

| Nemko Test Report:                | 16263RUS1                                                            |
|-----------------------------------|----------------------------------------------------------------------|
| Applicant:                        | Andrew Corporation<br>108 Rand Park Drive<br>Garner, NC 27529<br>USA |
| Equipment Under Test:<br>(E.U.T.) | AF8037                                                               |
| In Accordance With:               | CFR 47 Part 90, Subpart I Private Land Mobile Repeater               |
| Tested By:                        | Nemko USA, Inc.<br>802 N. Kealy<br>Lewisville, TX 75057-3136         |
| TESTED BY:  David Light, Se       | DATE: 07 October, 2008 nior Wireless Engineer                        |
| APPROVED BY:                      | DATE: 08 October, 2008                                               |

Number of Pages: 41

# **Table of Contents**

| SECTION 1.   | SUMMARY OF TEST RESULTS                 | 3  |
|--------------|-----------------------------------------|----|
| SECTION 2.   | GENERAL EQUIPMENT SPECIFICATION         | 5  |
| SECTION 3.   | RF POWER OUTPUT                         | 7  |
| SECTION 4.   | OCCUPIED BANDWIDTH                      | 8  |
| SECTION 5.   | SPURIOUS EMISSIONS AT ANTENNA TERMINALS | 15 |
| SECTION 6.   | FIELD STRENGTH OF SPURIOUS EMISSIONS    | 30 |
| SECTION 7.   | TEST EQUIPMENT LIST                     | 31 |
| ANNEX A - TE | ST METHODOLOGIES                        | 32 |
| ANNEX B - TE | ST DIAGRAMS                             | 38 |

#### Section 1. Summary of Test Results

Manufacturer Andrew Corporation

Model No.: AF8037

Serial No.: 16

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with CFR Part 90, Subpart I.

| $\boxtimes$ | New Submission             | $\boxtimes$ | Production Unit    |
|-------------|----------------------------|-------------|--------------------|
|             | Class II Permissive Change |             | Pre-Production Uni |

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

LAB CODE: 100426-0

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

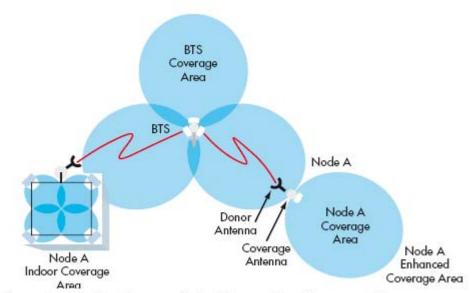
#### **Summary Of Test Data**

| NAME OF TEST                               | PARA. NO. | SPEC.        | RESULT   |
|--------------------------------------------|-----------|--------------|----------|
| RF Power Output                            | 90.635    | Table        | Complies |
| Occupied Bandwidth                         | 90.210    | Input/Output | Complies |
| Spurious Emissions at Antenna<br>Terminals | 90.210    | -13 dBm      | Complies |
| Field Strength of Spurious Emissions       | 90.210    | -13 dBm      | Complies |
| Frequency Stability                        | 90.213    |              | NA       |

#### Footnotes For N/A's:

- (1) Since the E.U.T. does not contain modulation circuitry modulation testing was not performed.
- (2) Since the E.U.T. is not a keyed carrier system, Transient Frequency Behavior was not performed.
- (3) The E.U.T. uses a common oscillator to down-convert the rf input frequency to an intermediate frequency and to up-convert the IF signal back to the rf output frequency. The rf input and output frequencies are the same.

\_


| Section 2. | General | <b>Equipm</b> | ent Spe | cification |
|------------|---------|---------------|---------|------------|
|------------|---------|---------------|---------|------------|

| Transmitter              |          |                       |             |                    |                      |
|--------------------------|----------|-----------------------|-------------|--------------------|----------------------|
| Supply Voltage Input:    |          | 120 Vac               |             |                    |                      |
| Frequency Range:         |          | 851 to 869 N          | MHz Downlir | nk                 |                      |
|                          |          | 806 to 824 M          | MHz Uplink  |                    |                      |
| Type(s) of Modulation:   |          | F3E / F1D<br>(Analog) |             | D7W<br>QAM)        | Other                |
| Gain:                    |          | 94 dB                 |             |                    |                      |
| Output Impedance:        |          | 50 ohms               |             |                    |                      |
| RF Power Output (rated): | Downlink | 5.0 W<br>37 dBm       |             |                    |                      |
|                          | Uplink:  | 1.0 W<br>0.5 dBm      |             |                    |                      |
| Frequency Translation:   |          |                       | F1-F1       | F1-F2              | N/A                  |
| Band Selection:          |          |                       | Software    | Duplexer<br>Change | Fullband<br>Coverage |

#### **Description of EUT**

The Node A is an RF enhancer which is capable of filtering and amplifying a multitude of distinct sub-bands up to 120 MHz in total anywhere within multiple frequency bands. It is designed to be part of the primary infrastructure

#### **System Diagram**



Scenario: Extending Coverage for buildings and small coverage holes

#### Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.985

TESTED BY: David Light DATE: 07 October 2008

Test Results: Complies.

**Measurement Data:** 

| Direction | Modulation | Composite<br>Power<br>(dBm) | RF<br>Power<br>(W) |
|-----------|------------|-----------------------------|--------------------|
| Downlink  | iDEN       | 37                          | 5.0                |
|           | Analog     | 37                          | 5.0                |
|           |            |                             |                    |
| Uplink    | iDEN       | 30                          | 1.0                |
|           | Analog     | 30                          | 1.0                |
|           |            |                             |                    |

**Equipment Used:** 1065-1604-1082-1659

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

**Relative Humidity:** 48 %

## Section 4. Occupied Bandwidth

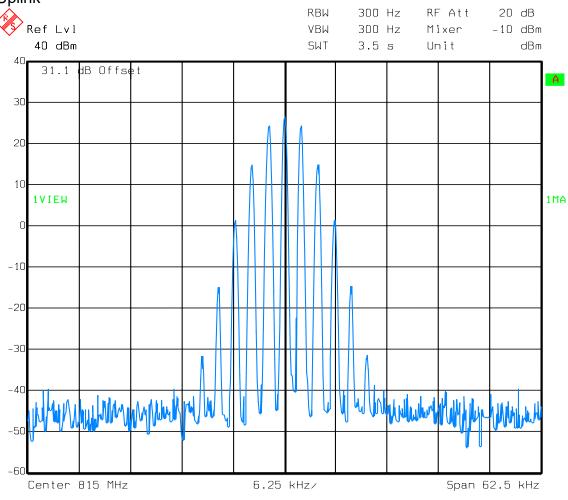
NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.989

TESTED BY: David Light DATE: 07 October 2008

Test Results: Complies.

**Test Data:** See attached plot(s).

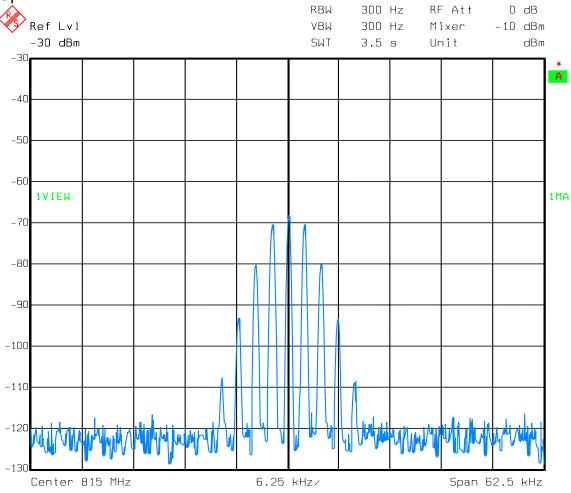
**Equipment Used:** 1065-1604-1082-1659


Measurement Uncertainty: 1X10<sup>-7</sup> Ppm

Temperature: 22 °C

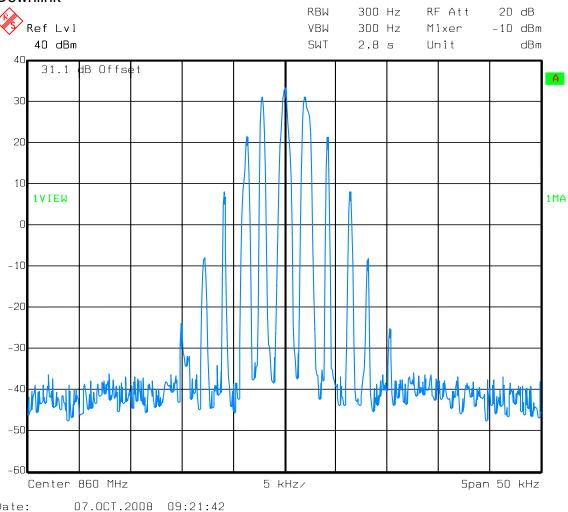
**Relative Humidity:** 48 %

#### Test Data - Occupied Bandwidth


Analog - Output Uplink



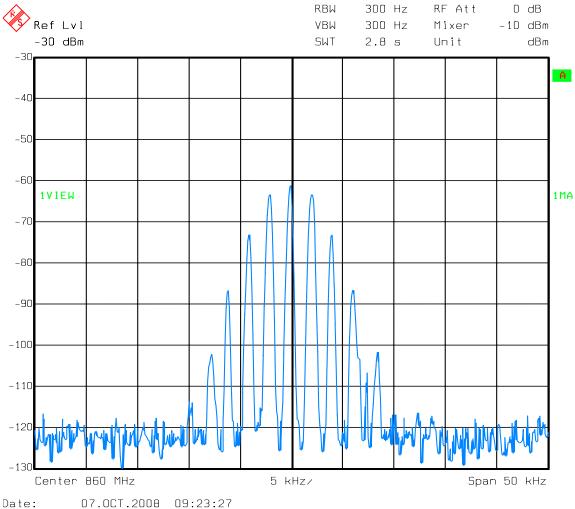
Date: 07.0CT.2008 09:02:40 **2 kHz tone @ 2.5 kHz peak deviation** 


#### Test Data - Occupied Bandwidth

Analog – Input Uplink



#### Test Data - Occupied Bandwidth

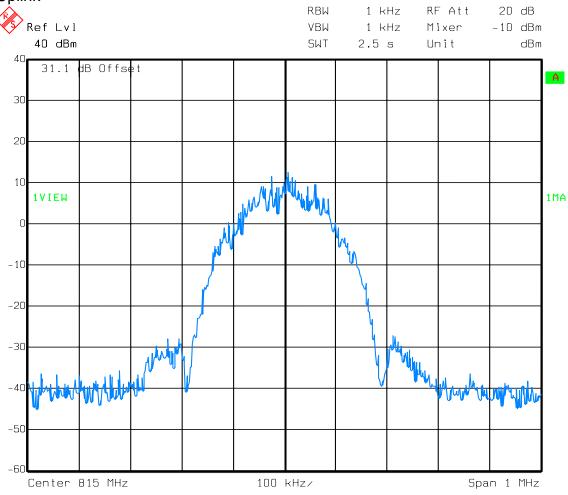

Analog - Output Downlink



2 kHz tone @ 2.5 kHz peak deviation

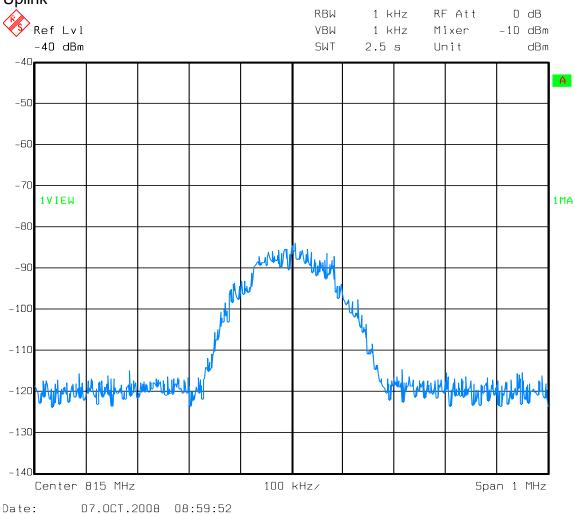
#### Test Data - Occupied Bandwidth

Analog – Input Downlink



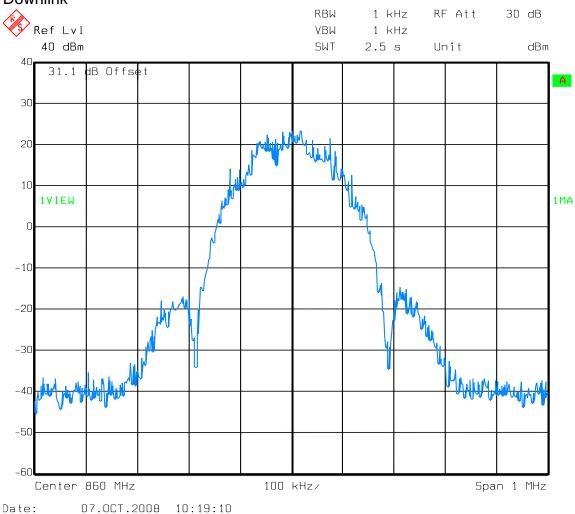

#### **Test Data – Occupied Bandwidth**

07.0CT.2008 08:58:26


Date:

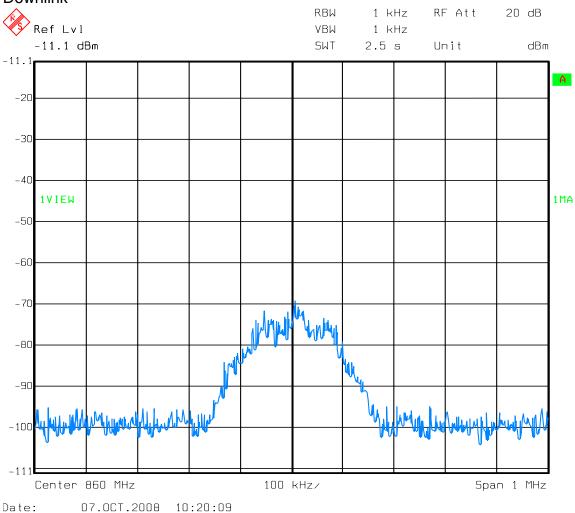
iDEN – Output Uplink




#### Test Data - Occupied Bandwidth

iDEN - Input Uplink




#### **Test Data – Occupied Bandwidth**

iDEN – Output Downlink



#### Test Data - Occupied Bandwidth

iDEN - Input Downlink



#### Section 5. Spurious Emissions at Antenna Terminals

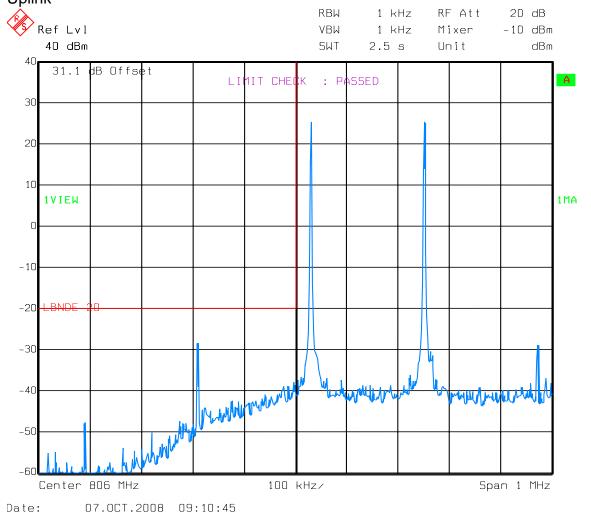
NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.991

TESTED BY: David Light DATE: 07 October 2008

Test Results: Complies.

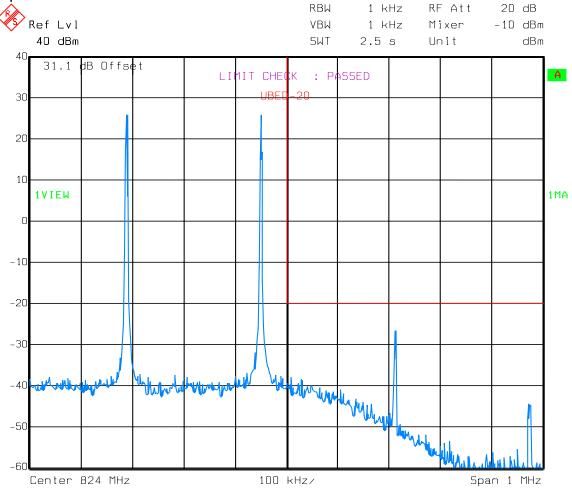
**Test Data:** See attached plot(s).

**Equipment Used:** 1065-1604-1082-1659


Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity:  $\underline{\phantom{0}48}$  %

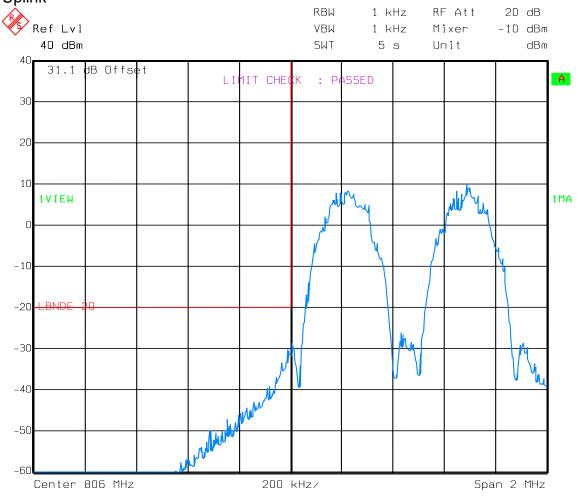

#### **Test Data – Spurious Emissions at Antenna Terminals**

Lower Bandedge Intermodulation Analog Uplink



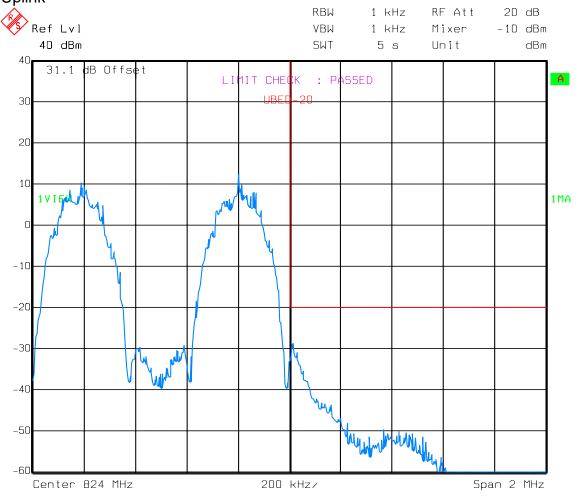

#### **Test Data – Spurious Emissions at Antenna Terminals**

Upper Bandedge Intermodulation Analog Uplink




## **Test Data – Spurious Emissions at Antenna Terminals**

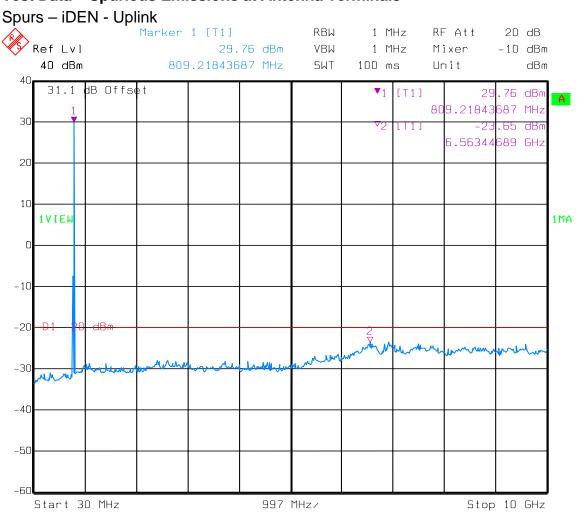



#### Test Data – Spurious Emissions at Antenna Terminals

Lower Bandedge Intermodulation iDEN Uplink

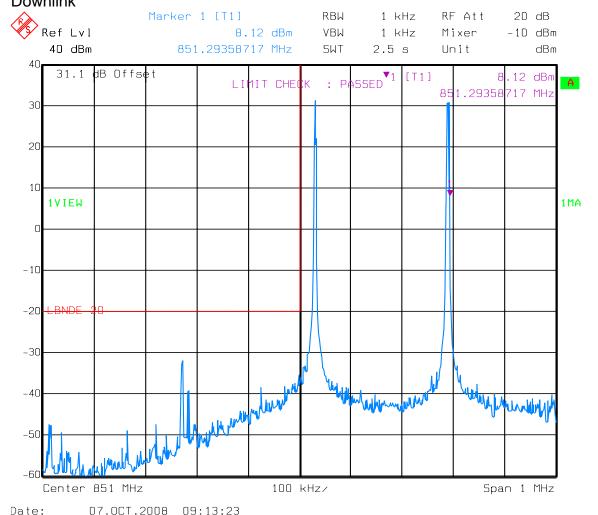


#### **Test Data – Spurious Emissions at Antenna Terminals**


Upper Bandedge Intermodulation iDEN Uplink

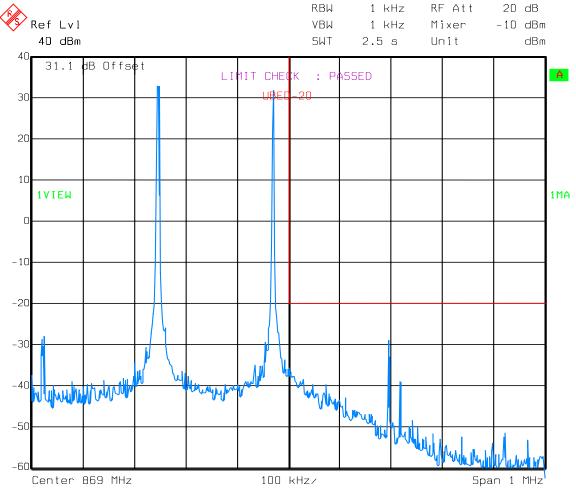


Date:


07.0CT.2008 08:56:43

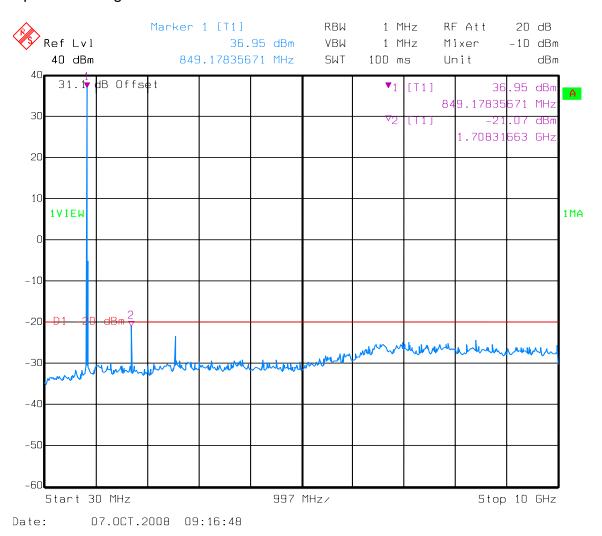
## Test Data – Spurious Emissions at Antenna Terminals




#### Test Data – Spurious Emissions at Antenna Terminals

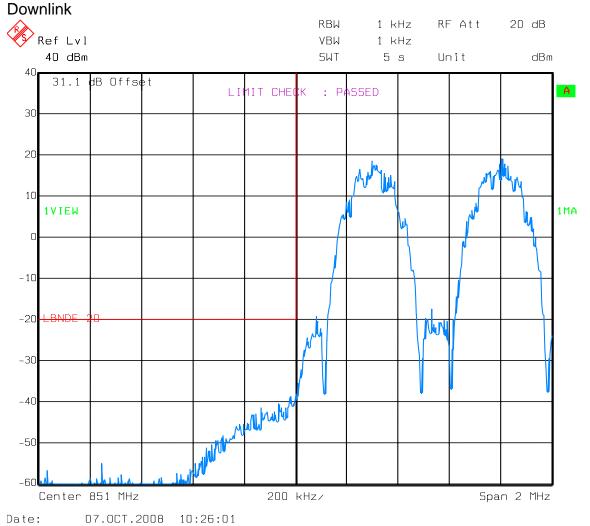
Lower Bandedge Intermodulation Analog Downlink




#### Test Data – Spurious Emissions at Antenna Terminals

Upper Bandedge Intermodulation Analog Downlink

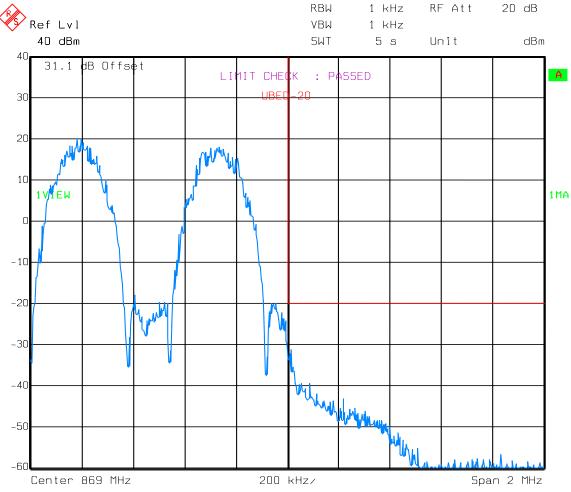



#### **Test Data – Spurious Emissions at Antenna Terminals**

Spurs - Analog - Downlink

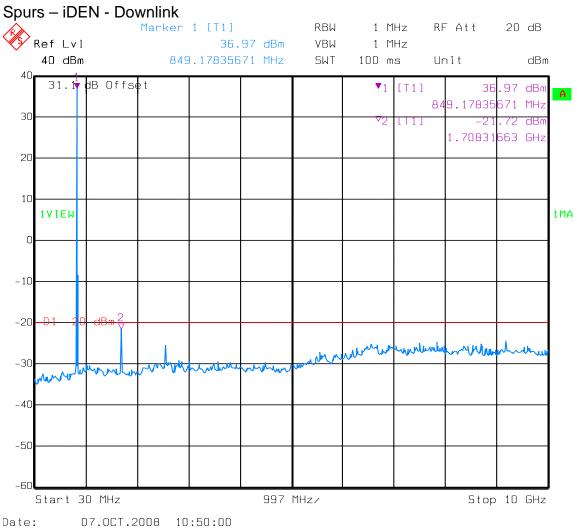


#### Test Data – Spurious Emissions at Antenna Terminals


Lower Bandedge Intermodulation iDEN



#### **Test Data – Spurious Emissions at Antenna Terminals**


Upper Bandedge Intermodulation iDEN

Downlink



Date: 07.0CT.2008 10:25:05

# **Test Data – Spurious Emissions at Antenna Terminals**



# Section 6. Field Strength of Spurious Emissions

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.993

TESTED BY: David Light DATE: 28 June 2007

Test Results: Complies.

**Test Data:** The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor which was at least 20 dB below the

specification limit.

.

**Analyzer Settings:** RBW = VBW = 1 MHz / Peak detector

**Equipment Used:** 1464-1484-1485-1016-993-791-1763

Measurement Uncertainty: +/-1.7 dB

Temperature: 22 °C

Relative Humidity: 48 %

# Section 7. Test Equipment List

| Nemko ID | Description       | Manufacturer<br>Model Number   | Serial Number | Calibration<br>Date | Calibration<br>Due |
|----------|-------------------|--------------------------------|---------------|---------------------|--------------------|
| 1065     | ATTENUATOR        | NARDA<br>776B-10               | NONE          | CBU                 | N/A                |
| 1604     | ATTENUATOR        | NARDA<br>776B-20               | NONE          | N/A                 | N/A                |
| 1659     | Spectrum Analyzer | Rhode & Schwarz<br>FSP         | 973353        | 01/24/07            | 01/24/09           |
| 1082     | CABLE 2m          | Astrolab<br>32027-2-29094-72TC | N/A           | CBU                 | N/A                |
| 1464     | Spectrum analyzer | Hewlett Packard<br>8563E       | 3551A04428    | 01/24/07            | 01/24/09           |
| 1484     | Cable             | Storm<br>PR90-010-072          | N/A           | 05/07/08            | 05/07/09           |
| 1485     | Cable             | Storm<br>PR90-010-216          | N/A           | 05/07/08            | 05/07/09           |
| 1016     | Pre-Amp           | HEWLETT PACKARD<br>8449A       | 2749A00159    | 05/07/08            | 05/07/09           |
| 993      | Horn antenna      | A.H. Systems<br>SAS-200/571    | XXX           | 08/31/07            | 08/30/09           |
| 791      | PREAMP, 25dB      | Nemko USA, Inc.<br>LNA25       | 398           | 05/07/08            | 05/07/09           |
| 1763     | Bilog Antenna     | Schaffner<br>CBL 6111D         | 22926         | 10/21/07            | 10/20/08           |

Nemko USA, Inc.

CFR 47 PART 90, SUBPART I PRIVATE LAND MOBILE REPEATER

EQUIPMENT: AF8037

PROJECT NO.: 16263RUS1

#### **ANNEX A - TEST METHODOLOGIES**

NAME OF TEST: RF Power Output PARA. NO.: 2.985

**Minimum Standard:** Para. No. 90.205(a). The maximum allowable station ERP is

dependent upon the stations HAAT and required service area

and will be authorized in accordance with Table 1 of

90.205(d).

#### **Method Of Measurement:**

#### <u>Detachable Antenna:</u>

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

#### Integral Antenna:

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

Page 33 of 41

NAME OF TEST: Spurious Emissions at Antenna PARA. NO.: 2.991 Terminals

Minimum Standard: 90.210, Table 1

#### Table 1

| Frequency Band (MHz) | Mask for equipment with Low Pass Filter | Mask for equipment without Low Pass Filter |
|----------------------|-----------------------------------------|--------------------------------------------|
| Below 25             | A or B                                  | A or C                                     |
| 25 - 50              | В                                       | С                                          |
| 72 - 76              | В                                       | С                                          |
| 150 - 174            | B, D or E                               | C, D or E                                  |
| 150 Paging only      | В                                       | С                                          |
| 220 - 222            | F                                       | F                                          |
| 421 - 512            | B, D or E                               | C, D or E                                  |
| 450 paging only      | В                                       | Н                                          |
| 806 - 821/ 851 - 866 | В                                       | G                                          |
| 821 - 824/ 866 - 869 | В                                       | Н                                          |
| 896 - 901/ 935 - 940 | I                                       | J                                          |
| 902 - 928            | K                                       | K                                          |
| 929 - 930            | В                                       | G                                          |
| Above 940            | В                                       | С                                          |
| All other bands      | В                                       | С                                          |

| MASK        | Spurious Limit | FS Limit Below 1<br>GHz     | FS Limit Above 1<br>GHz |
|-------------|----------------|-----------------------------|-------------------------|
| A,B,C,G,H,I | -13dBm         | 84.4 dB <sub>μ</sub> V/m@3m | 82.2 dBμV/m@3m          |
| D,J         | -20dBm         | 77.4 dBμV/m@3m              | 75.2 dBμV/m@3m          |
| E,F,K       | -25dBm         | 72.4 dB <sub>μ</sub> V/m@3m | 70.2 dBμV/m@3m          |

**Test Method:** RBW: 1% of emission bandwidth in the 0 - 1 GHz range.

1 MHz at frequencies above 1 GHz.

 $VBW: \Rightarrow RBW$ 

The spectrum is searched up to 10 times the fundamental frequency.

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.989

Minimum Standard: Not defined. Input/Output

**Method Of Measurement:** 

<u>Analog</u>

Spectrum analyzer settings: RBW=VBW=300 Hz

Span: 100 kHz Sweep: Auto

<u>iDEN</u>

RBW=VBW= 300 Hz

Span: 100 kHz Sweep: Auto

NAME OF TEST: Field Strength of Spurious PARA. NO.: 2.993

Minimum Standard: Para. No. 90.210, see table 1 for applicable mask.

Method Of Measurement: TIA/EIA-603-1992

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

| MASK        | Spurious Limit | FS Limit Below 1<br>GHz     | FS Limit Above 1<br>GHz |
|-------------|----------------|-----------------------------|-------------------------|
| A,B,C,G,H,I | -13dBm         | 84.4 dBμV/m@3m              | 82.2 dBμV/m@3m          |
| D,J         | -20dBm         | 77.4 dBµV/m@3m              | 75.2 dBμV/m@3m          |
| E,F,K       | -25dBm         | 72.4 dB <sub>μ</sub> V/m@3m | 70.2 dBμV/m@3m          |

Page 36 of 41

## NAME OF TEST: Frequency Stability PARA. NO.: 2.995

**Minimum Standard:** 

Para. No. 990.213. The transmitter carrier frequency

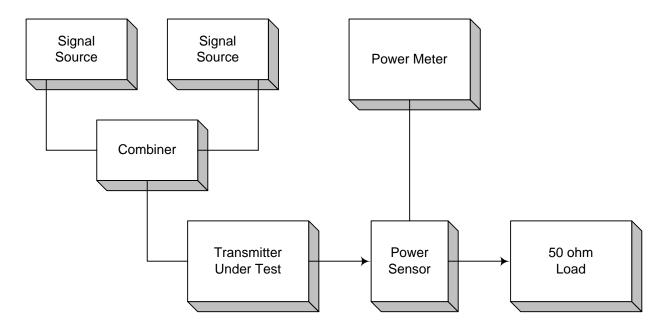
shall remain

within the assigned frequency below in ppm.

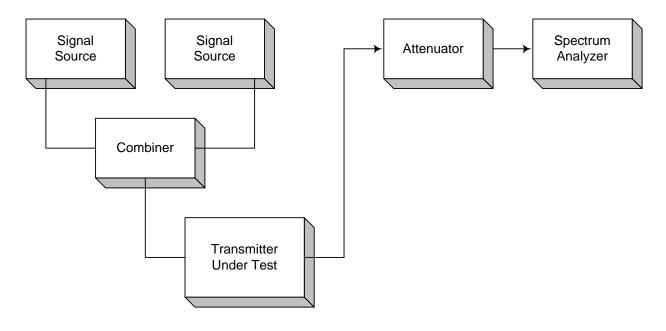
#### Table 2

| Frequency Band | Fixed And Base | Mobile Stations   |                   |
|----------------|----------------|-------------------|-------------------|
| (MHz)          | Stations       | > 2 Watts o/p pwr | < 2 Watts o/p pwr |
| Below 25       | 100            | 100               | 200               |
| 25 - 50        | 20             | 20                | 50                |
| 72 - 76        | 5              | -                 | 50                |
| 150 - 174      | 5              | 5                 | 5                 |
| 220 - 222      | 0.1            | 1.5               | 1.5               |
| 421 - 512      | 2.5            | 5                 | 5                 |
| 806 - 821      | 1.5            | 2.5               | 2.5               |
| 821 - 824      | 1.0            | 1.5               | 15                |
| 851 - 866      | 1.5            | 2.5               | 2.5               |
| 866 - 869      | 1.0            | 1.5               | 1.5               |
| 869 - 901      | 0.1            | 1.5               | 1.5               |
| 902 - 928      | 2.5            | 2.5               | 2.5               |
| 929 - 930      | 1.5            | -                 | -                 |
| 935 - 940      | 0.1            | 1.5               | 1.5               |
| 1427 - 1435    | 300            | 300               | 300               |
| Above 2450     | -              | -                 | -                 |

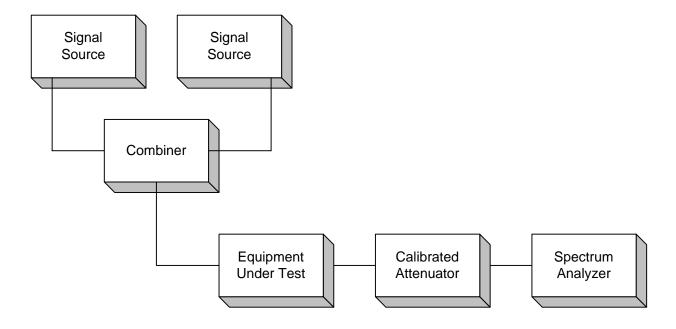
Nemko USA, Inc.


CFR 47 PART 90, SUBPART I PRIVATE LAND MOBILE REPEATER

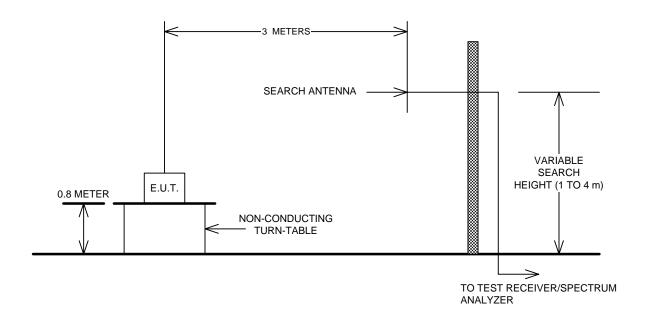
EQUIPMENT: AF8037


PROJECT NO.: 16263RUS1

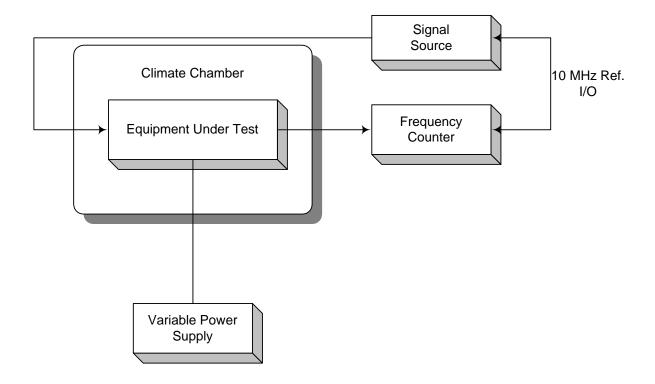
#### **ANNEX B - TEST DIAGRAMS**


Para. No. 2.985 - R.F. Power Output




#### Para. No. 2.989 - Occupied Bandwidth




Para. No. 2.991 - Spurious Emissions at Antenna Terminals



Para. No. 2.993 - Field Strength of Spurious Radiation



Para. No. 2.995 - Frequency Stability

