KTL Test Report No.:	0L0551RUS1
Applicant:	Allen Telecom Systems 140 Vista Center Drive Forest, VA 24551
Equipment Under Test:	EAC-2100 PCS REPEATER
FCC ID:	BCR-RPT-EAC2100
In Accordance With:	FCC Part 24, Subpart E Broadband PCS Repeaters
Tested By:	KTL Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	Tom Tidwell, EMC/Wireless Group Manager
Date:	February, 2001
Total Number of Pages:	40

EQUIPMENT: EAC 2100

PROJECT NO.: 0L0551RUS1

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	General Equipment Specification	5
Section 3.	RF Power Output	7
Section 4.	Occupied Bandwidth	8
Section 5.	Spurious Emissions at Antenna Terminals	9
Section 6.	Field Strength of Spurious	12
Section 7.	Frequency Stability	25
Section 8.	Test Equipment List	29
ANNEX A	A - TEST DETAILS	30
ANNEX E	3 - TEST DIAGRAMS	36

Section 1. Summary of Test Results

Manufacturer: Grayson Wireless

Model No.: EAC-2100

Serial No.: 001

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24, Subpart E.

\boxtimes	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP

NVLAP LAB CODE: 100426-0

KTL Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

	PARA.			
NAME OF TEST	NO.	SPEC.	MEAS.	RESULT
RF Power Output	24.232	100W	50 W	Complies
Occupied Bandwidth (CDMA)	24.238	Input/Output	N/A	N/A
Occupied Bandwidth (GSM)	24.238	Input/Output	N/A	N/A
Occupied Bandwidth (NADC)	24.238	Input/Output	Input/Output	Complies
Spurious Emissions at Antenna	24.238(a)	-13 dBm	< -13 dBm	Complies
Terminals	21.230(a)	15 GD III	(15 ub in	соприс
Field Strength of Spurious	24.238(a)	-13 dBm	< -13 dBm	Complies
Emissions	24.236(a)	E.I.R.P.	< -13 ubiii	Compiles
Frequency Stability	24.235		N/T	N/T

Footnotes:

- (1) CDMA & GSM modulations were not tested because the repeater is for NADC signals only..
- 2) Frequency stability testing was performed by the manufacturer

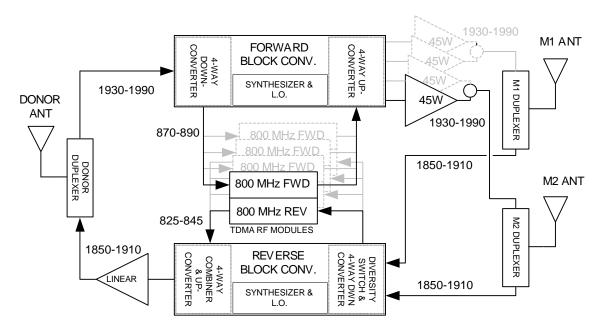
Measurement uncertainty for each test configuration is expressed to 95% probability.

Section 2. General Equipment Specification

Supply Voltage Input:	120 VAC		
Frequency Bands: Downlink:	Block B: 1945 -	- 1945 MHz - 1950 MHz - 1965 MHz	
	Block F: 1970 -	- 1970 MHz - 1975 MHz - 1990 MHz	
Frequency Bands: Uplink:	Block B: 1865 - Block C: 1870 - Block D: 1885 - Block E: 1890 -	- 1865 MHz - 1870 MHz - 1885 MHz - 1890 MHz - 1895 MHz - 1910 MHz	
Type of Modulation and Designator:	CDMA (G7W)	GSM (GXW)	NADC (DXW)
Output Impedance:	50 ohms		
RF Output (Rated): Uplink	Per channel: .282 Total: .560		
RF Output (Rated): Downlink	Per channel: 25 Total: 50		
Frequency Translation:	F1-F1	F1-F2	N/A
Band Selection:	Software	Duplexer	Fullband

Description of Operation

The EAC-2100 booster is available in either a two-channel or a four-channel configuration. Each RF channel is capable of handling three full-rate TDMA channels. Therefore, a four-channel EAC-2100 can provide one DCCH channel and 11 DTC DTC channels.


Also, two EAC-2100 boosters may be operated together to provide up to eight RF-channel operation (1 DCCH plus 23 DTC DTC channels). A digital control cable connects the two cabinets together to allow one cabinet to handle the DCCH duties.

A block diagram of the EAC-2100 is shown in figure 1-2. Up to four 800 MHz TDMA modules are used. These modules are similar to those used in the EAC-2000, with the main difference being that they have a lower output power level in the reverse direction. Like the EAC-2000, these modules provide the frequency translation feature necessary to allow high-gain repeater operation.

Block converters are used to convert the PCS band to the 800 MHz band, and likewise the 800 MHz band to the PCS band. A Forward Block Converter and a Reverse Block Converter is used. Each block converter has its own synthesizer and local-oscillator control for performing the block conversion process.

The Forward Block Converter converts the 1930-1990 MHz signals from the donor cell site to the 870-890 MHz band. The 870-890 MHz block is fed to the 800 MHz TDMA RF modules for signal processing. The outputs of the 800 MHz modules are individually converted back to the 1930-1990 MHz band for subsequent transmission to the repeater coverage area. Since the PCS band is wider than the 800 MHz tuning range of the 800 MHz RF modules, the Block Converters

System Diagram

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

TESTED BY: David Light DATE: 1/26/01

Test Results: Complies.

Measurement Data:

	Modulation Type	Per Channel Output Power (dBm)	Composite Output Power (dBm)
**		` ,	`
Uplink	CDMA	N/A	N/A
Downlink	CDMA	N/A	N/A
Uplink	GSM	N/A	N/A
Downlink	GSM	N/A	N/A
Uplink	NADC	24.5	27.5
Downlink	NADC	44	47

Equipment Used: 1036-1082-1475-1055

Measurement Uncertainty: +/- 1.6 dB

Temperature: 22 °C

Relative 50 %

Humidity:

Page 7 of 40

Section 4. Occupied Bandwidth

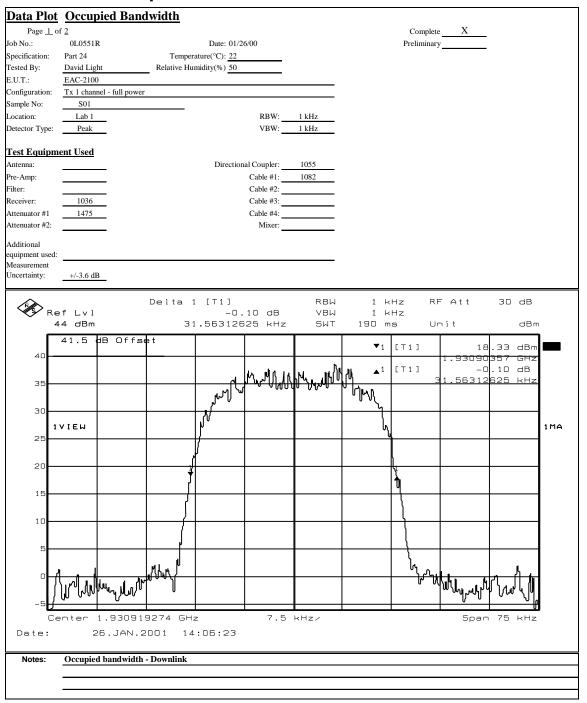
NAME OF TEST: Occupied Bandwidth (NADC) PARA. NO.: 2.1049

TESTED BY: David Light DATE: 1/26/01

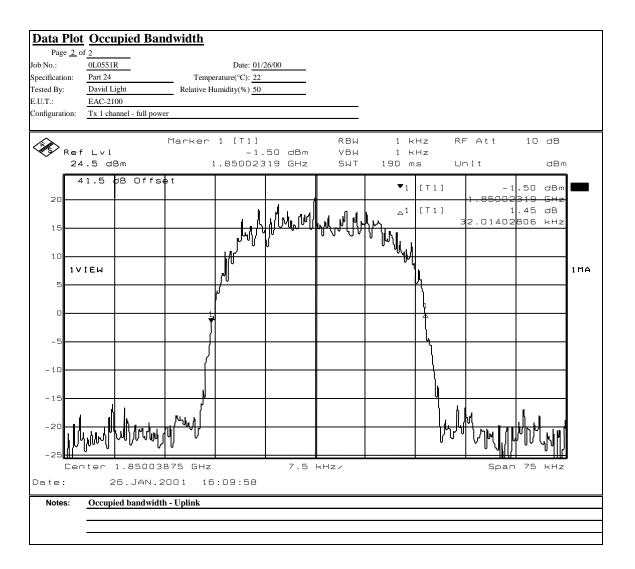
Test Results: Complies.

Test Data: See attached plot(s).

Equipment Used: 1036-1082-1475-1055


Measurement Uncertainty: +/- 1.6 dB

Temperature: 22 °C


Relative 50 %

Humidity:

Test Data - Occupied Bandwidth - NADC

Test Data - Occupied Bandwidth - NADC

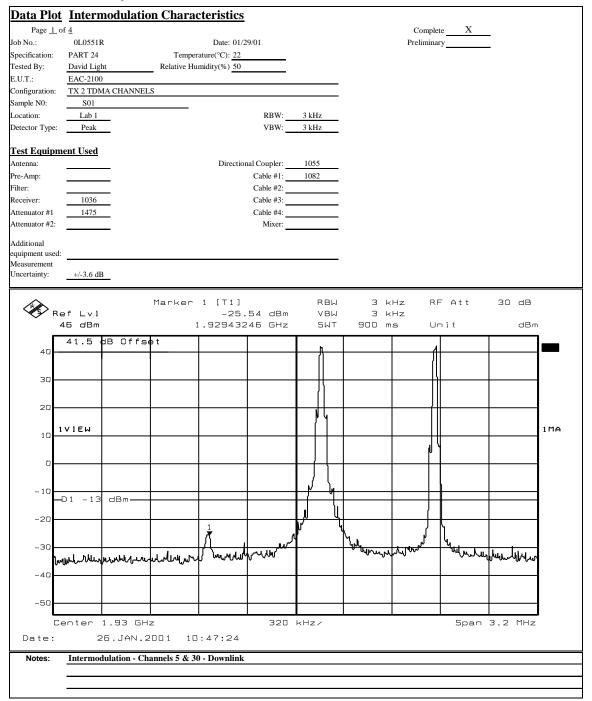
Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.1051

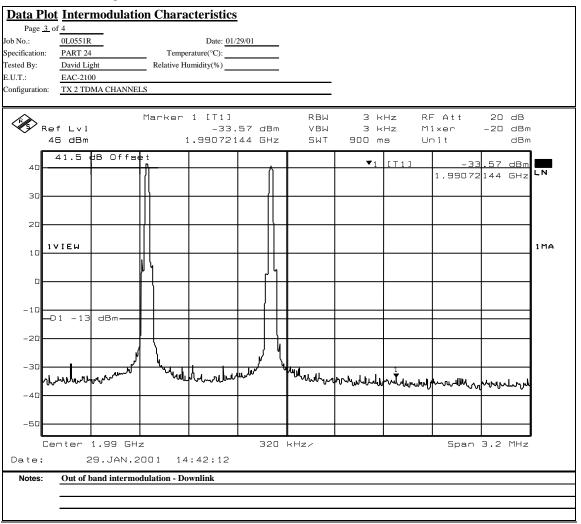
TESTED BY: David Light DATE:1/26/01 & 1/29/01

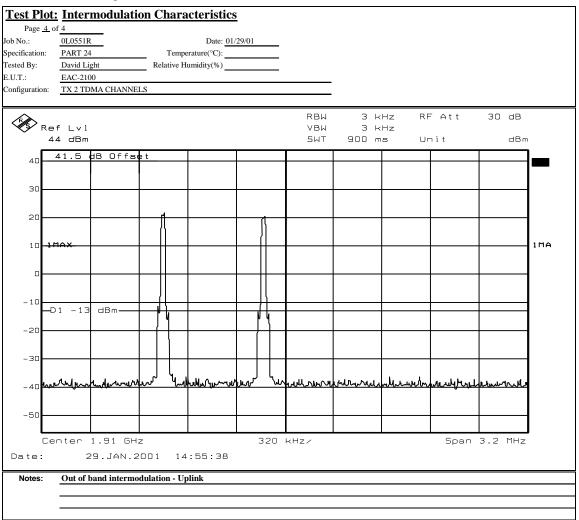
Test Results: Complies.

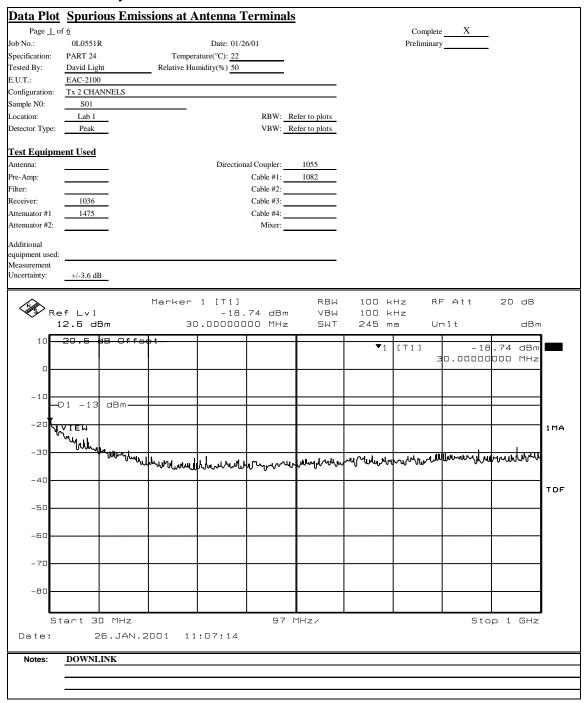
Test Data: See attached plot(s).

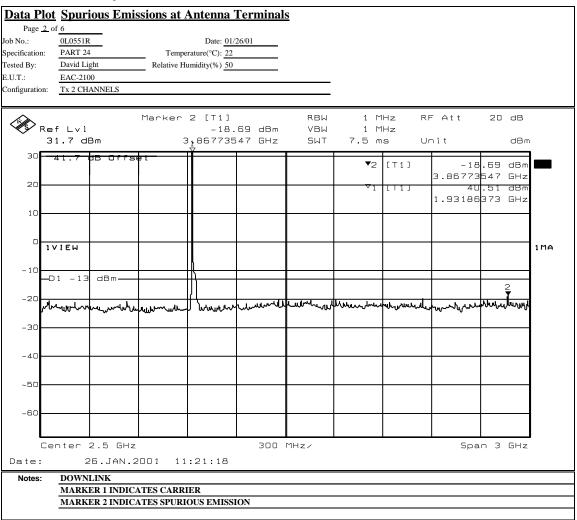

Equipment Used: 1036-1475-1082-1055

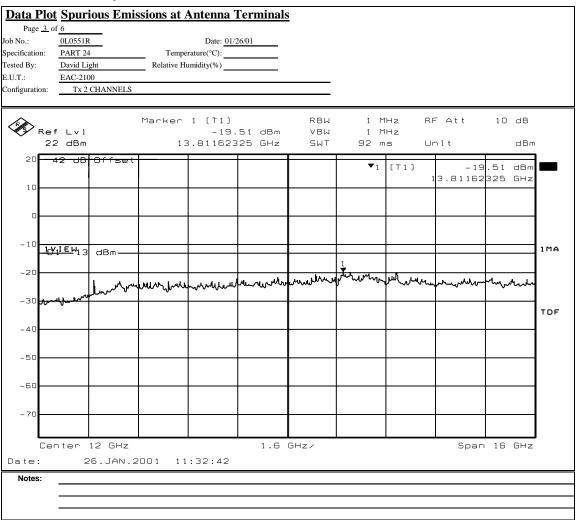

Measurement Uncertainty: +/- 1.6 dB

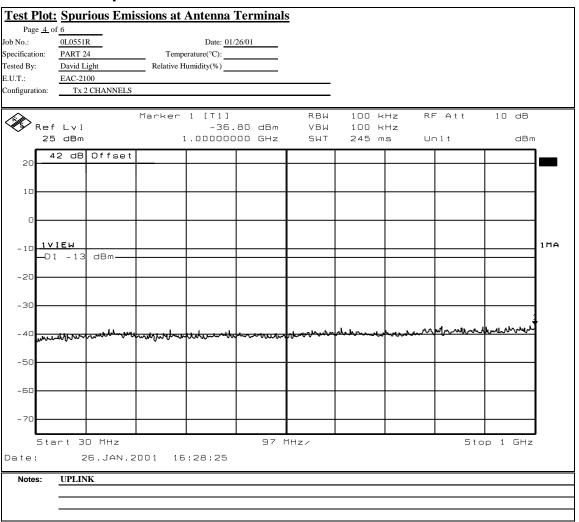

Temperature: 22 °C

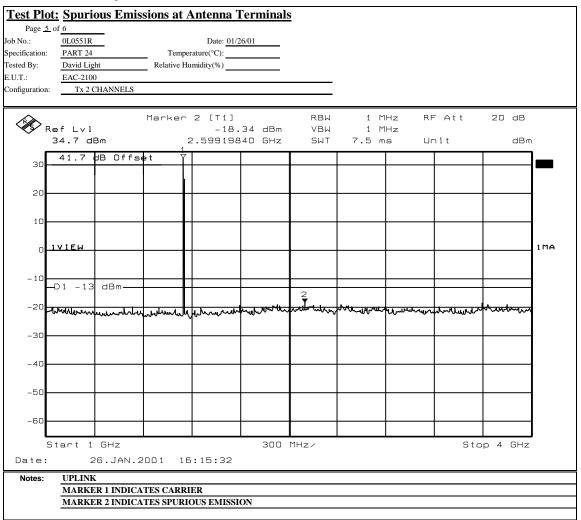

Relative 50 %

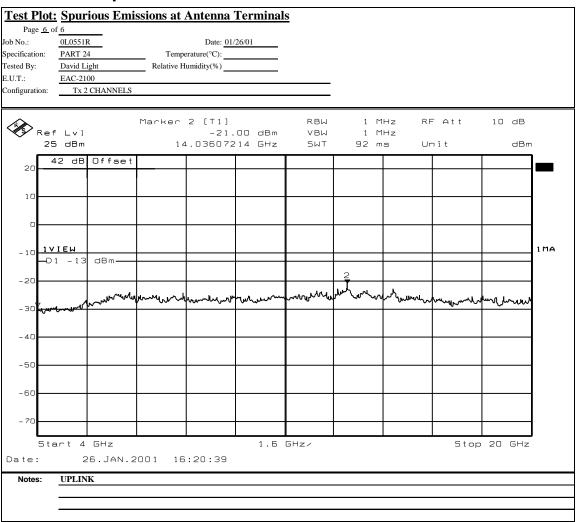

Humidity:











Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.1051

TESTED BY: David Light DATE: 1/29/01

Test Results: Complies.

Test Data: See attached table.

Equipment Used: 1436-1484-1485-993-1016-1481

Measurement Uncertainty: +/- 3.6 dB

Temperature: 22 °C

Relative 50 %

Humidity:

Test Data - Radiated Emissions

Field Strength of Spurious Emissions										
Page 1 of	f <u>1</u>							Complete	X	
Job No.:	9L0551R			Date:	01/29/01			Preliminary		
Specification:	PART 24		Temperatu	ure(°C):	22					
Tested By:	David Light		Relative Humi	dity(%)	50					
E.U.T.:	EAC-2100		-				_			
Configuration:	TRANSMIT	NADC SIGNAL	L INTO 50 OHM	TERM	INATION ON CHA	NNEL 2	_			
Sample No:	S01									
Location:	AC 3				RBW:	1 MHz	_	Measurement		
Detector Type:	Peak				VBW:	1 MHz	=	Distance:	3	m
Test Equipme	ent Used									
Antenna:				D	irectional Coupler:		_			
Pre-Amp:	1016				Cable #1:	1484	_			
Filter:	1481				Cable #2:	1485	=			
Receiver:	1464				Cable #3:		_			
Attenuator #1					Cable #4:		=			
Attenuator #2:					Mixer:		_			
Additional equipment used: Measurement Uncertainty:	+/-3.6 dB						-			
т	Meter	Correction	l n		Substitution		ERP	ERP	D-1'4	Comments
Frequency	Panding	Correction		e-Amp	Antenna Gain		EKP	EKP	Polarity	Comments

Frequency	Meter Reading	Correction Factor		Pre-Amp Gain	Substitution Antenna Gain		ERP	ERP	Polarity	Comments
(MHz)	(dBm)	(dB)		(dB)	(dBd)	Mode	(dBm)	(mW)		
1930	-41.5	29.9		0.0	6.4	Downlink	-5.3	0.295121	V	CARRIER
3860.16	-46.6	40.4		33.3	8.0	Downlink	-31.5	0.000705	V	
5790.24	-63.0	38.5		32.5	9.1	Downlink	-47.9	0.000016	V	NOISE FLOOR
7720.32	-62.0	40.4		33.4	9.4	Downlink	-45.5	0.000028	V	NOISE FLOOR
9650.40	-63.0	40.4		36.1	10.5	Downlink	-48.2	0.000015	V	NOISE FLOOR
17370.72	-61.0	47.0		34.9	11.7	Downlink	-37.1	0.000193	V	NOISE FLOOR
1930.08	-47.5	32.7		0.0	6.4	Downlink	-8.5	0.142561	Н	CARRIER
3860.16	-43.8	34.3		33.3	8.0	Downlink	-34.8	0.000333	Н	
5790.24	-61.5	36.0		32.5	9.1	Downlink	-48.9	0.000013	Н	
7720.32	-62.0	39.8		33.4	9.4	Downlink	-46.2	0.000024	Н	NOISE FLOOR
9650.40	-63.0	42.6		36.1	10.5	Downlink	-46.0	0.000025	Н	NOISE FLOOR
17370.72	-61.0	50.5		34.9	11.7	Downlink	-33.7	0.000430	Н	NOISE FLOOR
1850.02	-62.3	32.7		0.0	6.4	Uplink	-23.3	0.004721	Н	CARRIER
3700.04	-61.5	34.3		33.3	8.0	Uplink	-52.5	0.000006	Н	NOISE FLOOR
5550.06	-62.5	36.0		32.8	9.1	Uplink	-50.2	0.000009	Н	NOISE FLOOR
7400.08	-62.0	38.7		33.0	10.0	Uplink	-46.3	0.000023	Н	NOISE FLOOR
16650.18	-62.0	46.1		34.2	13.0	Uplink	-37.0	0.000198	Н	NOISE FLOOR
1850.02	-60.5	29.9		0.0	6.4	Uplink	-24.3	0.003715	V	CARRIER
3700.04	-61.5	40.4		33.3	8.0	Uplink	-46.4	0.000023	V	NOISE FLOOR
5550.06	-62.5	38.5		32.8	9.1	Uplink	-47.7	0.000017	V	NOISE FLOOR
7400.08	-62.0	39.4		33.0	10.0	Uplink	-45.6	0.000028	V	NOISE FLOOR
16650.18	-62.0	44.3		34.2	13.0	Uplink	-38.9	0.000130	V	NOISE FLOOR
Notes:	MEASUR	ED HARMON	ICS OF C	CARRIER T	O 10TH HARM	ONIC				<u> </u>

Page 23 of 40

Photographs of Test Setup

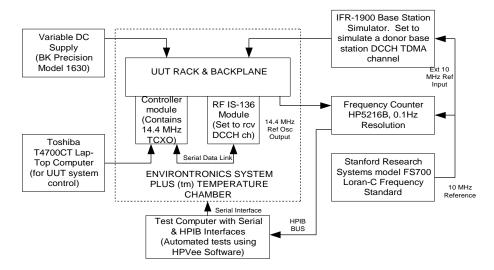
FRONT VIEW

REAR VIEW

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Test Results: Complies.


Measurement Data: See attached customer information.

Page 25 of 40

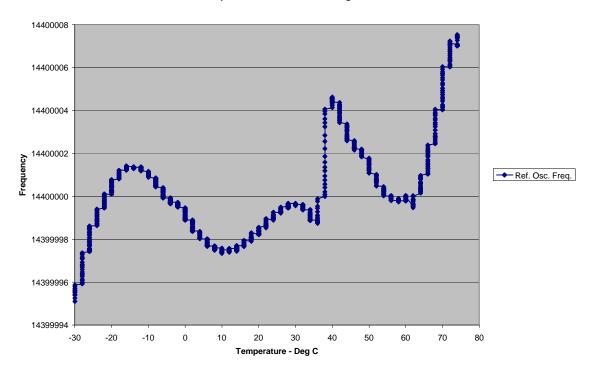
2.1055, Frequency stability (sheet 1 of 3)

Frequency stability of any receive or transmit channel in the EAC-2100 is controlled by a 14.4 MHz TCXO in the Controller Module. A TCXOs that meet the basic \pm 1 ppm tolerance is used in this product.

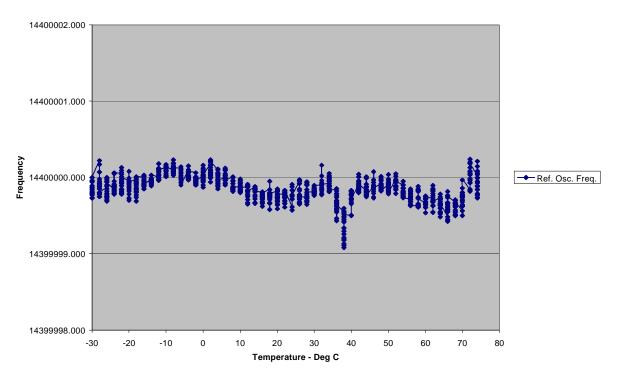
The test setup for measuring frequency stability as a function of temperature and as a function of supply voltage variation is as follows:

The worst-case supply voltage variation can occur if the EAC-2100 is operated on an external 24VDC battery power plant. Nominal voltage operation when AC mains is present will range from 27.5 to 28.5 VDC. Worst case minimum voltage will be 19VDC (the EAC-2100 automatically will shut down before this lower limit is met), and the maximum voltage could be as high as +31 VDC under cold temperature conditions. The results are as follows:

SUPPLY	Murata (G68A0019-1)		
VOLTAGE			
19.0 VDC	14.3999994 MHz		
27.8 VDC	14.3999994 MHz		
Nominal			
31.0 VDC	14.3999992 MHz		


As shown above, the variation in the reference oscillator is at most 0.2 Hz ($< \pm 0.02$ ppm) over power-supply voltage extremes.

2.1055, Frequency stability (sheet 2 of 3)


As described in Exhibit 10A, software control within the EAC-2100 will trim the 14.4 MHz TCXO such that it will be frequency-locked to within a few Hertz of the donor base station DCCH channel. This assures that the EAC-2100 will be compatible with the host digital cellular system, and will meet the ± 0.25 ppm frequency tolerance requirement.

Measurements of the reference oscillator over the specified temperature range is shown below. The first graph shows the uncompensated frequency of the TCXO. The second graph shows the compensated frequency of the Murata 14.4 MHz TCXO. Note that the frequency tolerance is held well within the ± 0.25 ppm requirement for successful system operation with mobiles. Note that internal heating elements are <u>not</u> employed. Therefore, frequency stability measurements as a function of time from cold-start were not measured.

Uncompensated Ref Osc Tracking off the air

Compensated Ref Osc Tracking off the air

Section 8. Test Equipment List

KTL ID	Description	Manufacturer Model Number	Serial Number	Calibration Date
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	06/14/99 2 Yr Cycle
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/02/01 2 Yr Cycle
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	05/25/00
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	05/25/00
1016	AMPLIFIER	HEWLETT PACKARD 8449A	2749A00159	05/24/00
1481	Microwave Highpass Filter	K & L 3DH1-2000/T8000-0/0	4	CBU
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	05/23/00
1055	DUAL DIRECTIONAL COUPLER	NARDA 3022	73393	CBU
1054	DUAL DIRECTIONAL COUPLER	NARDA 3020A	34366	CBU
1058	DUAL DIRECTIONAL COUPLER	HEWLETT PACKARD 11692D	1212A03366	CBU
1475	20db Attenuator DC 18 Ghz	MCL Inc. BW-S20W3	NONE	CBU
1048	50 OHM LOAD	NARDA 27470	254	02/15/00

Page 29 of 40

ANNEX A - TEST DETAILS

Page 30 of 40

PARA. NO.: 2.1046

EQUIPMENT: EAC 2100 PROJECT NO.: 0L0551RUS1

NAME OF TEST: RF Power Output

Minimum Standard: Para. No.24.232. Base stations are limited to 1640 watts peak

E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base station transmitter exceed

100 watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1047

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as the

width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of

which all emissions are attenuated at least 26 dB.

Method Of Measurement:

CDMA

Spectrum analyzer settings:

RBW: 30 kHz VBW: ≥ RBW Span: 5 MHz Sweep: Auto

Mask: Set markers to -26 dB from peak of CW.

GSM

RBW: 3 kHz VBW: ≥ RBW Span: 2 MHz Sweep: Auto

Mask: Set markers to -26 dB from peak of CW.

<u>NADC</u>

RBW: 1 kHz VBW: ≥ RBW Span: 1 MHz Sweep: Auto

Mask: Set markers to -26 dB from peak of CW.

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard: Para. No.24.238(a). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least $43 + 10 \log (P) dB$.

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u> <u>GSM</u>

RBW: 1 MHz (> 1 MHz from Band Edge)
RBW: 1 MHz (> 1 MHz from Band Edge)
RBW: 3 kHz (< 1 MHz from Band Edge)
RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

NADC

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

VBW: ≥ RBW Sweep: Auto

Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No.24.238(a). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least $43 + 10 \log (P) dB$.

Test Method: TIA/EIA-603-1992, Section 2.2.12

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The spurious emissions were measured at a distance of 3 meters. The EUT was then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna was fed with a signal at the spurious frequency. The level of the signal was adjusted to repeat the previously measured level. The resulting erp is the signal level fed to the reference antenna corrected for gain referenced to a dipole.

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient to

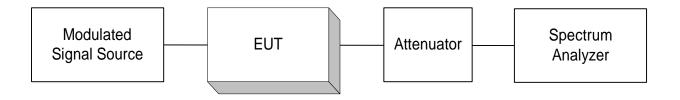
ensure that the fundamental emission stays within the authorized

frequency block.

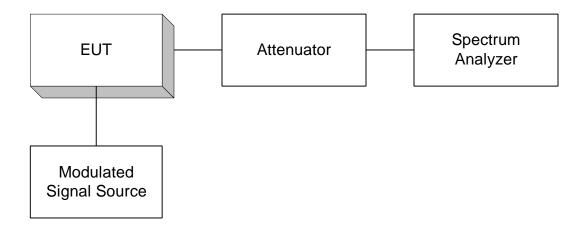
Method Of Measurement:

Frequency Stability With Voltage Variation

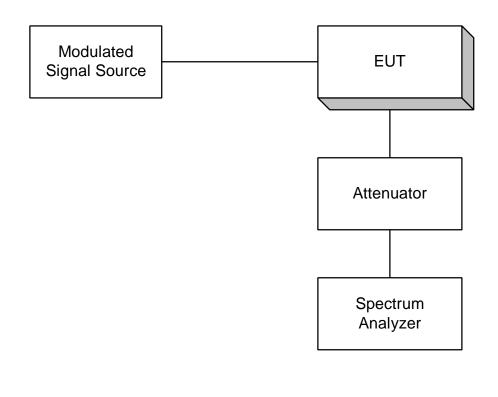
The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

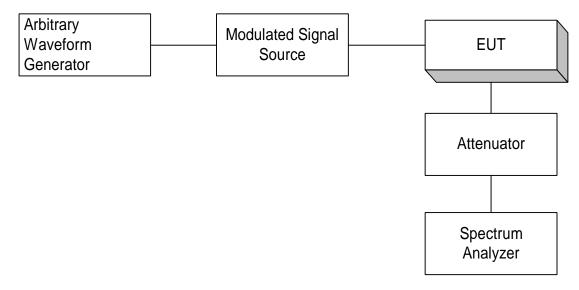

Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

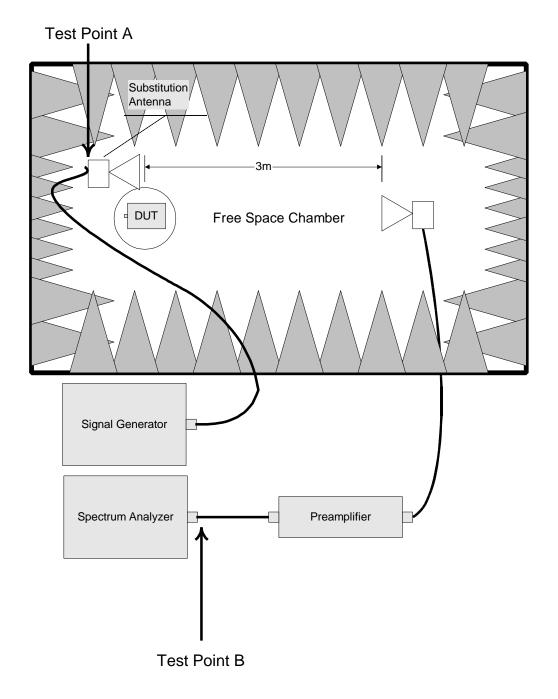

ANNEX B - TEST DIAGRAMS

Page 36 of 40

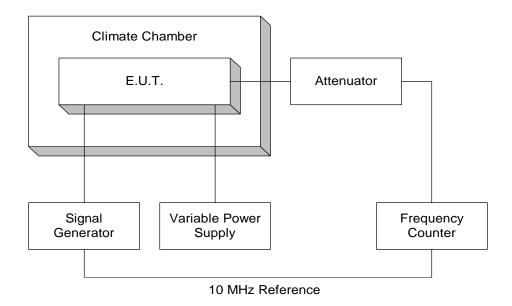

Para. No. 2.985 - R.F. Power Output



Para. No. 2.989 - Occupied Bandwidth



Para. No. 2.991 Spurious Emissions at Antenna Terminals



Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

