KTL Test Report:	9L0385RUS
Applicant:	Allen Telecom, Inc. 140 Vista Centre Drive Forest, VA 24551
Equipment Under Test:	EAC-2000D Digital Cellular Enhancer
FCC ID:	BCR9GB2000
In Accordance With:	FCC Part 22, Subpart H Cellular Band Repeaters
Tested By:	KTL Dallas Inc. 802 N. Kealy Lewisville, TX 75057-3136
Authorized By:	Tom Tidwell, RF Group Manager
Date:	
Total Number of Pages:	34

EQUIPMENT: EAC-2000D Digital Cellular Enhancer FCC ID: BCR9GB2000

TABLE OF CONTENTS

SECTION 1. SUMMARY OF TEST RESULTS	3
SECTION 2. GENERAL EQUIPMENT SPECIFICATION	5
SECTION 3. RF POWER OUTPUT	8
SECTION 4. OCCUPIED BANDWIDTH	10
SECTION 5. SPURIOUS EMISSIONS AT ANTENNA TERMINALS	12
SECTION 6. FIELD STRENGTH OF SPURIOUS	19
SECTION 7. FREQUENCY STABILITY	20
SECTION 8. TEST EQUIPMENT LIST	21
ANNEX A - TEST DETAILS	22
ANNEX B - TEST DIAGRAMS	31

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Section 1.	Summary of Test F	Results	
Manufacturer:	Grayson Wireless		
Model No.:	EAC-2000D		
Serial No.:	NONE		
General:	All measurements are tr	raceable to nation	al standards.
	e conducted on a sample of the e diance with FCC Part 22, Subpar		-
	New Submission		Production Unit
	Class II Permissive Change		Pre-Production Unit
	THIS TEST REPORT RELATES	ONLY TO THE ITI	EM(S) TESTED.
THE FOLLOW	ING DEVIATIONS FROM, ADD SPECIFICATIONS See "Summar	·	
	NA		
	NVLAP LAB (CODE: 100426-0	
TESTED BY:		DA	ATE:
	Ron Gaytan		

KTL Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	MEAS.	RESULT
RF Power Output	22.913(a)	500W ERP	15 W/ch. Fwd. .1 W/ch. Rvs.	Complies
Occupied Bandwidth (Voice & SAT)	22.917(c)	Mask C	N/A	N/A
Occupies Bandwidth (Wideband Data)	22.917(d)	Mask D	N/A	N/A
Occupied Bandwidth (ST)	22.917(d)	Mask D	N/A	N/A
Occupied Bandwidth (Digital)	None	None	Plot	Complies
Spurious Emissions at Antenna Terminals	22.917	-13 dBm	-14.1	Complies
Field Strength of Spurious Emissions	22.917	-13 dBm E.I.R.P.	N/A	N/A
Frequency Stability	22.355	1.5 ppm	N/A	N/A

Footnotes:

(1) Since the 45 watt amplifier module tested is the same form, fit, and function as the previous version with which the EAC2000 was certified, only those parameters that might be expected to change were re-tested.

Test Conditions:

Indoor Temperature: 23 °C

Humidity: 27 %

.

FCC ID: BCR9GB2000

Section 2. General Equipment Specification

Supply Voltage Input:	230 VAC/60Hz					
Frequency Range:	Downlink:	869 – 894 N	MHz			
Frequency Range:	Uplink:	824 – 849 N	МНz			
Type of Modulation and Designator:		CDMA (F9W)	GSM (GXW)	NADC (DXW)	CDPD (F9W)	AMPS (F8W, F1D)
Output Impedance:		50 ohms				
Max Input Power:		-40 dBm				
RF Output (Rated):	Downlink: Uplink:	15 watts per o				
Frequency Translation:				F1-F1	F1-F2	N/A
Band Selection:			i	Software	Duplexer Change	Fullband Coverage

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

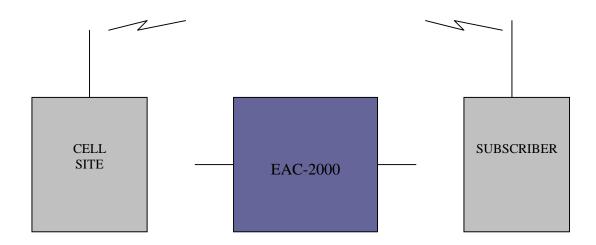
FCC ID: BCR9GB2000

Description of Modifications For Class II Permissive Change

The A002015.G1 45 Watt Power Amplifier in the forward path is a replacement for the earlier 21-117-1 and 21-396-1 PAs used in the EAC-2000 AMPS repeater. The new amplifier is identical in form, fit and function, differing only in new identification labels on the outside of the PA.

FCC ID: BCR9GB2000

Theory of Operation


45 Watt PA

The input signal (-5 to +5 dBm) passes through variable attenuator U1, gain block U6, to class-A biased bipolar transistor Q3. That signal is further amplified by class-AB biased FETs Q4 and Q5.

The output is passed through a single-junction circulator N1, and the rated 45 Watts is routed to the PA output connector.

A directional coupler on the output feeds closed-loop power control detector D1, with associated temperature compensation U4. The signal is amplified and compared to a reference from U9 by U10 and U11; the resulting agc signal is fed back to attenuator U1. Four power levels can be set by external control through mux U5. Internal PA temperature is reported to the EAC-2000 by U8.

System Diagram

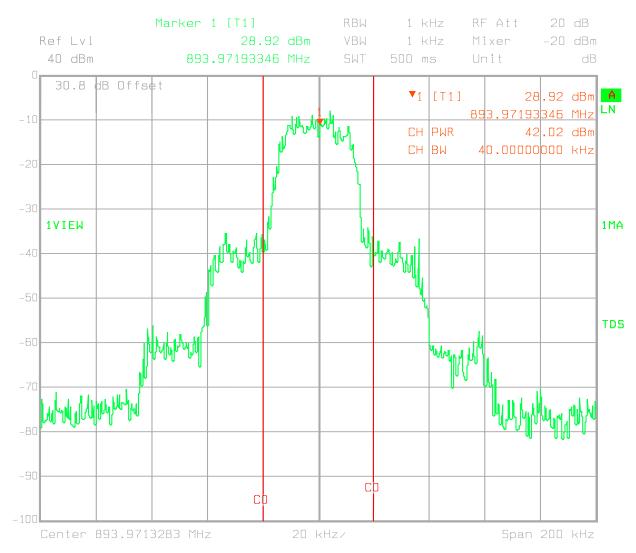
EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.985

TESTED BY: Ron Gaytan DATE: 11 Oct. 1999


Test Results: Complies.

Measurement Data:

	Modulation Type	Per Channel Power Output (dBm)	Composite Power Output (dBm)
Uplink	AMPS	+20.0	+30.0
Downlink	AMPS	+42.0	+52.0
Uplink	CDMA	N/A	N/A
Downlink	CDMA	N/A	N/A
Uplink	GSM	N/A	N/A
Downlink	GSM	N/A	N/A
Uplink	NADC	+20.0	+30.0
Downlink	NADC	+41.8	+51.8
Uplink	CDPD	N/A	N/A
Downlink	CDPD	N/A	N/A

NOTE: The power output at channel 799 is reduced to 2 watts to comply with the $43 + 10\log{(P)}$ limit. At channels 991 - 798 (869.040 to 893.940 MHz), the power output is operated at 15 watts per channel.

FCC ID: BCR9GB2000

Title: 9L0385R CHANNEL POWER (CHANNEL 799)

Comment A: CP1.WMF

Date: 11.0CT.1999 9:30:21

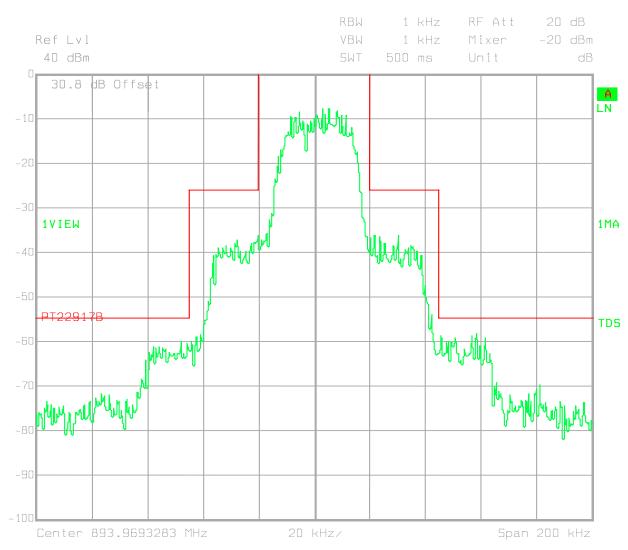
Plot 1

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth (Digital Mod.) PARA. NO.: 2.917(e)


TESTED BY: Ron Gaytan DATE: 11 October, 1999

Test Results: Complies.

Test Data: See attached plots.

Page 10 of 34

FCC ID: BCR9GB2000

Title: 910385R OCCUPIED BANDWIDTH (CHANNEL 799)

Comment A: MOR801B

Date: 11.0CT.1999 9:16:31

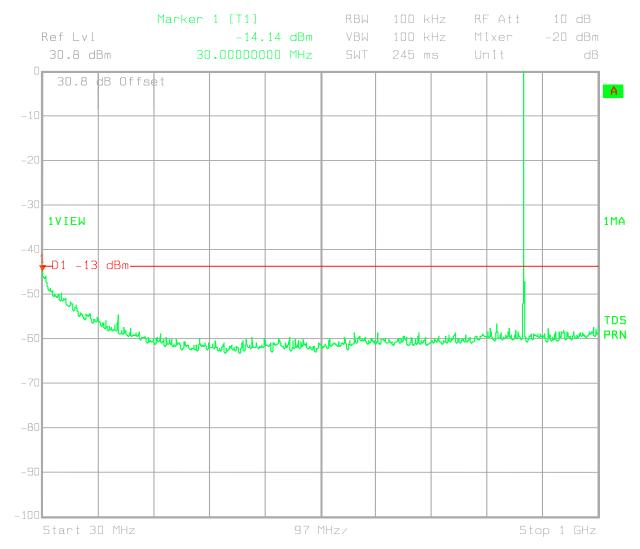
Plot 2

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.917(e)

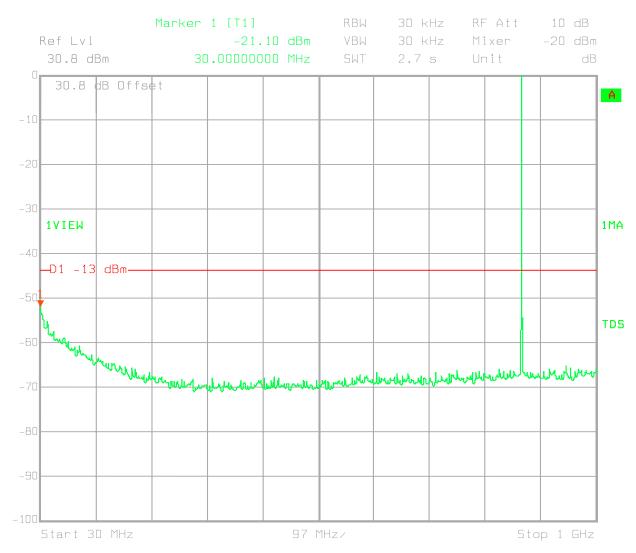

TESTED BY: Ron Gaytan DATE: 11 October, 1999

Test Results: Complies.

Test Data: See attached plots

Page 12 of 34

EQUIPMENT: EAC-2000D Digital Cellular Enhancer FCC ID: BCR9GB2000

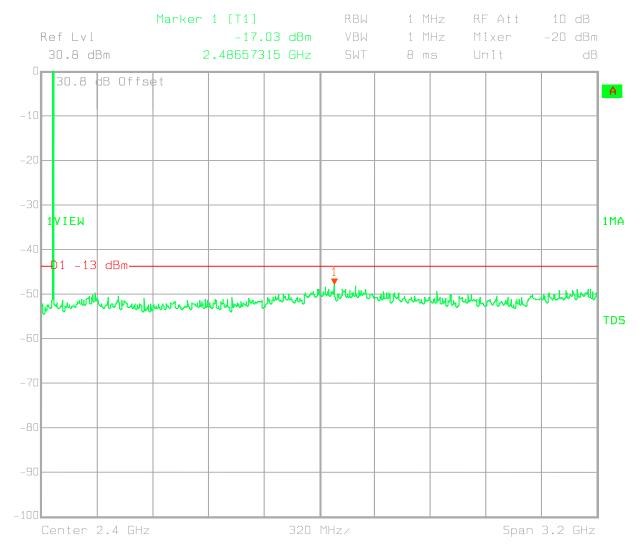

Title: 9L0385R ANTENNA PORT SPURIOUS EMISSIONS (CHANNEL 991)

Comment A: APSE1A.WMF

Date: 11.0CT.1999 11:10:54

Plot 3

FCC ID: BCR9GB2000

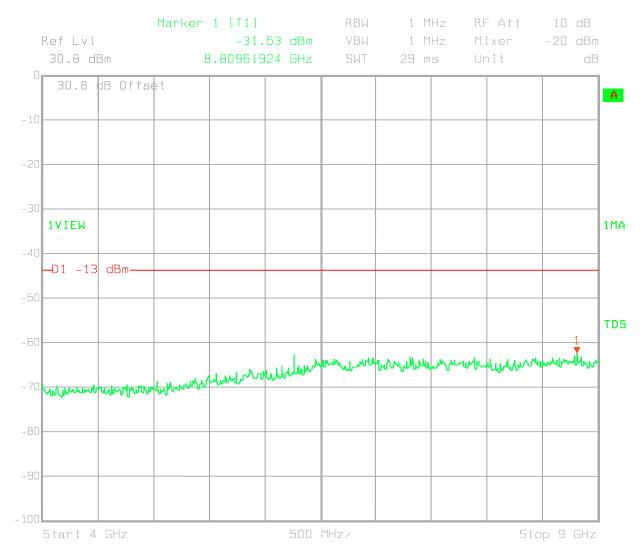

Title: 9L0385R ANTENNA PORT SPURIOUS EMISSIONS (CHANNEL 991)

Comment A: APSE1B.WMF

Date: 11.0CT.1999 11:09:38

Plot 4

EQUIPMENT: EAC-2000D Digital Cellular Enhancer FCC ID: BCR9GB2000

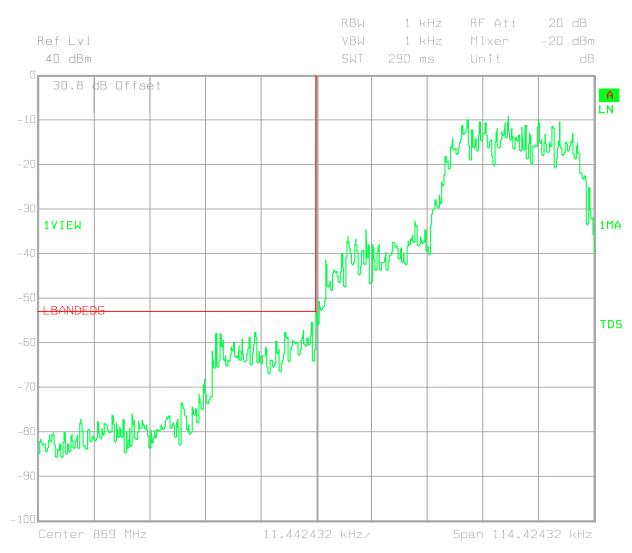

Title: 9L0385R ANTENNA PORT SPURIOUS EMISSIONS (CHANNEL 991)

Comment A: APSE2.WMF

Date: 11.0CT.1999 10:47:35

Plot 5

FCC ID: BCR9GB2000

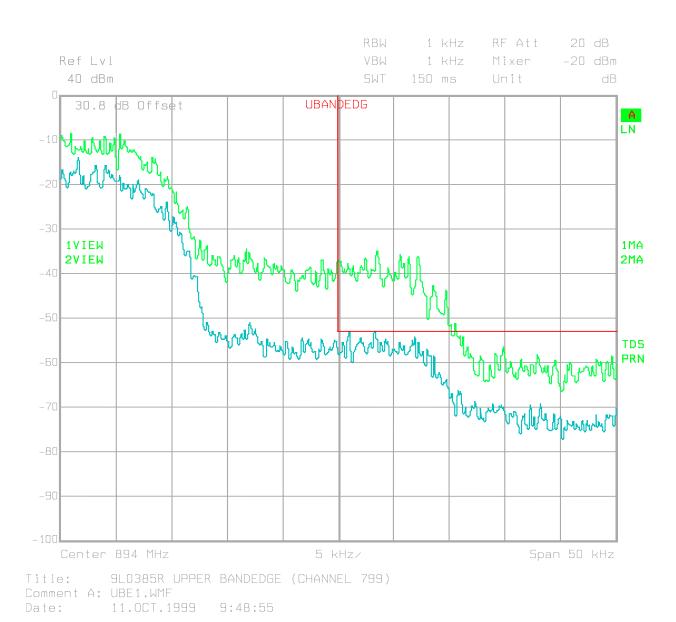

Title: 9L0385R ANTENNA PORT SPURIOUS EMISSIONS (CHANNEL 991)

Comment A: APSE3.WMF

Date: 11.0CT.1999 11:18:02

Plot 6

FCC ID: BCR9GB2000


Title: 9L0385R LOWER BANDEDGE (CHANNEL 991)

Comment A: LBE1.WMF

Date: 11.0CT.1999 10:11:23

Plot 7

EQUIPMENT: EAC-2000D Digital Cellular Enhancer FCC ID: BCR9GB2000

Plot 8

NOTE: The power output at channel 799 is reduced to 2 watts to comply with the $43 + 10\log(P)$ limit. At channels 991 - 798 (869.040 to 893.940 MHz), the power output is operated at 15 watts per channel.

KTL Dallas

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS PROJECT NO.: 9L0385RUS

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Section 6. Field Strength of Spurious

NAME OF TEST:	Field Strength of Spurious	PARA. NO.: 2.917(e)
TESTED BY:		DATE:
Test Results:	The maximum field strength	0 3m. @ 3m.
Test Data:		

KTL Dallas

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS PROJECT NO.: 9L0385RUS

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability

PARA. NO.: 22.355

TESTED BY:

DATE:

Test Results:

Measurement Data: Standard Test From MHz Standard Vdc

FCC ID: BCR9GB2000

Section 8. Test Equipment List

	KTL ID	Description	Manufacturer Model Number	Serial Number	Calibration Date
1	G2632	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	06/14/99
2	G2736	SIGNAL GENERATOR	ROHDE & SCHWARZ SMIQ 03	DE22081	05/03/99
3	G1366	50 OHM LOAD	NARDA 27470	254	02/25/99
4	G1017	ATTENUATOR	NARDA 776B-20	NONE	09/30/99
5	G1018	ATTENUATOR	NARDA 776B-10	NONE	09/30/99
6	G3725	DUAL DIRECTIONAL COUPLER	NARDA 3020A	34366	05/19/99
7	G3726	DUAL DIRECTIONAL COUPLER	NARDA 3022	73393	05/19/99
8	G3727	DUAL DIRECTIONAL COUPLER	HEWLETT PACKARD 11692D	1212A03366	05/07/99
9	CF40	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	08/31/99
10	C111	CABLE, 3m	KTL Suhner	N/A	06/15/99

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

ANNEX A - TEST DETAILS

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No. 22.913(a). The maximum effective radiated power (ERP)

of base transmitters and cellular repeaters must not exceed 500

watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: Occupied Bandwidth (Voice & SAT) PARA. NO.: 2.1049

Minimum Standard: 22.917(c) The mean power of any emission removed from the

carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as

follows:

(i) On any frequency removed from the carrier frequency by more than 12 kHz but not more than 20 kHz:

at least 117 $\log (f_d/12)$

(ii) On any frequency removed from the carrier frequency by more than 20 kHz, up to the first multiple of the carrier frequency:

at least $100 \log (f_d/11) dB$ or $43 + 10 \log (P) dB$, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 100 kHz Sweep: Auto Mask: CELLF3E

Input Signal Characteristics (F3E/F3D):

RF level: Maximum recommended by manufacturer

AF1 frequency: 6 kHz

AF1 level: sufficient to produce 2 kHz deviation

AF2 frequency: 2.5 kHz

AF2 level: sufficient to produce 12 kHz deviation.

KTL Dallas

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS PROJECT NO.: 9L0385RUS

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: Occupied Bandwidth (WB Data) PARA. NO.: 2.1049

Minimum Standard: 22.917(c) The mean power of any emission removed from the

carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as

follows:

(1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or 43 + 10 log (P) dB, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto Mask: CELLF1D

Input Signal Characteristics:

RF level: Maximum recommended by manufacturer

AF1 frequency: 10 kHz, random bit sequence AF1 level: sufficient to produce 8 kHz deviation

KTL Dallas

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS PROJECT NO.: 9L0385RUS

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: Occupied Bandwidth (ST)

PARA. NO.: 2.1049

Minimum Standard: 22.917(c) The mean power of any emission removed from the

carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as

follows:

(1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or 43 + 10 log (P) dB, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto Mask: CELLF1D

Input Signal Characteristics:

RF level: Maximum recommended by manufacturer

AF1 frequency: 10 kHz tone

AF1 level: sufficient to produce 8 kHz deviation

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: Occupied Bandwidth (Digital Modulation) PARA. NO.: 2.1049

Minimum Standard: Not defined by FCC. Input vs. Output.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: CDMA (30 kHz), GSM (30 kHz), NADC (1 kHz) and CDPD (1 kHz)

VBW: ≥ RBW Span: As required Sweep: Auto

Mask:

Input Signal Characteristics:

RF level: Maximum recommended by manufacturer

Page 27 of 34

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard: Para. No. 22.917(e). The mean power of emissions must be

attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least $43 + 10 \log P$. This is equivalent to -13 dBm absolute

power.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 30 kHz (AMPS). As required for digital modulations.

VBW: ≥ RBW

Start Frequency: 0 MHz Stop Frequency: 10 GHz

Sweep: Auto

FCC ID: BCR9GB2000

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard:

Para. No. 22.917(e). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power.

Calculation Of Field Strength Limit:

An example of attenuation requirement of 43 + 10 Log P is equivalent to -13 dBm (5 x 10^{-5} Watts) at the antenna terminal. We determine the field strength limit by using the plane wave relation.

$$GP/4\pi R^2 = E^2/120\pi$$

For emissions ≤ 1 GHz:

G = 1.64 (Dipole Gain)

P = 10⁻⁵ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V/m} = 84.4 \text{ dB}\mu\text{V/m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain)

 $P = 1 \times 10^{-5}$ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \mu V / m@3m$$

The spectrum is searched to 10 GHz.

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 22.355. The transmitter carrier frequency shall remain

within the tolerances given in Table C-1.

Freq. Range (MHz) Base, fixed		Mobile > 3 W	Mobile ≤ 3 W	
821 to 896	1.5	2.5	2.5	

Table C-1

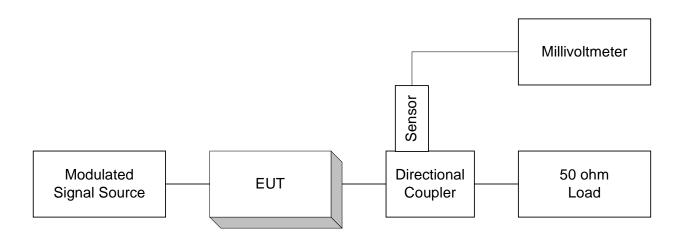
Method Of Measurement:

Frequency Stability With Voltage Variation:

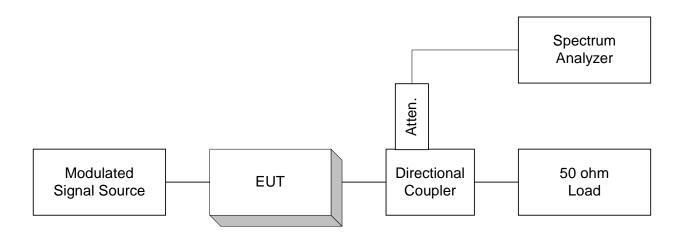
The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation:

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

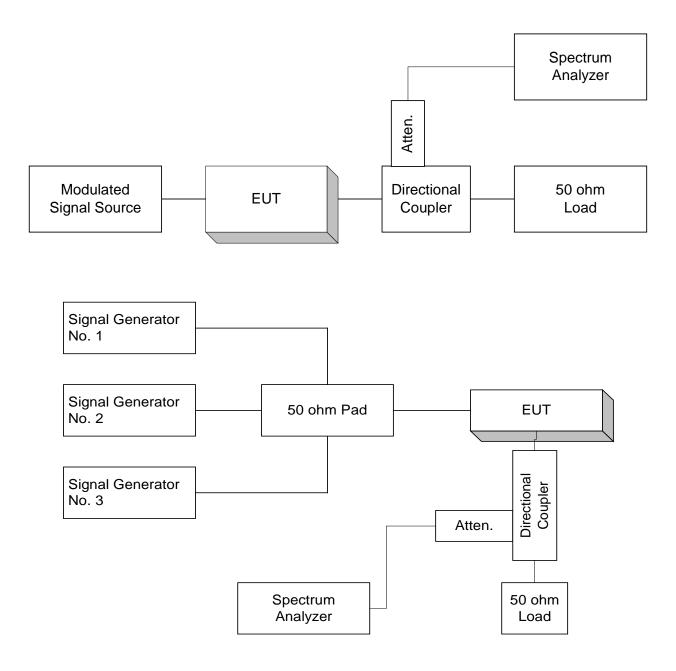

EQUIPMENT: EAC-2000D Digital Cellular Enhancer

FCC ID: BCR9GB2000

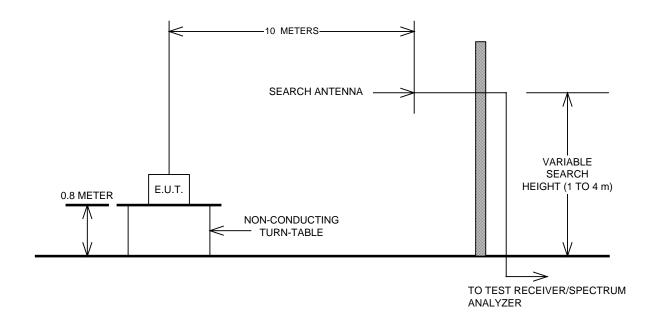

ANNEX B - TEST DIAGRAMS

EQUIPMENT: EAC-2000D Digital Cellular Enhancer FCC ID: BCR9GB2000

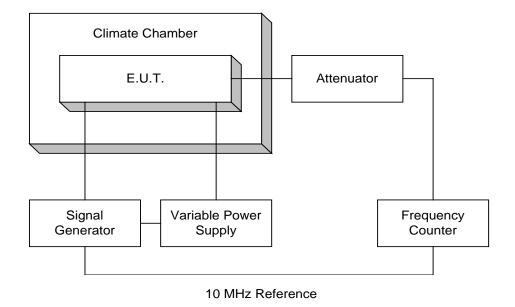
Para. No. 2.985 - R.F. Power Output



Para. No. 2.989 - Occupied Bandwidth


FCC ID: BCR9GB2000

Para. No. 2.991 Spurious Emissions at Antenna Terminals



FCC ID: BCR9GB2000

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

