

HAC VOLUME CONTROL TEST REPORT

FCC 47 CFR § 20.19 ANSI C63.19-2011

For **SMARTPHONE**

FCC ID: BCG-E8958A Model Name: A3523

Report Number: 15496245-S3V1 Issue Date: 7/17/2025

Prepared for APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014-2084

Prepared by
UL VERIFICATION SERVICES INC.
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 319-4000

FAX: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	Date	Revisions	Revised By
V1	7/17/2025	Initial Issue	

Table of Contents

1.	Attestation of Test Results	4		
2.	Test Methodology	5		
3.	Facilities and Accreditation	5		
4.	Calibration and Uncertainty	6		
	4.1. Measuring Instrument Calibration			
	4.2. Measurement Uncertainty			
_		_		
	Test Considerations per ANSI/TIA-5050-2018, §4			
_	5.1. Adjustable Frequency Response			
	5.3. Handset Positioning and Mounting Force			
	5.4. Test Signal and Analysis			
	5.5. Narrowband and Wideband Transmission Modes	7		
Ü	5.5.1. Narrowband Mode Testing			
	5.5.2. Wideband Mode Testing			
5	5.6. Air Interface			
	5.7. Precautions			
	5.8. Test Arrangement			
Ü	J.O. Test Arrangement			
6.	Test Procedures per ANSI/TIA-5050-2018, §5	9		
6	6.1. Receive Volume Control Performance			
	6.1.1. Requirement			
	6.1.2. Method of Measurement			
6	6.2. Receive Distortion and Noise Performance			
	6.2.1. Requirement			
	6.2.2. Measurement Method			
6	6.3. Receive Acoustic Frequency Response Performance			
	6.3.1. Requirement			
	6.3.2. Measurement Method	12		
7.	Device Under Test	13		
	7.1. Air Interfaces and Operating Mode			
•	, iii maa aa			
8.	HAC (Volume Control) Test Results	15		
Δni	pendix	18		
	Appendix A: T-Coil Setup Photo			
	Appendix B: Volume Control Test Plots			
	Appendix C: HAC Waiver DA 23-914			
	Table of Tables			
Tah	ble 6-1: Stimulus and Stimulus Measurement Bands for PN-SDNR	10		
	ble 6-2: Narrowband Receive Frequency Response Limits			
	ble 6-3: Wideband Receive Frequency Response Limitsble			
·u	50 0 0. Tridosand ricocito i roquonoy ricoponos Elillic	12		
	Table of Figures			
Figi	jure 5-1: Test Arrangement	8		
	jure 6-1: Narrowband Receive Frequency Response Limits			
	jure 6-2: Wideband Receive Frequency Response Limits			
Figure 6-2: Wideband Receive Frequency Response Limits				

1. Attestation of Test Results

Applicant Name	APPLE INC.			
FCC ID	BCG-E8958A			
Model Name	A3523			
Applicable Standards FCC 47 CFR § 20.19 ANSI C63.19-2019 ANSI/TIA 5050-2018 Waiver order DA 23-914				
Convergational Cain Limita (dP)	2N	8N		
Conversational Gain Limits (dB)	≥ 6			
Worst case Conversational Gain (dB)	14.85	17.8		
Date Tested	6/11/2025 to 7/4/2025			
Test Results	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested can demonstrate compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to ensure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not considered unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

	Approved & Released By:	Prepared By:	
	Jen Cary	Kindi	
	Devin Chang	Kiara Davis	
Senior Laboratory Engineer		Laboratory Engineer	
	UL Verification Services Inc.	UL Verification Services Inc.	

2. Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.19-2019 and ANSI/TIA-5050-2018. Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids and FCC published procedures:

KDB 285076 D04 Volume Control v02

KDB 285076 D05 CG Interim Waiver DA 23-914 v01

KDB 388624 D02 Pre-Approval Guidance List v18r07 (WAIVER)

In addition to the above, the following guidance was used:

TCB workshop updates:

- o TCB Workshop October 2023; HAC Updates (HAC Waiver Test Guidance for HAC Compliance)
- o TCB Workshop April 2024; HAC Updates (Handset Configuration)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47266 Benicia Street
Audio Chamber 1

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

The Test Lab Conformity Assessment Body Identifier (CABID)

Location	CABID	Company Number	
47173 Benicia Street, Fremont, CA, 94538 UNITED STATES	1100404	22244	
47266 Benicia Street, Fremont, CA, 94538 UNITED STATES	US0104	2324A	

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Head and Torso Simulator	Brüel & Kjær	4128C	3244297	4/30/2026
Signal Conditioner/Amplifier	Brüel & Kjær	1708	100337	4/30/2026
Sound & Vibration Measurement A/S	Brüel & Kjær	3670	3670-000087	4/30/2026
Handset Positioner	Brüel & Kjær	4606	2435148	N/A
Sound Calibrator	Brüel & Kjær	4231	3025131	4/30/2026
Radio Communication Tester*	R&S	CMW 500	125236-eS	2/14/2026
Radio Communication Tester*	R&S	CMW 500	170415-uw	2/19/2026
Radio Communication Tester*	R&S	CMX 500	101639-EE	02/14/2026

4.2. Measurement Uncertainty

Measurement Uncertainty for Audio Band Magnetic Measurement

The desired in the second in t	Uncertainty	Probe		C _i	Ci	Std.	Unc.
Error Description	values (±%)	Dist.	Div.	ABM1	ABM2	ABM1 (±%)	ABM2 (±%)
Probe Sensitivity							
Reference level	3.0	N	1	1	1	3.0	3.0
AMCC geometry	0.4	R	√3	1	1	0.2	0.2
AMCC current	1.0	R	√3	1	1	0.6	0.6
Probe positioning during calibration	0.1	R	√3	1	1	0.1	0.1
Noise contribution	0.7	R	√3	0.0143	1	0.0	0.4
Frequency slope	5.9	R	√3	0.1	1.00	0.3	3.5
Probe System							
Repeatability / drift	1.0	R	√3	1	1	0.6	0.6
Linearity / Dynamic range	0.6	R	√3	1	1	0.4	0.4
Acoustic noise	1.0	R	√3	0.1	1	0.1	0.6
Probe angle	2.3	R	√3	1	1	1.4	1.4
Spectral processing	0.9	R	√3	1	1	0.5	0.5
Integration time	0.6	N	1	1	5	0.6	3.0
Field disturbation	0.2	R	√3	1	1	0.1	0.1
Test Signal							
Reference signal spectral response	0.6	R	√3	0	1	0.0	0.4
Positioning							
Probe positioning	1.9	R	√3	1	1	1.1	1.1
Phantom positioning	0.9	R	√3	1	1	0.5	0.5
EUT positioning	1.9	R	√3	1	1	1.1	1.1
External Contributions							
RF interference	0.0	R	√3	1	0.3	0.0	0.0
Test signal variation	2.0	R	√3	1	1	1.2	1.2
Combined Std. Uncertainty (ABM field)						4.1	6.1
Expanded Std. Uncertainty (%)						8.1	12.3
Notes for table							

Notes for table

1. N - Nomal

2. R - Rectangular

3. Div. - Divisor used to obtain standard uncertainty

5. Test Considerations per ANSI/TIA-5050-2018, §4

5.1. Adjustable Frequency Response

If the terminal provides the ability to adjust the receive frequency response (e.g., via a "tone control" feature), the terminal is considered to be compliant with this Standard if it meets the requirements at one of the available frequency response settings.

5.2. Acoustic Test Interface Equipment

An ITU-T P.58 compliant Head and Torso Simulator (HATS) equipped with an ITU-T P.57 type 3.3 ear simulator shall be used for the acoustic transmission measurements specified in this standard. The ear simulator calibration and usage, and the positioning of the handset on the HATS shall be performed according to IEEE Std 269 unless stated otherwise in this document.

5.3. Handset Positioning and Mounting Force

The handset shall be placed in either the standard test position as specified in IEEE Std 269 or a recommended test position specified by the manufacturer that complies with the recommended test position requirements in IEEE Std 269.

Requirements in this standard include testing methods with a force of 2 Newtons (2N) and 8N applied when placing the handset receiver against the artificial ear pinna simulator for either the standard test position or recommended test position. The 2N force is used for testing requirements related to use by persons with hearing devices and the 8N force is used for testing requirements related to use by persons without hearing devices.

It is expected that for a person using a hearing device, the hearing device provides the desired amplification. Therefore, the tests using a force of 2N against the artificial ear pinna simulator ensure that when the telephone handset is used with a hearing device operating in the acoustic (microphone) mode, the receiver acoustics will provide the expected acoustic signals.

5.4. Test Signal and Analysis

The test signal specified for use in this document is the uncompressed real male speech as published with IEEE Std 269.

The test signal Active Speech Level (ASL) for wireless (mobile) device testing shall be -20 dBm0. The analysis shall be done in 1/12 octave bands averaged over one complete sequence of the four short sentences in the test signal unless otherwise specified.

The acoustic listener reference point shall be the Free Field (FF) or the Diffuse Field (DF) as determined in the method of measurement.

Narrowband and Wideband Transmission Modes 5.5.

The codecs to be used for testing in the Narrowband and Wideband modes are stated below. If the required codec is not available on the DUT, then the codec closest to the required codec may be used and the codec used shall be reported with the test results.

5.5.1. Narrowband Mode Testing

For testing of a terminal supporting narrowband telephony, the system simulator shall use the AMR speech codec as defined in the 3GPP TS 26 series of specifications, at the source coding bit rate of 12.2 kbit/s.

Page 7 of 18 UL Verification Services Inc.

5.5.2. Wideband Mode Testing

For testing of a terminal supporting wideband telephony, the system simulator shall use the AMR-WB speech codec as defined in the 3GPP TS 26 series of specifications, at the source coding bit rate of 12.65 kbit/s.

5.6. Air Interface

Wireless handsets typically provide multiple air interface modes such as GSM, CDMA, WCDMA, LTE, etc. When connecting a call between the audio test system and the DUT through the Call Box, any available air interface that supports the codecs described above may be used for testing.

5.7. Precautions

Coding, decoding, packetization, and other signal processing may introduce significant delays that must be accounted for by the measurement system. Refer to IEEE Std 269 for additional precautions regarding test signal usage.

5.8. Test Arrangement

The general test arrangement is shown in Figure 5-1. The Call Box passes the voice channel stream to the DUT without modification. There is no gain or loss in the voice channel stream due to the Call Box interface. The RETP (receive electrical test point) is the point in the device test arrangement where signals are applied to the DUT in the receive direction.¹

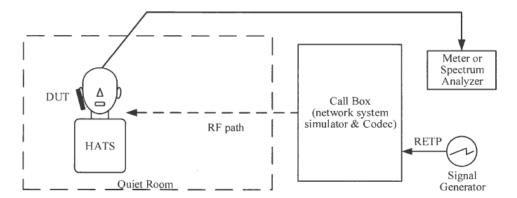


Figure 5-1: Test Arrangement

Page 8 of 18

¹ Additional information related to the air interface for the various RF technologies is specified in several 3GPP documents. A list of these can be found in 3GPP TS 26.132 V14.0.0 §4. Additional information related to the test setup can be found in 3GPP TS 26.132, V14.0.0 §5.1.

6. Test Procedures per ANSI/TIA-5050-2018, §5

6.1. Receive Volume Control Performance

6.1.1. Requirement

1. With a mounting force of 8N, the DUT shall have at least one volume control setting that will produce a conversational gain of $\ge 18^2$ dB with the output distortion and the frequency response meeting the requirements in ANSI/TIA-5050-2018 clause 5.2.1 and 5.3.1 respectively.

2. With a mounting force of 2N, the DUT shall have at least one volume control setting that will produce a conversational gain of ≥ 6 dB with the output distortion and the frequency response meeting the requirements in ANSI/TIA-5050-2018 clause 5.2.1 and 5.3.1 respectively.

6.1.2. Method of Measurement

- 1. Configure the DUT with a mounting force of 8N and test equipment as shown in Figure 5-1 in an active call state with the applicable codec for the transmission mode under test.
- 2. Set the DUT volume control to the maximum setting.
- 3. If the DUT has an adjustable tone control feature, a tone control setting that meets the frequency response requirements in ANSI/TIA-5050-2018 §5.3.1 shall be used.
- 4. Apply the real speech test signal at a level of -20 dBm0 at the RETP and measure the acoustic output at the Drum Reference Point (DRP) over one complete sequence of the test signal.
- 5. Translate the measurement made at the DRP to the Free Field (FF) using the translation data in ANSI/TIA-5050-2018 Annex B.
- 6. Over the applicable frequency band, determine the ASL in dBSPL for the resulting sound pressure level in accordance with Method B of ITU-T Recommendation P.56:
 - a. Narrowband 100 Hz through 4000 Hz.
 - b. Wideband 100 Hz through 7720 Hz.
- 7. Calculate the Conversational Gain by subtracting 70 dB from the measured dBSPL.

Conversation Gain = (Measured dBSPL - 70 dBSPL) dB

- 8. Measure the output distortion per ANSI/TIA-5050-2018 §5.2. If a distortion failure occurs at the maximum volume control setting, reduce the volume control setting and repeat the measurement to determine if a setting can be found for which the conversational gain requirement is met without a distortion failure.
- 9. Repeat steps 2-8 with a mounting force of 2N.

6.2. Receive Distortion and Noise Performance

6.2.1. Requirement

With a mounting force of 8N and 2N, the ratio of the stimulus signal power to the 100 Hz to 8000 Hz total A-weighted distortion and noise power shall be \geq 20 dB when tested over the range of 1/3 octave band center frequencies:

- 1. Narrowband transmission mode: Each 1/3 octave band center frequency from 400 Hz to 3150 Hz.
- 2. Wideband transmission mode: Each 1/3 octave band center frequency from 250 Hz to 5000 Hz.

6.2.2. Measurement Method

- 1. Configure the DUT with a mounting force of 8N and test equipment as shown in Figure 5-1 in an active call state with the applicable codec for the transmission mode under test with the volume control at the setting determined in ANSI/TIA-5050-2018 §5.1.1.
- 2. Receive distortion and noise is measured using the PN-SDNR procedure as described in ANSI/TIA-5050-2018 Annex A.

Page 9 of 18

 $^{2^{1}}$ Per KDB 285076 D05 CG Interim Waiver DA 23-914 v01, DUT must have at least one volume control setting that will produce a conversational gain of \geq 6 dB for a mounting force of 8N.

3. To ensure DUT activation, apply the real speech test signal at a level of -20 dBm0 followed immediately by the initial 1/3 octave center frequency PN test signal in Table 6-1 based on the narrowband or wideband operating mode. Measure the acoustic output at the DRP over the complete sequence of the PN test signal.

- 4. Translate the measurement made at the DRP to the FF using the translation data in ANSI/TIA-5050-2018 Annex B
- 5. Calculate the acoustic output unweighted total signal power of the stimulus measurement band as described in ANSI/TIA-5050-2018 A.2.
- 6. Calculate the notched A-weighting distortion and noise components as described in ANSI/TIA-5050-2018 A.3.
- 7. Calculate the ratio of the signal power to the total A-weighted distortion and noise power using the following equation:

$$PN - SDNR(dB) = 20 * log(\frac{measured\ stimulus\ amplitude}{measured\ distortion\ amplitude})$$

- 8. Repeat for each of the remaining 1/3 octave center frequencies in Table 6-1 based on the narrowband or wideband operating mode.
- 9. Repeat steps 2-8 with a mounting force of 2N.

Stimulus Measurement Lower Band Edge	Stimulus Lower Band Edge	Nominal Center Frequency	Stimulus Upper Band Edge	Stimulus Measurement Upper Band Edge	Handset Operating Mode	
190	225	250	280	315	Wideband	
245	280	315	355	390	only	
320	355	400	445	480		
410	445	500	560	595		
525	560	630	710	745		
675	710	800	890	925		
855	890	1000	1120	1155	Narrowband	
1085	1120	1250	1415	1450	& Widebund	
1375	1410	1600	1780	1815		
1745	1780	2000	2240	2275		
2205	2240	2500	2820	2855		
2785	2820	3150	3550	3585		
3515	3550	4000	4465	4500	Wideband	
4430	4465	5000	5625	5660	only	

Table 6-1: Stimulus and Stimulus Measurement Bands for PN-SDNR

6.3. Receive Acoustic Frequency Response Performance

6.3.1. Requirement

The receive acoustic frequency response is required to be met when tested with a handset mounting force of 2N and 8N. For a hearing device, a 2N force is used to simulate usage of the handset by a person with a hearing device in the microphone (acoustic) mode.

The receive frequency response is the ratio of the output sound pressure at the listener reference point (LRP) (FF or DF) to the voltage input to the reference codec, or digital bit stream equivalent, as shown in the equation below for each frequency or frequency band (f_i):

$$S_{JE} = 20 * \log_{10}(P_E/V_R) dB re 1 Pa/V$$

Where:

 S_{JE} = Receive Sensitivity, Juncion to Ear, at f_i

 P_E = LRP sound pressure measured by ear simulator at DRP and translated to the FF or DF (see ANSI/TIA-5050-2018 Annex B), at f_i ³

Page 10 of 18

³ 3GPP frequency response requirements in TS 26.131 as measured in TS 26.132 only use the DF. This standard allows either the FF or DF to meet the frequency response requirements but requires FF for both the volume control (ANSI/TIA-5050 §5.1) and distortion and noise (ANSI/TIA-5050-2018 §5.2) requirements.

 V_R = RMS input voltage to the reference codec, or digital bit stream equivalent, at f_i

For the volume control settings determined in ANSI/TIA-5050-2018 §5.1.1 with a mounting force of 8N and 2N, the receive frequency response shall be measured at the DRP in 1/12 octave bands. After translation to the FF or DF, it shall fall between the applicable upper and lower limits.

The exact limit values at any 1/12 octave band center frequency falling between two consecutive points specified in the table may be calculated using the formula given in the equation below:

$$X_f = X_1 + (X_2 - X_1) * \left(\frac{\log_{10} f - \log_{10} f}{\log_{10} f_2 - \log_{10} f} \right)$$

Where:

 X_f = limit value at frequency f

 X_1 = limit value at frequency f_1 as given in Table 6-2 X_2 = limit value at frequency f_2 as given in Table 6-2

The results for each 1 /12 octave band measurement are to be evaluated against the upper and lower limit values only at the center frequency point for that band (i.e., not the entire width of the band). For graphical purposes, the individual 1/12 octave band measurement results are plotted as points on a linear dB scale (y-axis) versus the band's center frequency on a logarithmic frequency scale (x-axis). The frequency response limits are floating or "best fit" (i.e., the maximum and minimum deviations from the upper and lower limits should be equidistant from those limits).

The following narrowband and wideband frequency response limits are referenced from 3GPP TS26.131.4

1. Narrowband: The 1/12 octave band frequency response after translation to the FF or DF shall fall between the upper and lower limits given in Table 6-2 and shown in Figure 6-1.

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
300	-6	100	+6
3400	-6	4000	+6

Table 6-2: Narrowband Receive Frequency Response Limits

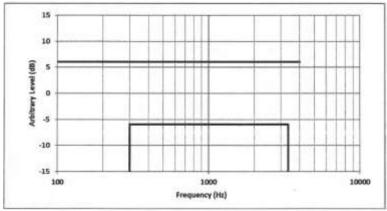


Figure 6-1: Narrowband Receive Frequency Response Limits

Page 11 of 18

 $^{^{\}rm 4}$ 3GPP TS 26.132 states the frequency response measurements are referred to the DF.

2. Wideband: The 1112 octave band frequency response after translation to the FF or DF shall fall between the upper and lower limits given in Table 6-3 and shown in Figure 6-2.

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
200	-10	100	+6
300	-6	1000	+6
5000	-6	2000	+8
6300	-12	8000	+8

Table 6-3: Wideband Receive Frequency Response Limits

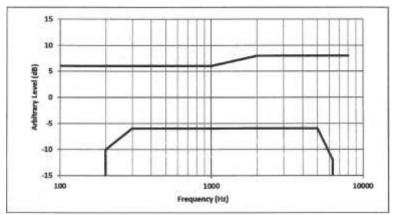


Figure 6-2: Wideband Receive Frequency Response Limits

6.3.2. Measurement Method

- 1. Configure the DUT with a mounting force of 8N and test equipment as shown in Figure 5-1 in an active call state with the applicable codec for the transmission mode under test with the volume control at the setting determined in ANSI/TIA-5050-2018 §5.1.1.
- 2. If the DUT has an adjustable tone control feature the initial measurement is to be performed with the default tone control setting.
- 3. Apply the real speech test signal with a level of -20 dBm0 at the RETP.
- 4. Capture the frequency spectrum at the DRP of the HATS using real-time analysis with 1/12 octave bands over the frequency range from 100 Hz to 4000 Hz for narrowband measurements, or over the frequency range from 100 Hz to 8000 Hz for wideband measurements, averaged over the entire duration of the test signal.
- 5. Transform the DRP frequency spectrum measurement to the FF or DF (see ANSI/TIA-5050-2018 Annex B).
- 6. Divide the 1/12 octave measurement data by the 1/12 octave frequency spectrum of the test signal at the RETP and present the measurement in terms of dB (Pa/V).
- 7. Apply the applicable frequency response limits to determine compliance.
- 8. If the default tone control setting does not meet the requirement, repeat the above steps for other tone control settings to determine a tone control setting that meets the requirements.
- 9. Repeat with a mounting force of 2N.

7. Device Under Test

Normal operation	Held to head				
Back Cover	The Back Cover is not removable				
	S/N	IMEI	Notes		
Test sample information	DQ69GDPGQP	N/A	HAC Sample		

7.1. Air Interfaces and Operating Mode

Air Interface	Bands (MHz)	Туре	C63.19 Tested	Simultaneous Transmitter	Name of Voice Service	Power Mode ⁴	Power Reduction	Audio Codecs Evaluated ^{1,2}
	850	VO	Yes	Wi-Fi, BT, NB U-NII, 802.15.4 &	CMDS	Mode A	N/A	EFR, AMR-NB
GSM	1900	VO	res	802.15.4ab NB	CMRS	Mode A	N/A	& AMR-WB
	GPRS/EDGE	DT/VD	No	Wi-Fi, BT, NB U-NII, 802.15.4 & 802.15.4ab NB	FaceTime	Mode A	N/A	ACC-ELD
	850			Wi-Fi, BT, NB U-NII,				
	1700	VO	Yes	802.15.4 &	CMRS	Mode A	N/A	AMR-NB & AMR-WB
W-CDMA (UMTS)	1900			802.15.4ab NB				
	HSPA	VD	No	Wi-Fi, BT, NB U-NII, 802.15.4 & 802.15.4ab NB	FaceTime	Mode A	N/A	ACC-ELD
	700 (B12/13/17)							
	850 (B5/26)							AMD ND
LTE - FDD	1700 (B4/66)	VD	Yes	5G NR, Wi-Fi, BT, NB U-NII, 802.15.4	CMRS	Mode A	N/A	AMR-NB, AMR-WB,
	1900 (B2/25)	VB	103	& 802.15.4ab NB	FaceTime	Wode /	14/71	EVS, & ACC- ELD
	2300 (B30)							
	2500 (B7)							
	2500 (B53)			5G NR, Wi-Fi, BT,	ON ADO			AMR-NB,
LTE - TDD	2600 (B38/41) ⁵	VD	Yes	NB U-NII, 802.15.4 & 802.15.4ab NB	CMRS FaceTime	Mode A	N/A	AMR-WB, EVS, & ACC-
	3600 (B48)			Q 002.10.445 ND				ELD
	700 (n12)							
	850 (n5/n26)							AMD ND
5G NR(FR1)	1700 (n66/n70)	VD	Yes ³	LTE, Wi-Fi, BT, NB U-NII, 802.15.4 &	CMRS	Mode A	N/A	AMR-NB, AMR-WB,
FDD	1900 (n2/n25)			802.15.4ab NB	FaceTime			EVS, & ACC- ELD
	2300 (n30)							
	2500 (n7)							
	2500 (n53)							
	2600 (n38/n41)							****
5G NR(FR1)	3500 (n77/n78 Block A) ⁵	VD	Yes ³	LTE, Wi-Fi, BT, NB U-NII, 802.15.4 &	CMRS	Mode A	N/A	AMR-NB, AMR-WB,
TDD	3600(n77/n78 Block B) ⁵	VD	163	802.15.4ab NB	FaceTime	Wode A	IN/A	EVS, & ACC- ELD
	3700 (n48)							
	3900 (n77/78 Block C) ⁵							

Туре

VO: Legacy Cellular Voice Service
DT: Digital Transport only (no voice)
VD: IP Voice Service over Digital Transport
CMRS: Commercial Mobile Radio Service

Note(s):

- 1. ASL of -20 dBm0 is required for all codecs.
- 2. ACC-ELD not required for evaluation. Refer to §6.1.1(c).
- VoNR is supported: manufacturer states that VoNR uses the same protocol, Codec(s) and bitrates as VoLTE.
- 4. For all air interfaces, the maximum held-to-head output power was used for Volume Control evaluations. The maximum held-to-head output power is Power State 1 Mode A for WWAN operating modes and Power State 1 Mode A for WLAN operating modes. Refer to §8 for Volume Control evaluations.
- LTE TDD B41 supports Power Class 2 and 3, 5G NR TDD n41, n77 and n78 support Power Class 2 and 3.

<u>Air Interfaces and Operating Mode (Continued)</u>

Air Interface	Bands (MHz)	Туре	C63.19 Tested	Simultaneous Transmitter	Name of Voice Service	Power Mode ⁴	Power Reduction	Audio Codecs Evaluated ^{1,2}
	2450			WWAN, NB U-NII & 802.15.4ab				
	U-NII-1					Power		AMR-NB,
	U-NII-2A	VD	Yes	WWAN, BT, 802.15.4, &	CMRS FaceTime	State 1 Head	N/A	AMR-WB, EVS, & ACC-
	U-NII-2C			802.15.4ab NB		пеац		ELD
Wi-Fi	U-NII-3							
VVI-FI	U-NII-5 (SP, LPI, VLP)	VD	Yes	WWAN, BT, 802.15.4, & 802.15.4ab NB	CMRS FaceTime	Power State 1 Head	N/A	AMR-NB, AMR-WB, EVS, & ACC- ELD
	U-NII-6 (LPI, VLP)			WWAN, BT,				AMR-NB,
U-N	U-NII-7 (SP, LPI, VLP)	VD	No ³	802.15.4, & 802.15.4ab NB	CMRS FaceTime	N/A	N/A	AMR-WB, EVS, & ACC-
	U-NII-8 (LPI, VLP)			602. 15.4ab NB		CMRS N/A N/A EVS.	ELD	
	U-NII-1							
NB U-NII	U-NII-3	DT	N/A	WWAN, Wi-Fi 2.4 GHz	N/A	N/A	N/A	N/A
	U-NII-5							
802.15ab NB	U-NII-3	DT	N/A	WWAN, BT, 802.15.4 & Wi-Fi ²	N/A	N/A	N/A	N/A
802.15.4	2450	DT	N/A	WWAN, 802.15.4ab NB & Wi-Fi 5/6G	N/A	N/A	N/A	N/A
ВТ	2450	DT	N/A	WWAN, 802.15.4ab NB & Wi-Fi 5/6G	N/A	N/A	N/A	N/A
MSS	1600	DT	N/A	N/A	N/A	N/A	N/A	N/A
NFC	13	DT	N/A	WWAN, BT, Wi-Fi 2.4G, Wi-Fi 5/6G, 802.15.4	N/A	N/A	N/A	N/A
UWB (Ultra-	6500	DT	N/A	N/A	N/A	N/A	N/A	N/A
Wideband)	8000	ים	IN/A	IV/A	IV/A	IN/A	IN/A	IW/A

Туре

VO: Legacy Cellular Voice Service DT: Digital Transport only (no voice)

VD: IP Voice Service over Digital Transport CMRS: Commercial Mobile Radio Service

Note(s):

- ASL of -20 dBm0 is required for all codecs.
- 2. ACC-ELD not required for evaluation. Refer to §6.1.1(c).
- Supported Frequency > 6GHz. ANSI C63,19 2019 only requires HAC evaluations for Technologies/Frequencies < 6GHz.
- For all air interfaces, the maximum held-to-head output power was used for Volume Control evaluations. The maximum held-to-head output power is Power State 1 Mode A for WWAN operating modes and Power State 1 Mode A for WLAN operating modes. Refer to §8 for Volume Control evaluations.

8. HAC (Volume Control) Test Results

Volume control testing was performed in accordance with KDB 285076 D05 CG Interim Waiver DA 23-914. Test guidance is as follows:

- 1) Under the waiver, only CMRS narrowband and CMRS wideband voice codecs are required to comply with the volume control requirements of the TIA 5050-2018 Volume Control Standard as amended as follows:
 - a) For the 2N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which it operates using one codec bit rate of the applicant's choosing.
 - i) With a mounting force of 2N, the ratio of the stimulus signal power to the 100 Hz to 8000 Hz total A-weighted distortion and noise power shall be ≥ 20 dB when tested over the range of 1/3 octave band center frequencies:
 - b) For the 8N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB8 for all voice services, bands of operation and air interfaces over which they operate but is not required to meet or exceed the full 18 dB of conversational gain specified in § 5.1.1 of the TIA 5050 Volume Control Standard using one codec bit rate of the applicant's choosing.
 - i) With a mounting force of 8N, the ratio of the stimulus signal power to the 100 Hz to 8000 Hz total A-weighted distortion and noise power shall be ≥ 20 dB when tested over the range of 1/3 octave band center frequencies:
- 2) For all other narrowband and wideband codecs not evaluated in 1) above, TIA 5050-2018 Receive Distortion and Noise Performance and Receive Acoustic Frequency Response Performance evaluations are not required; however, these codecs shall be assessed for conversational gain and documented in the test report at the 2N and 8N levels with a gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which they operate. The handset volume setting used to comply with 1) shall be used for these other CMRS codec evaluations.
- 3) Any other codec for voice services embedded in the handset, not identified in 1) and 2) above, is not required to comply or demonstrate in the test reports for conversational gain (e.g., Google Meet, non-3GPP VoIP codecs).

For WWAN technologies, the DUT utilizes an Antenna - Port mapping feature. A Port is a collection (cluster) of antennas. Once the Port and Frequency Band has been selected, the transmitting Antenna is auto selected. Below is a description of the Port - Antenna mapping for the DUT.

Port	Frequency Band	Antenna
	LB	3
A	LMB	3
^	мвнв	3
	UHB	9
	LB	2
В	LMB	2
	мвнв	4
	UHB	8
С	мвнв	2
·	UHB	4
D	MBHB	1
В	UHB	7

LB = Lower Band (617 MHz - 960 MHz)

LMB = Lower - Mid Band (1427 MHz - 1700 MHz)

MBHB = Mid Band - High Band (1710 MHz - 2960 MHz)

UHB = Ultra High Band (3300 MHz - 4200 MHz)

The device supports four (4) WLAN Tx antennas:

Technology
Wi-Fi 2.4 GHz
Bluetooth
Wi-Fi 2.4 GHz
Bluetooth
Wi-Fi 5 & 6 GHz
WI-FI 3 & 0 GHZ
Wi-Fi 5 & 6 GHz
WI-FI 3 & 6 GHZ

Page 15 of 18

Rx Distortion, Rx Frequency Response & Conversational Gain Measured Results

EVS-NB and EVS-WB codecs were selected for Rx Distortion, Rx Frequency Response & Conversational Gain evaluations.

LTE

RF Air In	terface	Mode	Channel	Frequency	Channel Bandwidth	RB	RB	Port/ANT	Power Mode	Codec	Bitrate		Frequency	Response		Disto	ortion	Conversatio	nal Gain (dB)	
Technology	Band	Mode	Channel	(MHz)	(MHz)	Allocation	Offset	PORTANI	Power Mode	Codec	(kbps)	2N DF	2N FF	8N DF	8N FF	2N SDNR	8N SDNR	2N	8N	Plot No.
LTE	25	QPSK	26365	1882.5	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.18	17.90	1 - 2
LTE	25	QPSK	26365	1882.5	20	1	0	B (ANT 2)	Mode A	EVS-WB	24.4	PASS	PASS	PASS	PASS	PASS	PASS	16.65	19.52	3 - 4
LTE	25	QPSK	26365	1882.5	20	100	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.46	17.98	5 - 6
LTE	25	16QAM	26365	1882.5	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.40	18.03	7 - 8
LTE	25	64QAM	26365	1882.5	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.29	17.92	9 - 10
LTE	25	256QAM	26365	1882.5	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.29	18.04	11 - 12
LTE	25	QPSK	26365	1882.5	1.4	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.41	18.43	13 - 14
LTE	7	QPSK	21100	2535.0	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.12	17.8	15 - 16
LTE	12	QPSK	23095	707.5	10	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.18	18.31	17 - 18
LTE	13	QPSK	23230	782.0	10	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.32	18.29	19 - 20
LTE	26	QPSK	26865	831.0	15	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.16	18.40	21 - 22
LTE	30	QPSK	27710	2310.0	10	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.31	18.34	23 - 24
LTE	41 PC3	QPSK	40620	2593.0	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.29	18.35	25 - 26
LTE	41 PC2	QPSK	40620	2593.0	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.57	18.79	27 - 28
LTE	48 PC3	QPSK	55990	3625.0	20	1	0	B (ANT 8)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.47	18.29	29 - 30
LTE	53 PC3	QPSK	60197	2489.2	10	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.24	18.24	31 - 32
LTE	66	QPSK	132322	1745.0	20	1	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.20	17.87	33 - 34

5G NR

RF Air	Interface	Mode	Channel	Frequency	Channel Bandwidth	scs	RB	RB	Port/ANT	Power Mode	Codec	Bitrate		Frequency	Response		Disto	ortion	Conversatio	nal Gain (dB)	Plot No.
Technology	Band	Mode	Channel	(MHz)	(MHz)	(kHz)	Allocation	Offset	PORIANT	Power mode	Codec	(kbps)	2N DF	2N FF	8N DF	8N FF	2N SDNR	8N SDNR	2N	8N	PIOUNO.
5G NR	n25	π/2 BPSK	376500	1882.5	40	15	1	1	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.9	20.57	35 - 36
5G NR	n25	π/2 BPSK	376500	1882.5	40	15	1	1	B (ANT 2)	Mode A	EVS-WB	24.4	PASS	PASS	PASS	PASS	PASS	PASS	19.33	22.12	37 - 38
5G NR	n25	π/2 BPSK	376500	1882.5	40	15	216	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.74	20.59	39 - 40
5G NR	n25	QPSK	376500	1882.5	40	15	216	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.95	20.67	41 - 42
5G NR	n25	16QAM	376500	1882.5	40	15	216	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.94	20.9	43 - 44
5G NR	n25	64QAM	376500	1882.5	40	15	216	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.98	20.88	45 - 46
5G NR	n25	256QAM	376500	1882.5	40	15	216	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.99	21.26	47 - 48
5G NR	n25	π/2 BPSK	376500	1882.5	5	15	25	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	18.09	21.1	49 - 50
5G NR	n7	π/2 BPSK	507000	2535.0	40	15	216	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	18.1	21.25	51 - 52
5G NR	n12	π/2 BPSK	141500	707.5	15	15	79	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	18.13	21.33	53 - 54
5G NR	n30	π/2 BPSK	462000	2310.0	10	15	52	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	18.08	21.48	55 - 56
5G NR	n41 PC3	π/2 BPSK	518598	2592.99	100	30	273	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.17	19.37	57 - 58
5G NR	n41 PC2	π/2 BPSK	518598	2592.99	100	30	273	0	B (ANT 2)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.32	19.63	59 - 60
5G NR	n77 Blk C PC3	π/2 BPSK	657200	3858.0	100	30	273	0	B (ANT 8)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.48	19.57	61 - 62
5G NR	n77 Blk C PC2	π/2 BPSK	657200	3858.0	100	30	273	0	B (ANT 8)	Mode A	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.47	19.55	63 - 64

Note(s):

The DUT supports 5G NR. Per the manufacturer, 5G NR uses the same protocol, Codec(s) and bitrates as LTE. A limited set of 5GNR bands were tested to confirm VoNR Volume Control compliance.

- At least one 5G NR-FDD LB, MB and HB were tested.
- At least one 5G NR-TDD HB and UHB were tested.

WLAN

	RF Air Interface		Modulation	Data Rate	Channel	Frequency	Channel Bandwidth	Port/ANT	Power Mode	Codec	Bitrate		Frequency	Response		Dist	ortion	Conversation	nal Gain (dB)	Plot No.
Technology	Band	Mode	Modulation	(Mbps)	Channel	(MHz)	(MHz)	PORVANT	Power mode	Codec	(kbps)	2N DF	2N FF	8N DF	8N FF	2N SDNR	8N SDNR	2N	8N	PIOL NO.
WLAN	DTS	802.11b	DSSS	1	6	2437.0	20	ANT 2	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.32	19.35	65 - 66
WLAN	DTS	802.11b	DSSS	1	6	2437.0	20	ANT 2	Power State 1 Head	EVS-WB	24.4	PASS	PASS	PASS	PASS	PASS	PASS	17.89	20.98	67 - 68
WLAN	DTS	802.11b	сск	5.5	6	2437.0	20	ANT 2	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.16	19.34	69 - 70
WLAN	DTS	802.11b	сск	11	6	2437.0	20	ANT 2	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.26	19.34	71 - 72
WLAN	DTS	802.11g	QPSK	12 Mbps	6	2437.0	20	ANT 2	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.99	19.36	73 - 74
WLAN	DTS	802.11n	MCS3	26 Mbps	6	2437.0	20	ANT 2	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.25	19.39	75 - 76
WLAN	DTS	802.11ax	MCS5	68.8 Mbps	6	2437.0	20	ANT 2	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.16	22.71	77 - 78
WLAN	UNII-1	802.11a	QPSK	18 Mbps	36	5180.0	20	ANT 6	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.25	22.56	79 - 80
WLAN	UNII-2A	802.11n	MCS3	54 Mbps	54	5270.0	40	ANT 6	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	15.32	22.56	81 - 82
WLAN	UNII-2C	802.11ac	MCS5	234 Mbps	106	5530.0	80	ANT 6	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16	22.61	83 - 84
WLAN	UNII-3	802.11ax	MCS6	649 Mbps	163	5815.0	160	ANT 6	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.92	22.78	85 - 86
WLAN	UNII-5	802.11ax	MCS6	77 Mbps	5	5975.0	20	ANT 6	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	16.35	23.04	87 - 88
WLAN	UNII-5	802.11be	MCS6	77 Mbps	5	5975.0	20	ANT 6	Power State 1 Head	EVS-NB	9.6	PASS	PASS	PASS	PASS	PASS	PASS	17.78	22.92	89 - 90

Page 16 of 18 UL Verification Services Inc. Doc. No.: 1.0

Conversational Gain Only Measured Results

The DUT supports EFR-NB, AMR-NB, and AMR-WB codecs. Per KDB 285076 D05 §2(b.), these codecs shall be assessed for conversational gain only.

GSM

RF Air II	nterface	- Mode	Channel	Frequency	Port/ANT	Power Mode	Codec	Bitrate	Conversation	nal Gain (dB)
Technology	Band	Wode	Channel	(MHz)	POTVANT	Power Mode	Codec	(kbps)	2N	8N
GSM	850	1 Slot Voice	190	836.6	B (ANT 2)	Mode A	EFR-NB	13.2	15.73	19.12
GSM	850	1 Slot Voice	190	836.6	B (ANT 2)	Mode A	AMR-NB	4.75	15.1	18.41
GSM	850	1 Slot Voice	190	836.6	B (ANT 2)	Mode A	AMR-WB	6.6	16.81	19.69
GSM	1900	1 Slot Voice	661	1880.0	B (ANT 2)	Mode A	AMR-NB	4.75	15.33	18.46

W-CDMA

RF Air II	nterface	Mode	Channal	Frequency	Dow/ANT	Dawer Made	Codes	Bitrate	Conversation	nal Gain (dB)
Technology	Band		Channel	(MHz)	Port/ANT	Power Mode	Codec	(kbps)	2N	8N
W-CDMA	II	Rel. 99	9400	1880.0	B (ANT 2)	Mode A	AMR-NB	4.75	15.46	18.61
W-CDMA	II	Rel. 99	9400	1880.0	B (ANT 2)	Mode A	AMR-WB	6.6	17.4	20.05
W-CDMA	IV	Rel. 99	1413	1732.6	B (ANT 2)	Mode A	AMR-NB	4.75	15.79	18.64
W-CDMA	V	Rel. 99	4183	836.6	B (ANT 2)	Mode A	AMR-NB	4.75	15.9	18.8

LTE

RF Air I	nterface	Mode	Channel	Frequency	Channel Bandwidth	RB	RB	Port/ANT	Power Mode	Codec	Bitrate	Conversation	nal Gain (dB)
Technology	Band	Mode	Chamie	(MHz)	(MHz)	Allocation	Offset	POIUANT	Power Mode	Codec	(kbps)	2N	8N
LTE	25	QPSK	26365	1882.5	20	1	0	B (ANT 2)	Mode A	AMR-NB	4.75	14.85	17.89
LTE	25	QPSK	26365	1882.5	20	1	0	B (ANT 2)	Mode A	AMR-WB	6.6	16.21	19.16

<u>5G NR</u>

RF Air	Interface	Mode	Channal	Frequency	Channel Bandwidth	scs	RB	RB	D(ANT	Dawe Mada	Carlas	Bitrate	Conversation	nal Gain (dB)
Technology	Band	Mode	Channel	(MHz)	(MHz)	(kHz)	Allocation	Offset	Port/ANT	Power Mode	Codec	(kbps)	2N	8N
5G NR	n25	π/2 BPSK	376500	1882.5	40	15	1	1	B (ANT 2)	Mode A	AMR-NB	4.75	17.12	19.88
5G NR	n25	π/2 BPSK	376500	1882.5	40	15	1	1	B (ANT 2)	Mode A	AMR-WB	6.6	18.48	21.21

WLAN

	RF Air Interface		Modulation	Data Rate	Channel	Frequency	Channel Bandwidth	Port/ANT	Power Mode	Codec	Bitrate	Conversatio	nal Gain (dB)
Technology	Band	Mode	Modulation	(Mbps)	Channel	(MHz)	(MHz)	PORVANT	Power Mode	Codec	(kbps)	2N	8N
WLAN	DTS	802.11b	DSSS	1	6	2437.0	20	ANT 2	Power State 1 Head	AMR-NB	4.75	15.96	19
WLAN	DTS	802.11b	DSSS	1	6	2437.0	20	ANT 2	Power State 1 Head	AMR-WB	6.6	17.67	20.74

Appendix

Refer to separate files for the following appendixes

Appendix A: T-Coil Setup Photo

Appendix B: Volume Control Test Plots

Appendix C: HAC Waiver DA 23-914

END OF REPORT