

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name: Apple Inc. One Apple Park Way Cupertino, CA 95014 Date of Testing: 06/26/2020 – 07/15/2020 Test Site/Location: PCTEST Lab, Morgan Hill, CA, USA Document Serial No.: 1C2004270028-01-R1.BCG

FCC ID: BCGA2316

APPLICANT: APPLE, INC.

DUT Type: Tablet Device
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: A2316

Equipment	Band & Mode	Tx Frequency	SAR
Class	Balla a Mede	TXTTOQUOTO	1g Body (W/kg)
DTS	2.4 GHz WLAN	2412 - 2472 MHz	1.10
NII	U-NII-1	5180 - 5240 MHz	N/A
NII	U-NII-2A	5260 - 5320 MHz	1.19
NII	U-NII-2C	5500 - 5720 MHz	1.19
NII	U-NII-3	5745 - 5825 MHz	1.19
DSS/DTS	DSS/DTS Bluetooth 2402 - 2480 MHz		
Simultaneous	1.36		

Note: This revised Test Report (S/N: 1C2004270028-01-R1.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCGA2316	PCTEST* Proud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 4 of 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 1 of 52

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTROD	DUCTION	16
3	DOSIME	ETRIC ASSESSMENT	17
4	TEST C	ONFIGURATION POSITIONS	18
5	RF EXP	OSURE LIMITS	19
6	FCC ME	ASUREMENT PROCEDURES	20
7	RF CON	IDUCTED POWERS	23
8	SYSTEM	M VERIFICATION	37
9	SAR DA	TA SUMMARY	39
10	FCC ML	JLTI-TX AND ANTENNA SAR CONSIDERATIONS	44
11	SAR ME	ASUREMENT VARIABILITY	47
12	EQUIPM	MENT LIST	48
13	MEASU	REMENT UNCERTAINTIES	49
14	CONCL	USION	50
15	REFERE	ENCES	51
APPEN	IDIX A: IDIX B: IDIX C:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS	
APPEN	IDIX D:	SAR SYSTEM VALIDATION	
APPEN	IDIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
	IDIX F: IDIX G: IDIX H:	IEEE 802.11AX RU SAR EXCLUSION TIME-AVERAGED SAR VERIFICATION DRODE AND DIROLE CALIBRATION CERTIFICATES	
ALLEI	וטוא ח.	PROBE AND DIPOLE CALIBRATION CERTIFICATES	

	FCC ID: BCGA2316	Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 0 -4 50
	1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 2 of 52
© 202	0 PCTEST.			REV 21.4 M

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device utilizes an independent single step power reduction mechanism for Bluetooth operations. When Bluetooth is operating simultaneously with 5 GHz WLAN, the output power of Bluetooth is reduced for the duration of simultaneous operation. SAR evaluation was additionally performed at the maximum allowed output power for Bluetooth which is applicable for all other use cases. Detailed description of the mechanism and the verification procedures are included in the operational description document. Section 7.4 contains a summary of the verification results.

Additionally, this device uses an independent mechanism that limits WIFI powers to a time-averaged output power. For the purposes of this test report, all SAR measurements were performed with the algorithm disabled at the maximum time-averaged output power level. Appendix G includes verification data for this time-averaged SAR mechanism.

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 2 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 3 of 52

© 2020 PCTEST.

REV 21.4 M
09/11/2019

1.3 **Nominal and Maximum Output Power Specifications**

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 **Maximum Time-Averaged Output Power**

Note: Targets for 802.11ax RU operations can be found in Appendix F.

			IEEE 802.1	1b (2.4 GHz)	IEEE 802.1	1g (2.4 GHz)	IEEE 802.11	n (2.4 GHz)	IEEE 802.11a	x SU (2.4 GHz)
Mode/ Band		Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	19.00	17.50	15.00	13.50	15.00	13.50	14.50	13.00
		2	20.25	18.75	17.50	16.00	17.50	16.00	17.00	15.50
		3	20.25	18.75	19.00	17.50	19.00	17.50	18.50	17.00
		4	20.25	18.75	20.25	18.75	20.25	18.75	20.00	18.50
Modulated		5	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Average - Single	20 MHz	6	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Tx Chain (dBm) -	Bandwidth	7	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Antenna WF7B	Balluwiutii	8	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Antenna WF/B		9	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
	10	20.25	18.75	18.50	17.00	18.50	17.00	16.50	15.00	
		11	20.25	18.75	15.50	14.00	15.50	14.00	14.00	12.50
		12	18.00	16.50	12.00	10.50	12.00	10.50	10.00	8.50
		13	17.00	15.50	10.50	9.00	10.50	9.00	N/A	N/A

			IEEE 802.1	1g (2.4 GHz)	IEEE 802.1	.1n (2.4 GHz)	IEEE 802.11ax	SU (2.4 GHz)
Mode/	Mode/ Band		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	14.00	12.50	14.00	12.50	13.50	12.00
		2	16.50	15.00	16.50	15.00	16.00	14.50
		3	18.50	17.00	18.50	17.00	18.00	16.50
		4	19.50	18.00	19.50	18.00	19.00	17.50
Modulated		5	19.50	18.00	19.50	18.00	19.50	18.00
Average - 2 Tx	20 MHz	6	19.50	18.00	19.50	18.00	19.50	18.00
Chain (dBm) -	Bandwidth	7	19.50	18.00	19.50	18.00	19.50	18.00
Antenna WF7B	Banawiath	8	19.50	18.00	19.50	18.00	19.50	18.00
Antenna WF7B		9	19.50	18.00	19.50	18.00	19.50	18.00
		10	16.00	14.50	16.00	14.50	15.50	14.00
		11	14.00	12.50	14.00	12.50	12.00	10.50
		12	11.00	9.50	11.00	9.50	9.50	8.00
Nata La NAINAC		13	9.50	8.00	9.50	8.00	N/A	N/A

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	Proceed to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 4 of 50	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 4 of 52	

© 2020 PCTEST.

			IEEE 802.1	1b (2.4 GHz)	IEEE 802.1	.1g (2.4 GHz)	IEEE 802.11	n (2.4 GHz)	IEEE 802.11a:	x SU (2.4 GHz)
Mode/ Band		Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	19.00	17.50	15.00	13.50	15.00	13.50	14.50	13.00
		2	21.25	19.75	17.50	16.00	17.50	16.00	17.00	15.50
		3	21.25	19.75	19.00	17.50	19.00	17.50	18.50	17.00
		4	21.25	19.75	21.25	19.75	21.25	19.75	20.00	18.50
Modulated		5	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
Average -	20 MHz	6	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
Single Tx Chain	Bandwidth	7	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
(dBm) -	Bandwidth	8	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
Antenna WF8		9	21.25	19.75	21.00	19.50	21.00	19.50	20.50	19.00
		10	21.25	19.75	18.50	17.00	18.50	17.00	16.50	15.00
		11	21.00	19.50	15.50	14.00	15.50	14.00	14.00	12.50
		12	18.00	16.50	12.00	10.50	12.00	10.50	10.00	8.50
		13	17.00	15.50	10.50	9.00	10.50	9.00	N/A	N/A

			IEEE 802.1	1g (2.4 GHz)	IEEE 802.1	1n (2.4 GHz)	IEEE 802.11ax	SU (2.4 GHz)
Mode	Mode/ Band		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	14.00	12.50	14.00	12.50	13.50	12.00
		2	16.50	15.00	16.50	15.00	16.00	14.50
		3	18.50	17.00	18.50	17.00	18.00	16.50
		4	19.50	18.00	19.50	18.00	19.00	17.50
Modulated		5	19.50	18.00	19.50	18.00	19.50	18.00
Average - 2 Tx	20 MHz	6	19.50	18.00	19.50	18.00	19.50	18.00
Chain (dBm) -	Bandwidth	7	19.50	18.00	19.50	18.00	19.50	18.00
Antenna WF8	Balluwiutii	8	19.50	18.00	19.50	18.00	19.50	18.00
Antenna WFo		9	19.50	18.00	19.50	18.00	19.50	18.00
		10	16.00	14.50	16.00	14.50	15.50	14.00
		11	14.00	12.50	14.00	12.50	12.00	10.50
		12	11.00	9.50	11.00	9.50	9.50	8.00
		13	9.50	8.00	9.50	8.00	N/A	N/A

FCC ID: BCGA2316	PCTEST Proud to be port of ® rienness	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 5 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 5 of 52

			IEEE 802.:	11a (5 GHz)	IEEE 802.1	11n (5 GHz)	IEEE 802.11	Lac (5 GHz)	IEEE 802.11ax SU (5 GHz)	
Mode	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	16.50	15.00	16.50	15.00	16.50	15.00	16.00	14.50
		40	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		44	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		48	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		52	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
		56	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
		60	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
		64	16.50	15.00	16.50	15.00	16.50	15.00	15.50	14.00
		100	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		104	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		108	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		112	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
	20 MHz Bandwidth	116	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		120	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		124	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		128	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		132	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		136	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		140	14.00	12.50	14.00	12.50	14.00	12.50	12.00	10.50
Modulated Average -		144	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
Single Tx Chain		149	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
(dBm) - Antenna		153	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
WF7A		157	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
WF/A		161	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
		165	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
		38			14.00	12.50	14.00	12.50	13.00	11.50
		46			16.50	15.00	16.50	15.00	16.50	15.00
		54			17.25	15.75	17.25	15.75	17.25	15.75
		62			14.50	13.00	14.50	13.00	13.00	11.50
		102			14.25	12.75	14.25	12.75	13.00	11.50
	40 MHz Bandwidth	110			14.25	12.75	14.25	12.75	14.25	12.75
	40 MINZ Bandwidth	118			14.25	12.75	14.25	12.75	14.25	12.75
		126			14.25	12.75	14.25	12.75	14.25	12.75
		134			14.25	12.75	14.25	12.75	14.25	12.75
		142			14.25	12.75	14.25	12.75	14.25	12.75
		151			15.75	14.25	15.75	14.25	15.75	14.25
		159			15.75	14.25	15.75	14.25	15.75	14.25
		42					11.50	10.00	11.00	9.50
		58					13.00	11.50	12.00	10.50
	80 MHz Bandwidth	106					13.00	11.50	12.00	10.50
	OU WITZ DATIUWIUITI	122					14.25	12.75	14.25	12.75
		138					14.25	12.75	14.25	12.75
		155					15.75	14.25	15.75	14.25

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 0 6 50	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 6 of 52	

			IEEE 802.:	11a (5 GHz)	IEEE 802.1	11n (5 GHz)	IEEE 802.11	Lac (5 GHz)	IEEE 802.11ax SU (5 GHz)	
Mode	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	15.00	13.50	15.00	13.50	15.00	13.50	14.50	13.00
		40	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		44	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		48	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		52	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		56	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		60	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		64	14.50	13.00	14.50	13.00	14.50	13.00	13.50	12.00
		100	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		104	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		108	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		112	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
	20 MHz Bandwidth	116	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		120	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		124	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		128	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		132	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		136	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		140	13.00	11.50	13.00	11.50	13.00	11.50	11.00	9.50
Modulated Average -		144	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
2 Tx Chain (dBm)		149	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
CDD - Antenna		153	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
WF7A		157	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
		161	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
		165	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
		38			12.00	10.50	12.00	10.50	11.50	10.00
		46			16.50	15.00	16.50	15.00	16.50	15.00
		54			17.25	15.75	17.25	15.75	17.25	15.75
		62			13.00	11.50	13.00	11.50	12.00	10.50
		102			12.50	11.00	12.50	11.00	11.00	9.50
	40 MHz Bandwidth	110			14.25	12.75	14.25	12.75	14.25	12.75
		118			14.25	12.75	14.25	12.75	14.25	12.75
		126			14.25	12.75	14.25	12.75	14.25	12.75
		134			14.25	12.75	14.25	12.75	14.25	12.75
		142			14.25	12.75	14.25	12.75	14.25	12.75
		151			15.75	14.25	15.75	14.25	15.75	14.25
		159			15.75	14.25	15.75	14.25	15.75	14.25
		42					10.00	8.50	9.00	7.50
		58					11.00	9.50	10.00	8.50
	80 MHz Bandwidth	106					11.00	9.50	10.00	8.50
		122					14.25	12.75	14.25	12.75
		138					14.25	12.75	14.25	12.75
	l	155					15.75	14.25	15.00	13.50

FCC ID: BCGA2316	PCTEST* Proud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo Z of EQ
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 7 of 52

			IEEE 802	.11n (5 GHz)	IEEE 802.11	ac (5 GHz)	IEEE 802.11ax SU (5 GHz)	
Mode	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	15.00	13.50	15.00	13.50	14.50	13.00
		40	16.50	15.00	16.50	15.00	16.50	15.00
		44	16.50	15.00	16.50	15.00	16.50	15.00
		48	16.50	15.00	16.50	15.00	16.50	15.00
		52	17.00	15.50	17.00	15.50	17.00	15.50
		56	17.00	15.50	17.00	15.50	17.00	15.50
		60	17.00	15.50	17.00	15.50	17.00	15.50
		64	14.50	13.00	14.50	13.00	13.50	12.00
		100	14.25	12.75	14.25	12.75	14.25	12.75
		104	14.25	12.75	14.25	12.75	14.25	12.75
		108	14.25	12.75	14.25	12.75	14.25	12.75
		112	14.25	12.75	14.25	12.75	14.25	12.75
	20 MHz Bandwidth	116	14.25	12.75	14.25	12.75	14.25	12.75
		120	14.25	12.75	14.25	12.75	14.25	12.75
		124	14.25	12.75	14.25	12.75	14.25	12.75
		128	14.25	12.75	14.25	12.75	14.25	12.75
		132	14.25	12.75	14.25	12.75	14.25	12.75
		136	14.25	12.75	14.25	12.75	14.25	12.75
		140	13.00	11.50	13.00	11.50	11.00	9.50
NA - dulate d Access		144	14.25	12.75	14.25	12.75	14.25	12.75
Modulated Average -		149	15.75	14.25	15.75	14.25	15.75	14.25
2 Tx Chain (dBm)		153	15.75	14.25	15.75	14.25	15.75	14.25
SDM - Antenna		157	15.75	14.25	15.75	14.25	15.75	14.25
WF7A		161	15.75	14.25	15.75	14.25	15.75	14.25
		165	15.75	14.25	15.75	14.25	15.75	14.25
		38	12.00	10.50	12.00	10.50	11.50	10.00
		46	16.50	15.00	16.50	15.00	16.50	15.00
		54	17.25	15.75	17.25	15.75	17.25	15.75
		62	13.00	11.50	13.00	11.50	12.00	10.50
		102	12.50	11.00	12.50	11.00	11.00	9.50
	40 MHz Bandwidth	110	14.25	12.75	14.25	12.75	14.25	12.75
	40 IVITZ DATIUWIUTN	118	14.25	12.75	14.25	12.75	14.25	12.75
		126	14.25	12.75	14.25	12.75	14.25	12.75
		134	14.25	12.75	14.25	12.75	14.25	12.75
		142	14.25	12.75	14.25	12.75	14.25	12.75
		151	15.75	14.25	15.75	14.25	15.75	14.25
		159	15.75	14.25	15.75	14.25	15.75	13.00 15.00 15.00 15.00 15.50 15.50 15.50 12.00 12.75
		42			10.00	8.50	9.00	7.50
		58			11.00	9.50	10.00	8.50
	00 MHz Dandwidth	106			11.00	9.50	10.00	8.50
	80 MHz Bandwidth	122			14.25	12.75	14.25	12.75
		138			14.25	12.75	14.25	12.75
		155			15.75	14.25	15.00	13.50

FCC ID: BCGA2316	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 0 -4 50	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 8 of 52	

			IEEE 802.1	11a (5 GHz)	IEEE 802.1	l1n (5 GHz)	IEEE 802.11	Lac (5 GHz)	IEEE 802.11	ax SU (5 GHz)
Mode	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	16.50	15.00	16.50	15.00	16.50	15.00	16.00	14.50
		40	17.75	16.25	17.75	16.25	17.75	16.25	17.75	16.25
		44	17.75	16.25	17.75	16.25	17.75	16.25	17.75	16.25
		48	17.75	16.25	17.75	16.25	17.75	16.25	17.75	16.25
		52	19.25	17.75	19.25	17.75	19.25	17.75	19.25	17.75
		56	19.25	17.75	19.25	17.75	19.25	17.75	19.25	17.75
		60	19.25	17.75	19.25	17.75	19.25	17.75	19.25	17.75
		64	16.50	15.00	16.50	15.00	16.50	15.00	15.50	14.00
		100	16.00	14.50	16.00	14.50	16.00	14.50	15.00	13.50
		104	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		108	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		112	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	20 MHz Bandwidth	116	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		120	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		124	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		128	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		132	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		136	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		140	14.00	12.50	14.00	12.50	14.00	12.50	12.00	10.50
Modulated Average -		144	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
Single Tx Chain		149	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
(dBm) - Antenna		153	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
WF8		157	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
VVIO		161	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		165	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		38			14.00	12.50	14.00	12.50	13.00	11.50
		46			17.75	16.25	17.75	16.25	17.75	16.25
		54			19.25	17.75	19.25	17.75	19.25	17.75
		62			14.50	13.00	14.50	13.00	13.00	11.50
		102			14.50	13.00	14.50	13.00	13.00	11.50
	40 MHz Bandwidth	110			17.00	15.50	17.00	15.50	17.00	15.50
	.o.vii iz ballawiatii	118			17.00	15.50	17.00	15.50	17.00	15.50
		126			17.00	15.50	17.00	15.50	17.00	15.50
		134			15.75	14.25	15.75	14.25	14.50	13.00
		142			17.00	15.50	17.00	15.50	17.00	15.50
		151			17.00	15.50	17.00	15.50	17.00	15.50
		159			17.00	15.50	17.00	15.50	17.00	15.50
		42					11.50	10.00	11.00	9.50
		58					13.00	11.50	12.00	10.50
	80 MHz Bandwidth	106					13.00	11.50	12.00	10.50
		122					17.00	15.50	17.00	15.50
		138					17.00	15.50	17.00	15.50
	l	155					17.00	15.50	16.00	14.50

FCC ID: BCGA2316	PCTEST' Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 0 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 9 of 52

			IEEE 802.:	11a (5 GHz)	IEEE 802.1	L1n (5 GHz)	IEEE 802.11	Lac (5 GHz)	IEEE 802.11ax SU (5 GHz)	
Mode	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	15.00	13.50	15.00	13.50	15.00	13.50	14.50	13.00
		40	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		44	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		48	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		52	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		56	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		60	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		64	14.50	13.00	14.50	13.00	14.50	13.00	13.50	12.00
		100	15.50	14.00	15.50	14.00	15.50	14.00	14.50	13.00
		104	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		108	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		112	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	20 MHz Bandwidth	116	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		120	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		124	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		128	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		132	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		136	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		140	13.00	11.50	13.00	11.50	13.00	11.50	11.00	9.50
		144	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
Modulated Average -		149	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
2 Tx Chain (dBm)		153	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
CDD - Antenna WF8		157	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		161	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		165	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		38			12.00	10.50	12.00	10.50	11.50	10.00
		46			17.75	16.25	17.75	16.25	17.75	16.25
		54			19.00	17.50	19.00	17.50	19.00	17.50
		62			13.00	11.50	13.00	11.50	12.00	10.50
		102			12.50	11.00	12.50	11.00	11.00	9.50
	40 MHz Bandwidth	110			17.00	15.50	17.00	15.50	17.00	15.50
		118			17.00	15.50	17.00	15.50	17.00	15.50
		126			17.00	15.50	17.00	15.50	17.00	15.50
		134			14.50	13.00	14.50	13.00	13.50	12.00
		142			17.00	15.50	17.00	15.50	17.00	15.50
		151			17.00	15.50	17.00	15.50	17.00	15.50
		159			17.00	15.50	17.00	15.50	17.00	15.50
		42					10.00	8.50	9.00	7.50
		58					11.00	9.50	10.00	8.50
	80 MHz Bandwidth	106					11.00	9.50	10.00	8.50
		122					17.00	15.50	16.00	14.50
		138					17.00	15.50	17.00	15.50
	<u> </u>	155					17.00	15.50	15.00	13.50

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 10 of 52

			IEEE 802.:	11n (5 GHz)	IEEE 802.1	1ac (5 GHz)	IEEE 802.11	ax SU (5 GHz)
Mode,	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	15.00	13.50	15.00	13.50	14.50	13.00
		40	17.00	15.50	17.00	15.50	17.00	15.50
		44	17.00	15.50	17.00	15.50	17.00	15.50
		48	17.00	15.50	17.00	15.50	17.00	15.50
		52	17.00	15.50	17.00	15.50	17.00	15.50
		56	17.00	15.50	17.00	15.50	17.00	15.50
		60	17.00	15.50	17.00	15.50	17.00	15.50
		64	14.50	13.00	14.50	13.00	13.50	12.00
		100	15.50	14.00	15.50	14.00	14.50	13.00
		104	17.00	15.50	17.00	15.50	17.00	15.50
		108	17.00	15.50	17.00	15.50	17.00	15.50
		112	17.00	15.50	17.00	15.50	17.00	15.50
	20 MHz Bandwidth	116	17.00	15.50	17.00	15.50	17.00	15.50
		120	17.00	15.50	17.00	15.50	17.00	15.50
		124	17.00	15.50	17.00	15.50	17.00	15.50
		128	17.00	15.50	17.00	15.50	17.00	15.50
		132	17.00	15.50	17.00	15.50	17.00	15.50
		136	17.00	15.50	17.00	15.50	17.00	15.50
		140	13.00	11.50	13.00	11.50	11.00	9.50
		144	17.00	15.50	17.00	15.50	17.00	15.50
Modulated Average -		149	17.00	15.50	17.00	15.50	17.00	15.50
2 Tx Chain (dBm)		153	17.00	15.50	17.00	15.50	17.00	15.50
SDM - Antenna WF8		157	17.00	15.50	17.00	15.50	17.00	15.50
		161	17.00	15.50	17.00	15.50	17.00	15.50
		165	17.00	15.50	17.00	15.50	17.00	15.50
		38	12.00	10.50	12.00	10.50	11.50	10.00
		46	17.75	16.25	17.75	16.25	17.75	16.25
		54	19.00	17.50	19.00	17.50	19.00	17.50
		62	13.00	11.50	13.00	11.50	12.00	10.50
		102	12.50	11.00	12.50	11.00	11.00	9.50
	40 MHz Bandwidth	110	17.00	15.50	17.00	15.50	17.00	15.50
		118	17.00	15.50	17.00	15.50	17.00	15.50
		126	17.00	15.50	17.00	15.50	17.00	15.50
		134	14.50	13.00	14.50	13.00	13.50	12.00
		142	17.00	15.50	17.00	15.50	17.00	15.50
		151	17.00	15.50	17.00	15.50	17.00	15.50
		159	17.00	15.50	17.00	15.50	17.00	15.50
		42			10.00	8.50	9.00	7.50
		58			11.00	9.50	10.00	8.50
	80 MHz Bandwidth	106			11.00	9.50	10.00	8.50
		122			17.00	15.50	16.00	14.50
		138			17.00	15.50	17.00	15.50
		155			17.00	15.50	15.00	13.50

FCC ID: BCGA2316	PCTEST* Proud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 44 -4 50	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 11 of 52	

Bluetooth Maximum and Reduced Output Power 1.3.2

Mode / Band		Modulated Average - Single Tx Chain (dBm) - Antenna WF7B
Bluetooth BDR/LE	Maximum	20.00
Nominal		18.50
Naximum Maximum		15.00
Bluetooth EDR Nominal		13.50
Bluetooth HDR	Maximum	14.00
Bluetooth HDR	Nominal	12.50

Mode / Band		Modulated Average - MIMO (dBm) - Antenna WF7B
Bluetooth BDR/LE	Maximum	17.00
Bluetooth BDR/LE	Nominal	15.50
Bluetooth EDR	Maximum	15.00
Biuelootii EDK	Nominal	13.50
Bluetooth HDR	Maximum	14.00
שומפנטטנוו חטא	Nominal	12.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

Mode / Band		Modulated Average - Single Tx Chain (dBm) - Antenna WF8
Bluetooth BDR/LE	Maximum	20.00
Bluetooth BDR/LE	Nominal	18.50
Divotanth FDD	Maximum	15.00
Bluetooth EDR	Nominal	13.50
Bluetooth HDR	Maximum	14.00
Biuetooth HDR	Nominal	12.50

Mode / Band		Modulated Average - MIMO (dBm) - Antenna WF8
Bluetooth BDR/LE	Maximum	17.00
Bluetootii bDK/LE	Nominal	15.50
Bluetooth EDR	Maximum	15.00
Bidetootii EDK	Nominal	13.50
Bluetooth HDR	Maximum	14.00
Biuetooth HDK	Nominal	12.50

FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 12 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 12 of 52

Mode / Band		Modulated Average - Single Tx Chain (dBm) - Antenna WF7B
Bluetooth BDR/LE Reduced	Maximum	13.00
Bluetootii BDR/LE Reduced	Nominal	11.50
Bluetooth EDR Reduced	Maximum	13.00
Bluetootii EDR Reduced	Nominal	11.50
Bluetooth HDR Reduced	Maximum	13.00
Bluetooth HDR Reduced	Nominal	11.50

Mode / Band		Modulated Average - MIMO (dBm) - Antenna WF7B
Bluetooth BDR/LE Reduced	Maximum	10.00
Bluetooth BDR/LE Reduced	Nominal	8.50
Bluetooth EDR Reduced	Maximum	10.00
Biuetootii EDK Keduced	Nominal	8.50
Bluetooth HDR Reduced	Maximum	10.00
biuetootii HDK Keduced	Nominal	8.50

Mode / Band		Modulated Average - Single Tx Chain (dBm) - Antenna WF8
Blustooth BDB /I E Bodused Maximum		13.00
Bluetooth BDR/LE Reduced	Nominal	11.50
Bluetooth EDR Reduced	Maximum	13.00
Bluetooth EDR Reduced	Nominal	11.50
Bluetooth HDR Reduced	Maximum	13.00
Biuetootii HDR Reduced	Nominal	11.50

Mode / Band		Modulated Average - MIMO
		(dBm) - Antenna WF8
Bluetooth BDR/LE Reduced	Maximum	10.00
Bluetootii BDN/LE Reduced	Nominal	8.50
Bluetooth EDR Reduced	Maximum	10.00
Bidetootii EDR Reduced	Nominal	8.50
Bluetooth HDR Reduced	Maximum	10.00
Bidetootii HDK Reduced	Nominal	8.50

FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 13 of 52

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in Appendix E. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filings.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
2.4 GHz WLAN Antenna WF7B	Yes	No	Yes	No	No	Yes
2.4 GHz WLAN Antenna WF8	Yes	No	Yes	No	Yes	No
5 GHz WLAN Antenna WF7A	Yes	No	Yes	No	No	Yes
5 GHz WLAN Ant Antenna WF8	Yes	No	Yes	No	Yes	No
Bluetooth Antenna WF7B	Yes	No	Yes	No	No	Yes
Bluetooth Antenna WF8	Yes	No	Yes	No	Yes	No

Note: Per FCC KDB Publication 616217 D04v01r01, particular edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01V06. Additional edges may have been evaluated for simultaneous transmission analysis.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Body
1	2.4 GHz Wi-Fi MIMO	Yes
2	2.4 GHz Bluetooth MIMO	Yes
3	5 GHz Wi-Fi MIMO	Yes
4	2.4 GHz Bluetooth + 5 GHz Wi-Fi	Yes
5	2.4 GHz Bluetooth + 5 GHz Wi-Fi MIMO	Yes
6	2.4 GHz Bluetooth MIMO + 5 GHz Wi-Fi	Yes
7	2.4 GHz Bluetooth MIMO + 5 GHz Wi-Fi MIMO	Yes

- 1. 2.4 GHz WLAN, 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. 2.4 GHz WLAN and 5 GHz WLAN cannot transmit simultaneously.
- 3. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac/ax. 802.11a/g/n/ac/ax supports CDD and 802.11n/ac/ax additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 4. This device supports VOWIFI.

FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 14 of 52

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Based on the maximum allowed power for the respective antennas, U-NII-2A was evaluated for Antenna WF7A and Antenna WF8. Additional testing for U-NII-1 Antenna WF7A and Antenna WF8 SAR was not required since all reported SAR was less than 1.2 W/kg per FCC KDB Publication 248227 D01v02r02.

The WLAN/Bluetooth chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with the identical mechanical structure to meet the same specifications and functions. Two device variants are referenced as Variant 1 and Variant 2 in this report. WLAN/Bluetooth SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining WLAN/Bluetooth configurations.

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, default channels for SAR testing are determined per FCC KDB 248227 D01V02r02.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 2 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

This device supports IEEE 802.11ax with the following features:

- a) Up to 80 MHz Bandwidth only for 5 GHz
- b) Up to 20 MHz Bandwidth only for 2.4 GHz
- c) No aggregate channel configurations
- d) 2 Tx antenna output
- e) Up to 1024 QAM is supported
- f) TDWR and Band gap channels are supported for 5 GHz
- g) MU-MIMO UL Operations are not supported

Per April 2019 TCB Workshop Notes, SAR testing was not required for 802.11ax when applying the initial test configuration procedures of KDB 248227, with 802.11ax considered a higher order 802.11 mode.

1.7 Guidance Applied

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Tablet)
- April 2019 TCB Workshop Notes (IEEE 802.11ax)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 45 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 15 of 52

© 2020 PCTEST.

REV 21.4

2

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:	Dogo 46 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 16 of 52

© 2020 PCTEST. REV 21.4 09/11/201

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

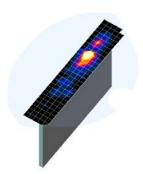


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCGA2316	PCTEST* Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 47 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 17 of 52

© 2020 PCTEST.

4 TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

4.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 18 of 52

© 2020 PCTEST.

REV 21.4

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 19 of 52

© 2020 PCTEST. REV 21.4 I 09/11/201

6 FCC MEASUREMENT PROCEDURES

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -4 F0
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 20 of 52

© 2020 PCTEST. REV 21.4 09/11/20

6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

6.2.5 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.2.6 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5).

FCC ID: BCGA2316	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 24 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 21 of 52

PCTEST. REV 21.4

6.2.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

6.2.8 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation.

FCC ID: BCGA2316	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 22 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 22 of 52

7.1 **WLAN Conducted Powers**

Table 7-1 2.4 GHz WLAN Maximum Time-Averaged RF Power - Antenna WF7B, Variant 1

2.4GHz Conducted Power [dBm]					
		IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	
		Average	Average	Average	
2412	1	18.11	14.05	14.02	
2417	2	19.43	16.52	16.53	
2427	4		19.19	19.23	
2437	6	19.27	19.28	19.28	
2452	9		19.92	19.34	
2462	11	19.23	14.52	14.52	

Table 7-2 2.4 GHz WLAN Maximum Time-Averaged RF Power – Antenna WF7B, Variant 2

2.4GHz Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11b	802.11g	802.11n
		Average	Average	Average
2412	1	17.98	14.10	14.02
2417	2	19.31	16.46	16.63
2427	4		19.19	19.29
2437	6	19.24	19.37	19.32
2452	9		19.33	19.26
2462	11	19.32	14.61	14.58

FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 22 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 23 of 52

Table 7-3 2.4 GHz WLAN Maximum Time-Averaged RF Power – Antenna WF8, Variant 1

2.4GHz Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11b	802.11g	802.11n
		Average	Average	Average
2412	1	18.31	14.06	14.10
2417	2	20.13	16.52	16.53
2427	4		20.35	20.17
2437	6	20.37	20.23	20.31
2447	8		19.17	20.19
2457	10	20.28	17.54	17.58
2462	11	20.10	14.51	14.47

Table 7-4 2.4 GHz WLAN Maximum Time-Averaged RF Power – Antenna WF8, Variant 2

2.4GHz Conducted Power [dBm]				
	IEEE Transmission Mode			Mode
Freq [MHz]	Channel	802.11b	802.11g	802.11n
		Average	Average	Average
2412	1	18.25	14.08	14.03
2417	2	20.29	16.58	16.64
2427	4		20.45	20.33
2437	6	20.28	20.22	20.21
2447	8		20.25	20.19
2457	10	20.25	17.56	17.47
2462	11	20.06	14.61	14.63

FCC ID: BCGA2316	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 24 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 24 of 52

Table 7-5 5 GHz WLAN Maximum Time-Averaged RF Power – Antenna WF7A, Variant 1

5GHz (40MHz) Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11n	802.11ac	
		Average	Average	
5190	38	13.15	13.10	
5230	46	16.44	16.42	
5270	54	16.36	16.32	
5310	62	13.67	13.65	

5GHz (80MHz) Conducted Power [dBm]			
		IEEE Transmission Mode	
Freq [MHz]	Channel	802.11ac	
		Average	
5530	106	12.01	
5610	122	13.25	
5690	138	13.28	
5775	155	14.77	

Table 7-6 5 GHz WLAN Maximum Time-Averaged RF Power – Antenna WF7A, Variant 2

5GHz (40MHz) Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11n	802.11ac	
		Average	Average	
5190	38	12.84	12.80	
5230	46	15.51	15.49	
5270	54	16.26	16.23	
5310	62	13.35	13.34	

5GHz (80MHz) Conducted Power [dBm]			
		IEEE Transmission Mode	
Freq [MHz]	Channel	802.11ac	
		Average	
5530	106	11.90	
5610	122	13.19	
5690	138	13.20	
5775	155	14.80	

FCC ID: BCGA2316	Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 25 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 25 of 52

Table 7-7 5 GHz WLAN Maximum Time-Averaged RF Power - Antenna WF8, Variant 1

5GHz (40MHz) Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11n	802.11ac	
		Average	Average	
5190	38	13.12	13.10	
5230	46	16.82	16.81	
5270	54	18.06	18.03	
5310	62	13.33	13.28	

5GHz (80MHz) Conducted Power [dBm]			
		IEEE Transmission Mode	
Freq [MHz]	Channel	802.11ac	
		Average	
5530	106	11.94	
5610	122	15.98	
5690	138	15.94	
5775	155	16.05	

Table 7-8 5 GHz WLAN Maximum Time-Averaged RF Power – Antenna WF8, Variant 2

5GHz (40MHz) Conducted Power [dBm]					
	IEEE Transmission Mode				
Freq [MHz]	Channel	nel 802.11n 802.1			
	Average		Average		
5190	38	13.10	13.10		
5230	46	16.72	16.60		
5270	54	18.38	18.33		
5310	62	13.30	13.28		

5GHz (80MHz) Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11ac		
		Average		
5530	106	11.93		
5610	122	16.11		
5690	138	15.96		
5775	155	15.97		

FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 26 of 52

Table 7-9 5 GHz WLAN Maximum Time-Averaged RF Power – MIMO, Variant 1

5GHz (40MHz) 802.11n Conducted Power [dBm]				5GHz (40MHz) 802.11ac	Conducted Power [dBm]
Freq [MHz] Channel Ant WF7A Ant WF8			Ant WF8	Ant WF7A	Ant WF8
5190	38	11.22	11.13	11.20	11.08
5230	46	15.58	16.82	15.51	16.81
5270	54	16.53	18.14	16.50	18.12
5310	62	12.24	12.14	12.18	12.13

5GHz (80MHz) 802.11ac Conducted Power [dBm]							
Freq [MHz] Channel Ant WF7A Ant WF8							
5530	106	10.35	10.39				
5610	122	13.29	16.12				
5690	138	13.23	16.13				
5775	155	14.75	16.00				

Table 7-10 5 GHz WLAN Maximum Time-Averaged RF Power – MIMO, Variant 2

5GHz (40M	Hz) 802.11n C	Conducted Po	wer [dBm]	5GHz (40MHz) 802.11ac Conducted Power [dBm]		
Freq [MHz] Channel Ant WF7A Ant WF8 Ant WF7A Ant WF8					Ant WF8	
5190	38	11.04	11.01	11.02	11.05	
5230	46	15.69	16.87	15.68	16.79	
5270	54	16.69	18.68	16.66	18.68	
5310	62	12.25	12.45	12.13	12.39	

5GHz (80MHz) 802.11ac Conducted Power [dBm]								
Freq [MHz]	Freq [MHz] Channel Ant WF7A Ant WF8							
5530	106	10.34	10.19					
5610	122	13.47	16.15					
5690	138	13.46	16.16					
5775	155	14.87	16.26					

FCC ID: BCGA2316	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 27 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 27 of 52

7.1.1 Notes for WLAN

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The WLAN chipset in this device is produced by two different suppliers. The electrically identical modules
 are manufactured with the identical mechanical structure to meet the same specifications and functions.
 Two device variants are referenced as Variant 1 and Variant 2 in this report.
- WLAN SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining WLAN configurations.
- Full power measurements were performed for Variant 1 and Variant 2 per FCC KDB Procedures 248227.
- The time-averaged mechanism for WLAN operations was disabled for the above power measurements.
 The device was configured by manufacturer's software to transmit continuously at the maximum time-averaged output power levels.

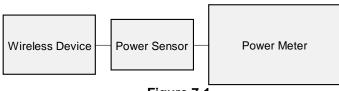


Figure 7-1
Power Measurement Setup

7.2 Bluetooth Conducted Powers

7.2.1 Variant 1

Table 7-11

Maximum Bluetooth Average RF Power – Ant WF7B

_		Data		Avg Cor Por	nducted wer
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	18.50	70.795
2441	GFSK	1.0	39	18.42	69.502
2480	GFSK	1.0	78	18.48	70.469

	FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 20 of 52
	1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 28 of 52
© 202	0 PCTEST.			REV 21.4 M

09/11/2019

Table 7-12 Maximum Bluetooth Average RF Power - Ant WF8

_		Data		Avg Cor Pov	nducted wer
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	19.11	81.470
2441	GFSK	1.0	39	19.00	79.433
2480	GFSK	1.0	78	18.92	77.983

Table 7-13 Reduced Bluetooth Average RF Power – Ant WF7B

_		Data		Avg Cor Pov	nducted wer
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	11.55	14.289
2441	GFSK	1.0	39	11.37	13.709
2480	GFSK	1.0	78	11.19	13.152

Table 7-14 Reduced Bluetooth Average RF Power - Ant WF8

_	Data	Data		Avg Conducted Power		
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]	
2402	GFSK	1.0	0	11.36	13.677	
2441	GFSK	1.0	39	11.20	13.183	
2480	GFSK	1.0	78	11.00	12.589	

FCC ID: BCGA2316	Proxit to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 29 of 52

7.2.2 Variant 2

Table 7-15 Maximum Bluetooth Average RF Power - Ant WF7B

_				Avg Conducted Power	
Frequency [MHz]	Modulation	Data Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	18.65	73.282
2441	GFSK	1.0	39	18.85	76.736
2480	GFSK	1.0	78	18.91	77.804

Table 7-16 Maximum Bluetooth Average RF Power - Ant WF8

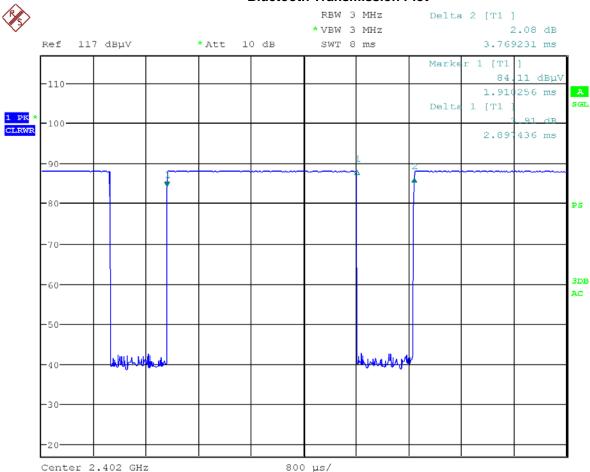
_		Data		Avg Conducted Power	
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	18.98	79.068
2441	GFSK	1.0	39	19.03	79.983
2480	GFSK	1.0	78	18.89	77.446

FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 30 of 52

Table 7-17
Reduced Bluetooth Average RF Power – Ant WF7B

_		Data		Avg Cor Por	nducted wer
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	11.85	15.311
2441	GFSK	1.0	39	11.89	15.453
2480	GFSK	1.0	78	11.91	15.524

Table 7-18
Reduced Bluetooth Average RF Power – Ant WF8


_		Data		Avg Conducted Power	
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	GFSK	1.0	0	11.86	15.346
2441	GFSK	1.0	39	11.75	14.962
2480	GFSK	1.0	78	11.61	14.488

FCC ID: BCGA2316	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 24 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 31 of 52

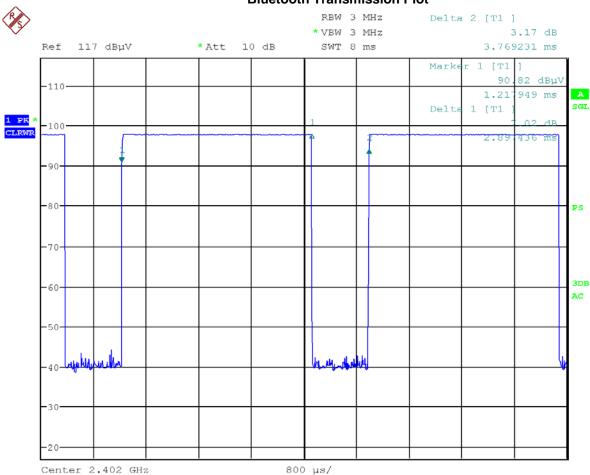
7.3 Bluetooth Duty Cycle

7.3.1 Maximum Bluetooth Transmission Antenna WF7B Variant 1

Figure 7-2
Bluetooth Transmission Plot

Equation 7-1 Bluetooth Duty Cycle Calculation

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.897ms}{3.769ms} * 100\% = 76.9\%$$


FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 32 of 52

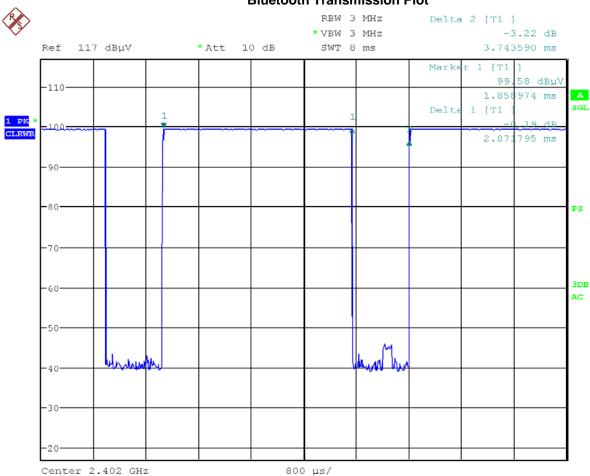
© 2020 PCTEST.

REV 21.4 M
09/11/2019

7.3.2 Maximum Bluetooth Transmission Antenna WF8 Variant 1

Figure 7-3
Bluetooth Transmission Plot

Equation 7-2 Bluetooth Duty Cycle Calculation


$$Duty\ Cycle = \frac{Pulse\ Width}{Period} * 100\% = \frac{2.897ms}{3.769ms} * 100\% = 76.9\%$$

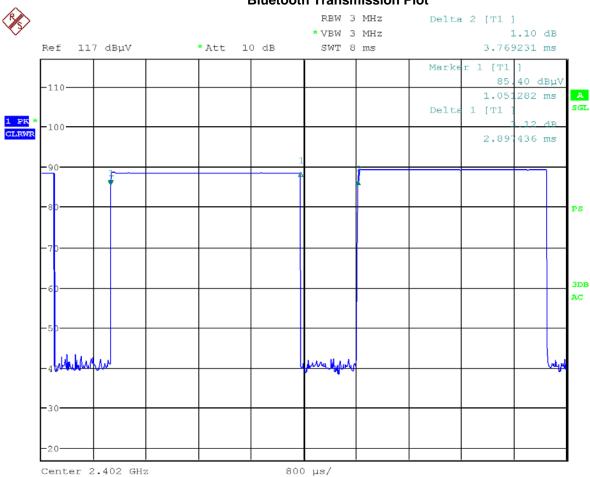
FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 22 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 33 of 52

© 2020 PCTEST. REV 21.4 M 09/11/2019

7.3.3 Maximum Bluetooth Transmission Antenna WF7B Variant 2

Figure 7-4
Bluetooth Transmission Plot

Equation 7-3 Bluetooth Duty Cycle Calculation


$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.872 ms}{3.744 ms} * 100\% = 76.7\%$$

FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 24 of 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 34 of 52

© 2020 PCTEST. REV 21.4 M 09/11/2019

7.3.4 Maximum Bluetooth Transmission Antenna WF8 Variant 2

Figure 7-5
Bluetooth Transmission Plot

Equation 7-4
Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.897\textit{ms}}{3.769\textit{ms}} * 100\% = 76.9\%$$

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 05 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 35 of 52

© 2020 PCTEST. REV 21.4 M 09/11/2019

7.4 Bluetooth Power Reduction Verification Summary

Antenna	Mode/Band	Condition (s)	Maximum Target Power [dBm]	Reduced Target Power [dBm]	Maximum Measured Power	Reduced Measured Power	ver Verdict
			(Tolerance [dB])	(Tolerance [dB])	[dBm]	[dBm]	
	2.4 GHz Bluetooth	5 GHz WLAN ON ANT WF7A	18.5 (+1.5/-2.0)	11.5 (+1.5/-2.0)	19.03	12.83	PASS
WF7B	2.4 GHz Bluetooth	5 GHz WLAN ON ANT WF8	18.5 (+1.5/-2.0)	11.5 (+1.5/-2.0)	19.03	12.78	PASS
	2.4 GHz Bluetooth	5 GHz WLAN ON ANT WF7A & WF8	18.5 (+1.5/-2.0)	11.5 (+1.5/-2.0)	19.03	12.89	PASS
	2.4 GHz Bluetooth	5 GHz WLAN ON ANT WF7A	18.5 (+1.5/-2.0)	11.5 (+1.5/-2.0)	18.8	12.9	PASS
WF8	2.4 GHz Bluetooth	5 GHz WLAN ON ANT WF8	18.5 (+1.5/-2.0)	11.5 (+1.5/-2.0)	18.8	12.75	PASS
	2.4 GHz Bluetooth	5 GHz WLAN ON ANT WF7A & WF8	18.5 (+1.5/-2.0)	11.5 (+1.5/-2.0)	18.8	12.86	PASS

Conducted powers were measured for each Mode/Band and applied condition. All conducted power measurements were verified to be within tolerance.

7.5 Notes for Bluetooth

- The Bluetooth chipset in this device is produced by two different suppliers. The electrically identical
 modules are manufactured with the identical mechanical structure to meet the same specifications and
 functions. Two device variants are referenced as Variant 1 and Variant 2 in this report.
- Bluetooth SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining Bluetooth configurations.
- Full power measurements were performed for Variant 1 and Variant 2 per FCC KDB Procedures 248227.
- Bluetooth operations are reduced in output power when it is operating simultaneously with 5 GHz WLAN.
 Detailed description of the power reduction mechanism is included in the operational description.

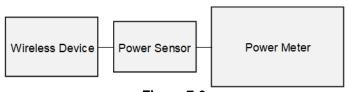


Figure 7-6
Power Measurement Setup

FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 36 of 52	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device		

8.1 Tissue Verification

Table 8-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			2400	1.928	51.991	1.902	52.767	1.37%	-1.47%
7/8/2020	2450B	22.8	2450	1.995	51.820	1.950	52.700	2.31%	-1.67%
			2500	2.062	51.642	2.021	52.636	2.03%	-1.89%
			2400	1.945	52.206	1.902	52.767	2.26%	-1.06%
7/15/2020	2450B	22.2	2450	2.013	52.035	1.950	52.700	3.23%	-1.26%
			2500	2.087	51.835	2.021	52.636	3.27%	-1.52%
			5180	5.404	47.504	5.276	49.041	2.43%	-3.13%
			5200	5.432	47.481	5.299	49.014	2.51%	-3.13%
			5220	5.463	47.463	5.323	48.987	2.63%	-3.11%
			5240	5.479	47.383	5.346	48.960	2.49%	-3.22%
			5260	5.510	47.338	5.369	48.933	2.63%	-3.26%
			5280	5.540	47.278	5.393	48.906	2.73%	-3.33%
			5300	5.562	47.273	5.416	48.879	2.70%	-3.29%
			5320	5.595	47.241	5.439	48.851	2.87%	-3.30%
			5500	5.842	46.976	5.650	48.607	3.40%	-3.36%
			5520	5.866	46.946	5.673	48.580	3.40%	-3.36%
			5540	5.893	46.875	5.696	48.553	3.46%	-3.46%
			5560	5.917	46.843	5.720	48.526	3.44%	-3.47%
06/26/2020	5200B-5800B	22.6	5580	5.952	46.837	5.743	48.499	3.64%	-3.43%
			5600	5.979	46.834	5.766	48.471	3.69%	-3.38%
			5620	5.999	46.773	5.790	48.444	3.61%	-3.45%
			5640	6.022	46.715	5.813	48.417	3.60%	-3.52%
			5660	6.058	46.690	5.837	48.390	3.79%	-3.51%
			5680	6.083	46.663	5.860	48.363	3.81%	-3.52%
			5700	6.114	46.645	5.883	48.336	3.93%	-3.50%
			5745	6.170	46.525	5.936	48.275	3.94%	-3.63%
			5765	6.204	46.475	5.959	48.248	4.11%	-3.67%
			5785	6.232	46.457	5.982	48.220	4.18%	-3.66%
			5800	6.251	46.429	6.000	48.200	4.18%	-3.67%
			5805	6.255	46.416	6.006	48.193	4.15%	-3.69%
			5825	6.284	46.381	6.029	48.166	4.23%	-3.71%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 27 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 37 of 52

© 2020 PCTEST.

Test System Verification 8.2

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

> Table 8-2 **System Verification Results**

						ystem Ve									
SAR System #	stem Frequency (MHz) Date Temp (°C) (°C) Frobe SN SN (W/kg) SAR _{1g} SAR _{1g} SAR _{1g} (W/kg) SAR _{1g} (W/kg) (W/kg) (%)														
AM3	# (W/kg) SAR1g (W/kg) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \														
AM5	2450	BODY	07/15/2020	22.7	20.5	0.100	921	7416	4.910	50.800	49.100	-3.35%			
AM2	5250	BODY	06/26/2020	22.9	21.5	0.050	1123	7420	3.500	74.000	70.000	-5.41%			
AM2	5600	BODY	06/26/2020	22.9	21.5	0.050	1123	7420	3.840	77.600	76.800	-1.03%			
AM2	5750	BODY	06/26/2020	22.9	21.5	0.050	1123	7420	3.710	74.700	74.200	-0.67%			

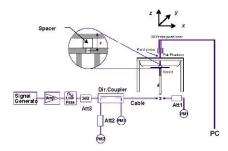


Figure 8-1 **System Verification Setup Diagram**

Figure 8-2 **System Verification Setup Photo**

FCC ID: BCGA2316	Proceed to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 20 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 38 of 52

9 SAR DATA SUMMARY

Standalone Body SAR Data 9.1

Table 9-1 2.4 GHz WLAN Body SAR Data - Antenna WF7B

									· Doay	O,	· Dutu	,	••••		11 10						
									MEASU	REMEN	T RESULTS										
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power		Spacing	Antenna Config.	Variant	Device Serial Number	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			[MHZ]	[dBm]	[dBm]	[dB]				Number	(Mbps)		(%)	(W/kg)	(Power)	Cycle)	(W/kg)	(W/kg)	(W/kg)	
2417	2	802.11b	DSSS	22	20.25	19.43	0.04	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	back	100.0	0.067	1.208	1.000	0.081	0.034	0.041	
2417	2	802.11b	DSSS	22	20.25	19.43	-0.05	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	top	100.0	0.874	1.208	1.000	1.056	0.365	0.441	
2437	6	802.11b	DSSS	22	20.25	19.27	-0.11	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	top	100.0	0.865	1.253	1.000	1.084	0.356	0.446	
2437	6	802.11b	DSSS	22	20.25	19.24	-0.13	0 mm	Antenna WF7B	V2	DLXCT00FPWHW	1	top	100.0	0.703	1.262	1.000	0.887	0.289	0.365	
2462	11	802.11b	DSSS	22	20.25	19.23	-0.15	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	top	100.0	0.768	1.265	1.000	0.972	0.316	0.400	
2417	2	802.11b	DSSS	22	20.25	19.43	0.14	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	bottom	100.0	0.008	1.208	1.000	0.010	0.002	0.002	
2417	2	802.11b	DSSS	22	20.25	19.43	0.13	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	right	100.0	0.009	1.208	1.000	0.011	0.003	0.004	
2417	2	802.11b	DSSS	22	20.25	19.43	-0.02	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	left	100.0	0.510	1.208	1.000	0.616	0.221	0.267	
2417	2	802.11b	DSSS	22	20.25	19.43	0.01	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	top	100.0	0.908	1.208	1.000	1.097	0.386	0.466	A1
		AA.	ISI / IEEE	C95.1 1992	- SAFETY LIMIT									E	Body						
				Spatial Pe	ak									1.6 W/	kg (mW/g)						
		Unc	ontrolled	Exposure/G	eneral Populatio	n							a	veraged	over 1 gram						

Note: Blue entry indicates variability measurement.

Table 9-2 2.4 GHz WLAN Body SAR Data - Antenna WF8

									MEASU	REMENT	RESULTS										
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Variant	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			[MITZ]	[dBm]	[dBm]	[ab]		_		Number	(Mbps)		(%)	(W/kg)	(Power)	Cycle)	(W/kg)	(W/kg)	(W/kg)	
2417	2	802.11b	DSSS	22	21.25	20.29	-0.01	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	back	100.0	0.114	1.247	1.000	0.142	0.060	0.075	
2417	2	802.11b	DSSS	22	21.25	20.29	-0.11	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	top	100.0	0.710	1.247	1.000	0.885	0.324	0.404	
2437	6	802.11b	DSSS	22	21.25	20.28	0.04	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	top	100.0	0.694	1.250	1.000	0.868	0.312	0.390	
2457	10	802.11b	DSSS	22	21.25	20.25	-0.10	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	top	100.0	0.841	1.259	1.000	1.059	0.370	0.466	
2457	10	802.11b	DSSS	22	21.25	20.28	0.02	0 mm	Antenna WF8	V1	DLXCT004PWHW	1	top	100.0	0.722	1.250	1.000	0.903	0.322	0.403	
2417	2	802.11b	DSSS	22	21.25	20.29	0.19	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	bottom	100.0	0.010	1.247	1.000	0.012	0.004	0.005	
2417	2	802.11b	DSSS	22	21.25	20.29	0.16	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	right	100.0	0.016	1.247	1.000	0.020	0.006	0.007	
2417	2	802.11b	DSSS	22	21.25	20.29	0.01	0 mm	Antenna WF8	V2	DLXCT00FPWHW	1	left	100.0	0.000	1.247	1.000	0.000	0.000	0.000	
		AN	NSI / IEEE	C95.1 1992	- SAFETY LIMIT									Е	ody						
				Spatial Pea	ak									1.6 W/I	kg (mW/g)						
		Unce	ontrolled	Exposure/Ge	eneral Populatio	n							a	veraged	over 1 gram						

	FCC ID: BCGA2316	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 20 -4 50
	1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 39 of 52
© 202	0 PCTEST.			REV 21.4 M

Table 9-3 5 GHz WLAN Body SAR Data - Antenna WF7A

						<u> </u>	· - / ·		ouy c			,									_
									MEASU	JREMEN	T RESULTS										
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed		Power Drift	Spacing	Antenna Config.	Variant	Device Serial Number	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor		Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.	mode	GETTICE	[MHz]	Power [dBm]	[dBm]	[dB]	opacing	Antenna comig.	Vui iuiii.	De vice del la remidei	(Mbps)	Gide	(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	(W/kg)	(W/kg)	1
5270	54	802.11n	OFDM	40	17.25	16.26	0.04	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	13.5	back	98.0	0.082	1.256	1.020	0.105	0.034	0.044	
5270	54	802.11n	OFDM	40	17.25	16.26	0.09	0 m m	Antenna WF7A	V2	DLXCT00EPWHW	13.5	top	98.0	0.896	1.256	1.020	1.148	0.307	0.393	
5270	54	802.11n	OFDM	40	17.25	16.36	-0.13	0 mm	Antenna WF7A	V1	DLXCT009PWHW	13.5	top	97.9	0.833	1.227	1.021	1.044	0.285	0.357	
5310	62	802.11n	OFDM	40	14.50	13.35	0.04	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	13.5	top	98.0	0.465	1.303	1.020	0.618	0.159	0.211	
5270	54	802.11n	OFDM	40	17.25	16.26	-0.12	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	13.5	bottom	98.0	0.016	1.256	1.020	0.020	0.004	0.005	
5270	54	802.11n	OFDM	40	17.25	16.26	0.01	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	13.5	right	98.0	0.000	1.256	1.020	0.000	0.000	0.000	
5270	54	802.11n	OFDM	40	17.25	16.26	0.12	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	13.5	left	98.0	0.024	1.256	1.020	0.031	0.007	0.009	
5690	138	802.11ac	OFDM	80	14.25	13.28	-0.18	0 m m	Antenna WF7A	V1	DLXCT006PWHW	29.3	back	95.9	0.057	1.250	1.043	0.074	0.021	0.027	
5530	106	802.11ac	OFDM	80	13.00	12.01	0.02	0 m m	Antenna WF7A	V1	DLXCT006PWHW	29.3	top	95.9	0.469	1.256	1.043	0.614	0.148	0.194	
5610	122	802.11ac	OFDM	80	14.25	13.25	-0.03	0 mm	Antenna WF7A	V1	DLXCT006PWHW	29.3	top	95.9	0.690	1.259	1.043	0.906	0.224	0.294	
5610	122	802.11ac	OFDM	80	14.25	13.19	0.13	0 mm	Antenna WF7A	V2	DLXCT00BPWHW	29.3	top	95.9	0.602	1.276	1.043	0.801	0.191	0.254	
5690	138	802.11ac	OFDM	80	14.25	13.28	-0.03	0 m m	Antenna WF7A	V1	DLXCT006PWHW	29.3	top	95.9	0.585	1.250	1.043	0.763	0.188	0.245	
5690	138	802.11ac	OFDM	80	14.25	13.28	0.01	0 m m	Antenna WF7A	V1	DLXCT006PWHW	29.3	bottom	95.9	0.000	1.250	1.043	0.000	0.000	0.000	
5690	138	802.11ac	OFDM	80	14.25	13.28	0.19	0 mm	Antenna WF7A	V1	DLXCT006PWHW	29.3	right	95.9	0.000	1.250	1.043	0.000	0.000	0.000	
5690	138	802.11ac	OFDM	80	14.25	13.28	0.19	0 mm	Antenna WF7A	V1	DLXCT006PWHW	29.3	left	95.9	0.008	1.250	1.043	0.010	0.003	0.004	
5775	155	802.11ac	OFDM	80	15.75	14.80	0.09	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	29.3	back	95.9	0.008	1.245	1.043	0.010	0.002	0.003	
5775	155	802.11ac	OFDM	80	15.75	14.80	0.08	0 m m	Antenna WF7A	V2	DLXCT00EPWHW	29.3	top	95.9	0.890	1.245	1.043	1.156	0.278	0.361	
5775	155	802.11ac	OFDM	80	15.75	14.77	0.06	0 mm	Antenna WF7A	V1	DLXCT009PWHW	29.3	top	95.9	0.806	1.253	1.043	1.053	0.254	0.332	
5775	155	802.11ac	OFDM	80	15.75	14.80	0.01	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	29.3	bottom	95.9	0.000	1.245	1.043	0.000	0.000	0.000	
5775	155	802.11ac	OFDM	80	15.75	14.80	0.01	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	29.3	right	95.9	0.000	1.245	1.043	0.000	0.000	0.000	
5775	155	802.11ac	OFDM	80	15.75	14.80	0.17	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	29.3	left	95.9	0.007	1.245	1.043	0.009	0.003	0.004	
5270	54	802.11n	OFDM	40	17.25	16.26	0.01	0 mm	Antenna WF7A	V2	DLXCT00EPWHW	13.5	top	98.0	0.926	1.256	1.020	1.186	0.313	0.401	
			ANSI / IEEE	C95.1 1992 -	SAFETY LIMIT										Body						
				Spatial Pea	ık									1.6 W	kg (mW/g)						
		Un	controlled	Exposure/Ge	neral Population									averaged	d over 1 gram						

Note: Blue entry indicates variability measurement.

Table 9-4 5 GHz WLAN Body SAR Data - Antenna WF8

						, 0112					· Data			••••	<u>u </u>						-
									MEAS	JREMEN'	T RESULTS										
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed		Power Drift	Spacing	Antenna Config.	Variant	Device Serial Number	Data Rate	Side	Duty Cycle	SAR (1g)			Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]					(Mbps)		(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	(W/kg)	(W/kg)	1
5270	54	802.11n	OFDM	40	19.25	18.06	0.09	0 mm	Antenna WF8	V1	DLXCT006PWHW	13.5	back	98.0	0.090	1.315	1.020	0.121	0.034	0.046	
5270	54	802.11n	OFDM	40	19.25	18.06	-0.10	0 mm	Antenna WF8	V1	DLXCT006PWHW	13.5	top	98.0	0.811	1.315	1.020	1.088	0.254	0.341	
5270	54	802.11n	OFDM	40	19.25	18.38	-0.14	0 mm	Antenna WF8	V2	DLXCT00EPWHW	13.5	top	98.0	0.749	1.222	1.020	0.934	0.236	0.294	Į.
5310	62	802.11n	OFDM	40	14.50	13.33	-0.13	0 mm	Antenna WF8	V1	DLXCT006PWHW	13.5	top	98.0	0.266	1.309	1.020	0.355	0.081	0.108	
5270	54	802.11n	OFDM	40	19.25	18.06	0.17	0 mm	Antenna WF8	V1	DLXCT006PWHW	13.5	bottom	98.0	0.012	1.315	1.020	0.016	0.003	0.004	
5270	54	802.11n	OFDM	40	19.25	18.06	0.12	0 mm	Antenna WF8	V1	DLXCT006PWHW	13.5	right	98.0	0.007	1.315	1.020	0.009	0.003	0.004	
5270	54	802.11n	OFDM	40	19.25	18.06	0.13	0 mm	Antenna WF8	V1	DLXCT006PWHW	13.5	left	98.0	0.001	1.315	1.020	0.001	0.000	0.000	
5610	122	802.11ac	OFDM	80	17.00	16.11	-0.19	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	back	96.1	0.039	1.227	1.041	0.050	0.014	0.018	
5530	106	802.11ac	OFDM	80	13.00	11.93	0.02	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	top	96.1	0.289	1.279	1.041	0.385	0.084	0.112	
5610	122	802.11ac	OFDM	80	17.00	16.11	-0.06	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	top	96.1	0.930	1.227	1.041	1.188	0.286	0.365	A2
5610	122	802.11ac	OFDM	80	17.00	15.98	-0.12	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	top	96.0	0.890	1.265	1.042	1.173	0.270	0.356	
5690	138	802.11ac	OFDM	80	17.00	15.96	-0.01	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	top	96.1	0.774	1.271	1.041	1.024	0.231	0.306	
5610	122	802.11ac	OFDM	80	17.00	16.11	0.19	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	bottom	96.1	0.017	1.227	1.041	0.022	0.004	0.005	
5610	122	802.11ac	OFDM	80	17.00	16.11	0.11	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	right	96.1	0.036	1.227	1.041	0.046	0.012	0.015	
5610	122	802.11ac	OFDM	80	17.00	16.11	0.01	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	left	96.1	0.000	1.227	1.041	0.000	0.000	0.000	
5775	155	802.11ac	OFDM	80	17.00	16.05	-0.10	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	back	96.0	0.038	1.245	1.042	0.049	0.014	0.018	
5775	155	802.11ac	OFDM	80	17.00	16.05	-0.13	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	top	96.0	0.916	1.245	1.042	1.188	0.264	0.342	
5775	155	802.11ac	OFDM	80	17.00	15.97	-0.15	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	top	96.1	0.869	1.268	1.041	1.147	0.246	0.325	
5775	155	802.11ac	OFDM	80	17.00	16.05	0.10	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	bottom	96.0	0.010	1.245	1.042	0.013	0.002	0.003	
5775	155	802.11ac	OFDM	80	17.00	16.05	0.17	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	right	96.0	0.019	1.245	1.042	0.025	0.006	0.008	
5775	155	802.11ac	OFDM	80	17.00	16.05	0.01	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	left	96.0	0.000	1.245	1.042	0.000	0.000	0.000	Į.
5610	122	802.11ac	OFDM	80	17.00	16.11	0.01	0 mm	Antenna WF8	V2	DLXCT00FPWHW	29.3	top	96.1	0.887	1.227	1.041	1.133	0.269	0.344	
5775	155	802.11ac	OFDM	80	17.00	16.05	0.01	0 mm	Antenna WF8	V1	DLXCT009PWHW	29.3	top	96.0	0.898	1.245	1.042	1.165	0.260	0.337	
			ANSI / IEE	E C95.1 1992 -	SAFETY LIMIT										Body						
				Spatial Pea										1.6 W	kg (mW/g)						
		Ur	controlled	Exposure/Ge	neral Population									average	d over 1 gram						

Note: Blue entry indicates variability measurement.

FCC ID: BCGA2316	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 40 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 40 of 52

© 2020 PCTEST.

Table 9-5 5 GHz WLAN Body SAR Data - MIMO

							JI 14	4 4 L		<u> </u>	ay c	DAN Da	ıa	- 14	HIIA	<u> </u>						
									N	IEASURI	EMENT F	RESULTS										
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Cube	Power Drift	Spacing	Antenna	Variant	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			[MHz]	[dBm]	[dBm]		[dB]		Config.		Number	(Mbps)		(%)	(W/kg)	(Power)	Cycle)	(W/kg)	(W/kg)	(W/kg)	Ĺ
5270	54	802.11n	OFDM	40	17.25	16.53	1	-0.02	0 mm	MIMO	V1	DLXCT004PWHW	13.5	top	97.9	0.808	1.180	1.021	0.973	0.286	0.345	
0270	3	002.1111	OI DIII		19.00	18.14	2	-0.13	0111111	mino	*.	DDIOTOGRA WITH	10.0	тор	98.0	0.881	1.219	1.020	1.095	0.292	0.363	
5270	54	802 11n	OFDM	40	17.25	16.69	1	-0.13	0 mm	MIMO	V2	DLXCT00BPWHW	13.5	top	98.0	0.696	1.138	1.020	0.808	0.243	0.282	
3270	54	002.1111	OFDIM	40	19.00	18.68	2	-0.13	Ollilli	IVIIIVIO	V2	DEAC TOOBY WHIV	13.0	top	98.0	0.829	1.076	1.020	0.910	0.260	0.285	
5310	62	802.11n	OFDM	40	13.00	12.24	1	-0.12	0 mm	MIMO	V1	DLXCT004PWHW	13.5		97.9	0.338	1.191	1.021	0.411	0.116	0.141	
5310	02	8U2.11II	OFDM	40	13.00	12.14	2	-0.12	Umm	MINIO	VI	DEACTOO4PWHW	13.5	top	98.0	0.198	1.219	1.020	0.246	0.061	0.076	
5610	122	802.11ac	OFDM	80	14.25	13.47	1	-0.19	0 mm	MIMO	V2	DLXCT00FPWHW	29.3	top	95.9	0.640	1.197	1.043	0.799	0.215	0.268	
3010	122	002.11ac	OFDIM	80	17.00	16.15	2	-0.19	Ollilli	IVIIIVIO	VZ.	DEACTOOFF WHW	25.3	top	96.1	0.906	1.216	1.041	1.147	0.294	0.372	
5690	138	802.11ac	OFDM	80	14.25	13.46	1	-0.12	0 mm	MIMO	V2	DLXCT00FPWHW	29.3	top	95.9	0.558	1.199	1.043	0.698	0.184	0.230	
3030	130	002.11ac	OFDIM	80	17.00	16.16	2	-0.12	Ollilli	IVIIIVIO	VZ.	DEACTOOFF WHW	25.3	top	96.1	0.914	1.213	1.041	1.154	0.281	0.355	
5690	138	802.11ac	OFDM	80	14.25	13.23	- 1	-0.12	0 mm	MIMO	V1	DLXCT004PWHW	29.3	top	95.9	0.549	1.265	1.043	0.724	0.182	0.240	
5090	130	802.11ac	OFDM	80	17.00	16.13	2	-0.12	Umm	MINIO	VI	DEAC1004PWHW	29.3	top	96.0	0.851	1.222	1.042	1.084	0.264	0.336	
5775	155	802.11ac	OFDM	80	15.75	14.87	1	-0.13	0 mm	MIMO	V1	DLXCT004PWHW	29.3		95.9	0.746	1.225	1.043	0.953	0.256	0.327	
5//5	100	802.11ac	OFDM	80	17.00	16.26	2	-0.13	Umm	MINIO	VI	DEAC1004PWHW	29.3	top	96.0	0.804	1.186	1.042	0.994	0.266	0.329	
5775	155	802.11ac	OFDM	80	15.75	14.75	- 1	-0.15	0 mm	MIMO	V2	DLXCT00FPWHW	29.3	top	95.9	0.814	1.259	1.043	1.069	0.259	0.340	
3//5	135	002.118C	OFDM	30	17.00	16.00	2	-0.15	vinm	IVIIIIU	V2	DEACTOOPPWHW	25.3	шр	96.1	0.631	1.259	1.041	0.827	0.199	0.261	
			ANSI	IEEE C95.1	1992 - SAFETY	LIMIT										Body			•			
					ial Peak											W/kg (mW/g						j
			Uncontr	olled Expos	ure/General Pop	oulation									averag	ged over 1 gra	am					

Note: Due to the spatial separation of Antenna WF7A and Antenna WF8, two measurement cubes were evaluated during MIMO SAR testing. Cube 1 and 2 are located over the SAR distributions produced by Antenna WF7A and WF8, respectively. Due to the spatial separation of the distributions, the conducted power of each antenna was individually considered for each measurement cube to determine the reported SAR.

> Table 9-6 Bluetooth Body SAR Data - Antenna WE7B

						siue	toot	n Boa	y 5/	AR Data	<u> </u>	ant	enr	ia w	-/B					
									MEAS	JREMENT RESU	JLTS									
FREQU	IENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Variant	Device Serial Number	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			Power [dBm]	Power (abm)	[dB]		_			(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	(W/kg)	(W/kg)	
2480	78	Bluetooth	FHSS	20.00	18.91	0.08	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	back	76.7	0.090	1.285	1.010	0.117	0.046	0.060	
2402	0	Bluetooth	FHSS	20.00	18.65	0.09	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	top	76.7	0.633	1.365	1.010	0.873	0.261	0.360	А3
2402	0	Bluetooth	FHSS	20.00	18.50	0.02	0 mm	Antenna WF7B	V1	DLXCT006PWHW	1	top	76.9	0.503	1.413	1.008	0.716	0.207	0.295	
2441	39	Bluetooth	FHSS	20.00	18.85	-0.04	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	top	76.7	0.564	1.303	1.010	0.742	0.235	0.309	
2480	78	Bluetooth	FHSS	20.00	18.91	0.06	0 mm												0.254	
2480	78	Bluetooth	FHSS	20.00	18.91	0.10	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	bottom	76.7	0.003	1.285	1.010	0.004	0.000	0.000	
2480	78	Bluetooth	FHSS	20.00	18.91	0.17	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	right	76.7	0.012	1.285	1.010	0.016	0.004	0.005	
2480	78	Bluetooth	FHSS	20.00	18.91	0.01	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	left	76.7	0.377	1.285	1.010	0.489	0.162	0.210	
2480	78	Bluetooth	FHSS	13.00	11.91	0.14	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	back	76.7	0.009	1.285	1.010	0.012	0.003	0.004	
2480	78	Bluetooth	FHSS	13.00	11.91	0.07	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	top	76.7	0.093	1.285	1.010	0.121	0.036	0.047	
2480	78	Bluetooth	FHSS	13.00	11.91	0.01	0 mm	Antenna WF7B	V2	DLXCT00EPWHW	1	left	76.7	0.070	1.285	1.010	0.091	0.028	0.036	
		ANSI / IEEE	C95.1 19	92 - SAFETY	LIMIT									Body			•			
			Spatial	Peak									1.6 W/	kg (mW/g)						
		Uncontrolled	Exposure	General Por	oulation								average	d over 1 gram	1					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per the manufacturer.

FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 44 -4 50	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 41 of 52	

Table 9-7 Bluetooth Body SAR Data – Antenna WF8

						<u> </u>	,,,,,,	50	<u> </u>	AIT Dut	ч	, ,,,,,	. • • •		. •					
									MEASU	JREMENT RESU	JLTS									
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Variant	Device Serial Number	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			Power [dBm]	Power (abm)	[dB]					(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	(W/kg)	(W/kg)	$oxed{oxed}$
2441	39	Bluetooth	FHSS	20.00	19.03	-0.09	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	back	76.9	0.061	1.250	1.008	0.077	0.031	0.039	
2402	0	Bluetooth	FHSS	20.00	18.98	-0.12	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	top	76.9	0.596	1.265	1.008	0.760	0.281	0.358	
2402	0	Bluetooth	FHSS	20.00	19.11	0.02	0 mm	Antenna WF8	V1	DLXCT004PWHW	1	top	76.9	0.508	1.227	1.008	0.628	0.242	0.299	
2441	39	Bluetooth	FHSS	20.00	19.03	-0.12	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	top	76.9	0.559	1.250	1.008	0.704	0.253	0.319	
2480	78	Bluetooth	FHSS	20.00	18.89	0.03	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	top	76.9	0.576	1.291	1.008	0.750	0.257	0.334	
2441	39	Bluetooth	FHSS	20.00	19.03	0.15	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	bottom	76.9	0.010	1.250	1.008	0.013	0.004	0.005	
2441	39	Bluetooth	FHSS	20.00	19.03	0.12	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	right	76.9	0.008	1.250	1.008	0.010	0.003	0.004	
2441	39	Bluetooth	FHSS	20.00	19.03	0.10	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	left	76.9	0.000	1.250	1.008	0.000	0.000	0.000	
2402	0	Bluetooth	FHSS	13.00	11.86	0.03	0 mm	Antenna WF8	V2	DLXCT00BPWHW	1	top	76.9	0.062	1.300	1.008	0.081	0.027	0.035	
		ANSI / IEEE	C95.1 19	2 - SAFETY	LIMIT		Body													
			Spatial I	Peak				1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population											average	d over 1 gram	1						

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per the manufacturer.

9.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 11.1 for variability analysis.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations.
- 8. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.2. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 6.2.4 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 6.2.5 for more information.
- 3. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 10 for complete analysis.

FCC ID: BCGA2316	PCTEST* Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 42 of 52	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device		
20 PCTEST.			REV 21.4 M	

- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8 MHz, VBW = 50 MHz, and detector = peak per guidance of Section 6.0 b) of ANSI C63. 10-2013 and KDB 558074 D01 v04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100.
- 6. The time-averaged mechanism for WLAN operations was disabled for the above SAR measurements. The SAR was scaled to the maximum time-averaged output power.

Bluetooth Notes:

 Bluetooth SAR was evaluated with a test mode with hopping disabled with DH5 operation. The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is limited to 77.5% per the manufacturer. See Section 7.3 for the time domain plot and calculation for the duty factor of the device.

FCC ID: BCGA2316	Proceed to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dog 42 of 52	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 43 of 52	

10 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit together.

10.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g SAR.

Note:

*The SAR distributions for at least one of the antennas are spatially separated from the other antennas per FCC KDB Publication 248227 Section 6.1 procedures. Therefore, the simultaneous transmission were treated independently for this configuration. See section 10.4 for more information about the Spatial Separation Analysis.

10.3 Body SAR Simultaneous Transmission Analysis

Table 10-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN

Simult Tx	Configuration	2.4 GHz WLAN Antenna WF7B SAR (W/kg)	2.4 GHz WLAN Antenna WF8 SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	0.081	0.142	0.223
Pody.	Тор	1.097	1.059	1.097*
Body SAR	Bottom	0.010	0.012	0.022
SAR	Right	0.011	0.020	0.031
	Left	0.616	0.000	0.616

FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 44 of 52	
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 44 of 52	

Table 10-2 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth

Simult Tx	Configuration	Bluetooth Antenna WF7B SAR (W/kg)	Bluetooth Antenna WF8 SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	0.117	0.077	0.194
Body	Тор	0.873	0.760	0.873*
SAR	Bottom	0.004	0.013	0.017
SAR	Right	0.016	0.010	0.026
	Left	0.489	0.000	0.489

Table 10-3 Simultaneous Transmission Scenario Bluetooth MIMO and 5 GHz MIMO

Simult Tx	Configura	ation						LAN Antenna SAR (W/kg)		z WLAN Aı F8 SAR (W		Σ SAR (W/kg)
			1	1		2		3		4		1+2+3+4
	Back		0.012	0.0		7 0.105).105	0.121		0.315	
	Тор		0.121	0.121		0.081		1.186		1.188		See table below
Body SAR	Botto	m	0.004	0.004		0.013		0.020		0.022		0.059
	Right	t	0.016		0.010)	(0.000		0.046		0.072
	Left		0.091	0.091		0.000).031	0.001		0.123	
				Bluetoo	th Antenna WF7B	Bluetooth An	tenna WF8 at	5 GHz WLAN MIN	MO SAR	ΣSAR		

at 13 dBm SAR (W/kg) 13 dBm SAR (W/kg) (W/kg) Simult Tx Configuration (W/kg) 1+2+3 Body SAR Top 0.081 1 154

Spatial Separation Analysis 10.4

Per FCC KDB Publication 248227, antennas may be considered spatially separated when the aggregate SAR from multiple antennas at any location in the combined SAR distribution is either ≤ 1.2 W/kg where at least 90% of the SAR is attributed to a single SAR distribution or ≤ 0.4 W/kg where no more than one SAR distribution is contributing > 0.1 W/kg.

Spatial separation was determined by inspection of the area scan SAR distributions to confirm that at all locations, SAR was < 1.2 W/kg, where at least 90% of the SAR is attributed to a single SAR distribution. See below for illustrations of the spatial separated antennas considered.

	FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager					
	Document S/N:	Test Dates:	DUT Type:	D 45 -4 50					
	1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 45 of 52					
© 202	2020 PCTEST.								

10.4.1

Top Edge Spatial Separation Analysis

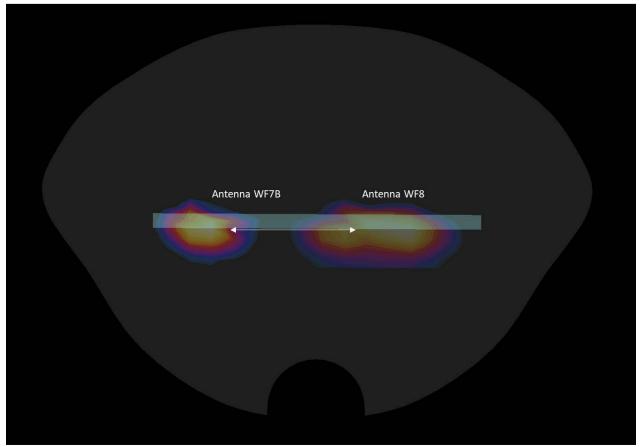


Figure 10-1 Top Edge Spatial Separation for Antenna WF7B and Antenna WF8

10.5 **Simultaneous Transmission Conclusion**

thereof, please contact INFO@PCTEST.COM.

The above numerical summed SAR results and spatial separation analysis for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

	FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager					
	Document S/N:	Test Dates:	DUT Type:	D 40 -4 50					
	1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 46 of 52					
© 202	2220 PCTEST.								

11 SAR MEASUREMENT VARIABILITY

11.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 11-1
Body SAR Measurement Variability Results

				ay crit moad	•••	• • • •		,						
				BODYVA	RIABILI	TYRES	ULTS							
Band	FREQUE	REQUENCY Mode		Service	Data Rate (Mbps)	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.			((W/kg)	(W/kg)		(W/kg)		(W/kg)	
2450	2417.00	2	802.11b, 22 MHz Bandwidth	DSSS , Antenna WF7B	1	top	0 mm	0.874	0.908	1.04	N/A	N/A	N/A	N/A
5250	5270.00	54	802.11n, 40 MHz Bandwidth	OFDM, Antenna WF7A	13.5	top	0 mm	0.896	0.926	1.03	N/A	N/A	N/A	N/A
5600	5610.00	122	802.11ac, 80 MHz Bandwidth	OFDM, Antenna WF8	29.3	top	0 mm	0.930	0.887	1.05	N/A	N/A	N/A	N/A
5750	5775.00	155	802.11ac, 80 MHz Bandwidth	OFDM, Antenna WF8	29.3	top	0 mm	0.916	0.898	1.02	N/A	N/A	N/A	N/A
			ANSI / IEEE C95.1 1992 - SAFE	TY LIMIT			Body							
	Spatial Peak							1.6 W/kg (mW/g)						
			Uncontrolled Exposure/General	Population			averaged over 1 gram							

11.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 47 of 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 47 of 52

12 **EQUIPMENT LIST**

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	E4438C	ESG Vector Signal Generator	1/15/2020	Triennial	1/15/2023	MY45090479
Agilent	N5182A	MXG Vector Signal Generator	5/13/2020	Annual	5/13/2021	MY47420603
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MT8862A	Wireless Connectivity Test Set	8/8/2019	Annual	8/8/2020	6261782395
Anritsu	MA24106A	USB Power Sensor	8/5/2019	Annual	8/5/2020	1827527
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1244524
Anritsu	MA2411B	Pulse Power Sensor	11/15/2019	Annual	11/15/2020	1027293
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	ML2496A	Power Meter	11/6/2019	Annual	11/6/2020	1405003
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647802
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292061
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Agilent	85033E	3.5mm Standard Calibration Kit	6/6/2020	Annual	6/6/2021	MY53402352
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Insize	1108-150	Digital Caliper	1/17/2020	Biennial	1/17/2022	409193536
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	FSP-7	Spectrum Analyzer	1/9/2020	Biennial	1/9/2022	100288
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
SPEAG	D2450V2	2450 MHz SAR Dipole	6/14/2019	Biennial	6/14/2021	750
SPEAG	D2450V2	2450 MHz SAR Dipole	11/12/2018	Biennial	11/12/2020	921
SPEAG	D5GHzV2	5 GHz SAR Dipole	3/13/2018	Triennial	3/13/2021	1123
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/11/2020	Annual	6/11/2021	701
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/12/2019	Annual	8/12/2020	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/13/2019	Annual	11/13/2020	1213
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	8/29/2019	Annual	8/29/2020	3949
SPEAG	EX3DV4	SAR Probe	6/22/2020	Annual	6/22/2021	7416
SPEAG	EX3DV4	SAR Probe	11/21/2019	Annual	11/21/2020	7420

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: BCGA2316	Proxit to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 40 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 48 of 52

© 2020 PCTEST.

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	Ui	ui	v _i
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	oc o
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	œ
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	8
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	œ
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	œ
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	×
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	oc
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	oc
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Combined Standard Uncertainty (k=1)		RSS	1			11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	\square
(95% CONFIDENCE LEVEL)		-						

FCC ID: BCGA2316	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 50
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 49 of 52

14 CONCLUSION

14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCGA2316	Proceed to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo FO of FO
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 50 of 52

15 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCGA2316	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 54 of 52
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 51 of 52

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCGA2316	PCTEST* Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo F2 of F2
1C2004270028-01-R1.BCG	06/26/2020 - 07/15/2020	Tablet Device	Page 52 of 52

APPENDIX A: SAR TEST DATA

DUT: BCGA2316; Type: Tablet Device; Serial: DLXCT006PWHW

Communication System: UID 0, _IEEE 802.11b; Frequency: 2417 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used (interpolated): $f = 2417 \text{ MHz}; \ \sigma = 1.968 \text{ S/m}; \ \epsilon_r = 52.148; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-15-2020; Ambient Temp: 22.7°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7416; ConvF(7.28, 7.28, 7.28) @ 2417 MHz; Calibrated: 6/22/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn701; Calibrated: 6/11/2020

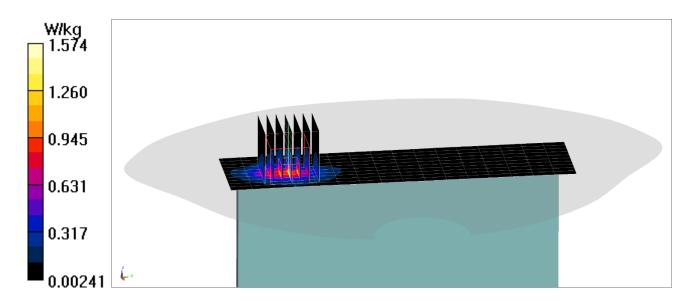
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, Antenna WF7B, Variant 1, 22 MHz Bandwidth, Body SAR, Ch 2, 1 Mbps, Top Edge

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 23.81 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.908 W/kg; SAR(10 g) = 0.386 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 45.8%

DUT: BCGA2316; Type: Tablet Device; Serial: DLXCT00FPWHW

Communication System: UID 0, _IEEE 802.11ac; Frequency: 5610 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5610 \text{ MHz}; \ \sigma = 5.989 \text{ S/m}; \ \epsilon_r = 46.804; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

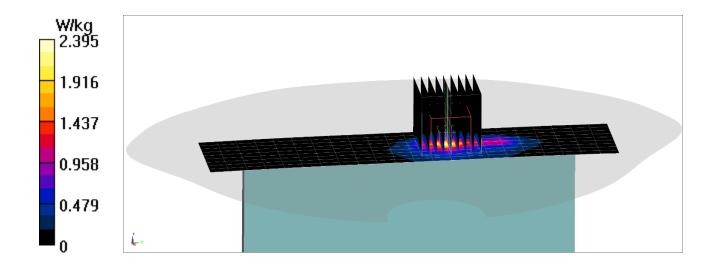
Test Date: 06-26-2020; Ambient Temp: 22.9°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7420; ConvF(4.1, 4.1, 4.1) @ 5610 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.13 (7483)

Mode: IEEE 802.11ac, Antenna WF8, Variant 2, U-NII-2C, 80 MHz Bandwidth, Body SAR, Ch 122, 29.3 Mbps, Top Edge

Area Scan (10x23x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4


Reference Value = 13.32 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 4.32 W/kg

SAR(1 g) = 0.930 W/kg; SAR(10 g) = 0.286 W/kg

Smallest distance from peaks to all points 3 dB below = 5.6 mm

Ratio of SAR at M2 to SAR at M1 = 60.5%

DUT: BCGA2316; Type: Tablet Device; Serial: DLXCT00EPWHW

Communication System: UID 0, Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1.304 Medium: 2450 MHz Body Medium parameters used (interpolated): $f = 2402 \text{ MHz}; \ \sigma = 1.931 \text{ S/m}; \ \epsilon_r = 51.984; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

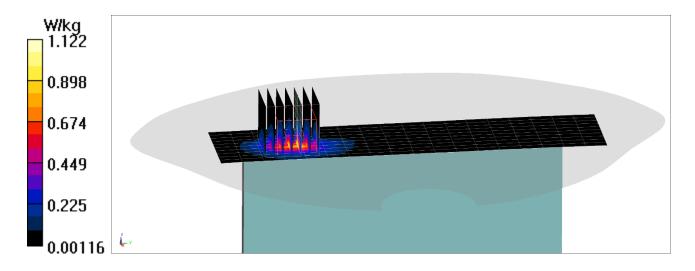
Test Date: 07-08-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2402 MHz; Calibrated: 8/29/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019 Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Antenna 7B, Variant 2, Body SAR, Ch 0, 1 Mbps, Top Edge

Area Scan (11x19x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 22.66 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.633 W/kg; SAR(10 g) = 0.261 W/kg

Smallest distance from peaks to all points 3 dB below = 7.3 mm

Ratio of SAR at M2 to SAR at M1 = 46.6%

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 750

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.995 \text{ S/m}; \ \epsilon_r = 51.82; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-08-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.5°C

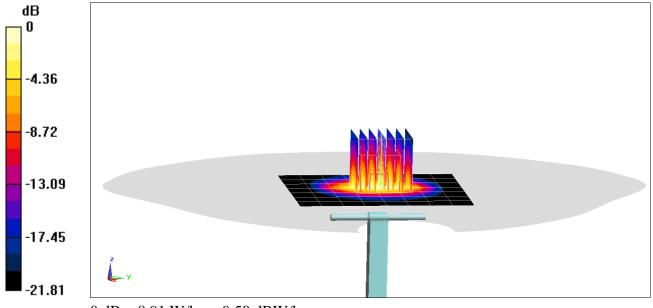
Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 8/29/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.0 W/kg

SAR(1 g) = 5.44 W/kg; SAR(10 g) = 2.54 W/kg

Deviation(1 g) = 6.67%

0 dB = 8.91 W/kg = 9.50 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.013 \text{ S/m}; \ \epsilon_r = 52.035; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-15-2020; Ambient Temp: 22.7°C; Tissue Temp: 20.5°C

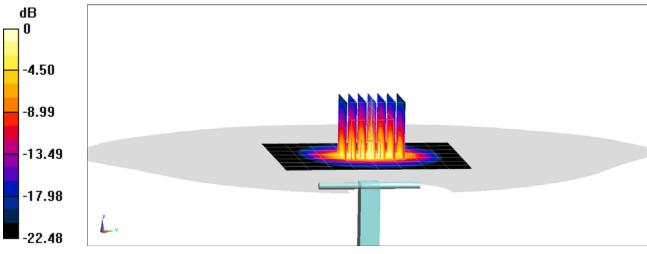
Probe: EX3DV4 - SN7416; ConvF(7.28, 7.28, 7.28) @ 2450 MHz; Calibrated: 6/22/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn701; Calibrated: 6/11/2020

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.3 W/kg

SAR(1 g) = 4.91 W/kg; SAR(10 g) = 2.23 W/kg

Deviation(1 g) = -3.35%

0 dB = 8.28 W/kg = 9.18 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 5.495 \text{ S/m}; \ \epsilon_r = 47.361; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-26-2020; Ambient Temp: 22.9°C; Tissue Temp: 21.5°C

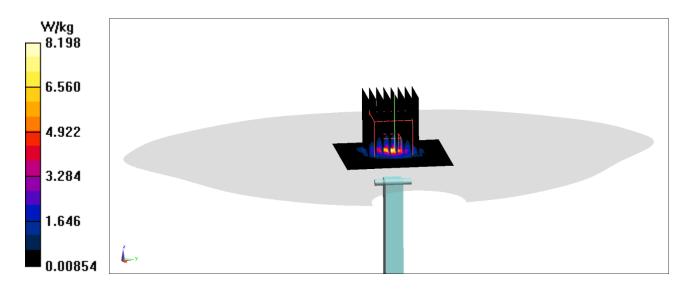
Probe: EX3DV4 - SN7420; ConvF(4.8, 4.8, 4.8) @ 5250 MHz; Calibrated: 11/21/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.4 W/kg

SAR(1x) = 3.5 W/kg: SAR(10x) = 0.074 W/kg

SAR(1 g) = 3.5 W/kg; SAR(10 g) = 0.974 W/kgDeviation(1 g) = -5.41%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.979 \text{ S/m}; \ \epsilon_r = 46.834; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-26-2020; Ambient Temp: 22.9°C; Tissue Temp: 21.5°C

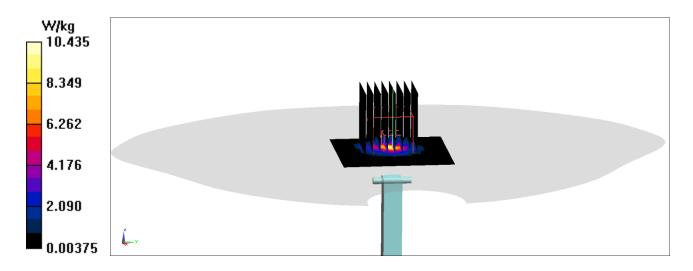
Probe: EX3DV4 - SN7420; ConvF(4.1, 4.1, 4.1) @ 5600 MHz; Calibrated: 11/21/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.3 W/kg

SAR(10x) = 3.84 W/kg: SAR(10x) = 1.06 W/kg

SAR(1 g) = 3.84 W/kg; SAR(10 g) = 1.06 W/kgDeviation(1 g) = -1.03%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 6.178 \text{ S/m}; \ \epsilon_r = 46.513; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-26-2020; Ambient Temp: 22.9°C; Tissue Temp: 21.5°C

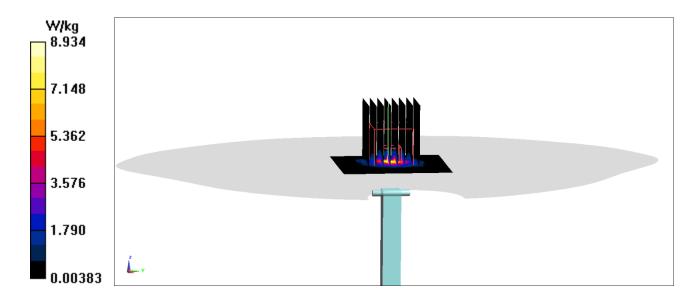
Probe: EX3DV4 - SN7420; ConvF(4.28, 4.28, 4.28) @ 5750 MHz; Calibrated: 11/21/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 3.71 W/kg; SAR(10 g) = 1.01 W/kg

Deviation(1 g) = -0.67%

APPENDIX C: SAR TISSUE SPECIFICATIONS

FCC ID: BCGA2316	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/26/2020 - 07/15/2020	Tablet Device		Page 1 of 3

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{a} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $\dot{J} = \sqrt{-1}$.

cription: Aqueous solution with	surfactants and inhibitors	
arable, or hazardous compo		
S: 107-21-1	Ethanediol	>1.0-4.9%
IECS: 203-473-3	STOT RE 2, H373;	
g.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
S: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
IECS: 271-781-5	Eye Irrit. 2, H319	
g.nr.: 01-2119527859-22-0000		
S: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
IECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
g.nr.: 01-2119539582-35-0000		
S: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
P: 500-236-9	Aquatic Chronic 2, H411;	
g.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
itional information:		

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: BCGA2316	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/26/2020 - 07/15/2020	Tablet Device		Page 2 of 3

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Body Tissue Simulating Liquid (MBBL600-6000V6) Product No. SL AAM U16 BC (Batch: 181029-1) SPEAG Manufacturer

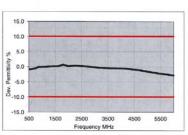
Measurement Method

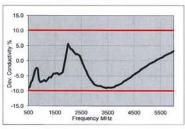
TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.

Test Condition


Ambient Condition 22°C; 30% humidity


TSL Temperature 22°C Test Date 30-Oct-18

Operator CL Additional Information TSL Density

TSL Heat-capacity

	Measu	ured		Targe	t	Diff.to Tar	get [%]
f [MHz]	0'	e"	sigma	eps	sigma	Δ-eps	Δ-sigma
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.5
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5
1550	54.0	15.1	1,30	53.9	1.36	0.2	-4.4
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9
1810	53.7	14.6	1.47	53.3	1.52	8.0	-3.3
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5
2100	53.3	14.4	1.68	53.2	1.62	0.2	3.7
2150	53.3	14.4	1.72	53.1	1.66	0.4	3.6
2200	53.2	14.4	1.76	53.0	1.71	0.3	2.9
2250	53.1	14.4	1.81	53.0	1.76	0.2	2.8
2300	53.1	14.4	1.85	52.9	1.81	0.4	2.2
2350	53.0	14.5	1.89	52.8	1.85	0.3	2.2
2400	52.9	14.5	1.94	52.8	1.90	0.2	2.1
2450	52.9	14.5	1.98	52.7	1.95	0.4	1.5
2500	52.8	14.6	2.03	52.6	2.02	0.3	0.5
2550	52.7	14.6	2.07	52.6	2.09	0.2	-1.0
2600	52.6	14.7	2.12	52.5	2.16	0.2	-1.9

3500	51.1	15.5	3.02	51.3	3.31	-0.4	-8.8
3700	50.8	15.7	3,24	51.1	3.55	-0.5	-8.8
5200	48.1	18.2	5.27	49.0	5.30	-1.8	-0.6
5250	48.0	18.3	5.34	49.0	5.36	-1.9	-0.4
5300	47.9	18.4	5.41	48.9	5.42	-2.0	-0.2
5500	47.5	18.6	5.70	48.6	5.65	-2.2	0.8
5600	47.3	18.8	5.84	48.5	5.77	-2.3	1.3
5700	47.1	18.9	5.99	48.3	5.88	-2.5	1.8
5800	47.0	19.0	6.14	48.2	6.00	-2.6	2.3

Figure C-2 600 – 5800 MHz Body Tissue Equivalent Matter

FCC ID: BCGA2316	PCTEST Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/26/2020 - 07/15/2020	Tablet Device		Page 3 of 3

APPENDIX D: SAR SYSTEM VALIDATION

	@\ PCTEST	SAR EVALUATION REPORT	Approved by:
	Proxed to be port of element		Quality Manager
Test Dates:	DUT Type:		APPENDIX D:
06/26/2020 - 07/15/2020	Tablet Device		Page 1 of 2

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D-1
SAR System Validation Summary – 1q

OAN Cystem validation Cuminary 19														
								CM	/ VALIDATIO	N	MOD. VALIDATION			
SAR System	Freq. (MHz)	Date	Probe SN	Probe C	al Point	Point Cond. (σ)		SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
AM3	2450	9/4/2019	3949	2450	Body	1.955	52.22	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
AM5	2450	7/6/2020	7416	2450	Body	1.996	51.99	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
AM2	5250	12/3/2019	7420	5250	Body	5.500	48.380	PASS	PASS	PASS	OFDM	N/A	PASS	
AM2	5600	12/3/2019	7420	5600	Body	5.974	47.790	PASS	PASS	PASS	OFDM	N/A	PASS	
AM2	5750	12/3/2019	7420	5750	Body	6.180	47.556	PASS	PASS	PASS	OFDM	N/A	PASS	

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: BCGA2316	PCTEST Proud to be port of ® sienced	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX D:
06/26/2020 - 07/15/2020	Tablet Device		Page 2 of 2

APPENDIX F: IEEE 802.11AX RU SAR EXCLUSION

FCC ID: BCGA2316	SAR EVALUATION REPORT	Reviewed by:
FCC ID: BCGA2316	Proud to be part of the element SAR EVALUATION REPORT	Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 1 of 15

© 2020 PCTEST REV 21.2 M 12/05/2018

1.1 IEEE 802.11ax RU SAR Exclusion

To make the most efficient use of the additional available subcarriers (data tones), IEEE 802.11ax can utilize Orthogonal Frequency-Division Multiple Access (OFDMA) which divides the existing 802.11 channels into smaller subchannels called Resource Units (RUs). Possible RU sizes are: 26T, 52T, 106T, 242T, 484T and 996T.

Per April 2019 TCB Workshop Notes, 802.11ax was considered a higher order 802.11 mode when compared to a/b/g/n/ac to apply KDB Publication 248227 D01v02r02 for OFDM mode selection. Therefore, SAR tests were not required for 802.11ax based on the maximum allowed output powers of OFDM modes and the reported SAR values. Per FCC Guidance, maximum conducted powers were performed for each RU size to demonstrate that the output powers would not be higher than the other OFDM 802.11 modes.

1.2 IEEE 802.11ax RU Target Powers

1.2.1 Maximum Time-Averaged 802.11ax RU WLAN Output Power

		Tones	2	6T	5	52T	100	ST .	24	2T
Mode	Mode/ Band		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00
		2	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		3	18.50	17.00	18.50	17.00	18.50	17.00	18.50	17.00
		4	20.00	18.50	20.00	18.50	20.00	18.50	20.00	18.50
Modulated		5	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Average -	20 MHz	6	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Single Tx Chain	Bandwidth	7	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
(dBm) -	Dalluwiutii	8	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
Antenna WF7B		9	20.25	18.75	20.25	18.75	20.25	18.75	20.25	18.75
		10	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		11	14.00	12.50	14.00	12.50	14.00	12.50	14.00	12.50
		12	10.00	8.50	10.00	8.50	10.00	8.50	10.00	8.50
		13	N/A							

		Tones	2	6T	5	2T	106	5T	242T	
Mode	Mode/ Band		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	13.50	12.00	13.50	12.00	13.50	12.00	13.50	12.00
		2	16.00	14.50	16.00	14.50	16.00	14.50	16.00	14.50
		3	18.00	16.50	18.00	16.50	18.00	16.50	18.00	16.50
		4	19.00	17.50	19.00	17.50	19.00	17.50	19.00	17.50
Modulated		5	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00
Average - 2 Tx	20 MHz	6	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00
Chain (dBm) -	Bandwidth	7	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00
Antenna WF7B	Danuwiutii	8	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00
Antenna WF7B		9	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00
		10	15.50	14.00	15.50	14.00	15.50	14.00	15.50	14.00
		11	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50
		12	9.50	8.00	9.50	8.00	9.50	8.00	9.50	8.00
		13	N/A							

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 2 of 15

© 2020 PCTEST

		Tones	2	6T	5	2T	106	ST .	24	2T
Mode	Mode/ Band		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00
		2	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
		3	18.50	17.00	18.50	17.00	18.50	17.00	18.50	17.00
		4	20.00	18.50	20.00	18.50	20.00	18.50	20.00	18.50
Modulated		5	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
Average -	20 MHz	6	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
Single Tx Chain	Bandwidth	7	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
(dBm) -	Danawiatii	8	21.25	19.75	21.25	19.75	21.25	19.75	21.25	19.75
Antenna WF8		9	20.50	19.00	20.50	19.00	20.50	19.00	20.50	19.00
		10	16.50	15.00	16.50	15.00	16.50	15.00	16.50	15.00
		11	14.00	12.50	14.00	12.50	14.00	12.50	14.00	12.50
		12	10.00	8.50	10.00	8.50	10.00	8.50	10.00	8.50
	<u> </u>	13	N/A							

		Tones	2	6T	5	2T	100	6T	24	2T				
Mode	Mode/ Band		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal				
		1	13.50	12.00	13.50	12.00	13.50	12.00	13.50	12.00				
		2	16.00	14.50	16.00	14.50	16.00	14.50	16.00	14.50				
		3	18.00	16.50	18.00	16.50	18.00	16.50	18.00	16.50				
		4	19.00	17.50	19.00	17.50	19.00	17.50	19.00	17.50				
Modulated	20 MHz		5	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00			
Average - 2 Tx		6	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00				
Chain (dBm) -	Bandwidth	7	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00				
Antenna WF8	Danuwiutii	8	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00				
Antenna WF6	WFO					9	19.50	18.00	19.50	18.00	19.50	18.00	19.50	18.00
						10	15.50	14.00	15.50	14.00	15.50	14.00	15.50	14.00
		11	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50				
		12	9.50	8.00	9.50	8.00	9.50	8.00	9.50	8.00				
		13	N/A											

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 3 of 15

		Tones	2	6T	5	2T	10	6T	24	12T	48	34T	996	5T
Mode	/ Band	Channel	Maximum	Nominal										
		36	12.00	10.50	15.00	13.50	16.00	14.50	16.00	14.50				
		40	12.00	10.50	15.00	13.50	16.50	15.00	16.50	15.00				
		44	12.00	10.50	15.00	13.50	16.50	15.00	16.50	15.00				
		48	12.00	10.50	15.00	13.50	16.50	15.00	16.50	15.00				
		52	12.00	10.50	15.00	13.50	17.25	15.75	17.25	15.75				
		56	12.00	10.50	15.00	13.50	17.25	15.75	17.25	15.75				
		60	12.00	10.50	15.00	13.50	17.25	15.75	17.25	15.75				
		64	12.00	10.50	15.00	13.50	15.50	14.00	15.50	14.00				
		100	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		104	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		108	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		112	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
	20 MHz Bandwidth	116	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		120	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		124	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		128	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		132	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		136	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
		140	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50				
Modulated Average -		144	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75				
Single Tx Chain		149	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
(dBm) - Antenna		153	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
WF7A		157	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
******		161	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
		165	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
		38	12.00	10.50	13.00	11.50	13.00	11.50	13.00	11.50	13.00	11.50		
		46	12.00	10.50	15.00	13.50	16.50	15.00	16.50	15.00	16.50	15.00		
		54	12.00	10.50	15.00	13.50	17.25	15.75	17.25	15.75	17.25	15.75		
		62	12.00	10.50	13.00	11.50	13.00	11.50	13.00	11.50	13.00	11.50		
		102	11.50	10.00	11.50	10.00	11.50	10.00	13.00	11.50	13.00	11.50		
	40 MHz Bandwidth	110	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75		
		118	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75		
		126	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75		
		134	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75		
		142	12.00	10.50	14.25	12.75	14.25	12.75	12.00	10.50	14.25	12.75		
		151	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25		
		159	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25		
		42	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50
		58	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50
	80 MHz Bandwidth	106	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50
		122	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75	14.25	12.75
		138	12.00	10.50	14.25	12.75	14.25	12.75	12.00	10.50	14.25	12.75	14.25	12.75
	L	155	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 4 of 15

Mode/ Band		Tones	26T		52T		106T		242T		484T		996T	
		Channel	Maximum	Nominal										
		36	9.00	7.50	12.00	10.50	14.50	13.00	14.50	13.00				
		40	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00				
		44	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00				
		48	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00				
		52	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		56	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		60	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		64	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00				
		100	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		104	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		108	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
Modulated Average - 2 Tx Chain (dBm)		112	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
	20 MHz Bandwidth	116	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		120	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		124	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		128	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		132	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		136	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		140	9.00	7.50	11.00	9.50	11.00	9.50	11.00	9.50				
		144	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		149	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
CDD - Antenna		153	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
WF7A		157	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
******		161	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
		165	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
	40 MHz Bandwidth	38	9.00	7.50	11.50	10.00	11.50	10.00	11.50	10.00	11.50	10.00		
		46	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00	16.50	15.00		
		54	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.25	15.75		
		62	9.00	7.50	10.50	9.00	10.50	9.00	12.00	10.50	12.00	10.50		
		102	9.00	7.50	10.50	9.00	10.50	9.00	11.00	9.50	11.00	9.50		
		110	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75		
		118	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75		
		126	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75		
		134	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00	14.25	12.75		
		142	9.00	7.50	12.00	10.50	14.25	12.75	11.00	9.50	14.25	12.75		
		151	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25		
		159	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25		
	80 MHz Bandwidth	42	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
		58	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
		106	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
		122	9.00	7.50	10.00	8.50	10.00	8.50	14.25	12.75	14.25	12.75	14.25	12.75
		138	9.00	7.50	12.00	10.50	14.25	12.75	11.00	9.50	13.50	12.00	14.25	12.75
		155	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 5 of 15

© 2020 PCTEST REV 21.2 M 12/05/2018

		Tones	26	Т	5	2T	10	6T	24	12T	48	4T	99	6T
Mode	e/ Band	Channel	Maximum	Nominal										
		36	9.00	7.50	12.00	10.50	14.50	13.00	14.50	13.00				
		40	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00				
		44	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00				
		48	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00				
		52	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		56	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		60	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		64	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00				
		100	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		104	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		108	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
20		112	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
	20 MHz Bandwidth	116	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		120	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		124	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		128	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		132	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		136	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
		140	9.00	7.50	11.00	9.50	11.00	9.50	11.00	9.50				
Modulated Average -		144	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75				
2 Tx Chain (dBm)		149	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
SDM - Antenna		153	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
WF7A		157	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
******		161	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
		165	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25				
		38	9.00	7.50	11.50	10.00	11.50	10.00	11.50	10.00	11.50	10.00		
		46	9.00	7.50	12.00	10.50	15.00	13.50	16.50	15.00	16.50	15.00		
		54	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.25	15.75		
		62	9.00	7.50	10.50	9.00	10.50	9.00	12.00	10.50	12.00	10.50		
		102	9.00	7.50	10.50	9.00	10.50	9.00	11.00	9.50	11.00	9.50		
	40 MHz Bandwidth	110	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75		
		118	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75		
		126	9.00	7.50	12.00	10.50	14.25	12.75	14.25	12.75	14.25	12.75		
		134	9.00	7.50	12.00	10.50	14.25	12.75	13.50	12.00	14.25	12.75		
		142	9.00	7.50	12.00	10.50	14.25	12.75	11.00	9.50	14.25	12.75		
		151	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25		
		159	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25		
		42	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
		58	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
	80 MHz Bandwidth	106	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
		122	9.00	7.50	10.00	8.50	10.00	8.50	14.25	12.75	14.25	12.75	14.25	12.75
		138	9.00	7.50	12.00	10.50	14.25	12.75	11.00	9.50	13.50	12.00	14.25	12.75
		155	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 6 of 15

© 2020 PCTEST REV 21.2 M 12/05/2018

		Tones	2	6T	5	2T	10	6T	24	12T	48	4T	99	6T
Mode,	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nomina
		36	12.00	10.50	15.00	13.50	16.00	14.50	16.00	14.50				
		40	12.00	10.50	15.00	13.50	17.75	16.25	17.75	16.25				
		44	12.00	10.50	15.00	13.50	17.75	16.25	17.75	16.25				
		48	12.00	10.50	15.00	13.50	17.75	16.25	17.75	16.25				
		52	12.00	10.50	15.00	13.50	18.00	16.50	19.25	17.75				
		56	12.00	10.50	15.00	13.50	18.00	16.50	19.25	17.75				
		60	12.00	10.50	15.00	13.50	18.00	16.50	19.25	17.75				
		64	12.00	10.50	15.00	13.50	15.50	14.00	15.50	14.00				
		100	12.00	10.50	15.00	13.50	15.00	13.50	15.00	13.50				
		104	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
		108	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
	20141 5 1 111	112	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
	20 MHz Bandwidth	116	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
		120 124	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
			12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
		128	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50				
		132 136	12.00	10.50	15.00	13.50	17.00	15.50	17.00 17.00	15.50				
		140	12.00	10.50	15.00	13.50	17.00	15.50		15.50				
		_	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50				
Nodulated Average -		144 149	12.00 17.00	10.50 15.50	15.00 17.00	13.50 15.50	17.00 17.00	15.50 15.50	17.00 17.00	15.50 15.50				
Single Tx Chain		153	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
(dBm) - Antenna		157	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
WF8		161	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		165	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.5				
		38	12.00	10.50	13.00	11.50	13.00	11.50	13.00	11.50	13.00	11.50		
		46	12.00	10.50	15.00	13.50	17.75	16.25	17.75	16.25	17.75	16.25		
		54	12.00	10.50	15.00	13.50	18.00	16.50	19.25	17.75	19.25	17.75		
		62	12.00	10.50	13.00	11.50	13.00	11.50	13.00	11.50	13.00	11.50		
		102	11.50	10.00	11.50	10.00	11.50	10.00	13.00	11.50	13.00	11.50		
		110	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50	17.00	15.50		
	40 MHz Bandwidth	118	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50	17.00	15.50		
		126	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50	17.00	15.50		
		134	12.00	10.50	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00		
		142	12.00	10.50	15.00	13.50	17.00	15.50	12.00	10.50	17.00	15.50		
		151	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50		
		159	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50		
		42	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50
		58	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.5
		106	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.5
	80 MHz Bandwidth	122	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.5
		138	12.00	10.50	15.00	13.50	17.00	15.50	12.00	10.50	14.50	13.00	17.00	15.5
		155	16.00	14.50	16.00	14.50	16.00	14.50	16.00	14.50	16.00	14.50	16.00	14.50

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 7 of 15

		Tones	2	6T	5	2T	10	6T	24	2T	48	4T	99	6T
Mode	/ Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		36	9.00	7.50	12.00	10.50	14.50	13.00	14.50	13.00				
		40	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		44	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		48	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		52	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		56	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		60	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		64	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00				
		100	9.00	7.50	12.00	10.50	14.50	13.00	14.50	13.00				
		104	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		108	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		112	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
	20 MHz Bandwidth	116	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		120	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		124	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		128	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		132	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		136	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		140	9.00	7.50	11.00	9.50	11.00	9.50	11.00	9.50				
		144	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
Modulated Average -		149	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
2 Tx Chain (dBm)		153	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
CDD - Antenna WF8		157	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		161	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		165	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		38	9.00	7.50	11.50	10.00	11.50	10.00	11.50	10.00	11.50	10.00		
		46	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.75	16.25		
		54	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	19.00	17.50		
		62 102	9.00	7.50	10.50	9.00	10.50 10.50	9.00	12.00 11.00	10.50	12.00	10.50		
			9.00	7.50	10.50	9.00		9.00		9.50		9.50		
	40 MHz Bandwidth	110 118	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50		
		126	9.00 9.00	7.50 7.50	12.00 12.00	10.50 10.50	15.00 15.00	13.50 13.50	17.00 17.00	15.50 15.50	17.00 17.00	15.50 15.50		
		134	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00	13.50	12.00		
		142	9.00	7.50	12.00	10.50	15.00	13.50	11.00	9.50	17.00	15.50		
		151	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50		
		151	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50		
		42	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
		58	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
		106	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
	80 MHz Bandwidth	122	9.00	7.50	10.00	8.50	10.00	8.50	16.00	14.50	16.00	14.50	16.00	14.50
		138	9.00	7.50	12.00	10.50	15.00	13.50	11.00	9.50	13.50	12.00	17.00	15.50
		155	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
		133	15.00	15.50	15.00	15.50	15.00	15.50	15.00	15.50	15.00	15.50	15.00	15.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 8 of 15

© 2020 PCTEST REV 21.2 M 12/05/2018

		Tones	26	Т	5	2T	10	6T	24	2T	48	4T	99	6T
Mode,	/ Band	Channel	Maximum	Nominal										
		36	9.00	7.50	12.00	10.50	14.50	13.00	14.50	13.00				
		40	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		44	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		48	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		52	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		56	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		60	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		64	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00				
		100	9.00	7.50	12.00	10.50	14.50	13.00	14.50	13.00				
		104	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		108	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		112	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
	20 MHz Bandwidth	116	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		120	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		124	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		128	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		132	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		136	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
		140	9.00	7.50	11.00	9.50	11.00	9.50	11.00	9.50				
		144	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50				
Modulated Average -		149	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
2 Tx Chain (dBm)		153	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
SDM - Antenna WF8		157	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		161	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		165	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50				
		38	9.00	7.50	11.50	10.00	11.50	10.00	11.50	10.00	11.50	10.00		
		46	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.75	16.25		
		54	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	19.00	17.50		
		62	9.00	7.50	10.50	9.00	10.50	9.00	12.00	10.50	12.00	10.50		
		102	9.00	7.50	10.50	9.00	10.50	9.00	11.00	9.50	11.00	9.50		
	40 MHz Bandwidth	110	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50		
		118	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50		
		126	9.00	7.50	12.00	10.50	15.00	13.50	17.00	15.50	17.00	15.50		
		134	9.00	7.50	12.00	10.50	13.50	12.00	13.50	12.00	13.50	12.00		
		142	9.00	7.50	12.00	10.50	15.00	13.50	11.00	9.50	17.00	15.50		
		151	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50		
		159	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	0.00	7.50
		42	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
		58	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
	80 MHz Bandwidth	106	9.00	7.50	9.00	7.50	9.00	7.50	10.00	8.50	10.00	8.50	10.00	8.50
		122	9.00	7.50	10.00	8.50	10.00	8.50	16.00	14.50	16.00	14.50	16.00	14.50
		138	9.00	7.50	12.00	10.50	15.00	13.50	11.00	9.50	13.50	12.00	17.00	15.50
L		155	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 9 of 15

© 2020 PCTEST REV 21.2 M 12/05/2018

1.3 IEEE 802.11ax Measured Powers

Table 1
Maximum 2.4 GHz 802.11ax RU Output Power – Ant WF7B

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)	Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)		
			0	13.70				37	13.95		
2412	1	26T	4	14.25	2412	1	52T	38	14.26		
			8	13.67				40	13.77		
			0	19.42				37	19.70		
2432	2432 5	26T	4	20.12	2432	5	52T	38	19.97		
			8	19.37				40	19.73		
		26T	0	19.40	2437 6		52T	37	19.80		
2437	6		4	20.19		6		38	20.02		
			8	19.45				40	19.69		
			0	19.47				37	19.73		
2447	8	26T	26T	26T	4	20.10	2447	8	52T	38	19.96
			8	19.43				40	19.68		
			0	13.12				37	13.14		
2462	11	26T	4	13.89	2462	11	52T	38	13.91		
			8	13.27				40	13.18		

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm) 13.87																	
2412	1	106T	54	13.89					Avg												
2422	2432 5	106T	53	19.46	Freq	Channel	Tones	RU Index	Conducted												
2432	5	1001	54	19.36	[MHz]				Powers (dBm)												
0.407		400 T	53	19.42					, ,												
2437	6	106T	54	19.45 2412		1	242T	61	13.43												
			53	19.38	2432	5	242T	61	19.70												
2447	8	106T	106T	106T	106T	106T	106T	106T	106T	106T	106T	106T	106T	106T	54	19.45	2437	6	242T	61	19.72
2462	2462 11	1 106T	53	13.55	2447	8	242T	61	19.66												
2462			54	13.51	2462	11	242T	61	13.56												

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 10 of 15

Table 2
Maximum 2.4 GHz 802.11ax RU Output Power – Ant WF8

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)	Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)																
			0	13.00				37	13.95																
2412	1	26T	4	14.40	2412	1	52T	38	14.31																
			8	13.11				40	13.54																
			0	19.97				37	20.86																
2432	5	26T	26T	26T	26T	26T	26T	26T	26T	26T	26T	26T	26T	26T	26T	26T	4	21.15	2432	5	52T	38	20.28		
		8	19.96				40	20.94																	
		26T	26T																0	19.94				37	20.90
2437	6			4	21.16	2437	6	52T	38	20.32															
			8	19.91				40	20.93																
			0	19.92				37	20.85																
2447	8	26T	4	21.12	2447	8	52T	38	20.30																
			8	19.91				40	20.93																
			0	12.55			_	37	13.83																
2462	11	26T	4	13.86	2462	11	52T	38	13.70																
			8 12.52				40	13.09																	

				12.02				10	10.00
Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)					
2412	1 1	106T	53	14.37					
2412	ı	1001	54	14.42					Avg
2432	5	106T	53	20.27	Freq	Channel	Tones	RU Index	Conducted
2432	5	1001	54	20.29	[MHz]	Orianiici	101103	INO IIIGEX	Powers
0.407		40CT	53	20.30					(dBm)
2437	6	106T	54	20.29	2412	1	242T	61	13.95
0447		400T	53	20.26	2432	5	242T	61	20.32
2447	8	106T -	54	20.29	2437	6	242T	61	20.39
2462	2462	400T	53	13.77	2447	8	242T	61	20.41
2402	11	106T	54	13.75	2462	11	242T	61	13.94

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 11 of 15

Table 3
Maximum 5 GHz 802.11ax RU Output Power – Ant WF7A

		F			Avg Co	onducted Power	(dBm)			-			Avg Co	nducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones		RU Index	
		[1411 12]			0	4	8			[1411 12]			37	39	40
		5180	36	26T	11.10	11.76	11.30			5180	36	52T	14.07	14.45	14.15
	1 , [5200	40	26T	11.15	11.68	11.23	>	4	5200	40	52T	14.09	14.53	14.16
>	' [5220	44	26T	11.07	11.72	11.37		'	5220	44	52T	14.01	14.37	14.15
>		5240	48	26T	11.23	11.76	11.12	>		5240	48	52T	14.09	14.50	14.04
m		5260	52	26T	11.41	11.74	11.25	a		5260	52	52T	14.22	14.52	14.21
<u>N</u>	2A	5280	56	26T	11.29	11.79	11.35	N	2A	5280	56	52T	14.17	14.58	14.24
王	2A	5300	60	26T	11.32	11.76	11.30	主	ZA.	5300	60	52T	14.16	14.46	14.12
Σ		5320	64	26T	11.38	11.76	11.36	Σ		5320	64	52T	14.21	14.54	14.17
20		5500	100	26T	11.35	11.86	11.38	20		5500	100	52T	13.42	13.69	13.40
	2C	5520	120	26T	11.42	11.82	11.36		20	5600	120	52T	13.38	13.65	13.42
	20	5620	124	26T	11.38	11.82	11.46		2C -	5580	124	52T	13.74	14.14	13.83
		5720	144	26T	11.33	11.79	11.44			5720	144	52T	13.62	14.12	13.78
		5745	149	26T	14.77	15.35	15.02			5745	149	52T	14.82	15.11	15.02
	3	5785	157	26T	14.79	15.48	15.08	3		5785	157	52T	14.78	15.17	15.03
		5825	165	26T	14.68	15.39	15.09			5825	165	52T	14.80	15.18	14.93

		_			Avg Co	nducted Powe	r (dBm)			_			Avg Co	onducted Power	r (dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones		RU Index	
		[IVITZ]			53	54	N/A			[IVIITZ]			61	N/A	N/A
		5180	36	106T	15.40	15.38				5180	36	242T	15.46		
	1 , [5200	40	106T	15.72	15.74			1	5200	40	242T	16.03		
	'	5220	44	106T	15.73	15.68			'	5200	44	242T	16.02		
>		5240	48	106T	15.63	15.65		3		5240	48	242T	15.97		
m		5260	52	106T	16.71	16.75		B		5260	52	242T	16.53		
<u>N</u>	2A	5280	56	106T	16.54	16.52		<u> </u>	2A	5260	56	242T	16.57		
II	2A [5300	60	106T	16.58	16.63		Ï	2A	5300	60	242T	16.67		
20MHz		5320	64	106T	15.31	15.28		Σ		5320	64	242T	15.18		
2		5500	100	106T	13.34	13.37		20		5500	100	242T	13.59		
•	2C	5600	120	106T	13.41	13.56			2C	5600	120	242T	13.78		
	20	5620	124	106T	13.48	13.55			20	5620	124	242T	13.70		
		5720	144	106T	13.50	13.60				5720	144	242T	13.73		
		5745	149	106T	14.91	15.02				5745	149	242T	13.58		
	3	5785	157	106T	14.86	15.02			3	5785	157	242T	15.18		
		5825	165	106T	14.82	15.05			5825	165	242T	15.12			

					Avg Co	nducted Power	(dBm)			F			Avg Co	nducted Power	(dBm)
	Band	Freq	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones		RU Index	
		[MHz]			0	8	17			[1411 12]			37	40	44
>	4	5190	38	26T	11.14	11.97	11.26	≥	1	5190	38	52T	11.92	12.70	12.07
m	1	5230	46	26T	11.00	11.84	11.20	m	'	5230	46	52T	13.95	14.66	14.02
Z	2A	5270	54	26T	10.98	11.75	11.01	N	2A	5270	54	52T	14.16	14.87	14.12
1 7	ZA	5310	62	26T	10.97	11.75	11.08	1	2/\	5310	62	52T	12.04	12.80	12.21
Ξ		5510	102	26T	10.64	11.46	10.80	Ξ		5510	102	52T	10.54	11.15	10.62
	2C	5590	118	26T	11.04	11.87	11.22	0	20	5590	118	52T	13.35	14.15	13.53
40	20	5630	126	26T	10.95	11.82	11.20	4	2C	5630	126	52T	13.35	14.13	13.60
		5710	142	26T	11.03	12.00	11.40			5710	142	52T	13.31	14.18	13.61
	3	5755	151	26T	14.85	15.75	15.37		3	5755	151	52T	14.65	15.55	15.11
	3	5795	159	26T	14.61	15.72	14.90		3	5795	159	52T	14.70	15.64	15.05

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 12 of 15

		F			Avg Co	nducted Power	r (dBm)						Avg Co	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones		RU Index	
		[1411 12]			53	54	56			[IVIITZ]			61	62	N/A
>	1	5190	38	106T	12.01	12.55	12.05	>	4	5190	38	242T	12.02	12.10	
m		5230	46	106T	15.48	16.10	15.67	m	'	5230	46	242T	14.14	14.22	
N	2A	5270	54	106T	16.20	16.70	16.35	Z	2A	5270	54	242T	16.15	16.43	
宁	2/	5310	62	106T	12.03	12.57	12.23	Ÿ	ZA	5310	62	242T	12.00	12.21	
Ξ		5510	102	106T	10.46	10.93	10.62	Ξ		5510	102	242T	12.04	12.31	
6	2C	5590	118	106T	13.27	13.83	13.51	6	20	5590	118	242T	13.28	13.51	
40	20	5670	126	106T	13.30	13.93	13.52	4	2C	5670	126	242T	13.32	13.61	
		5710	142	106T	13.28	13.94	13.54		3	5710	142	242T	11.12	11.17	
	3	5755	151	106T	14.80	15.50	15.27			5755	151	242T	14.77	14.93	
	3	5795	159	106T	14.87	15.66	15.13	3		5795	159	242T	14.80	14.82	

		_			Avg Co	nducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index	
		[1411 12]			65	N/A	N/A
>	1	5190	38	484T	11.94		
BW	'	5230	46	484T	15.57		
	2A	5270	54	484T	16.26		
40MHz	2A	5310	62	484T	11.93		
5		5510	102	484T	12.00		
ō	2C	5550	118	484T	13.18		
4	20	5630	126	484T	13.31		
		5710	142	484T	13.35		
	3	5755	151	484T	14.76		
	3	5795	159	484T	14.68		

		_	Freq Avg Conducted Power (dBm)	r (dBm)			F			Avg Co	nducted Power	(dBm)			
>	Band	Freq [MHz]	Channel	Tones		RU Index	 		Band	Freq [MHz]	Channel	Tones		RU Index	
m		[IVITZ]			0	18	36 10.02		[IVII IZ]			37	44	52	
Z	1	5210	42	26T	9.95	10.77	10.02	7	1	5210	42	52T	10.11	10.50	9.99
1 7	2A	5290	58	26T	11.02	11.50	11.00	7	2A	5290	58	52T	10.95	11.57	11.09
ŧ		5530	106	26T	11.04	11.58	11.13	-		5530	106	52T	11.07	11.60	11.23
6	2C	5610	122	26T	11.01	11.54	11.10	0	2C	5610	122	52T	13.12	13.63	13.23
$\widetilde{\mathbf{\infty}}$		5690	138	26T	11.14	11.70	11.37	œ		5690	138	52T	13.38	13.77	13.50
	3	5775	155	26T	14.77	15.54	15.03		3	5775	155	52T	14.76	15.45	14.97

		_			Avg Co	nducted Power	r (dBm)	-		F			Avg Conducted Power (dBm)			
>	Band	Freq	Channel	Tones		RU Index		≥	Band	Freq [MHz]	Channel	Tones		RU Index		
m		[MHz]			53	56	60	10.05		[WI 12]			61	62	64	
N	1	5210	42	106T	10.01	10.35	10.05	7	1	5210	42	242T	10.00	10.30	9.83	
Ϋ́	2A	5290	58	106T	11.04	11.46	11.13		2A	5290	58	242T	11.03	11.07	11.05	
ŧ		5530	106	106T	11.06	11.33	11.09	5		5530	106	242T	10.97	11.42	11.23	
6	2C	5610	122	106T	13.29	13.75	13.49	6	2C	5610	122	242T	13.23	13.52	13.27	
œ		5690	138	106T	13.27	13.63	13.40	œ		5690	138	242T	10.91	11.38	11.04	
	3	5775	155	106T	14.82	15.35	15.18		3	5775	155	242T	15.74	15.69	15.70	

		_	Avg Conducted Power (dBm)		r (dBm)			F			Avg Conducted Power (dBm)				
2	Band	Freq [MHz]	Channel	Tones		RU Index		>	Band	Freq [MHz]	Channel	Tones		RU Index	
m		[IVIITZ]			65	66	N/A	m		[IVIITZ]			67	N/A	N/A
N	1	5210	42	484T	10.95	10.93		N	1	5210	42	996T	10.11		
1 7	2A	5290	58	484T	11.12	11.26		Ÿ	2A	5290	58	996T	11.12		
Σ		5530	106	484T	10.98	11.10		Ē		5530	106	996T	11.19		
6	2C	5610	122	484T	13.20	13.45		6	2C	5610	122	996T	13.40		
80		5690	138	484T	13.26	13.44		œ		5690	138	996T	13.20		
	3	5775	155	484T	14.86	14.83			3	5775	155	996T	14.80		

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 13 of 15

© 2020 PCTEST REV 21.2 M

Table 4
Maximum 5 GHz 802.11ax RU Output Power – Ant WF8

		F			Avg Co	nducted Powe	r (dBm)			F			37 39 4 52T 14.05 14.40 14. 52T 14.07 14.41 14. 52T 14.00 14.35 14. 52T 14.05 14.32 14. 52T 14.15 14.60 14. 52T 14.03 14.49 14. 52T 14.02 14.40 14. 52T 14.15 14.65 14. 52T 14.11 14.40 14. 52T 14.24 14.56 14. 52T 14.22 14.55 14. 52T 14.21 14.70 14. 52T 16.15 16.54 16. 52T 16.01 16.45 16.		r (dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones		RU Index	
		[1411 12]			0	4	8			[1411 12]			37	39	40
		5180	36	26T	11.04	11.66	11.12			5180	36	52T	14.05	14.40	14.01
	1	5200	40	26T	11.08	11.62	11.15		1	5200	40	52T	14.07	14.41	14.06
>	'	5220	44	26T	11.11	11.75	11.20	-	l ' [5220	44	52T	14.00	14.35	14.19
		5240	48	26T	11.00	11.66	11.18	>		5240	48	52T	14.05	14.32	14.12
\mathbf{m}		5260	52	26T	11.08	11.78	11.25	m		5260	52	52T	14.15	14.60	14.25
N	2A	5280	56	26T	11.05	11.60	11.22	N	<u>N</u> 2A	5280	56	52T	14.03	14.49	14.20
<u> </u>	2/	5300	60	26T	11.03	11.77	11.31	Ï	2/	5300	60	52T	14.02	14.40	14.15
≥		5320	64	26T	11.02	11.70	11.19	Σ		5320	64	52T	14.15	14.65	14.32
20		5500	100	26T	11.09	11.69	11.20	20		5500	100	52T	14.11	14.40	14.13
•	2C	5600	120	26T	11.20	11.80	11.18	•	2C	5600	120	52T	14.24	14.56	14.30
	20	5620	124	26T	11.12	11.73	11.29		20	5580	124	52T	14.22	14.55	14.17
		5720	144	26T	11.07	11.70	11.20			5720	144	52T	14.21	14.70	14.35
		5745	149	26T	16.16	16.62	16.10			5745	149	52T	16.15	16.54	16.26
	3	5785	157	26T	16.20	16.80	16.25		3	5785	157	52T	16.01	16.45	16.07
		5825	165	26T	16.09	16.55	16.01			5825	165	52T	16.00	16.30	15.95

		_			Avg Co	onducted Powe	r (dBm)			_			Avg Co	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones		RU Index	
		[WITZ]			53	54	N/A			[WITIZ]		Tones 61 242T 15.16 242T 16.85 242T 16.80 242T 16.83 242T 18.38 242T 18.40 242T 18.33 242T 14.60 242T 14.18 242T 16.10 242T 16.03 242T 16.00	N/A	N/A	
		5180	36	106T	15.03	14.95				5180	36	242T	15.16		
	1	5200	40	106T	16.90	16.85			1	5200	40	242T	16.85		
_	'	5220	44	106T	16.83	17.00		-	'	5220	44	242T	16.80		
>		5240	48	106T	16.70	16.90				5240	48	242T	16.83		
m		5260	52	106T	17.20	17.33		m	2A	5260	52	242T	18.38		
<u>N</u>	2A	5280	56	106T	17.08	17.28		N		5280	56	242T	18.40		
20MHz	2/	5300	60	106T	17.12	17.23		I		5300	60	242T	18.33		
2		5320	64	106T	14.55	14.70		2		5320	64	242T	14.60		
50		5500	100	106T	14.06	14.40		20		5500	100	242T	14.18		
	2C	5600	120	106T	16.00	16.12		• • •	2C	5600	120	242T	16.10		
	20	5620	124	106T	15.91	16.05			20	5620	124	242T	16.03		
		5720	144	106T	15.90	15.95				5720	144	242T	16.00		
		5745	149	106T	16.01	16.04				5745	149	242T	16.04		
	3	5785	157	106T	16.17	16.22			3	5785	157	242T	16.18		
		5825	165	106T	16.14	16.15				5825	165	242T	16.13		

		-			Avg Co	nducted Power	r (dBm)			F			Avg Co	nducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	Freq [MHz]	Channel	Tones	RU Index		
		[1411 12]			0	8	17			[1411 12]			12.09 12.83 12 14.11 14.88 14 14.10 14.85 14 12.09 13.00 12 10.65 11.45 10 13.90 14.60 14	44	
>	1	5190	38	26T	11.09	11.84	11.14	>	1	5190	38	52T	12.09	12.83	12.15
m	'	5230	46	26T	11.00	11.92	11.27	M	'	5230	46	52T	14.11	14.88	14.19
Z	2A	5270	54	26T	10.91	11.74	11.05	Z	2A	5270	54	52T	14.10	14.85	14.28
宝	2/1	5310	62	26T	11.08	11.97	11.31	主	2/	5310	62	52T	12.09	13.00	12.26
5		5510	102	26T	10.54	11.49	10.81	=		5510	102	52T	10.65	11.45	10.85
40M	2C	5590	118	26T	11.05	11.97	11.21	40M	2C	5590	118	52T	13.90	14.60	14.10
4	20	5630	126	26T	11.15	11.98	11.45	4	20	5630	126	52T	14.07	14.87	14.30
		5710	142	26T	11.12	12.00	11.31			5710	142	52T	14.07	14.70	14.11
	3	5755	151	26T	16.17	16.92	16.35		3	5755	151	52T	16.01	16.73	16.23
	J	5795	159	26T	16.07	16.90	16.19			5795	159	52T	16.18	16.91	16.30

FCC ID: BCGA2316	PCTEST SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 14 of 15

		_			Avg Co	nducted Powe	r (dBm)			Freq			Avg Co	nducted Powe	r (dBm)
	Band	Freq [MHz]	Channel	Tones		RU Index			Band	[MHz]	Channel	Tones		RU Index	
		[IVITIZ]			53	54	56	_		[2]			61	62	N/A
≥	_	5190	38	106T	12.13	12.63	12.23	≥	1	5190	38	242T	12.12	12.25	
m	'	5230	46	106T	16.90	17.46	17.00	B		5230	46	242T	14.26	14.32	
N	0.4	5270	54	106T	17.13	17.70	17.27	N	2A	5270	54	242T	18.29	18.35	
Ĥ	2A	5310	62	106T	11.93	12.68	12.15	Ŷ	ZA.	5310	62	242T	11.93	12.00	
₹		5510	102	106T	10.57	11.21	10.75	5 I		5510	102	242T	11.95	11.99	
	20	5590	118 106T 16.08 16.72	16.72	16.32	6	0 20	5590	118	242T	16.11	16.15			
40M	2C	5670	126	106T	15.98	16.63	16.29	4	2C	5670	126	242T	16.03	16.10	
		5710	142	106T	16.04	16.57	16.10			5710	142	242T	11.03	11.08	
	2	5755	151	106T	15.95	16.57	16.12		2	5755	151	242T	16.04	16.33	
	3	5795	159	106T	16.13	16.71	16.27		3	5795	159	242T	16.15	16.30	

1001 10.13		10.71	10.2	1		5/95	159	2421
		Freq			Avg	Conducted F	Power (dBm)
	Band	[MHz]	Channel	Tones				
		[1411 12]			65	N/A		N/A
BW	1	5190	38	484T	12.16			
m	'	5230	46	484T	16.80			
	2A	5270	54	484T	18.22			
宁	2/1	5310	62	484T	12.15			
40MHz		5510	102	484T	12.13			
0	2C	5590	118	484T	16.07			
4	20	5630	126	484T	16.02			
		5710	142	484T	16.05			
	3	5755	151	484T	16.01			
	3	5795	159	484T	16.09			

							/ \								(III.)
		Freq		_	Avg Co	onducted Power	r (dBm)			Freq		_	Avg Co	onducted Powe	r (dBm)
≥	Band	[MHz]	Channel	Tones		RU Index	1	BW	Band	[MHz]	Channel	Tones		RU Index	
m					0	18	36	m					37	44	52
N	1	5210	42	26T	10.20	10.72	10.22	N	1	5210	42	52T	10.11	10.60	9.94
İÌ	2A	5290	58	26T	11.12	11.67	11.03	二二	2A	5290	58	52T	11.01	11.74	11.13
5		5530	106	26T	11.11	11.67	11.29	5		5530	106	52T	11.00	11.60	11.14
80MHz	2C	5610	122	26T	11.19	11.80	11.18	80MHz	2C	5610	122	52T	13.94	14.54	13.90
œ		5690	138	26T	10.95	11.15	10.96	œ		5690	138	52T	14.08	14.50	14.21
	3	5775	155	26T	14.97	15.45	15.18		3	5775	155	52T	15.04	15.46	15.24
_		F===			Avg Co	Avg Conducted Power (dBm)				Freq			Avg Co	nducted Power	(dBm)
≥	Band	Freq [MHz]	Channel	Tones		RU Index		>	Band	[MHz]	Channel	Tones		RU Index	
m		[1411 12]			53	56	60	ВМ		[1411 12]			61	62	64
N	1	5210	42	106T	10.00	10.40	10.02		1	5210	42	242T	9.98	10.43	9.90
1 +	2A	5290	58	106T	11.11	11.54	11.03		2A	5290	58	242T	10.95	11.20	10.70
5		5530	106	106T	11.03	11.44	11.05	5		5530	106	242T	11.17	11.40	11.22
80MH;	2C	5610	122	106T	16.14	16.61	16.17	80MHz	2C	5610	122	242T	16.02	16.30	15.94
$\widetilde{\mathbf{\infty}}$		5690	138	106T	16.12	16.48	16.24	œ		5690	138	242T	10.94	11.02	10.95
	3	5775	155	106T	15.13	15.45	15.33		3	5775	155	242T	15.11	15.37	15.27
					Avg Co	nducted Power	r (dBm)						Avg Co	onducted Powe	er (dBm)
BW	Band	Freq [MHz]	Channel	Tones		RU Index		2	Band	Freq [MHz]	Channel	Tones		RU Index	
m		[IVIITZ]			65	66	N/A	BW		[IVII72]			67	N/A	N/A
	1	5210	42	484T	10.18	10.24			1	5210	42	996T	10.06		
T P	2A	5290	58	484T	10.94	10.83		7	2A	5290	58	996T	11.12		
ŧ		5530	106	484T	11.19	11.21		ŧ		5530	106	996T	11.03		
80MHz	2C	5610	122	484T	15.96	15.94		80MHz	2C	5610	122	996T	16.04		
$\overline{\infty}$		5690	138	484T	13.60	13.68		<u> </u>		5690	138	996T	15.97		
	3	5775	155	484T	14.91	15.08			3	5775	155	996T	15.11		

FCC ID: BCGA2316	PCTEST Rould to be port of the interest SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/26/20 - 07/15/20	Tablet Device	Page 15 of 15

© 2020 PCTEST

APPENDIX G: TIME-AVERAGED SAR VERIFICATION

FCC ID: BCGA2316	PCTEST*	SAR EVALUATION REPORT	Approved by:
	Product to be part or Sectionari		Quality Manager
Test Dates:	DUT Type:		APPENDIX G
06/26/2020 - 07/15/2020	Tablet Device		Page 1 of 5

1.1 Time-Averaged SAR Verification Summary

This device supports the manufacturer's time-averaged SAR (TAS) mechanism for WLAN operations. The output power is controlled in real-time so that the power averaged over any 60 second window does not exceed the level tested for SAR in this report. The time-averaged SAR algorithm tracks the energy contribution relative to the available energy budget for each transmitter, defined as the "utilization ratio." Once the utilization ratios for each of the individual WLAN transmitters are calculated, they are summed to derive the overall WLAN system power utilization ratio. This metric is used by the WLAN chipset to manage power levels over time and ensure that SAR limits are never exceeded.

Per FCC Guidance, the following test scenarios were defined to validate the TAS mechanism. The specific scenarios are constructed to validate the operation of the algorithm in all operational states, including transitions between states/antennas:

- Change in channel/band
- Change in antenna (includes connection drop scenario)

Predefined transmit profiles for each test scenario are provided by the manufacturer's test automation software to control the operation of the DUT while synchronized operational data was recorded from internal firmware and external power monitors. The data was plotted over time relative to the utilization limit to demonstrate that the maximum time-averaged power is never exceeded. "Reported" values were output and captured directly from DUT firmware, while "Measured" results were obtained from external power metering. The uncertainty budget applied to the WLAN power control functions for this device is 1.5 dB. In all test cases, WLAN radios were configured to operate at 100% duty cycle.

Table 1-1
Test Configurations for Time-Averaged SAR Verification

Mode	Antenna	Channel	Plim (dBm)	Plim (mW)
802.11b, 22 MHz Bandwidth	WF7B	6	20.25	106
802.11b, 22 MHz Bandwidth	WF8	6	21.25	133
802.11a, 20 MHz Bandwidth	WF7A	149	15.75	38
802.11a, 20 MHz Bandwidth	WF8	149	17	51

Plim is the maximum time-averaged output power evaluated for SAR compliance

FCC ID: BCGA2316	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX G
06/26/2020 - 07/15/2020	Tablet Device	Page 2 of 5

1.2 Verification Summary

Scenario 1: Change in Antenna

For this test, the effect on the time-averaging algorithm from a change in the active transmit antenna was evaluated. Figures G-1 and G-2 show a switch of 2.4 GHz transmissions from antenna WF7 to antenna WF8 at Time = 120 s, while Figures G-3 and G-4 show a comparable transition for 5 GHz transmissions. In both cases the test automation is controlling the WLAN radios to operate at 100% duty cycle. In both cases the utilization ratio never exceeds 100% and the average transmit power never exceeds the Plim of each respective antenna.

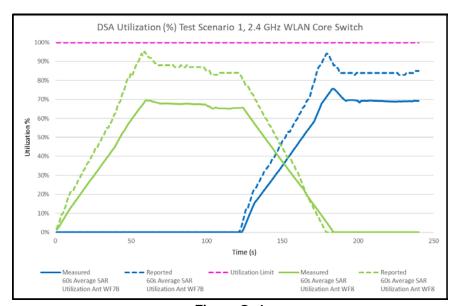


Figure G -1
60s Average SAR Utilization vs. Time, 2.4 GHz

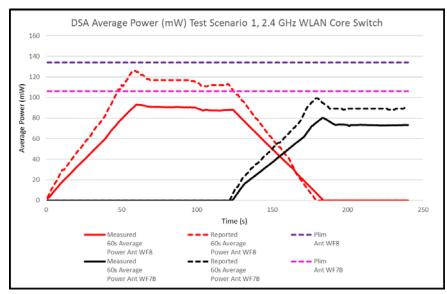


Figure G-2 60s Average Power vs. Time, 2.4 GHz

FCC ID: BCGA2316	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/26/2020 – 07/15/2020	DUT Type: Tablet Device	APPENDIX G Page 3 of 5

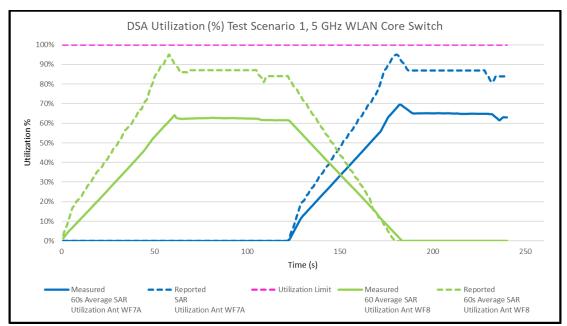


Figure G-3
60s Average SAR Utilization vs. Time, 5 GHz

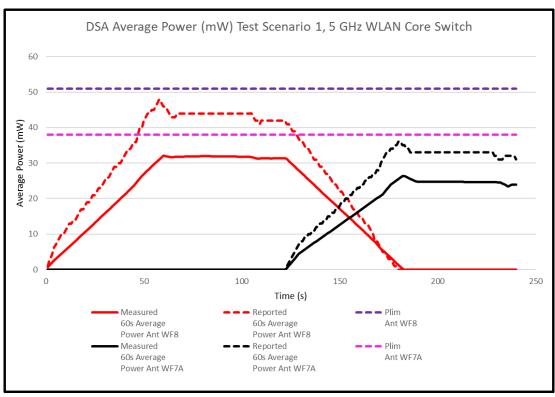


Figure G-4
60s Average Power vs. Time, 5 GHz

FCC ID: BCGA2316	SAR EVALUATION REPORT	Approved by:
	Road to be port of & element SAIN EVALUATION INCLUDING	Quality Manager
Test Dates:	DUT Type:	APPENDIX G
06/26/2020 - 07/15/2020	Tablet Device	Page 4 of 5

Scenario 2: Change in Channel/Band Test Case

This test demonstrates the efficacy of the time-averaged SAR algorithm while switching between 2.4 GHz and 5 GHz WLAN bands. In addition, it shows that the algorithm tracks time-averaged power and system utilization when the active transmitter is disabled and then reconnects.

The 2.4 GHz WF8 transmitter is active at 100% duty cycle until Time = 120 s. When 2.4 GHz transmissions cease, the 5 GHz WF8 transmitter is activated and begins to negotiate a new connection. The connection is established and the increase in average transmit power and utilization can clearly be seen. In this case the utilization ratio never exceeds 100% and the average transmit power never exceeds the Plim of each respective antenna.

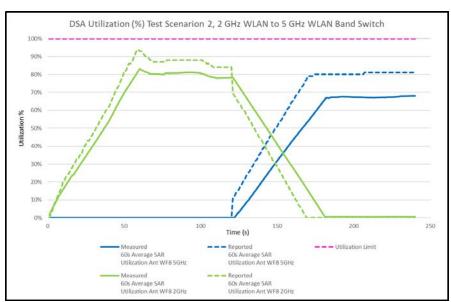


Figure G-5
60s Average Utilization vs. Time during Band Switch

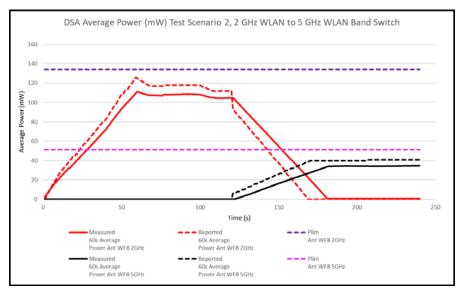


Figure G-6
60s Average Power vs. Time during Band Switch

FCC ID: BCGA2316	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/26/2020 – 07/15/2020	DUT Type: Tablet Device	APPENDIX G Page 5 of 5

APPENDIX H: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étatonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Tesi

Certificate No: D2450V2-750 Jun 19

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:750

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GI

Calibration date:

June 14, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-18)	In house check; Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (In house check Oct-18)	In house check: Oct-20
Network Analyzer Aglient E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
			71.11020
	And a second		
Approved by:	Kalja Pokovic	Technical Manager	2000
			/ULUS-
			-

Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-750_Jun19 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39,2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	~~±	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-750_Jun19

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω + 3.9 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.3 Ω + 6.2 jΩ
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-750_Jun19 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019

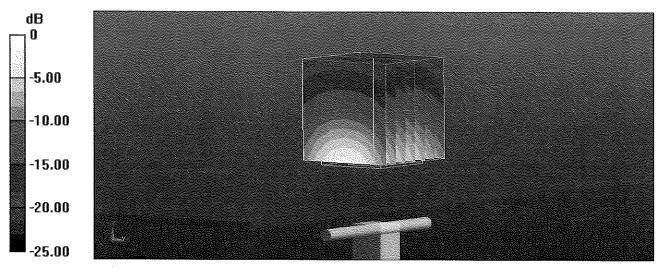
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

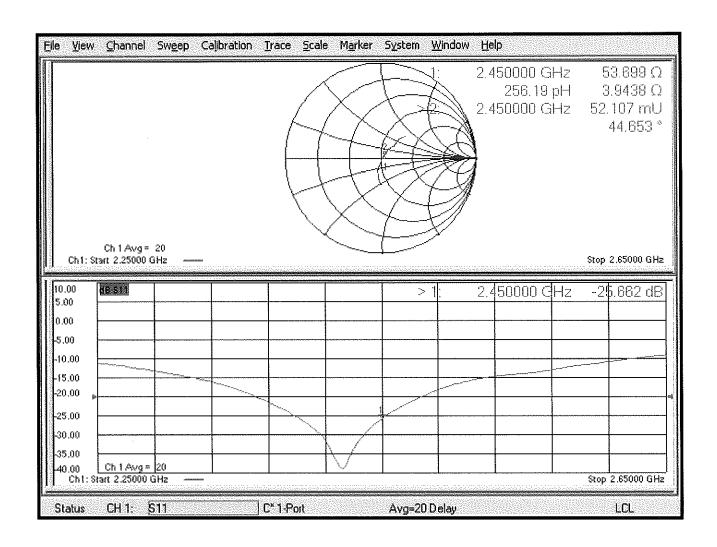
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.9 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.34 W/kg


Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Certificate No: D2450V2-750_Jun19

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019

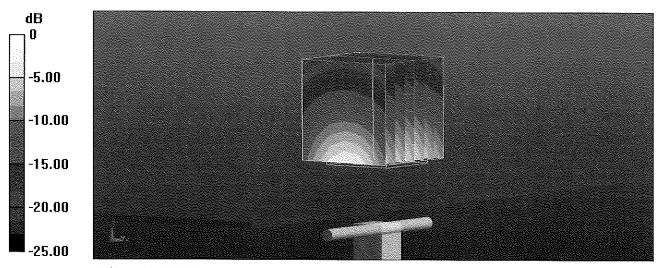
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

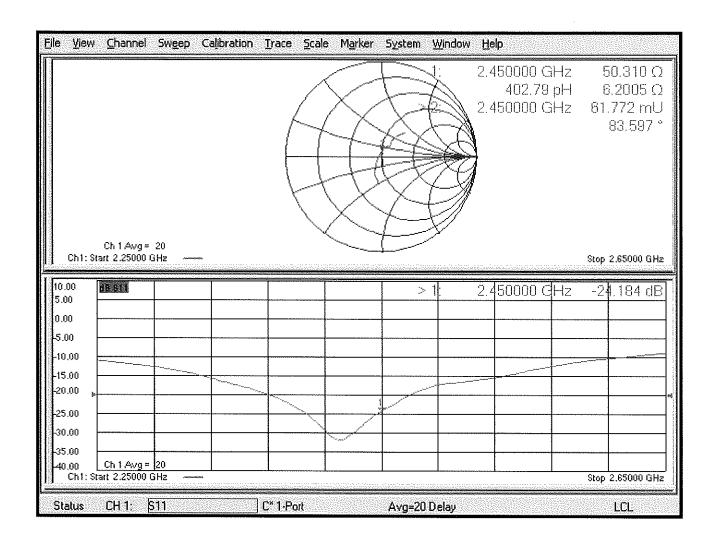
DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.6 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 25.9 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

0 dB = 21.2 W/kg = 13.26 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 750

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 14, 2020

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/12/2019	Annual	8/12/2020	1408
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837
SPEAG	EX3DV4	SAR Probe	8/29/2019	Annual	8/29/2020	3949

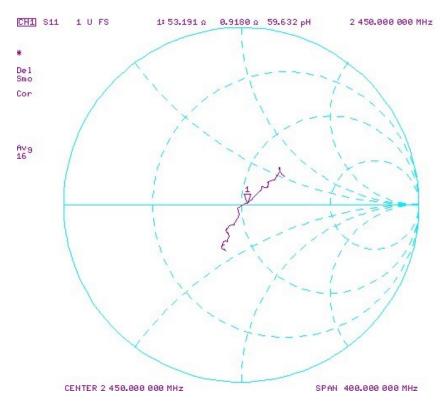
Measurement Uncertainty = $\pm 23\%$ (k=2)

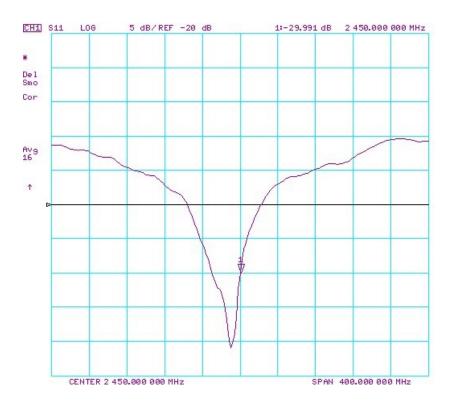
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	3XDK

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 750	6/14/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

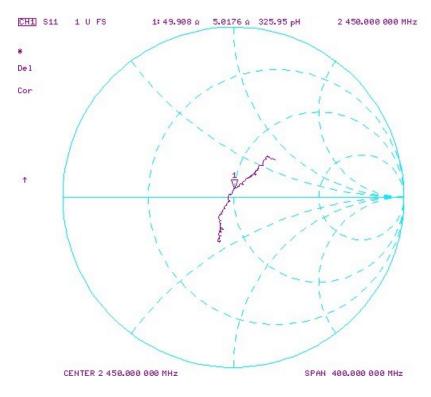
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

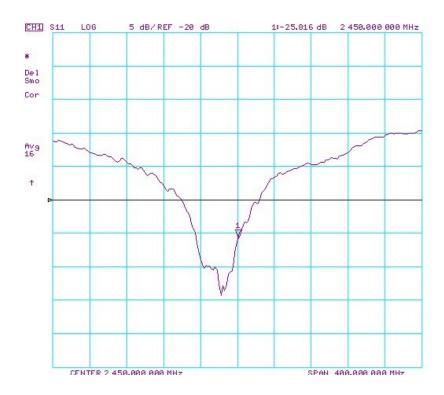

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Head (dB)	Head (dB)	Deviation (%)	
6/14/2019	6/14/2020	1.154	5.31	5.54	4.33%	2.5	2.56	2.40%	53.7	53.2	0.5	3.9	0.9	3	-25.7	-30	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.154	5.1	5.33	4.51%	2.41	2.47	2.49%	50.3	49.9	0.4	6.2	5	1.2	-24.2	-25.8	-6.60%	PASS

Object:	Date Issued:	Page 2 of 4
D2450V2 - SN: 750	6/14/2020	raye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Dago 3 of 4
D2450V2 – SN: 750	6/14/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 - SN: 750	6/14/2020	raye 4 01 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-921_Nov18

Object	D2450V2 - SN:9	21	
Calibration procedure(s)	QA CAL-05.v10 Gallbration proce	edure for dipole validation kits abo	SC / pve 700 MHz 144120 BN / 2 3 2
			Rail
Calibration date:	November 12, 20	918	12/3/2
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages ar my facility: environment temperature (22 ± 3)%	nd are part of the certificate.
Calibration Equipment used (M&T			
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID # SN: 104778	······································	Scheduled Calibration Apr-19
ower meter NRP		Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19
ower meter NRP ower sensor NRP-Z91	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19 Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19 Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ope-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19 Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor N	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator rype-N mismatch combination reference Probe EX3DV4 recondary Standards rower meter EPM-442A rower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Pope-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Reference NRS SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference R&S SMT-06 Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Reference NRS SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19

Certificate No: D2450V2-921_Nov18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-921_Nov18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	an 14, 44	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-921_Nov18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.7~\Omega + 6.5~\mathrm{j}\Omega$
Return Loss	- 22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω + 7.8 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	4.457
1	Licetical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 26, 2013	

Certificate No: D2450V2-921_Nov18

DASY5 Validation Report for Head TSL

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

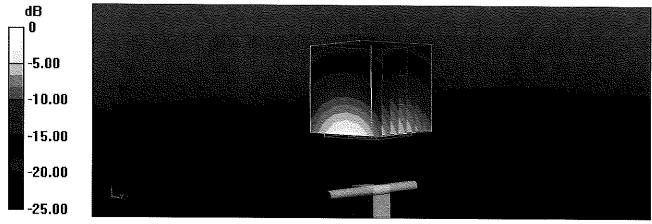
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

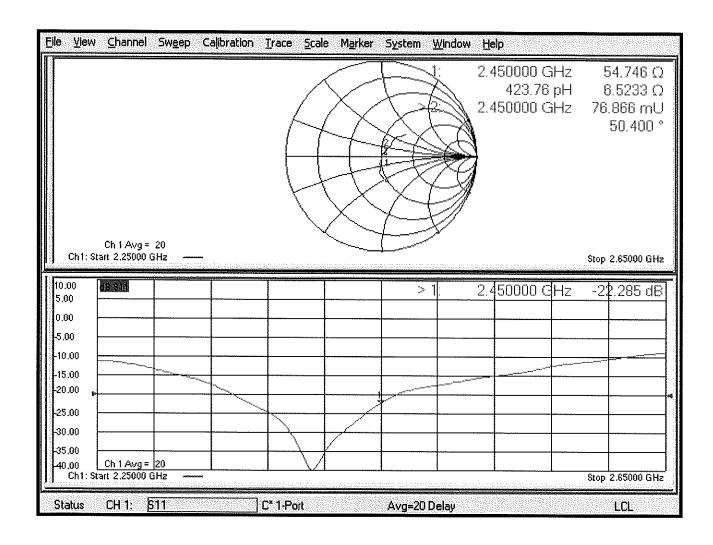
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.7 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

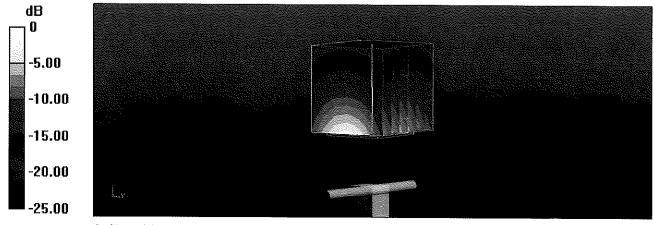
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

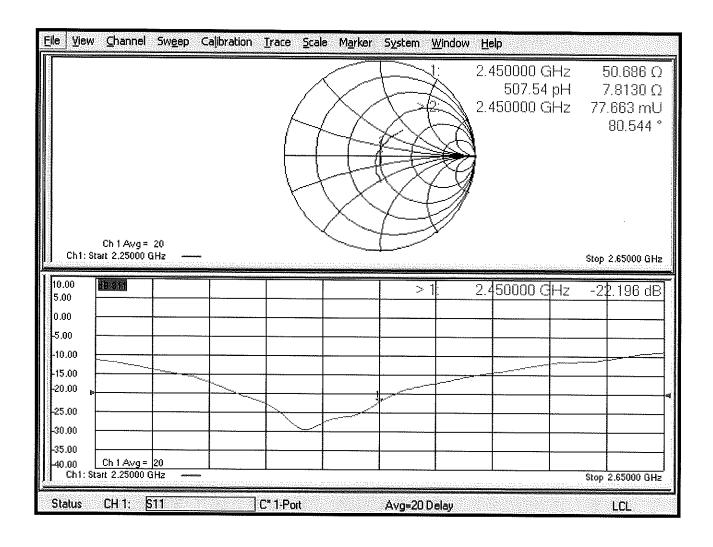
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.6 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.1 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 - SN: 921

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: November 11, 2019

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	5/4/2018	Biennial	5/4/2020	22216
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	DAE4	Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532

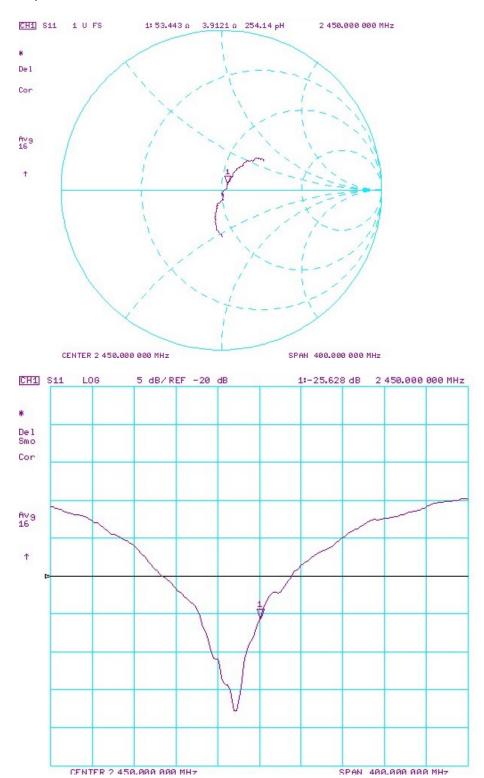
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 921	11/11/2019	Page 1 of 4

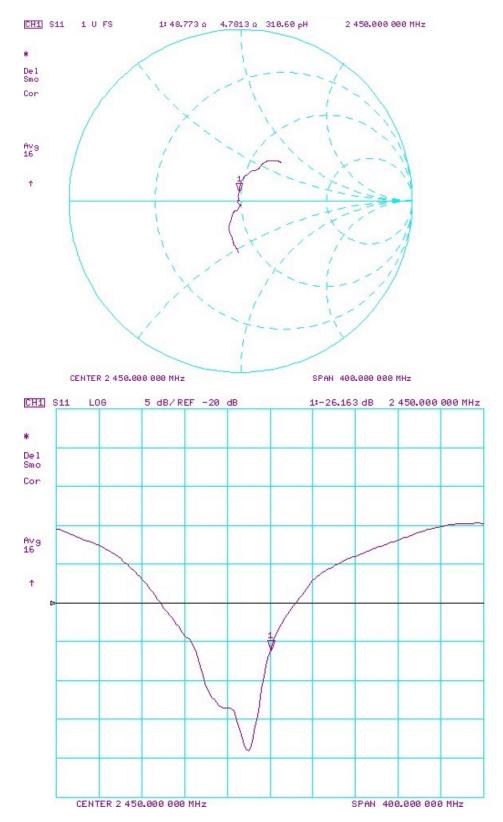
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
11/12/2018	11/11/2019	1.157	5.31	5.28	-0.56%	2.48	2.38	-4.03%	54.7	53.4	1.3	6.5	3.9	2.6	-22.3	-25.6	-14.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
11/12/2018	11/11/2019	1.157	5.08	5.41	6.50%	2.38	2.47	3.78%	50.7	48.8	1.9	7.8	4.8	3	-22.2	-26.2	-18.00%	PASS


Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 921	11/11/2019	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 - SN: 921	11/11/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 - SN: 921	11/11/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

DO TAE

Certificate No: D5GHzV2-1123_Mar18

	D5GHzV2 - SN:1	123	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3:6 GHz 3/2/ 5C 3/1.
			<i>r</i>
Calibration date:	March 13, 2018		3C
		ional standards, which realize the physical un	ilts of measurements (SI).
ne measurements and the unce	rtainties with confidence p	robablilly are given on the following pages an	its of measurements (SI), and are part of the certificate.
All callbrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3) $^\circ$	C and humidity < 70%. $6/10$
Calibration Equipment used (M&	TE critical for calibration)		
Prlmary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
	011, 5047 0 / 00007	07-Apr-17 (No. 217-02529)	And 40
	SN: 5047.2 / 06327	or ripi ir (normir omomo)	Apr-18
Type-N mismatch combination	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
Type-N mismatch combination Reference Probe EX3DV4	j	• • •	•
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 3503 SN: 601	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Dec-18 Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 3503 SN: 601	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Dec-18 Oct-18 Scheduled Check
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 3503 SN: 601 ID # SN: GB37480704	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Dec-18 Oct-18 Scheduled Check In house check; Oct-18 In house check; Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (In house check Oct-16)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Signature
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (In house check Oct-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Signature

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		* - *

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 19.5 % (k=2)

Page 3 of 13 Certificate No: D5GHzV2-1123_Mar18

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

7	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1123_Mar18

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.18 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.52 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1123_Mar18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	53.2 Ω - 5.2 jΩ		
Return Loss	- 24.6 dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.2 Ω - 0.4 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$56.7~\Omega + 0.9~\mathrm{j}\Omega$		
Return Loss	- 23.9 dB		

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.6 Ω - 4.3 jΩ		
Return Loss	- 26.9 dB		

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.0 Ω - 0.3 jΩ		
Return Loss	- 21.7 dB		

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	57.8 Ω + 1.0 jΩ
Return Loss	- 22.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

Certificate No: D5GHzV2-1123_Mar18 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 13.03.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017,
 ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.12 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.34 V/m; Power Drift = -0.09 dB

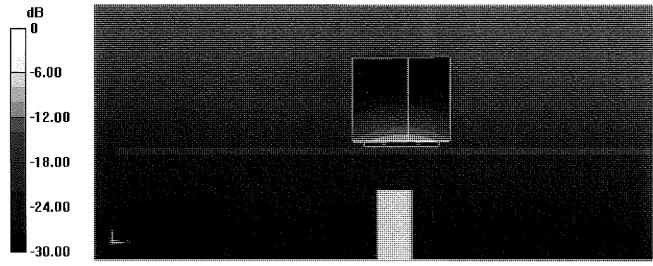
Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

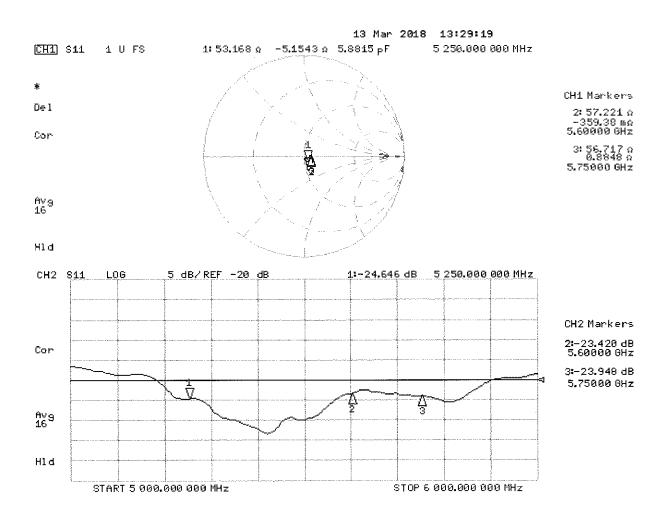
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 70.38 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.29 W/kg


Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D5GHzV2-1123_Mar18 Page 8 of 13

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.03,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.97$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\epsilon_r = 46.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017,
 ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.35 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63,20 V/m; Power Drift = -0.06 dB

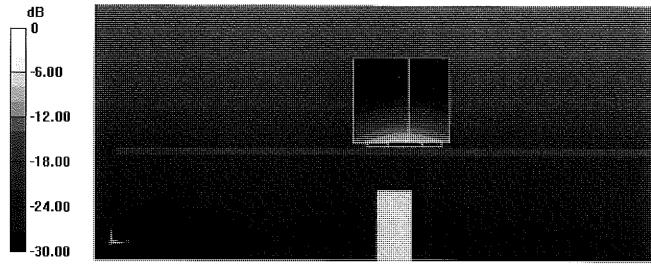
Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

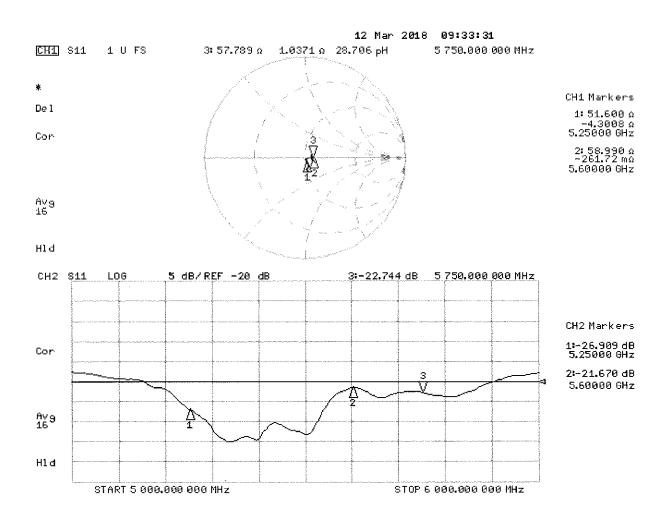
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 61.74 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.1 W/kg


Maximum value of SAR (measured) = 18.5 W/kg

Certificate No: D5GHzV2-1123_Mar18

0 dB = 18.5 W/kg = 12.67 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1123

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/12/2019

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330158
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/18/2018	Annual	10/18/2019	1364
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7491

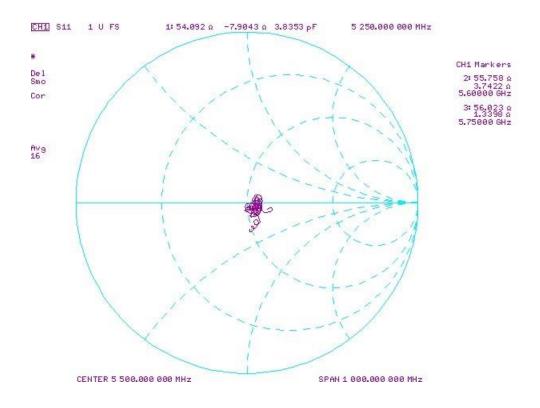
Measurement Uncertainty = ±23% (k=2)

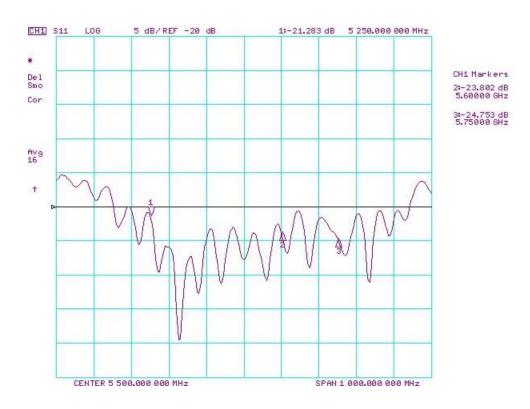
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Tinger
Approved By:	Kaitlin O'Keefe	Managing Director	30K

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1123	3/12/2019	1 age 1 of 4

DIPOLE CALIBRATION EXTENSION

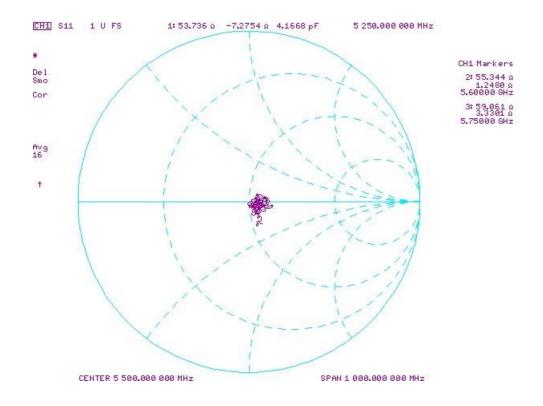
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

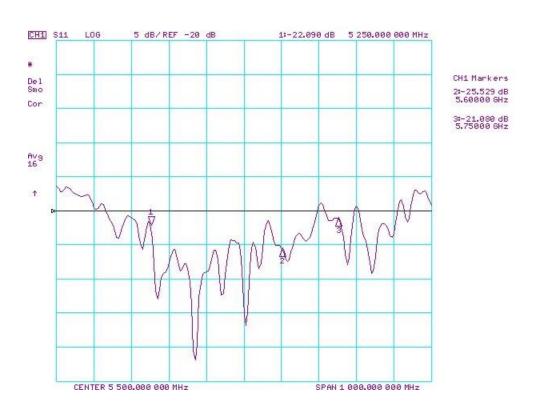

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2019	1.205	4.08	3.84	-5.88%	1.18	1.09	-7.63%	53.2	54.1	0.9	-5.2	-7.9	2.7	-24.6	-21.3	13.40%	PASS
5600	3/13/2018	3/12/2019	1.205	4.26	4	-6.10%	1.22	1.13	-7.38%	57.2	55.8	1.4	-0.4	3.7	4.1	-23.4	-23.8	-1.70%	PASS
5750	3/13/2018	3/12/2019	1.205	4.03	3.73	-7.44%	1.15	1.06	-7.83%	56.7	56	0.7	0.9	1.3	0.4	-23.9	-24.8	-3.80%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 17.0 dBm	(9/)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2019	1.205	3.7	3.83	3.51%	1.03	1.07	3.88%	51.6	53.7	2.1	-4.3	-7.3	3	-26.9	-22.1	17.80%	PASS
5600	3/13/2018	3/12/2019	1.205	3.88	3.97	2.32%	1.09	1.09	0.00%	59	55.3	3.7	-0.3	1.2	1.5	-21.7	-25.5	-17.50%	PASS
5750	3/13/2018	3/12/2019	1.205	3.74	3.76	0.53%	1.04	1.03	-0.96%	57.8	59.1	1.3	1	3.3	2.3	-22.7	-21.1	7.00%	PASS

Object:	Date Issued:	Page 2 of 4	
D5GHzV2 – SN: 1123	3/12/2019	raye 2 01 4	


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1123	3/12/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

C	Object:	Date Issued:	Page 4 of 4
	05GHzV2 – SN: 1123	3/12/2019	raye 4 01 4

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1123

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/12/2020

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2020	Annual	2/13/2021	1403
SPEAG	EX3DV4	SAR Probe	2/19/2020	Annual	2/19/2021	7427

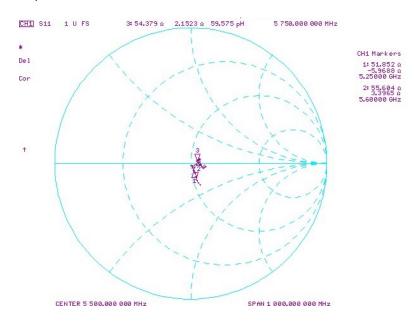
Measurement Uncertainty = ±23% (k=2)

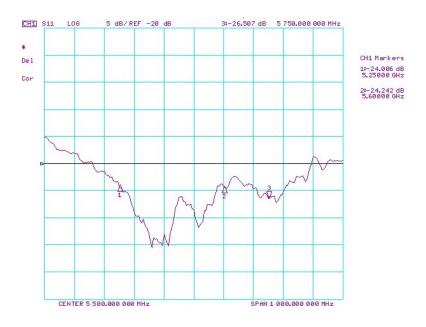
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	201

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1123	3/12/2020	rage 1014

DIPOLE CALIBRATION EXTENSION

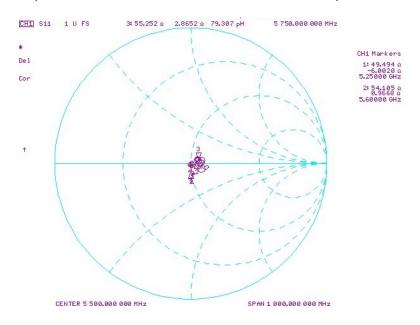
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

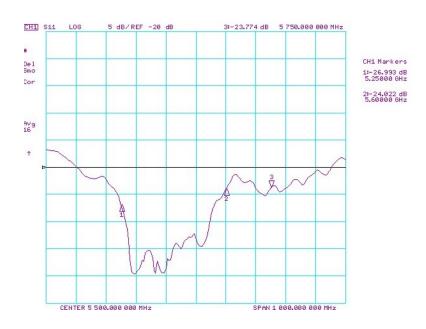

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Frequency (MHz)	Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2020	1.205	4.080	3.87	-5.15%	1.175	1.09	-7.23%	53.2	51.9	1.3	-5.2	-6.0	0.8	-24.6	-24.0	2.40%	PASS
5600	3/13/2018	3/12/2020	1.205	4.255	4.13	-2.94%	1.215	1.16	-4.53%	57.2	55.6	1.6	-0.4	3.4	3.8	-23.4	-24.2	-3.40%	PASS
5750	3/13/2018	3/12/2020	1.205	4.030	3.84	-4.71%	1.145	1.07	-6.55%	56.7	54.4	2.3	0.9	2.2	1.3	-23.9	-26.5	-10.90%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm		Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2020	1.205	3.700	3.55	-4.05%	1.030	0.99	-4.17%	51.6	49.5	2.1	-4.3	-6.0	1.7	-26.9	-27.0	-0.40%	PASS
5600	3/13/2018	3/12/2020	1.205	3.880	3.87	-0.26%	1.085	1.06	-2.30%	59.0	54.1	4.9	-0.3	1.0	1.3	-21.7	-24.0	-10.60%	PASS
5750	3/13/2018	3/12/2020	1.205	3.735	3.62	-3.08%	1.040	0.99	-4.62%	57.8	55.3	2.5	1.0	2.9	1.9	-22.7	-23.8	-4.80%	PASS

Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1123	3/12/2020	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1123	3/12/2020	rage 5 014

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1123	3/12/2020	rage 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: EX3-3949_Aug19

S

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3949

9/5/19

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

August 29, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3949_Aug19

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Michael Weber
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: August 31, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: EX3-3949_Aug19

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 23

August 29, 2019 EX3DV4 - SN:3949

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3949

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.51	0.43	0.49	± 10.1 %
DCP (mV) ^B	105.3	99.9	101.6	

Calibration Possite for Modulation Resnance

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	194.4	± 3.5 %	± 4.7 %
		Y	0.00	0,00	1.00		196.6		
		Z	0,00	0.00	1.00		193.4		İ
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	89.01	22.39	10,00	60.0	± 2.2 %	± 9.6 %
AAA	, , , , , , , , , , , , , , , , , , , ,	Y	15.00	89.04	21.87		60.0		
		Z	15.00	89.09	22.15		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	89.54	21.35	6.99	80.0	± 1.3 %	± 9.6 %
AAA		Y	15.00	89.22	20.53		80.0		
		Z	15.00	89.72	21.20		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	93.82	21.97	3.98	95.0	± 1.5 %	± 9.6 %
AAA		Y	15.00	91.49	19.95		95,0		
		Z	15.00	94.98	22.35]	95.0		
10355- Pulse Wavefor	Pulse Waveform (200Hz, 60%)	Х	15.00	100.12	23.55	2.22	120,0	± 1.6 %	± 9.6 %
		Y	15.00	93.34	19.15		120.0		
		Z	15.00	104.27	25.35		120.0]	
10387-	QPSK Waveform, 1 MHz	X	1.36	69.38	14.53	0.00	150.0	± 2.8 %	± 9.6 %
AAA		Y	0.83	64.20	10.66		150.0		
		Z	2.55	78.10	17.64		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.75	71.52	17.59	0.00	150.0	± 1.6 %	± 9.6 %
AAA		Υ	2.63	71.41	17.55		150.0]	
		Z	3,10	74.13	19.02		150.0		
10396-	64-QAM Waveform, 100 kHz	Х	3.93	74.15	20.39	3.01	150.0	± 1.1 %	± 9.6 %
AAA		Y	3.54	73.26	20.47		150.0	ĺ	
		Z	4.79	79.57	23.28		150.0		
10399- 64-QAN	64-QAM Waveform, 40 MHz	X	3.75	68.40	16.59	0.00	150.0	± 2.1 %	± 9.6 %
AAA		Υ	3.67	68.19	16.57	<u> </u>	150.0]	
		Z	3.85	69.07	17.12		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	5.08	66.18	15.93	0.00	150.0	± 4.1 %	± 9.6 %
AAA		Υ	4.97	66.04	16.00		150.0		
		Z	5.10	66.43	16.24	<u> </u>	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3949 August 29, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3949

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	58.7	435.84	35,39	26.15	1.18	5.10	0.98	0.53	1.01
Y	50.7	392.42	38.15	20.67	1.24	5.09	0.05	0.65	1.01
Z	53.8	406.28	36.62	24.80	1.09	5.10	1.59	0.36	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-21.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3949_Aug19 Page 4 of 23

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3949

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k≕2)
6	55.5	0.75	21.41	21.41	21.41	0.00	1.00	± 13.3 %
13	55.5	0.75	19.27	19.27	19.27	0.00	1.00	± 13.3 %
750	41.9	0.89	10.80	10.80	10.80	0.59	0.80	± 12.0 %
835	41.5	0.90	10.46	10.46	10.46	0.53	0.85	± 12.0 %
1750	40.1	1.37	8.95	8.95	8.95	0.30	0.90	± 12.0 %
1900	40.0	1.40	8.58	8.58	8.58	0.35	0.87	± 12.0 %
2300	39.5	1.67	8.33	8.33	8.33	0.37	0.88	± 12.0 %
2450	39.2	1.80	7.94	7.94	7.94	0.38	0.87	± 12.0 %
2600	39.0	1.96	7.78	7.78	7.78	0.36	0.89	± 12.0 %
3500	37.9	2.91	7.07	7.07	7.07	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.99	6.99	6.99	0.30	1.30	± 13.1 %
5800	35.3	5.27	5.09	5.09	5.09	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^ε At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target fissue parameters.

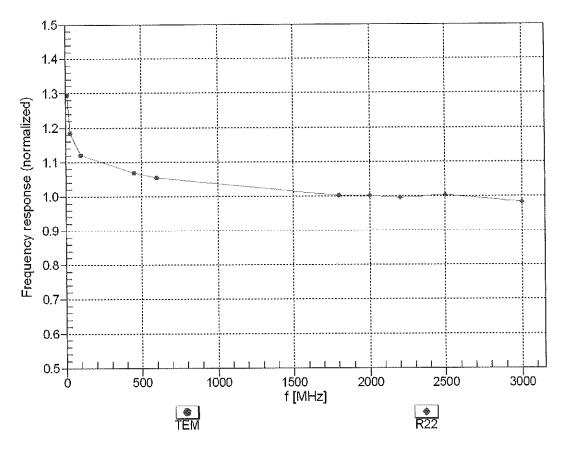
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3949

Calibration Parameter Determined in Body Tissue Simulating Media

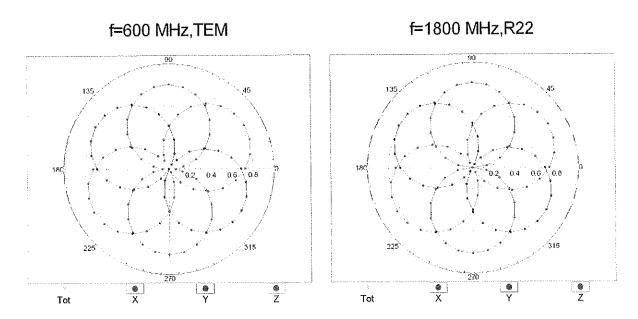
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.44	10.44	10.44	0.41	0.85	± 12.0 %
835	55.2	0.97	10.29	10.29	10.29	0.40	0.85	± 12.0 %
1750	53.4	1.49	8.68	8.68	8.68	0.43	0.88	± 12.0 %
1900	53.3	1.52	8.31	8.31	8.31	0.28	0.95	± 12.0 %
2300	52.9	1.81	8.09	8.09	8.09	0.42	0.87	± 12.0 %
2450	52.7	1.95	7.75	7.75	7.75	0.33	0.90	± 12.0 %
2600	52.5	2.16	7.69	7.69	7.69	0.20	1.10	± 12.0 %
3500	51.3	3.31	6.88	6.88	6.88	0.40	1.40	± 13.1 %
3700	51.0	3.55	6.78	6.78	6.78	0.40	1.40	± 13.1 %
5800	48.2	6.00	4.52	4.52	4.52	0.50	1.90	± 13.1 %

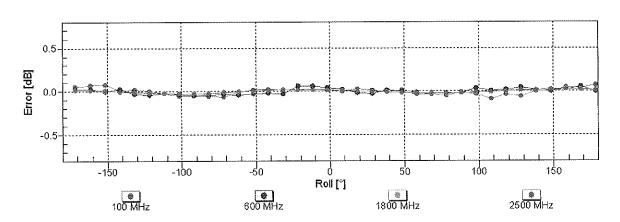

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

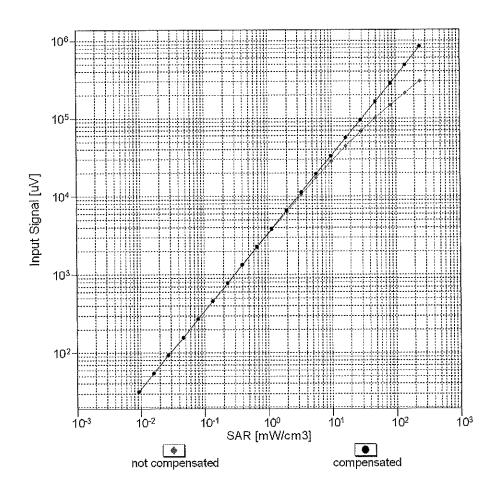
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4- SN:3949 August 29, 2019


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)