.8	60.0	-14.2	34.1	50.0	-15.9	L2
8.89	45.5	60.0	-14.5	29.3	50.0	-20.7	L1
9.52	46.3	60.0	-13.7	27.3	50.0	-22.7	L1
9.82	48.3	60.0	-11.7	26.8	50.0	-23.2	L2

Result: Positive

NOTES:

- 1. All modes of operation were investigated.
- 2. The limits of CISPR 22 Class B apply in this conducted emissions test according to § 15.107.e).
- 3. The EUT was tested under the condition that all of support device and accessories described in clause 9 in this test report was connected and normally operated during the testing.
- 4. All other emissions are non-significant.
- 5. Phase L1 = Hot Phase L2 = Neutral

7-2. Radiated emissions (§ 15.109)

Product: 15"CRT Monitor Serial No.: N/A

Model: C15JA-* Test Date: April 30, 2003

Detector: Quasi-peak Test distance: 3m

Test Limit: CISPR 22 Class B

a) Analog Mode (1024 X768@60 Hz)

Frequency (MHz)	Reading (dBuV)	AF (dB/m)	CL (dB)	Pol.	F/S (dBuV/m)	Limit (dBuV/m)	Margin (dB)
108.56	17.0	9.1	1.3	V	27.4	40.5	-13.1
175.44	11.1	14.5	1.8	Н	27.4	40.5	-13.1
246.88	17.9	14.8	2.0	Н	34.6	47.5	-12.9
311.88	23.9	14.8	2.5	Н	41.1	47.5	-6.4
898.19	12.2	20.7	4.0	V	36.9	47.5	-10.6

Result: Positive

* Limit Calculation 30 - 230 MHz: $40.5 \text{ dBuV/m} = 30 \text{ dBuV/m} + 20 \text{ Log}_{10}(10/3) \text{ [dB]}$

* Limit

30 - 230 MHz: 40.5 dBuV/m 230 - 1000 MHz: 47.5 dBuV/m

NOTES:

- 1. All modes of operation were investigated.
- 2. The limits of CISPR 22 Class B apply in this conducted emissions test according to § 15.109.g).
- 3. The EUT was tested under the condition that all of support device and accessories described in clause 9 in this test report was connected and normally operated during the testing.
- 4. All cables were maximized on the testing.
- 5. All other emissions are non-significant.
- 6. AF = Antenna factor CL = Cable loss F/S = Field Strength
- 7. The conversion factor for 10 m to 3 m was used as 20 X Log₁₀(10/3) [dB].

10/12

Report No.: 00431-4521-F3098

8. LIST OF INSTRUMENTS USED

Туре	Maker	Model	Cal. Date	N Date
Test receiver	R&S	ESCS30	03-Jan03	03-Jan04
Test receiver	R&S	ESH3	09-Jul02	09-Jul03
LISN	R&S	ESH3-Z5	02-Jul02	02-Jul03
LISN	R&S	ESH2-Z5	27-Nov02	27-Nov03
Biconical antenna	S/B	VHA9103	07-Jan-02	07-Jan04
Log-periodic antenna	S/B	UHALP9107	07-Jan-02	07-Jan04
Tuned dipole antenna	S/B	VHAP	08-Aug01	08-Aug03
Tuned dipole antenna	S/B	UHAP	08-Aug01	08-Aug03

R&S: Rohde & Schwarz

Cal. Date: Calibration date

N Date: Next calibration date

9. SUPPORT DEVICE & ACCESSORIES USED

9-1. Support device

9-1-1. Desktop computer

Model: VL800 DT Maker: H/P

S/N: SG12504879 FCC ID: DOC (CLASS B)

9-1-2. Keyboard

Model: SK-2511A Maker: H/P

S/N: M010208088 FCC ID: GYUR73SK

9-1-3. Computer Mouse

Model: M-SAS51
Maker: LOGITECH
S/N: LZB94953517
FCC ID: JNZ211167

9-1-4. Printer

Model: C6427A Maker: H/P

S/N: CN17C1C0FP FCC ID: DOC (CLASS B)

9-1-5. Modem

Model: 0701

Maker:US ROBOTICSS/N:24LGG8DB0673FCC ID:DOC (CLASS B)

9-1-6. Graphic Card

Model: Geforce 4 Ti 4200

Maker: SUMA

S/N: 14612382290180 FCC ID: DOC (CLASS B)