

TEST REPORT

Report Number: 15496224-E28V3

Applicant: APPLE INC

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A.

Model: A3256

Brand: APPLE

FCC ID : BCG-E8949A

IC: 579C-E8949A

EUT Description: SMARTPHONE

Test Standard(s): FCC 47 CFR PART 2, PART 27

ISED RSS-GEN ISSUE 5 + A1 + A2, RSS-195 ISSUE 2

Date Of Issue:

2025-08-15

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2025-07-03	Initial Review	
V2	2025-07-28	Updated Test Procedure at Section 9.2	Mengistu Mekuria
V3	2025-08-15	Revise section 6.5	Mengistu Mekuria

TABLE OF CONTENTS

1.	AT	TES	TATION OF TEST RESULTS	5
2.	SU	MMA	ARY OF TEST RESULTS	6
3.	TES	ST N	METHODOLOGY	7
4.			TIES AND ACCREDITATION	
5.			ON RULES AND MEASUREMENT UNCERTAINTY	
	5.1.		TROLOGICAL TRACEABILITY	
	5.2.		CISION RULES	
	5.3.		ASUREMENT UNCERTAINTY	
	5.4.		MPLE CALCULATION	
6.	EQ	UIPI	MENT UNDER TEST	9
6	3.1.	DE	SCRIPTION OF EUT	9
6	5.2.	MΑ	XIMUM OUTPUT POWER	9
6	5.3.	SO	FTWARE AND FIRMWARE	11
6	5.4.	MΑ	XIMUM ANTENNA GAIN AND MAXIMUM ALLOWED OUTPUT POWER	11
6	S.5.	WC	DRST-CASE CONFIGURATION AND MODE	12
6	5.6.	DE	SCRIPTION OF TEST SETUP	13
7.	TES	ST A	ND MEASUREMENT EQUIPMENT	14
8.	RF	OU.	TPUT POWER VERIFICATION	15
8	3.1.	LTI	E BAND 30	16
8	3.2.	5G	NR n30	17
9.	СО	NDU	JCTED TEST RESULTS	18
ę	9.1.	OC	CUPIED BANDWIDTH	18
	9.1	.1.	LTE BAND 30	19
	9.1	.2.	5G NR n30	20
ç	9.2.	ΕM	IISSION MASK AND ADJACENT CHANNEL POWER	21
	9.2	.1.	LTE BAND 30 EMISSION MASK	23
	9.2	.2.	LTE BAND 30 ADJACENT CHANNEL POWER	26
	9.2	.3.	5G NR n30 EMISSION MASK	28
	9.2	.4.	5G NR n30 ADJACENT CHANNEL POWER	31
ę	9.3.	OU	IT OF BAND EMISSIONS	33

9.3.1.	LTE BAND 30	34
9.3.2.	5G NR n30	34
9.4. F	REQUENCY STABILITY	35
9.4.1.	LTE BAND 30 (QPSK 10MHz BANDWIDTH)	36
9.4.2.	5G NR n30 (BPSK 10MHz BANDWIDTH)	36
9.5. P	EAK-TO-AVERAGE POWER RATIO	37
9.5.1.	LTE BAND 30	38
9.5.2.	5G NR n30	38
10. RA	DIATED TEST RESULTS	39
10.1. F	IELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz	43
	LTE BAND 30	
10.1.2	2. 5G NR n30	48
11. SE	TUP PHOTOS	52

REPORT NO: 15496224-E28V3 FCC ID: BCG-E8949A

1. ATTESTATION OF TEST RESULTS

Applicant Name and Address	APPLE INC 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A.
Model	A3256
Brand	APPLE
FCC ID	BCG-E8949A
IC	579C-E8949A
EUT Description	Smartphone
Serial Number	RADIATED: N4QD07QXJ9, CP2H9NGP6C CONDUCTED: C07HG80000L0000WGT, C07HG80000T0000WGT
Sample Receipt Date	2024-11-25
Date Tested	2024-11-25 TO 2025-06-03
Applicable Standards	FCC 47 CFR PART 2, PART 27 ISED RSS-GEN ISSUE 5 + A1 + A2, RSS-195 ISSUE 2
Test Results	COMPLIES

DATE: 2025-08-15

IC: 579C-E8949A

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc.and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc.will constitute fraud and shall nullify the document.

Approved & Released By:	Reviewed By:	Prepared By:	
meny zu mekenin.	Erin Juz	CPC	
Mengistu Mekuria Staff Laboratory Engineer UL Verification Services Inc.	Eric Ting Senior Test Engineer UL Verification Services Inc.	Carlos D. Caudana Project Engineer UL Verification Services Inc.	

2. SUMMARY OF TEST RESULTS

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for correctly integrating customer-provided data with measurements performed by UL Verification Services Inc.

Below is a list of the data provided by the customer:

1. Antenna gain and type (see section 6.4.)

Requirement Description	Requirement Clause Number (FCC)	Requirement Clause Number (ISED)	Result	Remarks
Equivalent Isotropic Radiated Power	27.50 (a) (3)	RSS195§5.5	Complies	
Occupied Bandwidth	2.1049	RSS-GEN§6.7, RSS195	Complies	
Band Edge and Emission Mask	2.1051, 27.53(a)	RSS195§5.6 & §5.6.2	Complies	
Out of Band Emissions	2.1051, 27.53(a)	RSS195§5.6.2	Complies	
Frequency Stability	2.1055, 27.54	RSS195§5.4	Complies	
Peak-to-Average Ratio	-	-	Complies	
Field Strength of Spurious Radiation	2.1053, 27.53(a)	RSS195§5.6 & §5.6.2	Complies	

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following.

FCC published lists of measurement procedures for compliance testing.

ISED published lists of normative test standards and acceptable alternatives procedures.

- ANSI C63.26:2015
- ANSI/TIA-603-E (2016)
- FCC 47 CFR Part 2, Part 27
- FCC KDB 971168 D01: Power Meas License Digital Systems (ISED acceptable alternative procedure)
- FCC KDB 971168 D02: Misc Rev Approv License Devices
- FCC KDB 412172 D01: Determining ERP and EIRP
- ISED RSS-Gen Issue 5 + A1 + A2, RSS-195 Issue 2.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA			
	Building 3: 843 Auburn Court, Fremont, CA 94538, USA	US0104	2324A	550739
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538, USA			
\boxtimes	Building 5: 47670 Kato Rd, Fremont, CA 94538, USA			

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Conducted Antenna Port Emission Measurement	1.940 dB
Power Spectral Density	2.466 dB
Time Domain Measurements Using SA	3.39 %
RF Power Measurement Direct Method Using Power Meter	0.450 dB Ave. 1.300 dB Peak
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with cellular GSM, GPRS, EGPRS, WCDMA, LTE, 5GNR1, 5GNR2, IEEE 802.11a/b/g/n/ac/ax/be, Bluetooth (BT), Ultra-Wideband (UWB), Global Positioning System (GPS), Near-Field Communication (NFC), Narrow-Band (NB) UNII, 802.15.4, 802.15.4ab-Narrow Band (NB), Wireless Power Transfer (WPT) and Mobile Satellite Service (MSS) technologies. The rechargeable battery is not user accessible. This device is not user-serviceable and requires special tools to disassemble.

6.2. MAXIMUM OUTPUT POWER

EIRP/ERP TEST PROCEDURE

ANSI C63.26:2015 KDB 971168 D01 Section 5.6

ERP/EIRP = PMeas + GT - LC

where: ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted and ERP/EIRP output powers as follows:

LTE BAND 30

Part 27 / RS	S 195								
EIRP Limit (\	W)	0.25							
Antenna Gai	n (dBi) (ANT3)	-1.50							
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (MHz)	99% BW (kHz)	Emission Designator
5.0	QPSK	2307.5	2312.5	24.90	23.40	0.219	4.507	4507	4M51G7W
3.0	16QAM	2307.3	2012.0	24.20	22.70	0.186	4.492	4492	4M49D7W
10.0	QPSK	2310.0	2310.0	24.90	23.40	0.219	8.976	8976	8M98G7W
10.0	16QAM	2310.0	2310.0	24.86	23.36	0.217	9.002	9002	9M00D7W

5G NR n30

Part 27 / RS:	S 195	1							
EIRP Limit (\	N)	0.25							
Antenna Gair	n (dBi) (ANT3)	-1.50							
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (MHz)	99% BW (kHz)	Emission Designator
	BPSK			24.90	23.40	0.219	4.495	4495	4M50G7W
5.0	QPSK	2307.5	2312.5	24.16	22.66	0.185	4.487	4487	4M49G7W
	16QAM			23.68	22.18	0.165	4.491	4491	4M49D7W
	BPSK			24.90	23.40	0.219	8.956	8956	8M96G7W
10.0	QPSK	2310.0	2310.0	24.82	23.32	0.215	8.951	8951	8M95G7W
	16QAM			23.67	22.17	0.165	8.956	8956	8M96D7W

6.3. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was version 0.08.00.

6.4. MAXIMUM ANTENNA GAIN AND MAXIMUM ALLOWED OUTPUT POWER

The IFA antenna(s) gain/ allowed output power, as provided by the manufacturer' are as follows:

Bands	Frequency Range (MHz)	Antenna	Gain (dBi)	Max Allowed Conducted Output Power (dBm)	ERP/EIRP (dBm)
		ANT1	-5.30	24.2	18.90
LTE Band 30 /	2305 - 2315	ANT2	-3.00	25.7	22.70
5G NR n30	2303 - 2313	ANT3	-1.50	24.9	23.40
		ANT4	-1.40	24.7	23.30

6.5. WORST-CASE CONFIGURATION AND MODE

This report covers the following technologies:

LTE Band 30, 5G NR n30

For 5G NRs, conducted spurious emission tests were conducted on wider bandwidth with inner 1RB since this is the worst bandwidth and the highest output power.

BPSK modulation applied only for 5G NR frequencies and has the same tune up power as QPSK modulations.

The DFT-s-OFDM and CP-OFDM waveforms were investigated, and DFT-s-OFDM was found to be the worst case.

The worst-case scenario for all measurements is based on an engineering evaluation made on different modulations. Then, QPSK and BPSK were observed as the worst mode to LTE bands and 5G NR bands respectively and set for all conducted and radiated. Output power measurements were measured on BPSK, QPSK, 16QAM, 64QAM, and 256QAM modulations. For testing purposes emissions on section 9 were measured while QPSK/BPSK was set at or above target power for all bands. Conducted tests were performed on the worst-case antenna port because it has the highest conducted power. The worst-case antenna port is shown in the table below.

LTE and 5G NR Bands	Worst case Antenna Port
LTE Band 30, 5G NR n30	Ant 3

The EUT was investigated in three orthogonal orientations X/Y/Z on all available antennas to determine the worst-case orientation. The following table exhibits the worst-case orientation. The full tests of the EUT have made upon the orientations that shown in the table below.

Frequency Range	ANT3	ANT4	ANT2	ANT1
2300 – 2700 MHz	X	Υ	X	Υ

Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 1GHz. There were no emissions found with less than 20dB of margin from 9kHz to 30MHz, 30MHz-1GHz and above 18GHz.

For simultaneous transmission of multiple channels in the 2.4GHz/5GHz WLAN, UWB, and Cellular bands, tests were conducted for various configurations having the highest power, least separation in frequencies and widest operation bandwidths. No noticeable new emission was found.

6.6. DESCRIPTION OF TEST SETUP

Refer to Appendix A for description of test setup.

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment were utilized for the tests documented in this report:

	TEST EQUIPMEN	T LIST		
Description	Manufacturer	Model	Asset	Cal Due
Wideband Communication Test Set, Call Box	R&S GmbH & Co.	CMW500	230297	2026-02-28
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169936	2026-02-28
Antenna, Horn 1-18GHz	ETS Lindgren	3117	200897	2026-04-30
RF Filter Box, 1-18GHz, 12 Port	UL-FR1	Frankenstein	217255	2026-01-31
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	223460	2026-02-28
RF Filter Box, 1-18GHz, 17 Port	UL-FR1	RATS 2	236726	2025-10-31
Antenna, Horn 1-18GHz	ETS Lindgren	3117	80403	2026-08-31
Antenna, Broadband Hybrid, 30MHz to 3GHz	Sunol Sciences Corp.	JB3	171863	2026-11-30
Amplifier 9 KHz - 1 GHz	SONOMA INSTRUMENT	310N	224490	2026-05-06
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO-METRICS	EM-6871	170013	2025-07-31
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO-METRICS	EM-6872	170015	2025-07-31
Antenna, Horn 18 to 26.5GHz	A.R.A.	MWH-1826/B	172353	2025-08-31
Link File, RF Amplifier Assembly, 18- 26.5GHz, 60dB Gain	AMPLICAL	AMP18G26.5-60	220194	2026-04-29
Antenna, Horn 26.5-40GHz	A.R.A	MWH-2640/B	81105	2025-08-31
Link File, RF Amplifier Assembly, 26.5- 40GHz, 65dB Gain	Amplical	AMP26G40-65	220193	2026-04-30
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	262735	2026-03-30
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	231912	2026-04-30
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	259079	2026-02-28
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	262734	2026-04-30
Wideband Communication Call Box	Rohde & Schwarz	CMW500	230298	2026-02-28
Wideband Communication Call Box	Rohde & Schwarz	CMW500	85943	2026-02-28
Wideband Communication Call Box	Rohde & Schwarz	CMW500	262742	2027-02-11
Wideband Communication Call Box	Rohde & Schwarz	CMW500	262741	2027-02-11
Conducted Switch Box	N/A	CSB	221008	2026-04-30
Conducted Switch Box	N/A	CSB	262354	2026-04-30
Filter, BRF 3400-3800MHz, 18GHz max	Micro-Tronics	BRM50711	217364	2025-09-30
Filter, BRF 2305-2315	Micro-Tronics	BRC20553	224186	2026-06-29
Directional Coupler	KRYTAR	152610	254457	2025-10-31
Directional Coupler	KRYTAR	101040010K	254458	2025-10-30
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90718	2026-03-31
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	257704	2026-03-31
Chamber, Environmental	Cincinnati Sub Zero	ZPHS-8-3.5-SCT/WC	89097	2025-10-31
	UL AUTOMATION SC	FTWARE		
Conducted Software	UL	CLT	Ver.2023 11.21	.0 & .2024.3.20.0
Conducted Software	UL	Power Measurement	Ver 20	23.08.14
Conducted Software	UL	Antenna Port	Ver.2022.8.1	6 & 2021.5.13
Conducted Software	UL	Station Tool	Ver. 5	.0 & 5.3
Radiated Software	UL	UL EMC	Ver 9.5, N	/lay 1, 2023

Page 14 of 52

8. RF OUTPUT POWER VERIFICATION

CONDUCTED OUTPUT POWER MEASUREMENT PROCEDURE

All bands conducted average power is obtained from the base station simulator.

The following tests were conducted according to the test requirements outlined in ANSI C63.26 Section 5.2.

RESULTS

The EUT has different power levels for head use configuration and body use configuration. All measurements are made with the device operating at the highest average conducted output powers.

8.1. LTE BAND 30

Test Engineer ID:	39004	Test Date:	2025-01-21
-------------------	-------	------------	------------

OUTPUT POWER FOR LTE BAND 30 (5.0 MHz)

								Con	ducted A	verage (d	IBm)				
Bandwidth	Modulation	RB	RB		ANT 3			ANT 4			ANT 2			ANT 1	
(MHz)	Modulation	Allocation	Offset	27685	27710	27735	27685	27710	27735	27685	27710	27735	27685	27710	27735
				2307.5	2310.0	2312.5	2307.5	2310.0	2312.5	2307.5	2310.0	2312.5	2307.5	2310.0	2312.5
		1	0	24.90	24.89	24.90	24.70	24.70	24.70	25.70	25.67	25.57	24.20	24.20	24.20
		1	12	24.85	24.88	24.83	24.61	24.65	24.60	25.59	25.69	25.59	24.11	24.07	24.16
		1	24	24.86	24.81	24.83	24.60	24.60	24.52	25.66	25.66	25.60	23.99	23.94	23.97
	QPSK	12	0	24.66	24.62	24.67	24.40	24.47	24.39	25.42	25.46	25.36	23.12	23.11	23.15
		12	6	24.73	24.68	24.69	24.45	24.50	24.42	25.48	25.50	25.40	23.15	23.11	23.15
		12	11	24.65	24.60	24.61	24.35	24.41	24.34	25.39	25.46	25.33	22.99	23.00	23.04
		25	0	24.66	24.61	24.62	24.38	24.41	24.33	25.42	25.44	25.36	23.05	23.05	23.12
		1	0	24.20	24.18	24.20	23.90	23.95	23.86	24.81	25.00	25.00	23.31	23.30	23.39
		1	12	24.20	24.20	24.15	23.93	23.93	23.84	24.81	25.00	24.93	23.29	23.24	23.31
		1	24	24.15	24.18	24.14	23.87	23.84	23.87	24.88	24.97	24.78	23.19	23.05	23.17
	16QAM	12	0	23.01	22.98	22.95	22.70	22.77	22.76	23.70	23.77	23.68	22.13	22.18	22.15
		12	6	23.05	22.99	22.97	22.72	22.81	22.79	23.74	23.80	23.71	22.16	22.08	22.15
		12	11	22.96	22.97	22.91	22.66	22.68	22.66	23.64	23.74	23.61	21.95	22.04	22.10
5.0		25	0	22.98	22.94	22.96	22.68	22.70	22.66	23.70	23.72	23.63	22.08	22.06	22.13
5.0		1	0	23.33	23.23	23.24	23.16	23.01	23.05	23.95	23.97	23.99	22.53	22.49	22.59
		1	12	23.36	23.30	23.26	23.11	23.03	22.95	23.94	24.07	23.99	22.52	22.46	22.43
		1	24	23.30	23.23	23.36	22.98	22.92	22.88	24.06	24.06	23.99	22.27	22.28	22.34
	64QAM	12	0	21.98	21.95	22.00	21.71	21.76	21.80	22.74	22.77	22.67	21.21	21.13	21.24
		12	6	22.02	21.96	22.06	21.78	21.79	21.81	22.83	22.81	22.71	21.14	21.15	21.20
		12	11	21.99	21.92	21.99	21.69	21.70	21.70	22.71	22.73	22.63	20.98	21.02	21.10
		25	0	21.96	21.93	21.93	21.66	21.73	21.66	22.69	22.73	22.64	21.12	21.15	21.13
		1	0	20.08	20.00	20.05	19.76	19.82	19.93	20.76	20.74	20.72	19.29	19.31	19.35
		1	12	20.15	20.12	20.12	19.85	19.92	19.88	20.92	20.89	20.78	19.34	19.23	19.27
		1	24	20.03	19.87	19.81	19.71	19.68	19.59	20.81	20.68	20.58	18.97	19.03	19.18
	256QAM	12	0	19.95	19.93	19.92	19.72	19.75	19.70	20.67	20.73	20.65	19.17	19.19	19.24
		12	6	20.02	19.97	19.95	19.71	19.75	19.75	20.74	20.78	20.67	19.17	19.18	19.22
		12	11	19.90	19.93	19.86	19.62	19.68	19.63	20.65	20.68	20.58	19.02	19.08	19.10
	<u> </u>	25	0	19.92	19.91	19.84	19.65	19.69	19.67	20.65	20.69	20.61	19.12	19.11	19.10

OUTPUT POWER FOR LTE BAND 30 (10.0 MHz)

								Cond	ducted A	verage (d	dBm)				
Bandwidth	Modulation	RB	RB		ANT 3			ANT 4			ANT 2			ANT 1	
(MHz)	Modulation	Allocation	Offset	N/A	27710	N/A	N/A	27710	N/A	N/A	27710	N/A	N/A	27710	N/A
				N/A	2310.0	N/A	N/A	2310.0	N/A	N/A	2310.0	N/A	N/A	2310.0	N/A
		1	0		24.84			24.70			25.65			20.29	
		1	24		24.90			24.65			25.70			24.20	
		1	49		24.79			24.52			25.54			19.85	
	QPSK	25	0		24.74			24.51			25.54			23.26	
		25	12		24.76			24.50			25.51			23.18	
		25	24		24.68			24.41			25.52			23.06	
		50	0		24.75			24.47			25.51			20.14	
		1	0		24.83			24.68			25.66			19.38	
		1	24		24.86			24.59			25.63			23.25	
		1	49		24.81			24.36			25.51			19.01	
	16QAM	25	0		23.78			23.52			24.55			22.29	
		25	12		23.80			23.50			24.51			22.22	
		25	24		23.69			23.41			24.49			22.08	
10.0		50	0		23.74			23.48			24.49			19.18	
10.0		1	0		23.89			23.71			24.72			18.47	
		1	24		23.97			23.64			24.71			22.42	
		1	49		23.86			23.44			24.62			18.02	
	64QAM	25	0		22.73			22.53			23.53			21.29	
		25	12		22.76			22.51			23.57			21.23	
		25	24		22.65			22.46			23.49			21.10	
		50	0		22.73			22.48			23.52			18.16	
		1	0		20.75			20.53			21.51			15.46	
		1	24		20.89			20.61			21.64			19.34	
		1	49		20.65			20.26			21.36			14.92	
	256QAM	25	0		20.73			20.52			21.51			19.27	
		25	12		20.74			20.45			21.49			19.24	
		25	24		20.58			20.42			21.45			19.11	
		50	0		20.67			20.43			21.47			16.20	

8.2. 5G NR n30

Test Engineer ID:	32894	Test Date:	2025-02-07
-------------------	-------	------------	------------

OUTPUT POWER FOR 5G NR n30 (5.0 MHz)

								Con	ducted A	verage (d	Bm)				
Bandwidth	Modulation	RB	RB		ANT 3			ANT 4			ANT 2			ANT 1	
(MHz)	Woddiation	Allocation	Offset	461500	462000	462500	461500	462000	462500	461500	462000	462500	461500	462000	462500
				2307.5	2310.0	2312.5	2307.5	2310.0	2312.5	2307.5	2310.0	2312.5	2307.5	2310.0	2312.5
		1	0	19.90	19.90	19.90	19.70	19.65	19.70	20.69	20.70	20.70	19.20	19.20	19.17
		1	1	19.89	19.90	19.87	19.70	19.70	19.68	20.55	20.69	20.70	19.11	19.17	19.19
	BPSK	1	23	19.78	19.84	19.79	19.59	19.17	19.60	20.55	20.66	20.62	19.12	19.06	19.14
	Di Oit	1	24	19.74	19.84	19.86	19.63	19.70	19.62	20.70	20.67	20.67	19.17	19.12	19.20
		12	6	24.90	24.90	24.90	24.70	24.70	24.70	25.65	25.70	25.62	24.13	24.20	24.20
		25	0	24.26	24.22	24.21	24.04	24.24	24.02	25.01	25.04	24.98	23.49	23.51	23.53
		1	0	18.69	18.68	18.74	18.46	18.49	18.31	19.62	19.46	19.37	17.94	17.96	17.94
		1	1	19.17	19.16	19.18	18.92	18.54	18.79	19.95	19.97	19.87	18.43	18.48	18.40
	QPSK	1	23	19.05	19.15	19.11	18.89	17.52	18.72	19.94	19.91	19.76	18.37	18.37	18.24
	Qi Oit	1	24	18.60	18.61	18.68	18.41	18.54	18.23	19.62	19.38	19.38	17.89	17.88	17.79
		12	6	24.14	24.14	24.16	23.98	23.08	23.58	24.95	24.94	24.92	23.43	23.46	23.30
		25	0	23.03	23.03	23.06	22.88	22.06	22.47	23.90	23.82	23.82	22.28	22.37	22.26
		1	0	18.20	18.24	18.36	18.08	18.47	17.85	19.32	19.12	19.09	17.60	17.57	17.57
		1	1	18.72	18.80	18.83	18.56	18.55	18.35	19.56	19.54	19.59	18.11	18.06	18.09
5.0	16QAM	1	23	18.66	18.75	18.68	18.48	17.47	18.31	19.52	19.55	19.45	18.05	17.98	17.95
3.0	IOQAW	1	24	18.20	18.19	18.24	17.97	18.45	17.76	19.22	19.03	18.94	17.59	17.48	17.49
		12	6	23.68	23.64	23.68	23.49	23.06	23.26	24.56	24.44	24.43	22.99	22.95	22.91
		25	0	22.68	22.60	22.67	22.43	22.53	22.24	23.53	23.42	23.41	21.92	21.93	21.93
		1	0	17.72	17.72	17.89	17.56	17.04	17.32	18.79	18.62	18.56	17.10	16.97	17.05
		1	1	17.26	17.24	17.26	16.98	16.98	16.82	18.14	18.14	18.05	16.60	16.55	16.57
	64QAM	1	23	17.12	17.16	17.16	16.96	16.96	16.71	18.02	17.98	17.99	16.41	16.46	16.43
	0+Q/AW	1	24	17.64	17.67	17.82	17.48	16.98	17.16	18.69	18.59	18.47	17.00	16.94	16.97
		12	6	22.27	22.10	22.14	21.94	22.64	21.75	23.01	22.97	22.97	21.43	21.47	21.36
		25	0	22.19	22.07	22.10	21.90	20.53	21.75	23.04	22.96	22.96	21.42	21.40	21.39
		1	0	15.83	15.76	15.93	15.51	14.97	15.37	16.74	16.54	16.29	15.06	15.18	14.89
		1	1	15.25	15.33	15.25	15.00	15.07	14.83	15.99	16.01	15.75	14.51	14.57	14.49
	256QAM	1	23	15.27	15.25	15.21	14.83	15.02	14.70	15.96	15.95	15.72	14.42	14.41	14.38
	2003/10	1	24	15.69	15.74	15.89	15.47	14.98	15.29	16.61	16.51	16.31	15.06	14.96	15.00
		12	6	20.24	20.21	20.20	19.94	20.60	19.77	21.01	20.95	20.66	19.40	19.51	19.42
		25	0	20.15	20.18	20.21	19.85	-0.39	19.72	20.93	20.92	20.71	19.36	19.51	19.44

OUTPUT POWER FOR 5G NR n30 (10.0 MHz)

								Cond	ducted A	verage (dBm)				
Bandwidth	Modulation	RB	RB		ANT 3			ANT 4			ANT 2			ANT 1	
(MHz)	iviodulation	Allocation	Offset	N/A	462000	N/A	N/A	462000	N/A	N/A	462000	N/A	N/A	462000	N/A
				N/A	2310.0	N/A	N/A	2310.0	N/A	N/A	2310.0	N/A	N/A	2310.0	N/A
		1	0		19.90			19.65			20.63			19.17	
		1	1		19.89			19.70			20.66			19.20	
	BPSK	1	50		19.86			19.70			20.69			19.12	
	BESK	1	51		19.85			19.70			20.70			19.10	
		25	12		24.90			24.70			25.70			20.01	
		50	0		24.28			24.10			25.14			24.20	
		1	0		19.34			19.14			20.10			19.20	
		1	1		19.88			19.68			20.66			19.13	
	QPSK	1	50		19.90			19.66			20.70			19.08	
	QFSK	1	51		19.35			19.18			20.16			19.13	
		25	12		24.82			24.61			25.57			19.95	
		50	0		23.81			23.61			24.59			23.96	
	16QAM	1	0		18.23			17.99			19.03			19.06	
		1	1		18.70			18.47			19.47			19.03	
10.0		1	50		18.72			18.50			19.47			19.01	
10.0	IOQAW	1	51		18.20			18.02			19.07			19.03	
		25	12		23.67			23.55			24.51			19.79	
		50	0		22.70			22.50			23.51			22.94	
		1	0		17.75			17.51			18.51			19.11	
		1	1		17.21			16.95			18.10			19.11	
	64QAM	1	50		17.12			16.96			18.02			18.97	
	04QAW	1	51		17.73			17.43			18.54			18.99	
		25	12		22.14			21.83			22.99			19.81	
		50	0		22.16			21.87			23.01			22.38	
		1	0		15.83			15.42			16.51			19.16	
		1	1		15.18			14.86			15.89			19.16	
	256QAM	1	50		15.13			14.75			15.82			19.05	
	ZJUQAW	1	51		15.64			15.30			16.40			19.06	
		25	12		20.23			19.77			20.93			19.86	
		50	0		20.17			19.81			20.98			20.36	

9. CONDUCTED TEST RESULTS

OCCUPIED BANDWIDTH 9.1.

RULE PART(S)

FCC: §2.1049 ISED: RSS195

LIMITS

For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

RESULTS

There is no limit required, and the power is the same for the low, middle, and high channels; therefore, only the middle channel was tested.

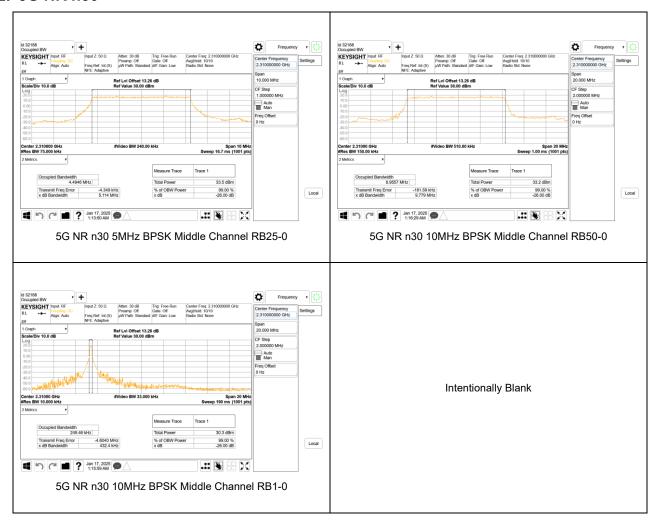
LTE BAND 30

Band	Mode	RB Allocation/RB Offset	f(MHz)	99% BW (MHz)	-26dB BW (MHz)
	5MHz, QPSK	25/0		4.507	5.08
	5MHz, 16QAM	23/0		4.492	5.11
LTE BAND 30	10MHz, QPSK	50/0	2310.0	8.976	9.91
	10MHz, 16QAM	30/0		9.002	10.01
	10MHz, QPSK	1/0		0.248	0.41

5G NR n30

Band	Mode	RB Allocation/RB Offset	f(MHz)	99% BW (MHz)	-26dB BW (MHz)
	5MHz, BPSK			4.495	5.11
	5MHz, QPSK	25/0		4.487	5.10
	5MHz, 16QAM			4.491	5.09
5G NR n30	10MHz, BPSK		2310.0	8.956	9.78
	10MHz, QPSK	50/0		8.951	9.61
	10MHz, 16QAM			8.956	9.80
	10MHz, BPSK	1/0		0.249	0.43

9.1.1. LTE BAND 30



DATE: 2025-08-15

IC: 579C-E8949A

DATE: 2025-08-15 IC: 579C-E8949A

9.1.2. 5G NR n30

9.2. EMISSION MASK AND ADJACENT CHANNEL POWER

LIMITS

FCC: §27.53

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

- (4) For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:
- (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

ISED: RSS195§5.6

The transmitter unwanted emissions shall be measured with a resolution bandwidth of 1 MHz. A smaller resolution bandwidth is permitted provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz. However, in the 1 MHz bands immediately adjacent to the edges of the frequency range(s) in which the equipment is allowed to operate, a resolution bandwidth of as close as possible to, without being less than 1% of the occupied bandwidth, shall be employed provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz.

RSS195§5.6.2 Mobile, Portable and Low-Power Fixed Subscriber Equipment

The power of any emission outside the frequency range(s) in which the equipment operates shall be attenuated below the transmitter power, P(dBW), by the amount indicated in Table 2 and graphically represented in Figure 2, where p is the transmitter output power measured in watts.

According to Notice 2022-CEB001 In order to demonstrate compliance with the unwanted emission limit of -13 dBm/MHz, the power level measured within the first 1 MHz immediately adjacent to the channel edges shall be integrated over the full 1 MHz bandwidth with a resolution as close as possible to 1% (no less than 1%) of the occupied bandwidth.

TEST PROCEDURE

For Spectrum Emission Mask plots, the spectrum analyzer is configured to sweep with a moving integration window, the width of which can be adjusted to different sizes across the sweep. The window width is configured to be greater than or equal to the required reference bandwidth. The center frequencies of the integration window for the different integration windows was set such that the upper and lower edges of the windows are aligned with the transition points in the reference bandwidths. This is achieved by setting the start / stop frequencies of the window with an offset equal to the reference bandwidth / 2 from the transition point.

The transmitter output was connected to a base station simulator and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:

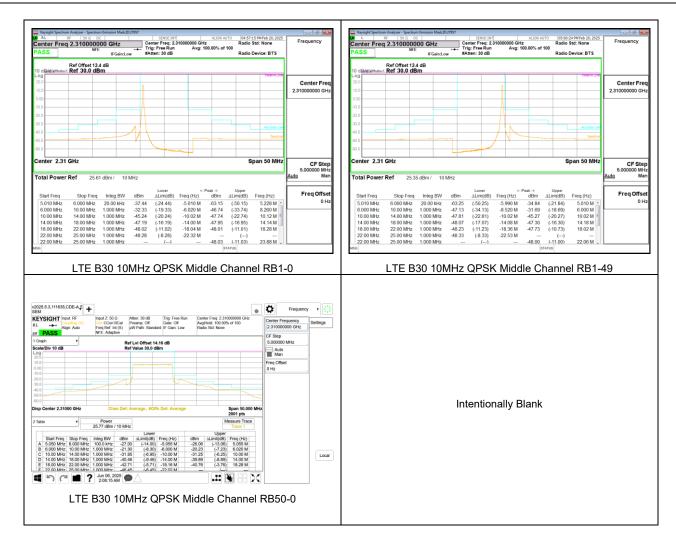
- 1. Set the spectrum analyzer span to include the block edge frequency.
- 2. Set a marker to point the corresponding band edge frequency in each test case.
- 3. Set display line at -13 dBm
- 4. Set resolution bandwidth to at least 1% of emission bandwidth.

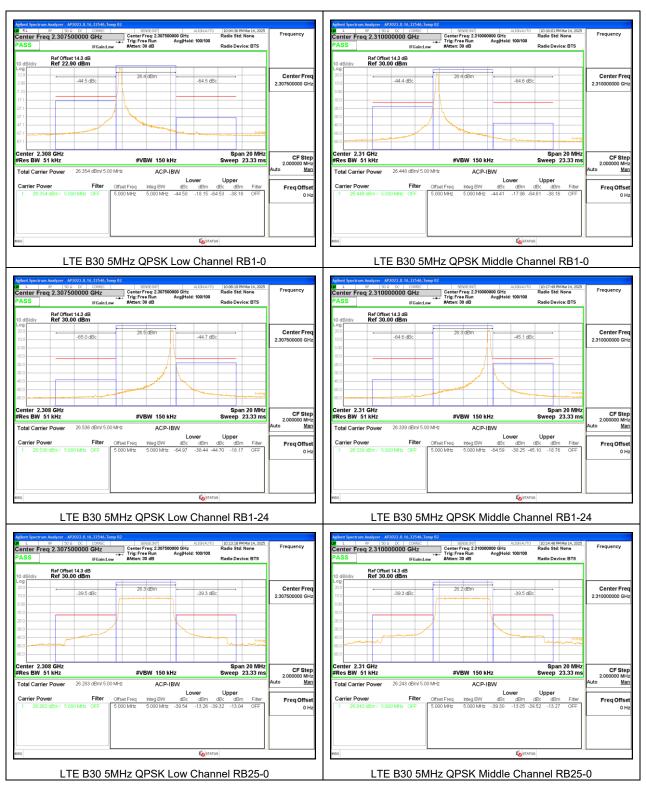
TEST PROCEDURE (BAND 30)

(5) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the channel blocks at 2305, 2310, 2315, 2320, 2345, 2350, 2355, and 2360 MHz, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.*, 1 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

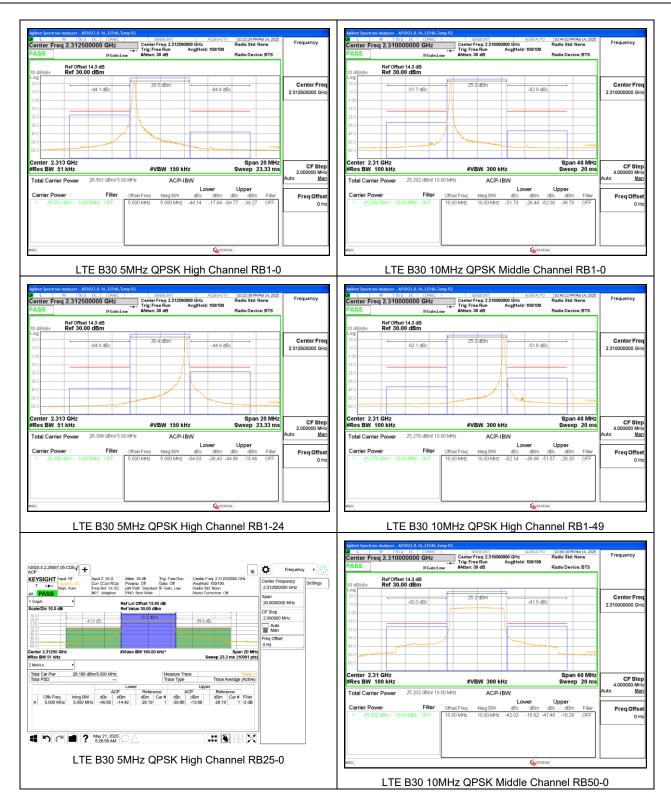
To show compliance with this requirement the spectrum analyzer is configured to measure the adjacent channel power for the frequency blocks adjacent to the channel edge. The integration of power is performed over a bandwidth > 1MHz and if the measurement is less than -13dBm when measured over more than 1MHz then the power must be less than -13dBm/MHz.

RESULTS


0.2.4 LTE DAND 20 EMISSION MASK


DATE: 2025-08-15

IC: 579C-E8949A

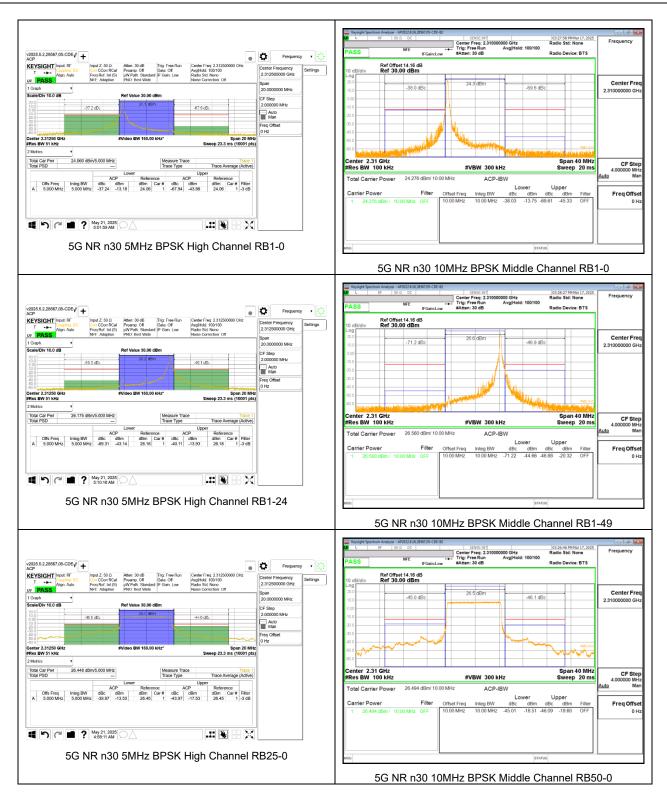


9.2.2. LTE BAND 30 ADJACENT CHANNEL POWER

DATE: 2025-08-15

IC: 579C-E8949A

9.2.3. 5G NR n30 EMISSION MASK



9.2.4. 5G NR n30 ADJACENT CHANNEL POWER

DATE: 2025-08-15

IC: 579C-E8949A

9.3. OUT OF BAND EMISSIONS

LIMITS

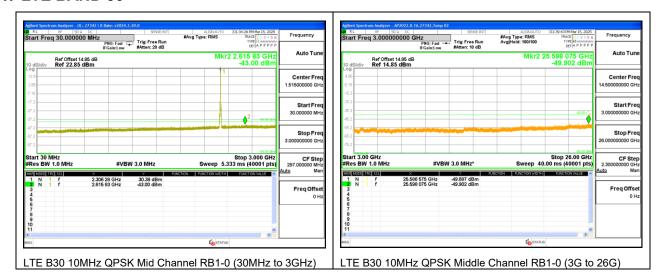
FCC: §27.53 (a)

The minimum permissible attenuation level of any spurious emissions is 70 + 10 log (P) dB where transmitting power (P) in Watts.

RSS195§5.6.2

The minimum permissible attenuation level of any spurious emissions is 70 + 10 log (P) dB where transmitting power (P) in Watts.

TEST PROCEDURE


The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

For each out of band emissions measurement:

- Set display line at required limit.
- Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz. (NOTE: Worst case set RBW/VBW to 1MHz/3MHz)

RESULTS


9.3.1. LTE BAND 30

DATE: 2025-08-15

IC: 579C-E8949A

9.3.2. 5G NR n30

9.4. FREQUENCY STABILITY

LIMITS

FCC: §27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

ISED: RSS195§5.4

The applicant shall ensure frequency stability by showing that the occupied bandwidth is maintained within the range of the operating frequency blocks when testing under the temperature and supply voltage variations specified for the frequency stability measurement in RSS-Gen.

TEST PROCEDURE

Use base station simulator with Frequency Error measurement capability.

- Temp. = -30°C to +50°C
- Voltage = (85% 115%)

Low voltage, 3.23VDC, Normal, 3.8VDC and High voltage, 4.37VDC. End Voltage, 3.2VDC.

Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

RESULTS

See the following pages.

9.4.1. LTE BAND 30 (QPSK 10MHz BANDWIDTH)

Test Engineer ID: 27700	Test Date:	2025-03-04
-------------------------	------------	------------

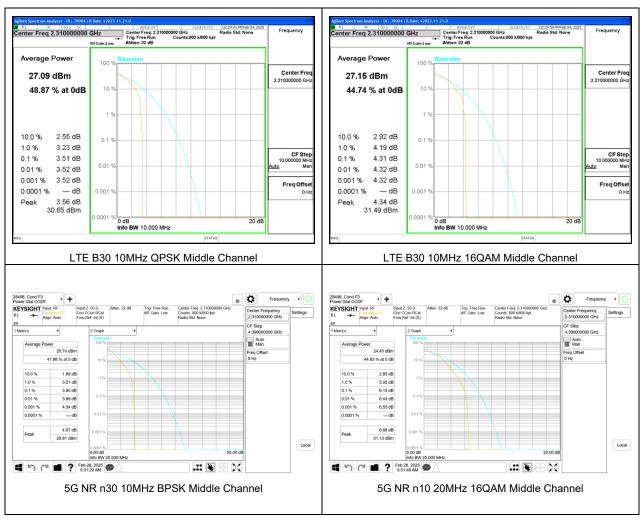
Band	30	Frequen	cy Range		Li	mit
Conditi		2305	2315	Frequency Error		
Conditi	on	Freq Reading	Freq Reading	Reading	Frequency	Within
Temperature	Voltage	@ Low End (MHz)	@ High End (MHz)	(Hz)	Stability	Authorized Frequency Block
Normal (20°C)		2305.5300	2314.4852		(ppm)	(Hz)
Extreme (50°C)		2305.5300	2314.4852	0.3	0.000	Yes
Extreme (40°C)		2305.5300	2314.4852	0.4	0.000	Yes
Extreme (30°C)		2305.5300 2314.4852		-3.1	-0.001	Yes
Extreme (10°C)	Normal	2305.5300	2314.4852	0.1	0.000	Yes
Extreme (0°C)		2305.5300	2314.4852	4.0	0.002	Yes
Extreme (-10°C)		2305.5300	2314.4852	1.4	0.001	Yes
Extreme (-20°C)		2305.5300	2314.4852	-0.7	0.000	Yes
Extreme (-30°C)		2305.5300	2314.4852	1.8	0.001	Yes
	15%	2305.5300	2314.4852	2.2	0.001	Yes
20°C	-15%	2305.5300	2314.4852	0.2	0.000	Yes
	End Point Voltage	2305.5300	2314.4852	1.2	0.001	Yes

9.4.2. 5G NR n30 (BPSK 10MHz BANDWIDTH)

Test Engineer ID:	27700	Test Date:	2025-03-07

Band	30	Frequency Range		Frequency Error Reading	Limit			
Condition		2305	2315					
		Freq Reading @ Low End	Freq Reading @ High End		Frequency	Within		
Temperature	Voltage	(MHz)	(MHz)	(Hz)	Stability (ppm)	Authorized Frequency Block (Hz)		
Normal (20°C)	Normal	2305.3336	2314.2916					
Extreme (50°C)		2305.3336	2314.2916	0.42	0.000	Yes		
Extreme (40°C)		2305.3336	2314.2916	-4.02	-0.002	Yes		
Extreme (30°C)		2305.3336	2314.2916	-4.85	-0.002	Yes		
Extreme (10°C)		2305.3336	2314.2916	-5.29	-0.002	Yes		
Extreme (0°C)		2305.3336	2314.2916	-5.54	-0.002	Yes		
Extreme (-10°C)		2305.3336	2314.2916	-11.15	-0.005	Yes		
Extreme (-20°C)		2305.3336	2314.2916	-6.28	-0.003	Yes		
Extreme (-30°C)		2305.3336	2314.2916	-2.72	-0.001	Yes		
20°C	15%	2305.3336	2314.2916	-6.47	-0.003	Yes		
	-15%	2305.3336	2314.2916	-2.47	-0.001	Yes		
	End Point Voltage	2305.3336	2314.2916	-4.72	-0.002	Yes		

9.5. PEAK-TO-AVERAGE POWER RATIO


LIMIT

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

RESULT

Antenna 3 was used to measure as the worst case; full resource block (FRB) for each bandwidth was used to measure as the worst case. The results from all CCDF measurements are passed with 13dB peak-to-average power ratio criteria.

Example Plots: FULL RB

DATE: 2025-08-15

IC: 579C-E8949A

9.5.1. LTE BAND 30

Test Engineer ID:	39004	Test Date:	2025-02-04
-------------------	-------	------------	------------

Band	Bandwidth	Frequency RB		RB RB		Conducted F	Power (dBm)	Peak-to-Average		
Danu	(MHz)	(MHz)	Allocation OffSet		Modulation	Peak	Average	Power Ratio (dB)		
	5MHz		25	0	QPSK	31.00	27.23	3.77		
LTE	SIVITIZ	2310.0	25		16QAM	32.02	27.38	4.64		
Band 30	101/1⊔→	10MHz	50	0	QPSK	30.65	27.09	3.56		
	TOWINZ		30	U	16QAM	31.49	27.15	4.34		
Duty Cycle Correction Factor (dB) =			0.00		<u> </u>					
Peak-to-Av	erage Power	Ratio= Peak	Reading - A	verage F	Reading - Dut	ty Cycle Corre	ection Factor			

9.5.2. 5G NR n30

Test Engineer ID:	28498	Test Date:	2025-02-27
-------------------	-------	------------	------------

Band	Bandwidth	Frequency	RB RB		Modulation	Conducted F	Power (dBm)	Peak-to-Average		
Dand	(MHz)	(MHz)	Allocation	OffSet	Modulation	Peak	Average	Power Ratio (dB)		
	5MHz		25	0	BPSK	29.82	25.67	4.15		
5G NR	5G NR	2310.0	25		16QAM	31.02	24.42	6.60		
n30	10MHz		50	0	BPSK	29.81	25.74	4.07		
	TOWINZ		50	0	16QAM	31.13	24.45	6.68		
Duty Cycle	Correction F	actor (dB) =	0.00		·					
Peak-to-Average Power Ratio= Peak Reading - Average Reading - Duty Cycle Correction Factor										

10. RADIATED TEST RESULTS

LIMITS

FCC: §27.53 (a)

For mobile and portable stations operating in the 2305-2315 MHz: by a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

RSS195§5.6

The transmitter unwanted emissions shall be measured with a resolution bandwidth of 1 MHz. A smaller resolution bandwidth is permitted provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz. However, in the 1 MHz bands immediately adjacent to the edges of the frequency range(s) in which the equipment is allowed to operate, a resolution bandwidth of as close as possible to, without being less than 1% of the occupied bandwidth, shall be employed provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz.

RSS195§5.6.2 Mobile, Portable and Low-Power Fixed Subscriber Equipment

The power of any emission outside the frequency range(s) in which the equipment operates shall be attenuated below the transmitter power, P(dBW), by the amount indicated in Table 2 and graphically represented in Figure 2, where p is the transmitter output power measured in watts.

Radiated measurement using the Field Strength Method

Using the test configuration shown in Figure 6 below, the radiated emissions is measured directly from the EUT and convert the measured field strength or received power to ERP or EIRP, as required, for comparison to the applicable limits. As stated in 5.5.1 of ANSI C63.26-2015, the field strength measurement method using a test site validated to the requirements of ANSI C63.4 is an alternative to the substitution measurement.

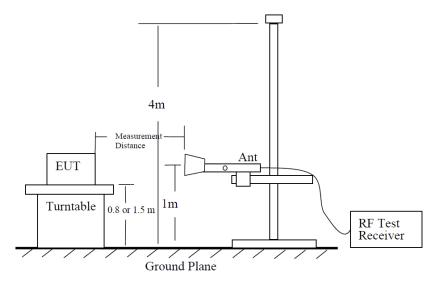
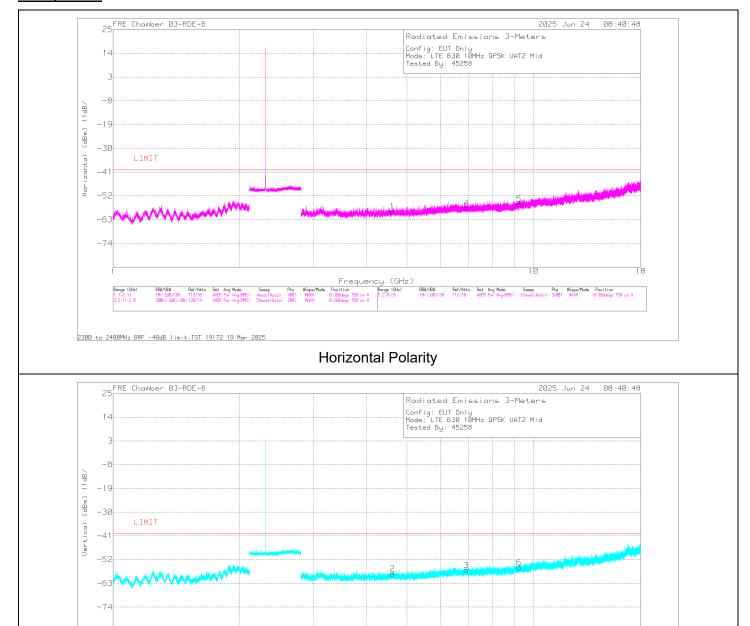


Figure 6 —Test site-up for radiated ERP and/or EIRP measurements

Radiated Power Measurement Calculation According to ANSI C63.26-2015

- a) E (dBμV/m) = Measured amplitude level (dBμV) + Cable Loss (dB) + Antenna Factor (dB/m).
- b) E (dB_WV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m).
- c) E (dBµV/m) = EIRP (dBm) 20log(D) + 104.8; where D is the measurement distance (in the far field region) in m.
- d) EIRP (dBm) = E (dB μ V/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m.


So, from d)

The measuring distance is usually at 3m, then 20*Log(3)=9.5424

Then, EIRP (dBm) = E (dB μ V/m) + 9.5424 - 104.8 = E (dB μ V/m) - 95.2576

Note: Confidence check of each chamber is performed daily to see if any degradation from expected/normal reading reference data. Ambient check of each chamber is performed monthly.

Example Plot

Frequency (GHz)

Vertical Polarity

#Sups/Mode Position

2300 to 2400MHz BRF -40dB limit.TST 19172 19 Mar 2025

DATE: 2025-08-15

IC: 579C-E8949A

Trace Markers

Frequency (GHz)	Meter Reading (dBuV)	Det	80403 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT (dBm)	Margin (dB)	Polarity
4.619589	51.28	RMS	33.8	-95.2	-49.04	-59.16	-40	-19.16	Н
4.619589	51.88	RMS	33.8	-95.2	-49.04	-58.56	-40	-18.56	V
6.930481	49.19	RMS	35.6	-95.2	-47.2	-57.61	-40	-17.61	Н
6.930481	49.86	RMS	35.6	-95.2	-47.2	-56.94	-40	-16.94	V
9.240393	49.35	RMS	36.4	-95.2	-46.44	-55.89	-40	-15.89	Н
9.240393	49.56	RMS	36.4	-95.2	-46.44	-55.68	-40	-15.68	V

10.1. FIELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz

TEST PROCEDURE

KDB 971168 D01 /D02

All tests above 1GHz were done with a Resolution Bandwidth of 1MHz, and a Video Bandwidth of 3MHz

RESULTS

Page 43 of 52

10.1.1. LTE BAND 30

LTE BAND 30 (QPSK 10.0MHZ BANDWIDTH, ANT 3)

Date:	2025-06-24
Test Engineer:	45258
Configuration:	EUT Only
Mode:	LTE B30 10MHz QPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
				Mid Channel,	2310MHz				
4.622531	52.01	RMS	33.9	-95.2	-49.20	-58.49	-40	-18.49	Н
4.620079	50.82	RMS	33.8	-95.2	-49.02	-59.60	-40	-19.60	V
6.930481	49.77	RMS	35.6	-95.2	-47.20	-57.03	-40	-17.03	Н
6.931462	51.45	RMS	35.6	-95.2	-47.25	-55.40	-40	-15.40	V
9.239902	49.46	RMS	36.4	-95.2	-46.41	-55.75	-40	-15.75	Н
9.239902	50.36	RMS	36.4	-95.2	-46.41	-54.85	-40	-14.85	V

LTE BAND 30 (QPSK 10.0MHZ BANDWIDTH, ANT 4)

Date:	2025-06-24
Test Engineer:	45258
Configuration:	EUT Only
Mode:	LTE B30 10MHz QPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
				Mid Channel,	2310MHz				
4.619589	51.28	RMS	33.8	-95.2	-49.04	-59.16	-40	-19.16	Н
4.619589	51.88	RMS	33.8	-95.2	-49.04	-58.56	-40	-18.56	V
6.930481	49.19	RMS	35.6	-95.2	-47.20	-57.61	-40	-17.61	Н
6.930481	49.86	RMS	35.6	-95.2	-47.20	-56.94	-40	-16.94	V
9.240393	49.35	RMS	36.4	-95.2	-46.44	-55.89	-40	-15.89	Н
9.240393	49.56	RMS	36.4	-95.2	-46.44	-55.68	-40	-15.68	V

LTE BAND 30 (QPSK 10.0MHZ BANDWIDTH, ANT 2)

Date:	2025-06-24
Test Engineer:	45258
Configuration:	EUT Only
Mode:	LTE B30 10MHz QPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
				Mid Channel,	2310MHz				
4.620079	51.76	RMS	33.8	-95.2	-49.02	-58.66	-40	-18.66	Н
4.622040	51.75	RMS	33.9	-95.2	-49.20	-58.75	-40	-18.75	V
6.931952	49.90	RMS	35.6	-95.2	-47.30	-57.00	-40	-17.00	Н
6.935384	51.57	RMS	35.6	-95.2	-47.40	-55.43	-40	-15.43	V
9.239902	49.52	RMS	36.4	-95.2	-46.41	-55.69	-40	-15.69	Н
9.240393	50.62	RMS	36.4	-95.2	-46.44	-54.62	-40	-14.62	V

LTE BAND 30 (QPSK 10.0MHZ BANDWIDTH, ANT 1)

Date:	2025-06-24
Test Engineer:	45258
Configuration:	EUT Only
Mode:	LTE B30 10MHz QPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	200897 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
				Mid Channel,	2310MHz				
4.621550	51.45	RMS	33.9	-95.2	-49.20	-59.05	-40	-19.05	Н
4.620079	51.8	RMS	33.8	-95.2	-49.02	-58.62	-40	-18.62	V
6.917242	52.65	RMS	35.6	-95.2	-47.20	-54.15	-40	-14.15	Н
6.916752	55.01	RMS	35.6	-95.2	-47.20	-51.79	-40	-11.79	V
9.240883	49.37	RMS	36.4	-95.2	-46.49	-55.92	-40	-15.92	Н
9.241373	48.84	RMS	36.4	-95.2	-46.50	-56.46	-40	-16.46	V

10.1.2. 5G NR n30

5G NR n30 (BPSK 10.0MHZ BANDWIDTH, ANT 3)

Date:	2025-06-23
Test Engineer:	45258
Configuration:	EUT Only
Mode:	5G NR n30 10MHz BPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
	Mid Channel, 2310MHz								
4.611253	55.13	RMS	33.8	-95.2	-49.00	-55.27	-40	-15.27	Н
4.610763	55.79	RMS	33.8	-95.2	-49.00	-54.61	-40	-14.61	V
6.929011	50.39	RMS	35.6	-95.2	-47.30	-56.51	-40	-16.51	Н
6.930971	49.83	RMS	35.6	-95.2	-47.20	-56.97	-40	-16.97	V
9.240393	50.21	RMS	36.4	-95.2	-46.44	-55.03	-40	-15.03	Н
9.241864	50.39	RMS	36.4	-95.2	-46.50	-54.91	-40	-14.91	V

5G NR n30 (BPSK 10.0MHZ BANDWIDTH, ANT 4)

Date:	2025-06-24
Test Engineer:	45258
Configuration:	EUT Only
Mode:	5G NR n30 10MHz BPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
			ſ	Mid Channel, 2	310MHz				
4.619098	51.15	RMS	33.8	-95.20	-49.09	-59.34	-40	-19.34	Н
4.620079	51.54	RMS	33.8	-95.20	-49.02	-58.88	-40	-18.88	V
6.929991	50.68	RMS	35.6	-95.20	-47.20	-56.12	-40	-16.12	Н
6.929500	50.15	RMS	35.6	-95.20	-47.25	-56.70	-40	-16.70	V
9.239902	49.75	RMS	36.4	-95.20	-46.41	-55.46	-40	-15.46	Н
9.240393	49.06	RMS	36.4	-95.20	-46.44	-56.18	-40	-16.18	V

5G NR n30 (BPSK 10.0MHZ BANDWIDTH, ANT 2)

Date:	2025-06-24
Test Engineer:	45258
Configuration:	EUT Only
Mode:	5G NR n30 10MHz BPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
			N	/lid Channel, 2	310MHz				
4.619589	50.66	RMS	33.8	-95.2	-49.04	-59.78	-40	-19.78	Н
4.620079	50.58	RMS	33.8	-95.2	-49.02	-59.84	-40	-19.84	V
6.930971	50.69	RMS	35.6	-95.2	-47.20	-56.11	-40	-16.11	Н
6.930971	49.89	RMS	35.6	-95.2	-47.20	-56.91	-40	-16.91	V
9.237451	49.49	RMS	36.4	-95.2	-46.50	-55.81	-40	-15.81	Н
9.240883	49.69	RMS	36.4	-95.2	-46.49	-55.60	-40	-15.60	V

5G NR n30 (BPSK 10.0MHZ BANDWIDTH, ANT 1)

Date:	2025-05-13
Test Engineer:	45258
Configuration:	EUT Only
Mode:	5G NR n30 10MHz BPSK
Chamber #:	03-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	223084 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
				Mid Channel, 2	310MHz				
4.620079	51.47	RMS	33.8	-95.2	-49.02	-58.95	-40	-18.95	Н
4.621060	51.51	RMS	33.8	-95.2	-49.2	-59.09	-40	-19.09	V
6.927539	50.22	RMS	35.6	-95.2	-47.2	-56.58	-40	-16.58	Н
6.930481	51.12	RMS	35.6	-95.2	-47.2	-55.68	-40	-15.68	V
9.242844	49.85	RMS	36.4	-95.2	-46.5	-55.45	-40	-15.45	Н
9.242844	51.05	RMS	36.4	-95.2	-46.5	-54.25	-40	-14.25	V

11. SETUP PHOTOS

Refer to 15496224-EP1V1 for setup photos.

END OF REPORT