FCC ID: BEJ9GW9718502

Report No.: DRTFCC1311-1069

Total 31 Pages

RF TEST REPORT

Test item
Model No.
Order No.
Date of receipt

DEMC1309-02891

Wireless Gateway 9GW9718502

2013-09-16

Test duration

: 2013-10-30 ~ 2013-11-05

Date of issue : 2013-11-06

Use of report

FCC Original Grant

Applicant : LG Electronics USA.

1000 Sylvan Avenue Englewood Cliffs, New Jersey, United States

Test laboratory : Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 449-080, Korea

Test specification

: FCC Part 15 Subpart C 247

KDB558074 v03r01

Test environment

: See appended test report

Test result

□ Pass

☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

rested by:	witnessed by:	Reviewed by:
) HS		- Ly
Engineer HyunSu Son	N/A	Deputy General Manager HongHee Lee

 DEMC1309-02891
 FCCID:
 BEJ9GW9718502

 DEMC1309-02891
 DRTFCC1311-1069

Test Report Version

Test Report No.	Date	Description
DRTFCC1311-1069	Nov. 06, 2013	Initial issue

Table of Contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	4
3. SUMMARY OF TESTS	5
4. TEST METHODOLOGY	6
4.1 EUT CONFIGURATION	6
4.2 EUT EXERCISE	6
4.3 GENERAL TEST PROCEDURES	6
4.4 DESCRIPTION OF TEST MODES	6
5. INSTRUMENT CALIBRATION	7
6. FACILITIES AND ACCREDITATIONS	7
6.1 FACILITIES	7
6.2 EQUIPMENT	7
7. ANTENNA REQUIREMENTS	7
8. TEST RESULT	8
8.1 6dB Bandwidth Measurement	8
8.2 Maximum Peak Conducted Output Power	11
8.3 Maximum Power Spectral Density	14
8.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions	17
8.5 Radiated Measurement	23
8.5.1 Radiated Spurious Emissions	23
8.6 POWERLINE CONDUCTED EMISSIONS	_
8.7 Occupied Bandwidth	29
9. LIST OF TEST EQUIPMENT	30
APPENDIX I	31
APPENDIX II	31
Duty Cycle Plot & Calculation	31

 DEMC1309-02891
 FCCID:
 BEJ9GW9718502

 DEMC1309-02891
 Report No.:
 DRTFCC1311-1069

1. GENERAL INFORMATION

Applicant : LG Electronics USA.

Address : 1000 Sylvan Avenue Englewood Cliffs, New Jersey, United States

FCC ID : BEJ9GW9718502

EUT : Wireless Gateway

Model : 9GW9718502

Additional Model(s) : N/A

Data of Test : 2013-10-30 ~ 2013-11-05

Contact person : Jacob Cho

2. EUT DESCRIPTION

Product	Wireless Gateway		
Model Name	9GW9718502		
Power Supply	DC 5 V		
Frequency Range	2405 ~ 2475 MHz (15 channels)		
Max. RF Output Power	ut Power - 2.84 dBm		
Modulation Type	DSSS		
Antenna Specification	Antenna Type: Internal Antenna Gain: 5.96 dBi(PK)		

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1
I. Transmitter	Mode (TX)				
15.247(a)	RSS-210 [A8.2]	6 dB Bandwidth	> 500 kHz		С
15.247(b)	RSS-210 [A8.4]	Transmitter Output Power	< 1Watt		С
15.247(d)	RSS-210 [A8.5]	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW	Conducted	C
15.247(e)	RSS-210 [A8.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz		С
-	RSS Gen [4.6.1]	Occupied Bandwidth (99%)	RSS-Gen(4.6.1)		NA
15.205 15.209	RSS-210 [A8.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Bands and Radiated < FCC 15.209 limits Radiated		C ^{Note2}
15.207	RSS-Gen [7.2.4]	AC Conducted Emissions	< FCC 15.207 limits	AC Line Conducted	С
15.203	-	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data was reported.

4. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009) and KDB558074

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 GENERAL TEST PROCEDURES

Conducted Emissions

According to therequirements in Section 6.2 of ANSI C63.10, the EUT is placed on the turntable, which is 0.8 m above ground plane and the conducted emissions from the EUT are measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peakand Average detector.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate360 degrees to determine the position of maximum emission level. EUT is set 3 m away from thereceiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, eachemission was to be maximized by changing the polarization of receiving antenna both horizontaland vertical. In order to find out the max.emission, the relative positions of this hand-heldtransmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.3 of ANSI C63.10

4.4 DESCRIPTION OF TEST MODES

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Zigbee mode and below low, middle and high channels were tested and reported.

Test Mode	Channel	Frequency [MHz]
Zigbee	11	2405
	18	2440
	25	2475

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number: 678747

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than thatfurnished by the responsible party can be used with the device. The use of a permanently attachedantenna or of an antenna that uses a unique coupling to the intentional radiator shall beconsidered sufficient to comply with the provisions of this section."

The antenna is permanently attached to the PCB.

Therefore this E.U.T Complies with the requirement of §15.203

8. TEST RESULT

8.1 6dB Bandwidth Measurement

Test Requirements and limit, §15.247(d)&RSS-210[A8.2]

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

TEST CONFIGURATION

Refer to the APPENDIX I.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074 v03r1.

- 1. Set resolution bandwidth (RBW) = 100 KHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.

(RBW:100KHz/VBW:300KHz)

- 3. Detector = Peak.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two Outer most amplitude points (upper and lower) that are attenuated by 6 dBrelative to the maximum level measured in the fundamental emission.

■TEST RESULTS: Comply

Test Mode	Frequency [MHz]	Test Results [MHz]	
Zigbee	2405	1.581	
	2440	1.602	
	2475	1.602	

■ RESULTPLOTS

6 dB Bandwidth

Test Frequency: 2405 MHz

6 dB Bandwidth

Test Frequency: 2440 MHz

6 dB Bandwidth

Test Frequency: 2475 MHz

8.2 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(b)&RSS-210[A8.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriatefrequencies.

The maximum permissible conducted output power is 1 Watt.

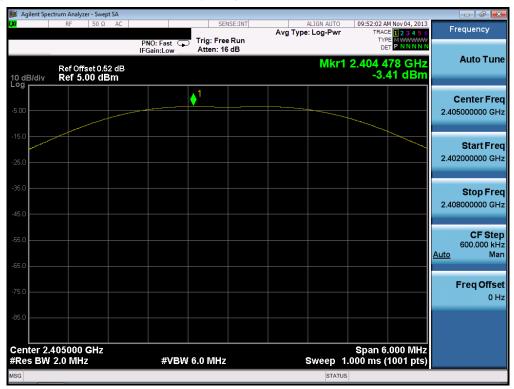
TEST CONFIGURATION

Refer to the APPENDIX I.

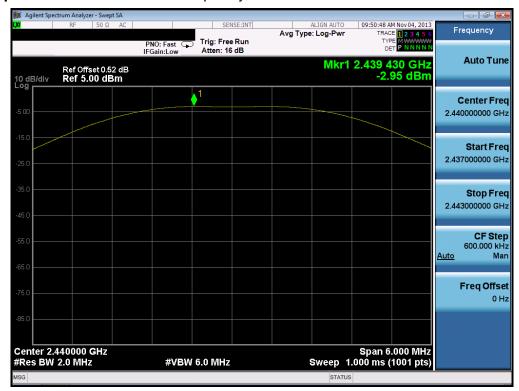
TEST CONFIGURATION:

Maximum Peak Conducted Output Power is measured using Measurement Procedure Option1 of KDB558074 v03r1.

- 1. Set the RBW ≥ DTS bandwidth. Actual RBW = 2 MHz
- 2. Set VBW ≥ 3 x RBW. Actual VBW = 6 MHz
- 3. Set span \ge 3 x RBW.
- 4. Sweep time = auto couple
- 5. Detector = **peak**
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

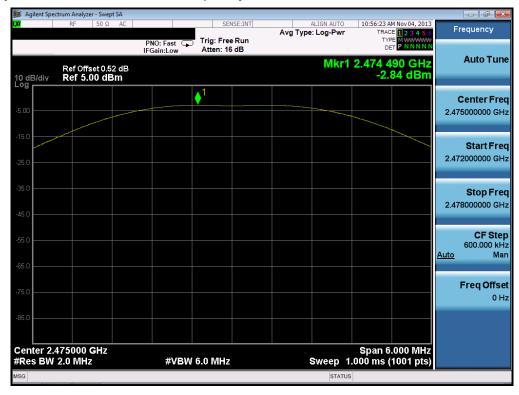

■TEST RESULTS: Comply

Took Made		Test Results[dBm]	
lest Mode	Test Mode 2405 MHz 2440 I		2475 MHz
Zigbee	- 3.41	- 2.95	- 2.84


Note: The path loss was corrected using the offset value of the spectrum analyzer.

■ RESULT PLOTS

Peak Output Power Test Frequency: 2405 MHz



Peak Output Power Test Frequency: 2440 MHz

Peak Output Power

Test Frequency: 2475 MHz

8.3 Maximum Power Spectral Density.

Test requirements and limit, §15.247(e)&RSS-210[A8.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard –specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segmentwithin the fundamental EBW during any time interval of continuous transmission.

■TEST CONFIGURATION

Refer to the APPENDIX I.

■ TEST PROCEDURE:

Method PKPSD of KDB558074 v03r1 is used.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTSbandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

■TEST RESULTS: Comply

Test Mode	Frequency [MHz]	PKPSD [dBm]
Zigbee	2405	- 18.300
	2440	- 17.960
	2475	- 17.800

Note: The path loss was corrected using the offset value of the spectrum analyzer.

■ RESULT PLOTS

Maximum PKPSD Test Frequency: 2405 MHz

Maximum PKPSD Test Frequency: 2440 MHz

Maximum PKPSD

Test Frequency: 2475 MHz

8.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions

Test requirements and limit, §15.247(d)&RSS-210[A8.5]

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

TEST CONFIGURATION

Refer to the APPENDIX I.

■ TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 - Reference Level

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4.Set the VBW ≥ $3 \times RBW$.
- 5.Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level

- Measurement Procedure 2 - Unwanted Emissions

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)
- 3. Set the VBW ≥ 3 x RBW.(Actual 3 MHz, See below note)
- 4. Detector = **peak**.
- 5. Ensure that the number of measurement points ≥ span/RBW
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

Note: The conducted unwanted emission was tested using S/A's spurious measurement function with total 11 measurement sub ranges.

The each of the 11 measurement sub ranges of the S/A's spurious measurement function were set as below.

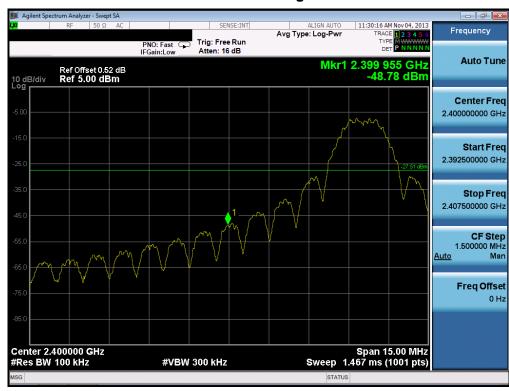
RBW= 1 MHz, VBW= 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SPAN = Max 3 GHz for each sub range below 15 GHz and Max 5 GHz for each sub range above 15 GHz, BINS = At least 9001 for each sub range below 15 GHz and At least 10001 for each sub range above 15 GHz, Therefore BINS for each measurement sub range must be greater than 2 x SPAN/RBW.

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 KHz, VBW = 300KHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 KHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

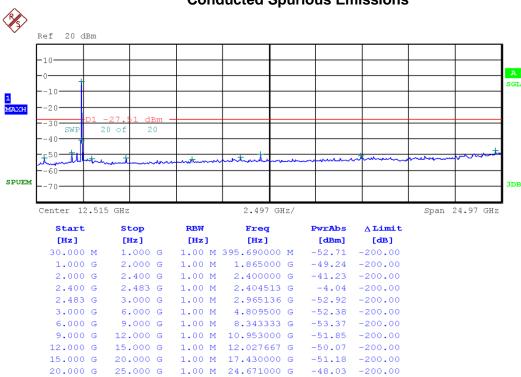
TRF-RF-219(00)130701 Page17 / 31

■ TEST RESULTS: Comply


RESULT PLOTS

Zigbee & 2405 MHz

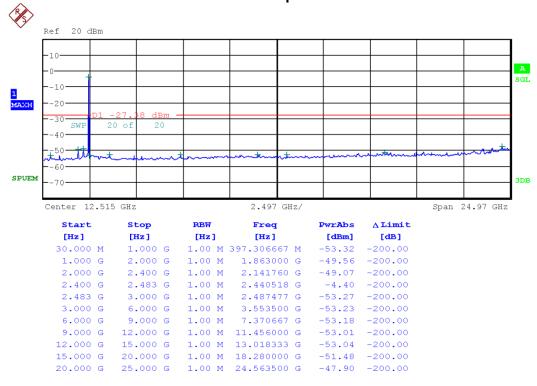
Reference



Low Band-edge

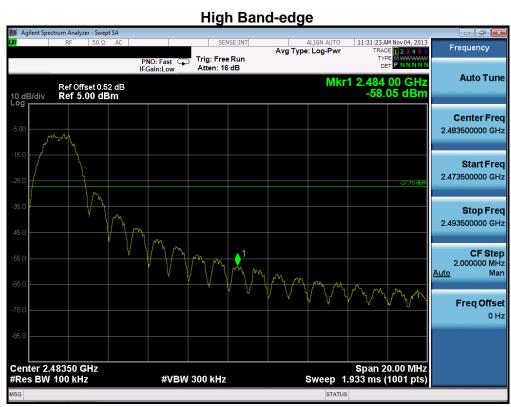
FCCID: BEJ9GW9718502 DEMC1309-02891 DRTFCC1311-1069 Report No.:

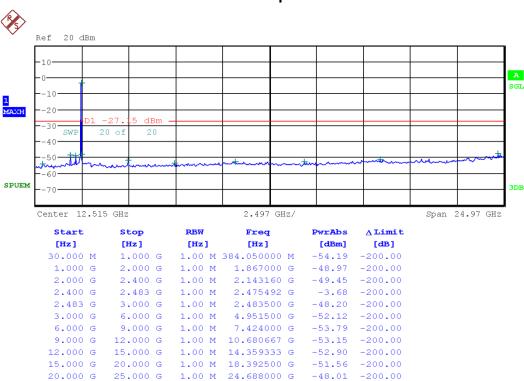
Conducted Spurious Emissions



Zigbee & 2440MHz

Reference


Conducted Spurious Emissions


Zigbee & 2475 MHz

Reference

Conducted Spurious Emissions

8.5 Radiated Measurement.

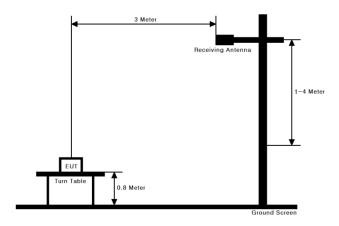
8.5.1 Radiated Spurious Emissions.

Test Requirements and limit, §15.247(d)&RSS-210[A8.5]

In any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3


^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

	MHz MHz GHz GHz				
IVITZ	IVITZ	IVITZ	IVITZ	GHZ	GHZ
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240			
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

Peak Measurement: 12.2.4 of KDB 558074 v03r1

RBW = As specified in below table , VBW ≥ 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement: 12.2.5 of KDB 558074 v03r1

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Band	Duty Cycle (%)	T _{on} (ms)	T _{on} + T _{off} (ms)	DCF = 10log(1/Duty) (dB)
802.11b	100	-	-	-

Note. Not required duty cycle correction factor. (Duty cycle of greater than or equal to 98%.)

9 KHz ~ 25GHz Data

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.550	Н	Υ	PK	49.19	- 3.38	45.81	74.00	28.19
2389.880	Н	Υ	AV	40.04	- 3.38	36.66	54.00	17.34
4809.050	Н	Υ	PK	50.43	5.42	55.85	74.00	18.15
4809.040	Н	Υ	AV	44.18	5.42	49.60	54.00	4.40
-	-	-	-	-	-	-	-	-

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4879.100	Н	Υ	PK	51.39	5.67	57.06	74.00	16.94
4879.000	Н	Y	AV	44.37	5.67	50.04	54.00	3.96
-	-	-	-	-	-	-	-	-

Highest Channel

riighest Chairnei									
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	
2483.620	Н	Υ	PK	60.77	- 2.79	57.98	74.00	16.02	
2483.550	Н	Υ	AV	53.78	- 2.79	50.99	54.00	3.01	
4949.170	Н	Υ	PK	49.64	6.11	55.75	74.00	18.25	
4949.190	Н	Y	AV	43.94	6.11	50.05	54.00	3.95	
-	-	-	-	-	-	-	-	-	

Note.

- 1.No other spurious and harmonic emissions were reportedgreater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

8.6 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207&RSS-Gen[7.2.2]

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and supportequipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

FCCID: BEJ9GW9718502 DEMC1309-02891 DRTFCC1311-1069 Report No.:

■RESULT PLOTS

AC Line Conducted Emissions (Graph)

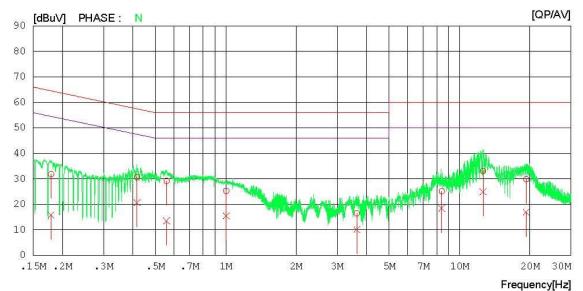
Test Mode: Zigbee & 2440MHz

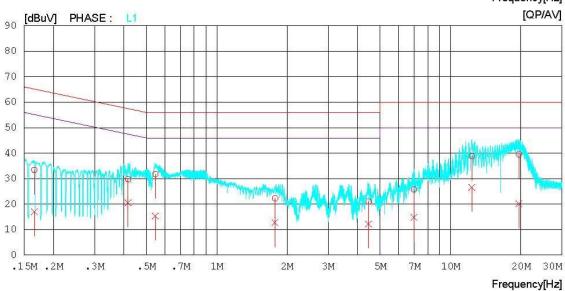
Results of Conducted Emission

Digital EMC

Date: 2013-11-04

Model No. Type


9GVV9718502 Identical prototype ZIGBEE Referrence No. Power Supply Temp/Humi. Operator


120 V 60 Hz 24 'C 52 % R.H. H.S.SON

Serial No. Test Condition

Memo

LIMIT: FCC P15.207 QP FCC P15.207 AV

FCCID: BEJ9GW9718502 DRTFCC1311-1069 DEMC1309-02891 Report No.:

AC Line Conducted Emissions (List)

Test Mode: Zigbee & 2440MHz

Results of Conducted Emission

Digital EMC Date: 2013-11-04

Model No. 9GW9718502 Referrence No.

120 V 60 Hz 24 'C 52 % R.H. Туре Power Supply 24 'C 52 H.S.SON Serial No. Identical prototypeZIGBEE Temp/Humi. **Test Condition** Operator

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READ QP	ING AV	C.FACTOR	RESI QP	ULT AV	LIM QP	IT AV	MAR QP	GIN AV	PHASE	
	[MHz]	[dBuV]		[dB]	[dBuV]		207.1	[dBuV]	255	[dBuV]		
1	0.17886	31.8	15.7	0.1	31.9	15.8	64.5	54.5	32.6	38.7	N	
2	0.41739	30.6	20.5	0.1	30.7	20.6	57.5	47.5	26.8	26.9	N	
3	0.55822	29.1	13.4	0.1	29.2	13.5	56.0	46.0	26.8	32.5	N	
4	1.00480	25.0	15.3	0.2	25.2	15.5	56.0	46.0	30.8	30.5	N	
5	3.63840	16.1	9.7	0.4	16.5	10.1	56.0	46.0	39.5	35.9	N	
6	8.40380	24.8	18.1	0.4	25.2	18.5	60.0	50.0	34.8	31.5	N	
7	12.61580	32.6	24.5	0.5	33.1	25.0	60.0	50.0	26.9	25.0	N	
8	19.29200	29.2	16.2	0.7	29.9	16.9	60.0	50.0	30.1	33.1	N	
9	0.16586	33.4	17.0	0.1	33.5	17.1	65.2	55.2	31.7	38.1	L1	
10	0.41715	29.7	20.4	0.1	29.8	20.5	57.5	47.5	27.7	27.0	L1	
11	0.54644	31.7	15.3	0.1	31.8	15.4	56.0	46.0	24.2	30.6	L1	
12	1.77820	22.0	12.5	0.3	22.3	12.8	56.0	46.0	33.7	33.2	L1	
13	4.45900	20.6	11.8	0.4	21.0	12.2	56.0	46.0	35.0	33.8	L1	
14	6.97160	25.3	14.3	0.5	25.8	14.8	60.0	50.0	34.2	35.2	L1	
15	12.33800	38.3	26.0	0.5	38.8	26.5	60.0	50.0	21.2	23.5	L1	
16	19.63920	38.9	19.5	0.7	39.6	20.2	60.0	50.0	20.4	29.8	L1	

8.7 Occupied Bandwidth

Test Requirements, RSS-Gen [4.6.1]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

■TEST CONFIGURATION

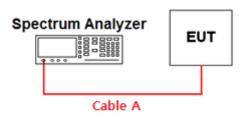
■TEST PROCEDURE

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

■TEST RESULTS:- Measurement Data: N/A

 DEMC1309-02891
 FCCID:
 BEJ9GW9718502

 DEMC1309-02891
 DRTFCC1311-1069


9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	E4440A	13/10/21	14/10/21	US45303051
Spectrum Analyzer	Rohde Schwarz	FSQ26	13/02/14	14/02/14	200445
Spectrum Analyzer	Agilent	N9020A	13/09/16	14/09/16	MY50410163
DC Power Supply	HP	6622A	13/02/27	14/02/27	3448A03760
Multimeter	HP	34401A	13/02/27	14/02/27	3146A13475
Vector Signal Generator	Rohde Schwarz	SMJ100A	13/01/08	14/01/08	100148
Signal Generator	Rohde Schwarz	SMF100A	13/07/22	14/07/22	102341
Thermohygrometer	BODYCOM	BJ5478	13/06/01	14/06/01	120612-2
High-pass filter	Wainwright	WHKX3.0	13/01/08	14/01/08	12
Loop Antenna	Schwarzbeck	FMZB1513	12/09/24	14/09/24	1513-128
BILOG ANTENNA	SCHAFFNER	CBL6112B	12/11/06	14/11/06	2737
Horn Antenna	ETS	3115	13/02/28	15/02/28	00021097
Horn Antenna	A.H.Systems Inc.	SAS-574	13/03/20	15/03/20	154
Amplifier (22dB)	HP	8447E	13/01/08	14/01/08	2945A02865
Amplifier (30dB)	Agilent	8449B	13/02/27	14/02/27	3008A00370
EMI TEST RECEIVER	R&S	ESU	13/01/08	14/01/08	100014
EMI TEST RECEIVER	R&S	ESCI	13/02/27	14/02/27	100364
CVCF	NF	4420	13/09/12	14/09/12	3049354420023
LISN	R&S	ESH2-Z5	13/09/12	14/09/12	828739/006

APPENDIX I

Conducted Test set up Diagram &Path lossInformation

Conducted Measurement

Offset value information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.15	15	1.14
1	0.32	20	1.21
2405 & 2440 & 2475	0.52	26.5	1.42
5	0.67	-	-
10	0.97	-	-

Note. 1: The path loss (= S/A's offset value) from EUT to Spectrum analyzer was measured and used for test.

Note. 2: For conducted spurious emissions, the offset values were saved as the transducer factors on the spurious measurement function of the spectrum analyzer and the transducer factor of tested frequency is calculated and corrected automatically by the spectrum analyzer's measurement function.

APPENDIX II

Duty Cycle Plot & Calculation

