Report No.: DRTFCC1011-0279

Total 37 Pages

RF TEST REPORT

	Test item	: Cellul	ar/PCS GSM Phone	
	Model No.	: LG-A	175a, A175a	
	Order No.	: 1010-	01062	
	Date of receipt	: 2010-	10-19	
	Test duration	: 2010-	11-05 ~ 2010-11-12	
	Date of issue	: 2010-	11-15	
	Use of report	: FCC	Original Grant	
Applicant	: LG Electronics, Inc.			
•	60-39, Gasan-dong		gu, Seoul, 153-023,	Korea
Test laboratory	,			
	683-3, Yubang-Don	g, Cheoin-G	iu, Yongin-Si, Kyung	gi-Do, 449-080, Korea
	Test specification : §	§22(H), §24(E)	
	Test environment : S	See append	ed test report	
	Test result : [2	⊠ Pass	☐ Fail	
The test of the use of this test	results presented in this test report t report is inhibited other than its without the written a	purpose. This	test report shall not be re	by applicant and eproduced except in full,
Tested by:	Witness	ed by:	Review	ved by:
				ne e
Engineer	N/A		Manag	
S.K. Ryu			W.J. L€	ee

Test Report Version

Test Report No.	Date	Description
DRTFCC1011-0279	Nov. 15, 2010	First version for approval

Report No.: DRTFCC1011-0279

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1. EUT DESCRIPTION	5
2.2. MEASURING INSTRUMENT CALIBRATION	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS	6
3.1 ERP & EIRP	6
3.2 PEAK TO AVERAGE RATIO	7
3.3 OCCUPIED BANDWIDTH	8
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	9
3.5 RADIATED SPURIOUS EMISSIONS	10
3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	11
4. LIST OF TEST EQUIPMENT	12
5. SUMMARY OF TEST RESULTS	13
6. SAMPLE CALCULATION	14
7. TEST DATA	15
7.1 CONDUCTED OUTPUT POWER	15
7.2 PEAK TO AVERAGE RATIO	16
7.3 OCCUPIED BANDWIDTH	16
7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	16
7.5 BAND EDGE	16
7.6 EFFECTIVE RADIATED POWER(GSM850)	17
7.7 EQUIVALENT ISOTROPIC RADIATED POWER(GSM1900)	18
7.8 RADIATED SPURIOUS EMISSIONS	
7.8.1 RADIATED SPURIOUS EMISSIONS(GSM850)	
7.8.2 RADIATED SPURIOUS EMISSIONS(GSM1900)	20
7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
7.9.1 FREQUENCY STABILITY (GSM850)	
7.9.2 FREQUENCY STABILITY (GSM1900)	22
8. TEST PLOTS	23

1010-01062 Report No.: **DRTFCC1011-0279**

1. GENERAL INFORMATION

Applicant Name: LG Electronics, Inc.

Address: 60-39, Gasan-dong, Gumchon-gu, Seoul, 153-023, Korea

FCC ID : BEJA175A

FCC Classification : Licensed Portable Transmitter Held to Ear (PCE)

EUT Type : Cellular/PCS GSM Phone

Model Name : LG-A175a

Add Model Name : A175a

Supplying power : Standard Battery

- Type: Lithium Ion Battery

- M/N: LGIP-531A

- Rating: DC 3.7V & 950mAh

Antenna Information : Internal Antenna

- Type: Built-In type

- Max. Peak Gain: GSM850: -4.12dBi

GSM1900: -0.50dBi

Tx Frequency : GSM850: 824.2 ~ 848.8 MHz

GSM1900: 1850.2 ~ 1909.8 MHz

Rx Frequency : GSM850: 869.2 ~ 893.8 MHz

GSM1900: 1930.2 ~ 1989.8 MHz

Max. RF Output Power : GSM850: 2.649W ERP(34.23dBm)

GSM1900: 1.253W EIRP(30.98dBm)

Emission Designator(s) : GSM850: 248KGXW

GSM1900: 247KGXW

1010-01062 Report No.: **DRTFCC1011-0279**

2. INTRODUCTION

2.1. EUT DESCRIPTION

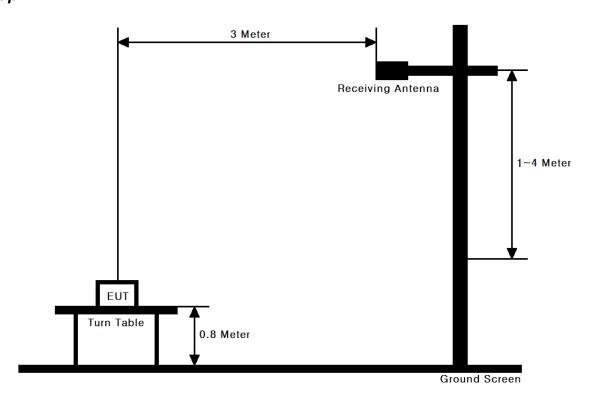
The Equipment Under Test(EUT) supports a dual band(Cellular/PCS) with only GSM mode.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The open area test site(OATS) and conducted measurement facility used to collect the radiated data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.


- OATS registration Number: 101842

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP

(Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

Test Procedure

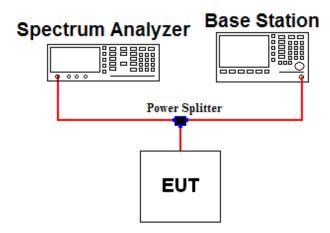
These measurements were performed outdoors at 3meter test range. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading.

For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

1010-01062 Report No.: **DRTFCC1011-0279**

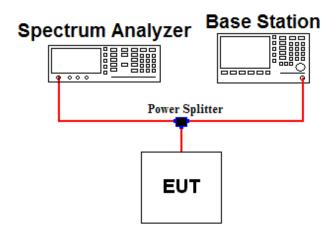

3.2 PEAK TO AVERAGE RATIO

A peak to average ratio measurement is performed at the conducted port of the EUT. For CDMA and WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. Plots of the EUT's Peak- to- Average Ratio are shown herein.

3.3 OCCUPIED BANDWIDTH.

Test set-up



Test Procedure

The EUT was setup to maximum output power at its lowest channel. The occupied bandwidth was measured using a spectrum analyzer. The measurements are repeated for the highest and a middle channel. The EUT's occupied bandwidth is measured as the width of the signal between two points, one below the carrier center frequency and one above the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Plots of the EUT's occupied bandwidth are shown herein.

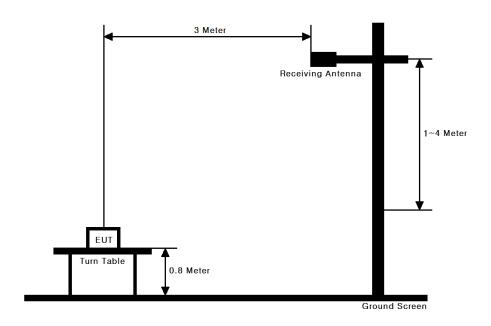
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. The Resolution BW of the analyzer is set to 1 % of the emission bandwidth to show compliance with -13dBm limit [43+10log(P)], in the 1 MHz bands immediately outside and adjacent to the edge of the frequency block.


A display line was placed at -13dBm to show compliance. The high, lowest and a middle channel were tested for out of band measurements.

Band Edge Requirement

In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

3.5 RADIATED SPURIOUS EMISSIONS

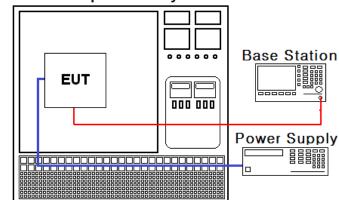
Test Set-up

Test Procedure

This measurement was performed outdoors at 3meter test range. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated power measurements below 1GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.


For radiated power measurements above 1GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification - the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.000 25 %(± 2.5 ppm) of the center frequency.

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature. (25°C to provide a reference).

- 1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
Spectrum Analyzer	Agilent	E4440A	30/09/10	30/09/11	MY45304199
Power Meter	H.P	EPM-442A	01/07/10	01/07/11	GB37170413
Power Sensor	H.P	8481A	01/07/10	01/07/11	3318A96332
Power Splitter	Anritsu	K241B	05/10/10	05/10/11	020611
TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	04/10/10	04/10/11	30604493/021031
Digital Multimeter	H.P	34401A	12/03/10	12/03/11	3146A13475, US36122178
Signal Generator	Rohde Schwarz	SMR20	12/03/10	12/03/11	101251
Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/10	11/01/11	100148
8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/10	02/07/11	GB43461134
Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-2
DC Power Supply	HP	6622A	12/03/10	12/03/11	3448A03760
High-pass filter	Wainwright	WHNX2.1	N/A	N/A	1
Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
HORN ANT	ETS	3115	04/10/10	04/10/11	21097
HORN ANT	ETS	3115	14/07/10	14/07/11	6419
HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/11	154
HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/11	155
Dipole Antenna	Schwarzbeck	VHAP	16/11/08	16/11/10	1066
Dipole Antenna	Schwarzbeck	UHAP	16/11/08	16/11/10	1039
Dipole Antenna	Schwarzbeck	VHAP	16/11/08	16/11/10	1067
Dipole Antenna	Schwarzbeck	UHAP	16/11/08	16/11/10	1040
Attenuator (3dB)	WEINSCHEL	56-3	05/10/10	05/10/11	Y2342
Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/10	01/10/11	BP4386
Attenuator (10dB)	WEINSCHEL	31696	05/10/10	05/10/11	446
Amplifier (30dB)	Agilent	8449B	23/04/10	23/04/11	3008A01590
Amplifier	EMPOWER	BBS3Q7ELU	04/10/10	04/10/11	1020
BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/11	91031946
LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	07/07/10	07/07/11	590
Amplifier (25dB)	Agilent	8447D	12/03/10	12/03/11	2944A10144

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	Parameter	Status Note 1
2.1046	Conducted Output Power	С
22.913(a) 24.232(c)	Effective Radiated Power Equivalent Isotropic Radiated Power	С
22.917(a) / 24.238(a), 2.1049	Occupied Bandwidth	С
22.917(a) / 24.238(a) 2.1051	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	С
24.232(d)	Peak to Average Ratio	С
22.917(a) / 24.238(a) 2.1053	Radiated Spurious and Harmonic Emissions	С
22.355 / 24.235 2.1055	Frequency Stability	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI C-63.4-2003, ANSI/TIA/EIA-603-C-2004

6. SAMPLE CALCULATION

A. Emission Designator

GSM850 Emission Designator

Emission Designator = 248KGXW

GSM OBW = 248.1319 kHz(Measured at the 99.75% power bandwidth)

G = Phase Modulation

X = Cases not otherwise covered

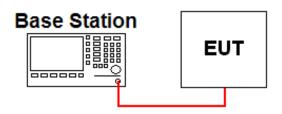
W = Combination (Audio/Data)

GSM190 Emission Designator

Emission Designator = 247KGXW

GSM BW = 246.9114 kHz(Measured at the 99.75% power bandwidth)

G = Phase Modulation


X = Cases not otherwise covered

W = Combination (Audio/Data)

7. TEST DATA

7.1 CONDUCTED OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

		Test Result(dBm)							
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)			
	128	33.2	N/A	N/A	N/A	N/A			
GSM 850	190	33.1	N/A	N/A	N/A	N/A			
	251	33.0	N/A	N/A	N/A	N/A			
	512	30.2	N/A	N/A	N/A	N/A			
GSM 1900	661	30.5	N/A	N/A	N/A	N/A			
1000	810	30.3	N/A	N/A	N/A	N/A			

7.2 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown Page 23.

7.3 OCCUPIED BANDWIDTH

Band	Channel	Test Result(KHz)
	128	245.1951
GSM850	190	243.9119
	251	248.1319
	512	245.9313
GSM1900	661	244.7415
	810	246.9114

⁻ Plots of the EUT's Occupied Bandwidth are shown Page 24 ~ 26.

7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown Page 27 ~ 35.

7.5 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 36 ~ 37.

7.6 EFFECTIVE RADIATED POWER(GSM850)

- GSM850 data

Comoco data									
Channel EUT Position	FUT	TEST CONDITIONS							
	Position	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)	Power Supply	Note.		
128	X axis	-31.78	Н	33.02	2.004	Battery	-		
190	X axis	-31.20	Н	32.67	1.849	Battery	-		
125	Y axis	-30.52	V	34.23	2.649	Battery	-		

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the highest power is reported in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band.

This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

1010-01062 Report No.: **DRTFCC1011-0279**

7.7 EQUIVALENT ISOTROPIC RADIATED POWER(GSM1900)

- GSM1900 data

John 1000 data									
FUT	EUT	TEST CONDITIONS Power Step: 0							
Channel	Position	Ref. level (dBm)	Pol. (H/V)	Ant Gain (dBi)	EIRP (dBm)	EIRP (W)	Power Supply	Note	
512	Z axis	-7.61	V	7.68	30.98	1.253	Battery	-	
661	Z axis	-7.10	V	7.77	30.65	1.161	Battery	-	
810	Z axis	-7.77	V	7.86	29.79	0.953	Battery	-	

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the highest power is reported in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band.

This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

1010-01062 Report No.: **DRTFCC1011-0279**

7.8 RADIATED SPURIOUS EMISSIONS

7.8.1 RADIATED SPURIOUS EMISSIONS(GSM850)

Channel (ERP)	Freq. (MHz)	EUT Position	POL (H/V)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	(dBc)	Limit (dBc)
	1648.50	Y axis	V	-49.70	4.92	-44.78	77.80	
128 (2.004W)	2472.18	Y axis	V	-62.56	6.79	-55.77	88.79	46.02
(======)	ı	-	ı	-	-	-	1	
	1672.95	Y axis	V	-50.77	5.00	-45.77	78.44	
190 (1.849W)	2509.73	X axis	Н	-63.01	6.86	-56.15	88.82	45.67
(-	-	-	-	-	-	-	
	1697.22	X axis	Н	-50.78	5.07	-45.71	79.94	·
251 (2.649W)	-	-	-	-	-	-	-	47.23
(=.0.0.1)	-	-	-	-	-	-	-	

- Limit Calculation = 43 + 10 log₁₀ (ERP [W]) [dBc]
- Emissions were not reported greater than below 40dB of the Limit.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the highest power is reported in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band.

This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

1010-01062 Report No.: **DRTFCC1011-0279**

7.8.2 RADIATED SPURIOUS EMISSIONS(GSM1900)

Channel (EIRP)	Freq. (MHz)	EUT Position	POL (H/V)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	(dBc)	Limit (dBc)
	3700.35	Z zxis	V	-41.05	9.77	-31.28	62.26	
512 (1.253W)	5550.58	X axis	Η	-52.69	11.21	-41.48	72.46	43.98
(5511)	-	-	-	-	-	-	-	
	3760.09	X axis	Н	-48.57	9.76	-38.81	69.46	
661 (1.161W)	5639.91	Z zxis	V	-46.18	11.27	-34.91	65.56	43.65
(-	-	-	-	-	-	-	
	3819.66	Z zxis	V	-45.56	9.75	-35.81	65.60	
810 (0.953W)	5729.43	Z zxis	V	-45.21	11.33	-33.88	63.67	42.79
(3.33011)	-	-	-	-	-	-	-	

⁻ Limit Calculation = 43 + 10 log₁₀ (EIRP [W]) [dBc]

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

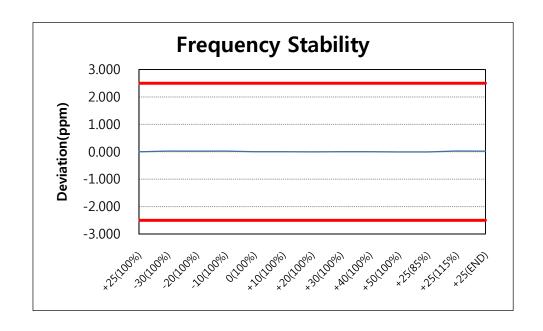
This device was tested under all configurations and the highest power is reported in GSM mode and using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band.

This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ Emissions were not reported greater than below 40dB of the Limit.

7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

7.9.1 FREQUENCY STABILITY (GSM850)


 OPERATING FREQUENCY :
 836,599,990 Hz

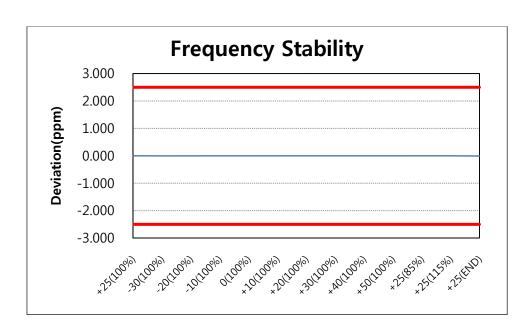
 CHANNEL :
 190(Mid)

REFERENCE VOLTAGE : 3.70 V DC

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100%	3.70	+25(Ref)	836,599,990	0.000	0.00000000	
100%		-30	836,600,011	0.025	0.00000251	
100%		-20	836,600,010	0.024	0.00000239	
100%		-10	836,600,012	0.026	0.00000263	
100%		0	836,599,991	0.001	0.00000012	
100%		+10	836,599,992	0.002	0.00000024	
100%		+20	836,599,988	-0.002	-0.00000024	
100%		+30	836,599,992	0.002	0.00000024	
100%		+40	836,599,992	0.002	0.00000024	
100%		+50	836,599,984	-0.007	-0.00000072	
85%	3.15	+25	836,599,986	-0.005	-0.0000048	
115%	4.26	+25	836,600,013	0.027	0.00000275	
BATT.ENDPOINT	2.85	+25	836,600,010	0.024	0.00000239	

7.9.2 FREQUENCY STABILITY (GSM1900)


OPERATING FREQUENCY : 1,880,000,033 Hz

CHANNEL: 661(Mid)

REFERENCE VOLTAGE : 3.70 V DC

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (V DC)	TEMP (℃)	FREQ (Hz)	Deviation	
				(ppm)	(%)
100%	3.70	+25(Ref)	1,880,000,033	0.000	0.00000000
100%		-30	1,880,000,028	-0.003	-0.00000027
100%		-20	1,880,000,034	0.001	0.0000005
100%		-10	1,880,000,025	-0.004	-0.00000043
100%		0	1,880,000,035	0.001	0.00000011
100%		+10	1,880,000,032	-0.001	-0.00000005
100%		+20	1,880,000,029	-0.002	-0.00000021
100%		+30	1,880,000,034	0.001	0.0000005
100%		+40	1,880,000,036	0.002	0.0000016
100%		+50	1,880,000,023	-0.005	-0.00000053
85%	3.15	+25	1,880,000,031	-0.001	-0.00000011
115%	4.26	+25	1,880,000,035	0.001	0.0000011
BATT.ENDPOINT	2.85	+25	1,880,000,018	-0.008	-0.00000080

VBW 1 MHz

Atten 40 dB

8. TEST PLOTS

Peak to Average Ratio

#Avg Log 10

dB/

Offst 7.3 dB

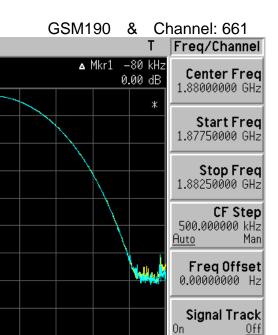
PAvg

V1 V2 S3 FC

FTun

Swp

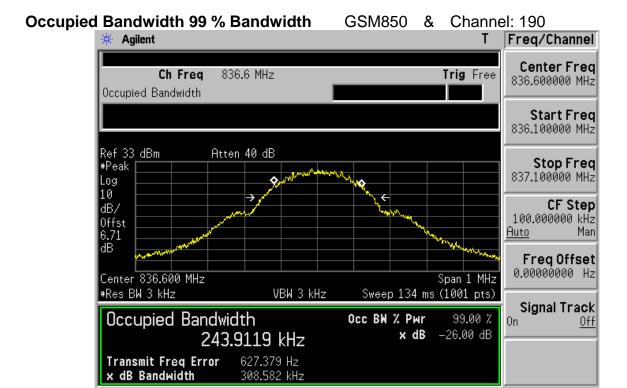
AA **£**(f):


Center 1.880 000 GHz

Copyright 2000-2005 Agilent Technologies

#Res BW 1 MHz

* Agilent


Ref 33 dBm

Span 5 MHz

Sweep 1 ms (1001 pts)

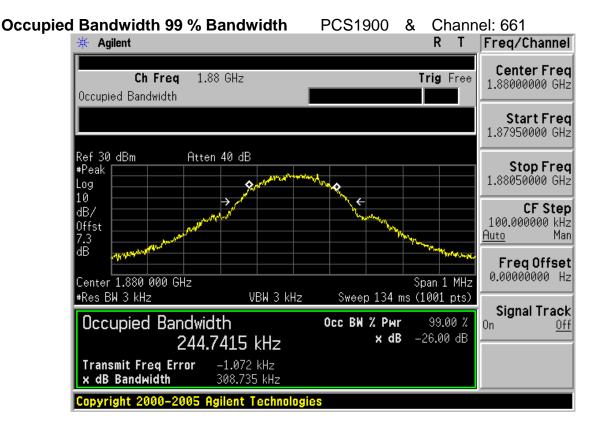
Occupied Bandwidth 99 % Bandwidth GSM850 & Channel: 128 Agilent Freq/Channel Center Freq Ch Freq Trig Free 824.2 MHz 824.200000 MHz Occupied Bandwidth Start Freq 823.700000 MHz Ref 33 dBm Atten 40 dB Stop Freq #Peak 824.700000 MHz Log 10 CF Step dB/ 100.000000 kHz Offst Man <u>Auto</u> 6.71 Freq Offset 0.00000000 Hz Center 824.200 MHz #Res BW 3 kHz Span 1 MHz Sweep 134 ms (1001 pts) VBW 3 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % <u>0ff</u> x dB -26.00 dB 245.1951 kHz 242.527 Hz Transmit Freq Error

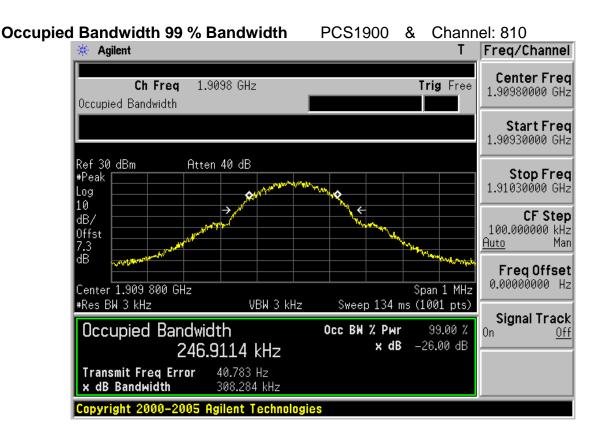
Agilent Technologies

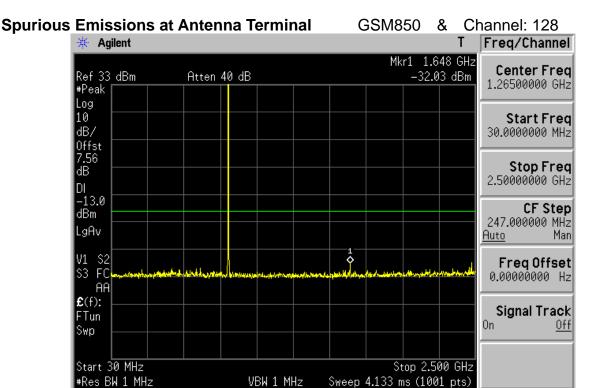
309.340 kHz

x dB Bandwidth

Copyright 2000-2005


1010-01062 Report No.: **DRTFCC1011-0279**





Occupied Bandwidth 99 % Bandwidth PCS1900 & Channel: 512

