Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Fremont, USA

Certificate No.

D1900V2-5d140 Apr23

CALIBRATION CERTIFICATE

D1900V2 - SN:5d140 Object

QA CAL-05.v12 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

April 14, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
	WA		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	of ant he
Approved by:	Sven Kühn	Technical Manager	5.0

Page 1 of 6

Issued: April 21, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d140_Apr23

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d140_Apr23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.5 jΩ	
Return Loss	- 24.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.204 ns
Electrical Belay (one direction)	1.204 118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	SFLAG

Certificate No: D1900V2-5d140_Apr23

DASY5 Validation Report for Head TSL

Date: 14.04.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d140

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1900 MHz; Calibrated: 10.01.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 19.12.2022

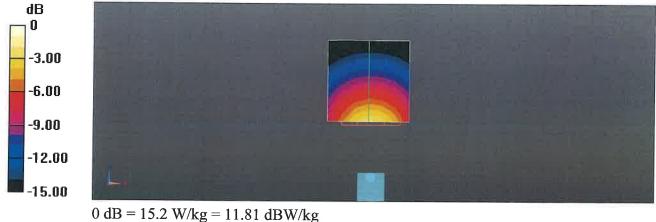
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

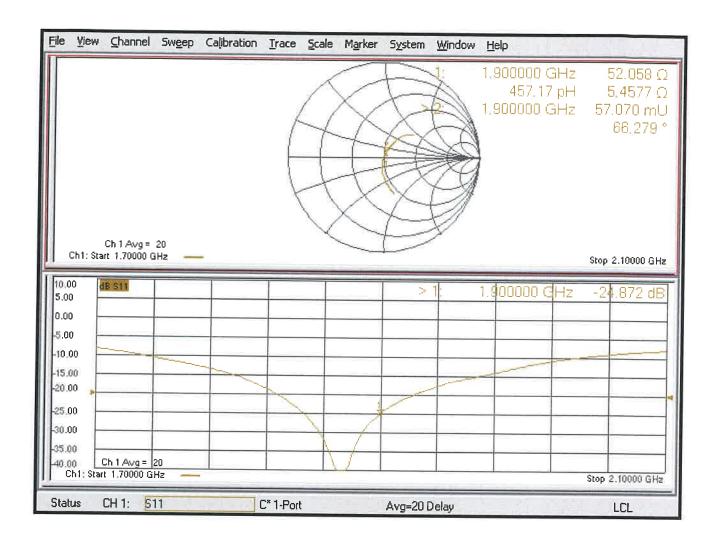
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.3 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.16 W/kg


Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 55.2%

Maximum value of SAR (measured) = 15.2 W/kg

Impedance Measurement Plot for Head TSL

<u>Dipole Impedance Measurement</u>

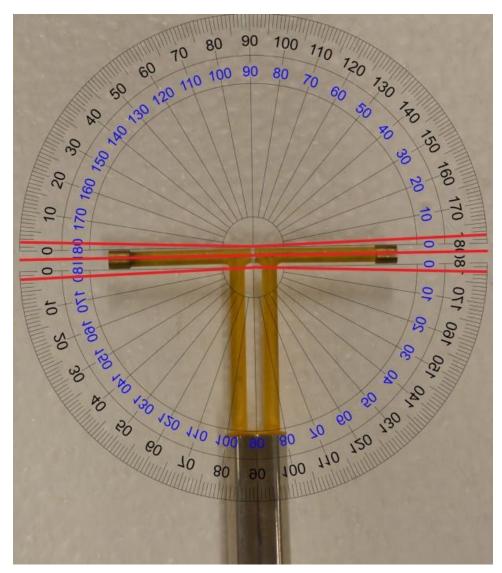
Equipment Location	Equipment	Model Name	Date of
	Name		Verification
UL Verification Services Inc.	Dipole	D1900V2-	April 14, 2023
47173 Benicia Street	Antenna	5d140	
Fremont, CA 94538, U.S.A.			

Number:	Check List:	Result:
1	Visual Inspection	Pass
2	Return/Loss and Impedance	Pass
3	Dipole Arms	Pass

Equipment List:			
Equipment Name: Calibration Date:			
R&S ZNLE6 Vector Network	03/05/2024		
Analyzer			
ZV-Z135 Calibration Kit	03/27/2024		

<u>Dipole Impedance Measurement</u>

1) Photo of Dipole


The connector of dipole contains no abnormalities.

- 2) Impedance and Return/Loss
 - Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

3) Dipole Arms

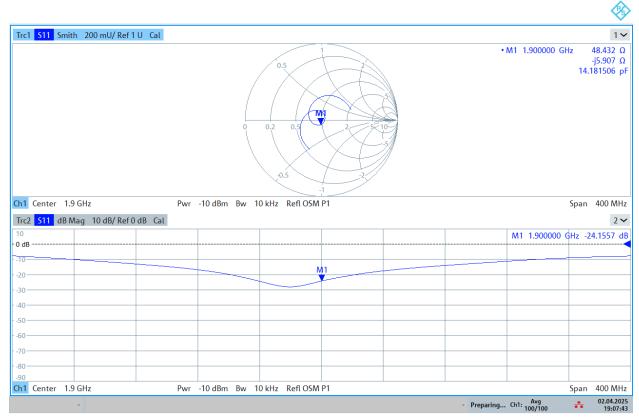
• The center red line indicates that the arms of the dipole fall within $\pm 2^{\circ}$

<u>Dipole Impedance Measurement</u>

Equipment Location	Equipment	Model Name	Date of
	Name		Verification
UL Verification Services Inc.	Dipole	D1900V2 -	April 2, 2025
47173 Benicia Street	Antenna	5d140	
Fremont, CA 94538, U.S.A.			

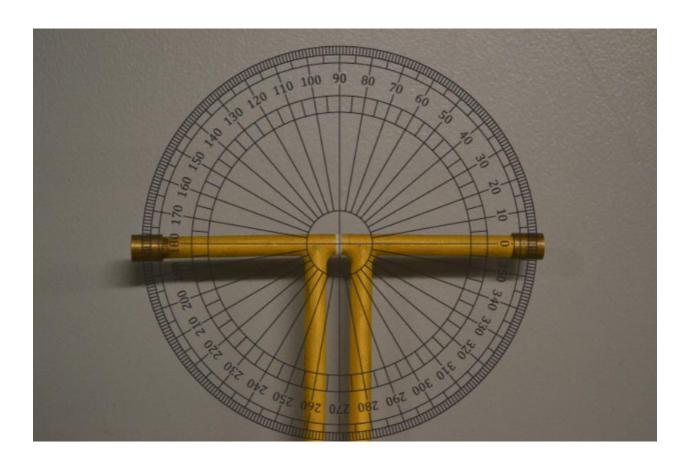
Number:	Check List:	Result:
1	Visual Inspection	Pass
2	Return/Loss and Impedance	Pass
3	Dipole Arms	Pass

Equipment List:		
Equipment Name:	Calibration Date:	
R&S Vector Network Analyzer	2/20/2025	
ZV-Z135 Calibration Kit	2/19/2025	



<u>Dipole Impedance Measurement</u>

• The connector of dipole contains no abnormalities.



19:07:44 02.04.2025

• Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

<u>Dipole Impedance Measurement</u>

 $\bullet~$ The center red line indicates that the arms of the dipole fall within $\pm 2^{\circ}$

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Accreditation No.: SCS 0108

Certificate No: D2450V2-706 Jan23

CALIBRATION CERTIFICATE

Object D2450V2 - SN:706

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: January 20, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
	57		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	Iп house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	Tank (
			-
Approved by:	Sven Kühn	Technical Manager	

Issued: January 20, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-706_Jan23 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-m-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-706_Jan23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω + 4.3 jΩ	
Return Loss	- 26.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.142 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-706_Jan23 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 20.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:706

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 10.01.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 19.12.2022

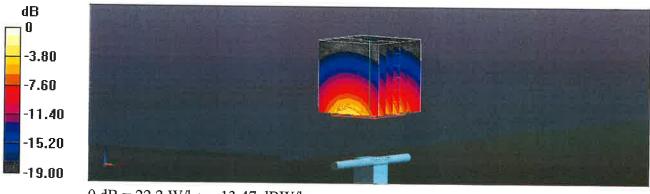
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

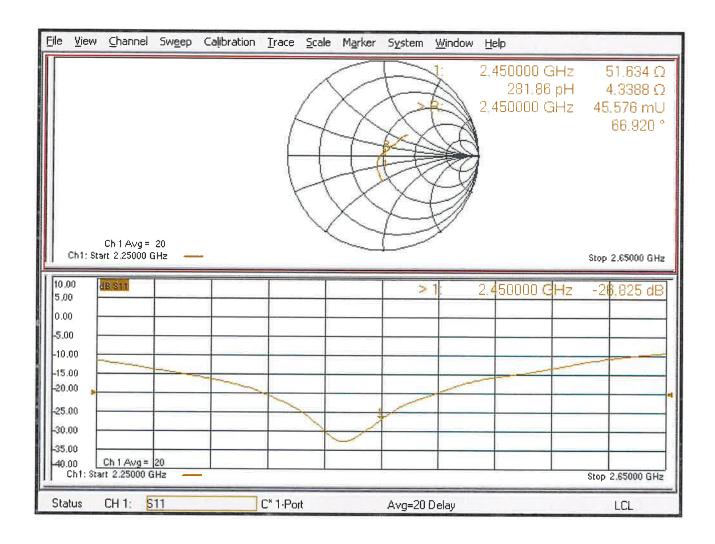
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.7 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.19 W/kg

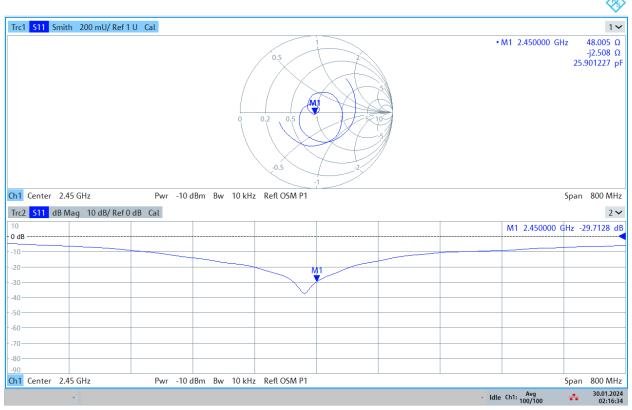
Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 50.5%

Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.47 dBW/kg

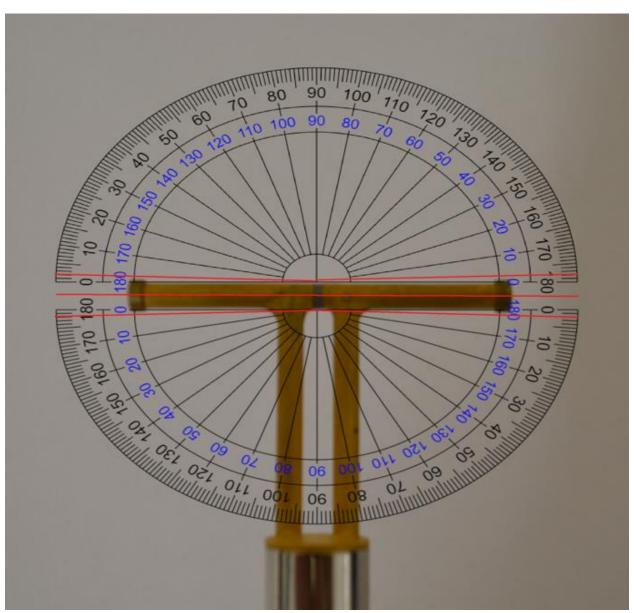
Impedance Measurement Plot for Head TSL


Equipment Location	Equipment	Model Name	Date of
	Name		Verification
UL Verification Services Inc.	Dipole	D2450V2-706	January 29,
47173 Benicia Street	Antenna		2024
Fremont, CA 94538, U.S.A.			

Number:	Check List:	Result:
1	Return/Loss and Impedance	Pass
2	Dipole Arms	Pass

Equipment List:		
Equipment Name:	Calibration Date:	
R&S ZNLE6 Vector Network 02/28/2025		
Analyzer		
ZV-Z135 Calibration Kit 03/31/2024		

1) Impedance and Return/Loss



02:16:35 30.01.2024

• Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

2) Dipole Arms

• The center red line indicates that the arms of the dipole fall within $\pm 2^{\circ}$

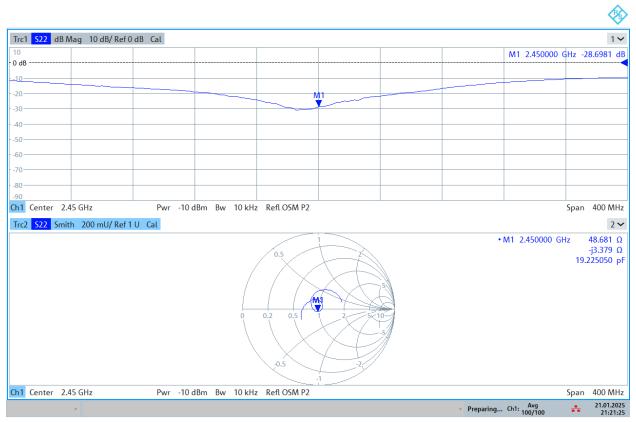
<u>Dipole Impedance Measurement</u>

Equipment Location	Equipment	Model Name	Date of
	Name		Verification
UL Verification Services Inc.	Dipole	D2450V2-706	January 21,
47173 Benicia Street	Antenna		2025
Fremont, CA 94538, U.S.A.			

Number:	Check List:	Result:
1	Visual Inspection	Pass
2	Return/Loss and Impedance	Pass
3	Dipole Arms	Pass

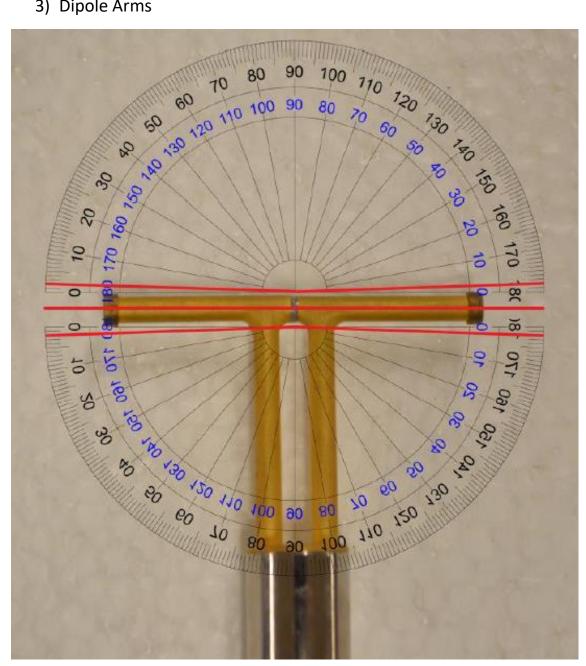
Equipment List:		
Equipment Name:	Calibration Date:	
R&S Vector Network Analyzer	2/13/2024	
ZV-Z135 Calibration Kit 3/27/2024		

<u>Dipole Impedance Measurement</u>


1) Photo of Dipole

• The connector of dipole contains no abnormalities.

2) Impedance and Return/Loss



21:21:25 21.01.2025

• Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

3) Dipole Arms

The center red line indicates that the arms of the dipole fall within $\pm 2^{\circ}$

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Fremont, USA

Certificate No. D2600V2-1036_Apr23

CALIBRATION CERTIFICATE

D2600V2 - SN:1036 Object

QA CAL-05.v12 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

April 11, 2023 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
	ř	A TANKS	0.1-1.1.06-1
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	Jant 1
			•
Approved by:	Sven Kühn	Technical Manager	
			2002

Issued: April 21, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1036_Apr23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1036_Apr23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 4.8 jΩ
Return Loss	- 26.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2600V2-1036_Apr23 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 11.04.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1036

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 10.01.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 19.12.2022

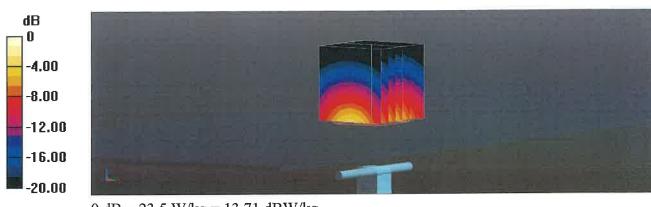
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

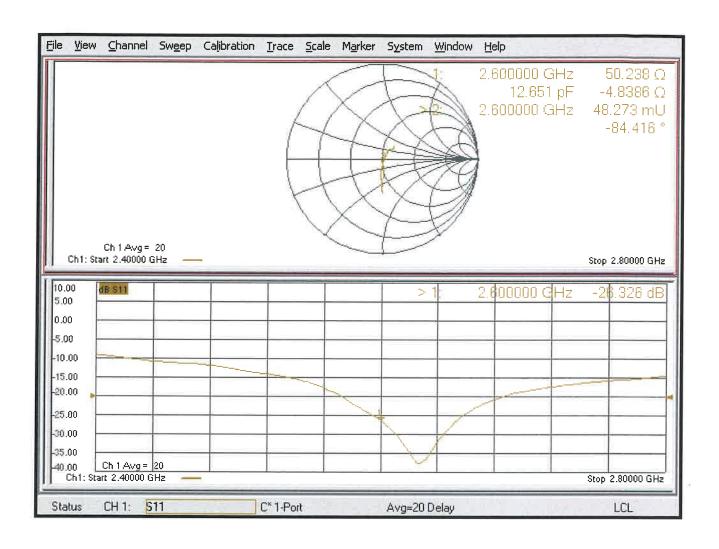
Reference Value = 118.7 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.32 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

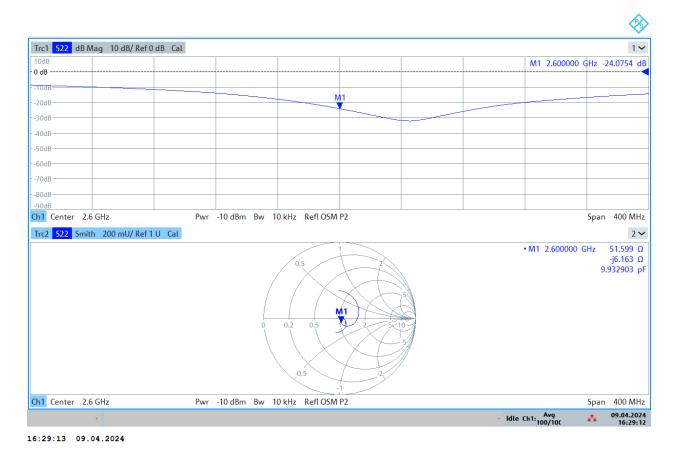
Ratio of SAR at M2 to SAR at M1 = 50.7%


Maximum value of SAR (measured) = 23.5 W/kg

0 dB = 23.5 W/kg = 13.71 dBW/kg

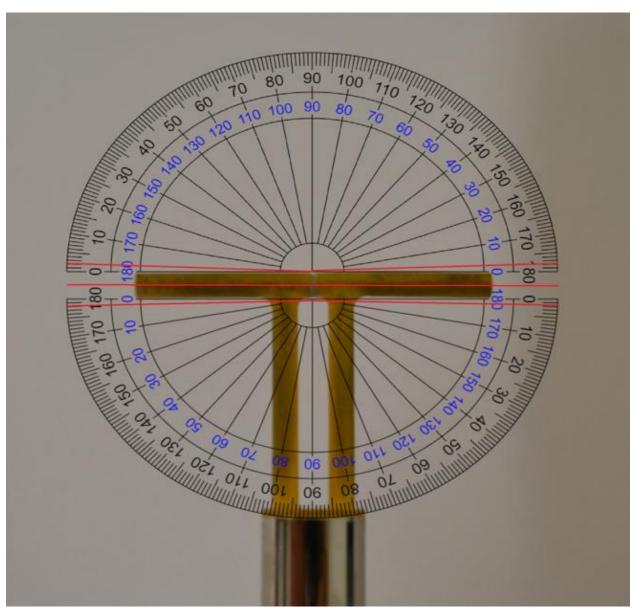
Certificate No: D2600V2-1036_Apr23

Impedance Measurement Plot for Head TSL


Equipment Location	Equipment	Model Name	Date of
	Name		Verification
UL Verification Services Inc.	Dipole	D2600V2-1036	April 9, 2024
47173 Benicia Street	Antenna		
Fremont, CA 94538, U.S.A.			

Number:	Check List:	Result:
1	Return/Loss and Impedance	Pass
2	Dipole Arms	Pass

Equipment List:		
Equipment Name:	Calibration Date:	
R&S ZNLE6 Vector Network	02/28/2025	
Analyzer		
ZV-Z135 Calibration Kit	03/31/2024	


1) Impedance and Return/Loss

• Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

2) Dipole Arms

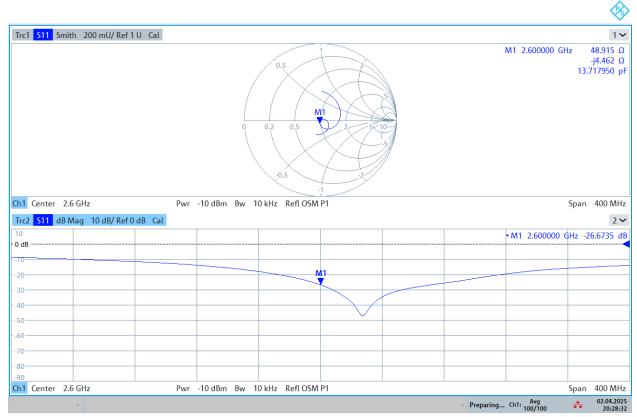
• The center red line indicates that the arms of the dipole fall within $\pm 2^\circ$

<u>Dipole Impedance Measurement</u>

Equipment Location	Equipment	Model Name	Date of
	Name		Verification
UL Verification Services Inc.	Dipole	D2600V2 -	April 2, 2025
47173 Benicia Street	Antenna	1036	
Fremont, CA 94538, U.S.A.			

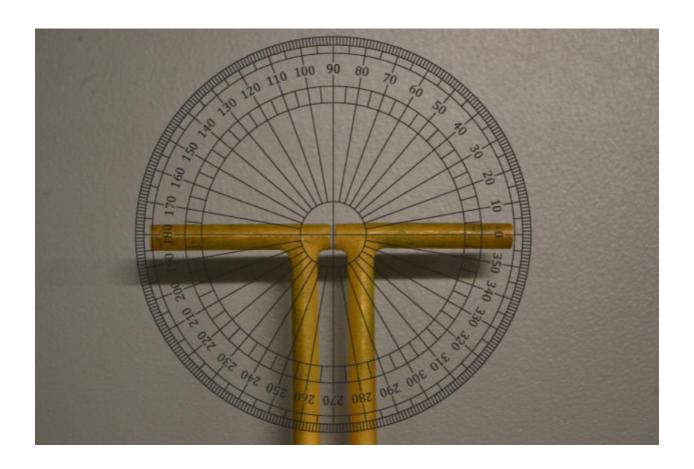
Number:	Check List:	Result:
1	Visual Inspection	Pass
2	Return/Loss and Impedance	Pass
3	Dipole Arms	Pass

Equipment List:		
Equipment Name:	Calibration Date:	
R&S Vector Network Analyzer	2/20/2025	
ZV-Z135 Calibration Kit	2/19/2025	


<u>Dipole Impedance Measurement</u>

• The connector of dipole contains no abnormalities.

Dipole Impedance Measurement



20:28:33 02.04.2025

• Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

<u>Dipole Impedance Measurement</u>

- The center red line indicates that the arms of the dipole fall within $\pm 2^\circ$

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

D3700V2-1039_Apr25

CALIBRATION CERTIFICATE

Object

D3700V2 - SN: 1039

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

April 11, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity <70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	28-Oct-24 (No. DAE4ip-1836_Oct24)	Oct-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: April 15, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3700V2-1039_Apr25

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1039 Apr25 Page 2 of 6

April 11, 2025

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.4mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	3700MHz ±1MHz	

HSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	37.7	3.12 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	38.7 ±6%	3.10 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 3700 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	6.78 W/kg
SAR for nominal HSL parameters	normalized to 1W	67.8 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.51 W/kg
SAR for nominal HSL parameters	normalized to 1W	25.1 W/kg ±19.5% (k = 2)

D3700V2 - SN: 1039 April 11, 2025

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 3700 MHz

Impedance	46.2 Ω + 0.7 jΩ
Return Loss	-28.0 dB

General Antenna Parameters and Design

Fleetries Deley (one direction)	1.135 ns
Electrical Delay (one direction)	1.100118
Ziodiidai Zolaj (Ilia	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3700V2-1039_Apr25

D3700V2 - SN: 1039 April 11, 2025

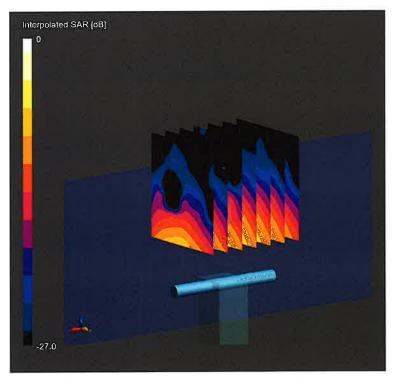
System Performance Check Report

Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3700V2 - SN1039	3700	HSL	20

Exposure Conditions

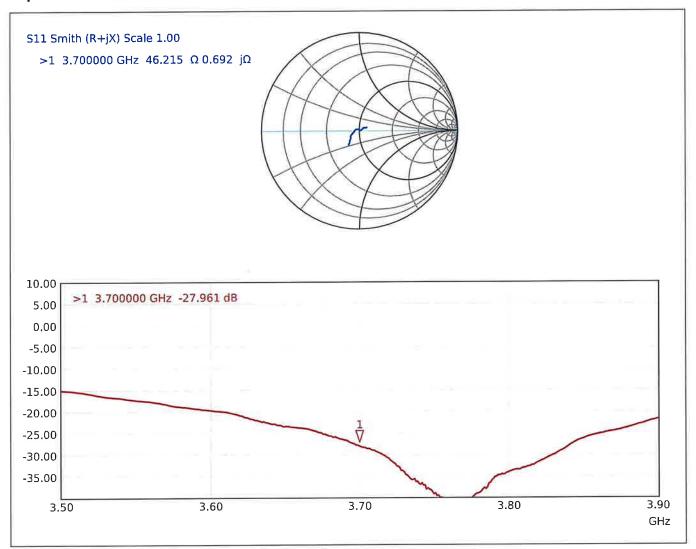
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3700, 0	6.45	3.10	38.7


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-04-11	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2024-10-28	

Scans Setup

	Zoom Scan
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured


	Zoom Scan
Date	2025-04-11
psSAR1g [W/Kg]	6.78
psSAR10g [W/Kg]	2.51
Power Drift [dB]	-0.09
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 18.2 W/Kg

D3700V2 - SN: 1039 April 11, 2025

Impedance Measurement Plot for HSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

D5GHzV2-1168 Feb25

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1168

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

February 6, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	28-Oct-24 (No. DAE4ip-1836 Oct24)	Oct-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Calibrated by

Claudio Leubler

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: February 6, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1168_Feb25

Page 1 of 11

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x.v.z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1168_Feb25 Page 2 of 11 D5GHzV2 - SN: 1168

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 4mm, dz = 1.4mm	Graded Ratio = 1.4 mm (Z direction)
Frequency	5250MHz ±1MHz 5600MHz ±1MHz 5750MHz ±1MHz 5850MHz ±1MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.1 ±6%	4.55 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ±19.5% (k = 2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	34.4 ±6%	4.92 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.5 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ±19.5% (k = 2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	34.2 ±6%	5.08 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ±19.5% (k = 2)

D5GHzV2 - SN: 1168 February 6, 2025

Head TSL parameters at 5850 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.2	5.32 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	34.1 ±6%	5.18 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ±19.5% (k = 2)

D5GHZV2 - SN: 1168 February 6, 2025

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance	
Return Loss	48.8 Ω – 4.4 jΩ
	-26.8 dB
Antenno Deversion	

Antenna Parameters with Head TSL at 5600 MHz

Impedance	
Return Loss	52.3 Ω – 1.7 jΩ
	-31.0 dB
Antonno Doverno	

Antenna Parameters with Head TSL at 5750 MHz

Impedance	
Return Loss	58.0 Ω + 4.1 jΩ
	-21.6 dB
Antenna Parameter III	

Antenna Parameters with Head TSL at 5850 MHz

Impedance	
Return Loss	55.0 Ω + 4.2 jΩ
	-24.1 dB
General Antenna Parameters and Decision	

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.189 ns
After long term upp with a part	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections

Additional EUT Data

Manufactured by	
	SPEAG

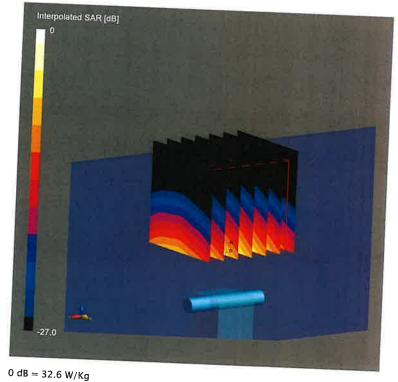
Certificate No: D5GHzV2-1168_Feb25 Page 6 of 11

System Performance Check Report

Summary

Dipole				
DECH-MA	Frequency (MHz)	TSL	Power [dBm]	
D5GHzV2 - \$N1168	5250	Her		
Even a u		HSL	20	

Exposure Conditions


Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Ernguere, Ball 1 av			
Flat	10				Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
-			CW, 0	5250, 0	5.68	4.55	35.1
Hardware Setup							-

Phantom	TSL, Measured Date	Probe, Calibration Date	
MFP V8.0 Center	HSL, 2025-02-06		DAE, Calibration Date
	1025 02-00	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2024-10-28

Scans Setup

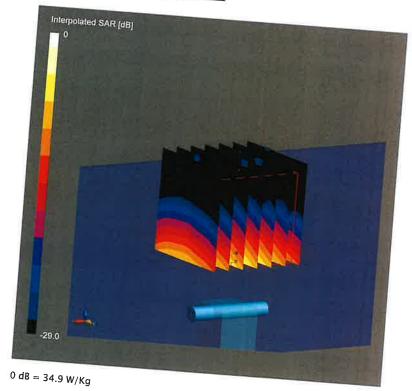
	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grld Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Zoom Scar
2025-02-06
8.11
2.31
-0.06
Disabled
Positive / Negative

D5GHzV2 - SN: 1168 February 6, 2025

System Performance Check Report

Summary


Dipole			
D5GHzV2 - SN1168	Frequency [MHz]	TSL Pour Li	
	5600	Power [dBm]	
Exposure Conditions		nst 20	

Phantom Section, TSL	Test Distance [mm]						
Flat	oistance [mm]	Band	Group, UID	Trequency IMHz1 Channelle			
	10		CW, 0	5600, 0	Conversion Factor	TSL Conductivity [S/m]	TSL Permittlvity
Hardware Setup					5.21	4.92	34.4

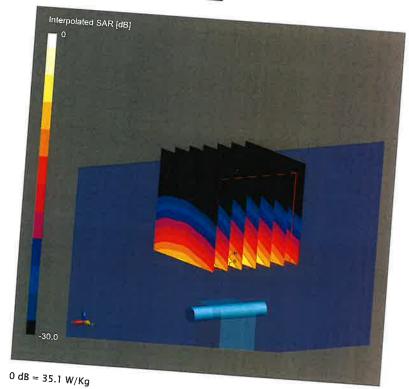
Phantom			4.92 34.4	
MFP V8.0 Center	TSL, Measured Date	Probe, Calibration Date		
- Vo.0 Center	HSL, 2025-02-06	EX3DV4 - SN7349, 2025-01-10	DAE, Calibration Date	
Scans Setup		343, 2023-01-10	DAE4ip Sn1836, 2024-10-28	

Grld Extents [mm]	Zoom Scan
Grid Steps [mm]	22 x 22 x 22
Sensor Surface [mm]	4.0 x 4.0 x 1.4
Graded Grid	1,4
Grading Ratio	Yes
MAIA	1.4
Surface Detection	N/A
Scan Method	VMS + 6p
	Measured

Date	Zoom Scar
psSARIg [W/Kg]	2025-02-06
psSAR10g [W/Kg]	8.15
Power Drift [dB]	2.34
Power Scaling	-0.02
Scaling Factor [dB]	Disabled
TSL Correction	
	Positive / Negative

D5GHzV2 - SN: 1168 February 6, 2025

System Performance Check Report


Dipole				
D5GHzV2 - SN1168	Frequency [MHz] 5750	TSL	Power [dBm]	
Exposure Conditions		HSL	20	

Phantom Section, TSL							
Flat	or Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number			
	10		CW, 0	5750, 0	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Hardware Setup		~			5.38	5.08	34.2

TSL, Measured Date	Probe, Calibration D	
HSL, 2025-02-06		DAE, Calibration Date
	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2024-10-28
	TSL, Measured Date HSL, 2025-02-06	Probe, Calibration Date

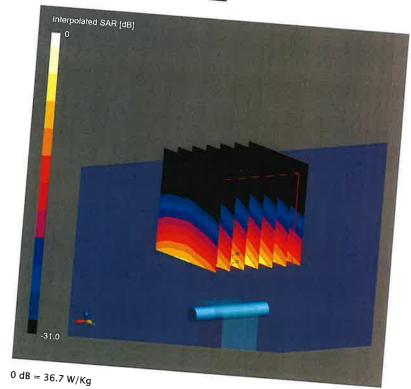
ocans Setup	
Grid Extents [mm]	Zoom Scar
Grid Steps [mm]	22 x 22 x 22
Sensor Surface [mm]	4.0 x 4.0 x 1.4
Graded Grid	1,4
Grading Ratio	Yes
MAIA	1.4
Surface Detection	N/A
can Method	VMS + 6p
	Measured

Kesuits	
Date	Zoom Scal
psSAR1g [W/Kg]	2025-02-06
psSAR10g [W/Kg]	7.94
Power Drift [dB]	2.25
Power Scaling	0.00
Scaling Factor [dB]	Disabled
TSL Correction	
	Positive / Negative

D5GHzV2 - SN: 1168

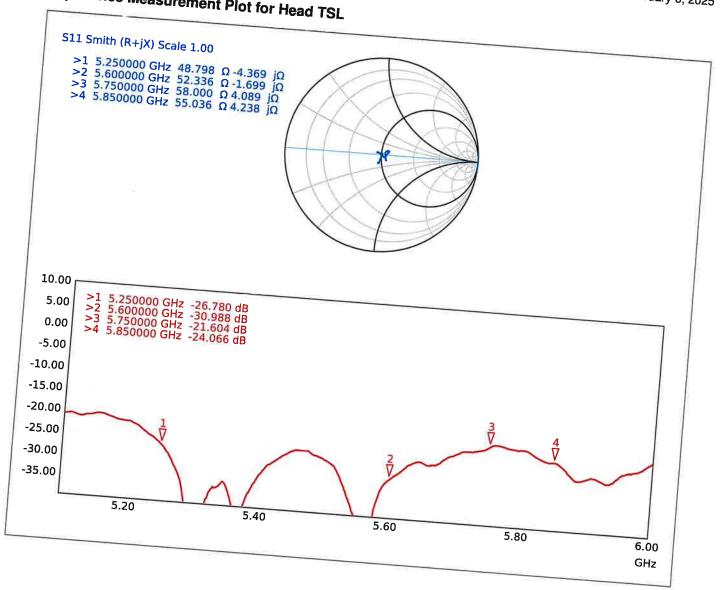
System Performance Check Report

S			


Dipole			
D5GHzV2 - SN1168	Frequency [MHz]	TSL Power [dBm]	
Exposure Conditions	5850	HSL 20	
Phone Conditions			

[mm] Band Group, UI	riequency (MHz) Channelly			
CW, 0		Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
		5.11	5.18	34.1
	огодр, дт	Frequency [MHz], Channel Number	CW, 0 5850, 0 Frequency [MHz], Channel Number Conversion Factor	CW, 0 5850, 0 5.11

Phantom			34.]
MEDINO	TSL, Measured Date	Probe, Calibration Date	
MFP V8.0 Center	HSL, 2025-02-06		DAE, Calibration Date
		EX3DV4 - SN7349, 2025-01-10	
ans Setup			DAE4ip Sn1836, 2024-10-28


Scans Setup	
Grid Extents [mm]	Zoom Scan
Grid Steps [mm]	22 x 22 x 22
Sensor Surface [mm]	4.0 x 4.0 x 1.4
Graded Grid	1.4
Grading Ratio	Yes
MAIA	1.4
Surface Detection	N/A
Scan Method	VMS + 6p
	Measured

Date	Zoom Scan
psSAR1g [W/Kg]	2025-02-06
psSAR10g [W/Kg]	8,13
Power Drift [dB]	2.31
Power Scaling	-0.06
Scaling Factor [dB]	Disabled
TSL Correction	
	Positive / Negative

D5GHzV2 - SN: 1168 February 6, 2025

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

D6.5GHzV2-1032_Apr25

CALIBRATION CERTIFICATE

Object

D6.5GHzV2 - SN: 1032

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

April 14, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity <70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	28-Oct-24 (No. DAE4ip-1836_Oct24)	Oct-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Leif Klysner

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: April 15, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1032_Apr25

Page 1 of 7

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1032_Apr25 Page 2 of 7

April 14, 2025

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR 16.4.0	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with spacer
Zoom Scan Resolution	dx, dy = 3.4mm, dz = 1.4mm Graded Ratio = 1.4 mm	
Frequency	6500MHz ±1MHz	

HSL parameters at 6500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	34.5	6.07 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	35.2 ±6%	6.20 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 6500 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	29.1 W/kg
SAR for nominal HSL parameters	normalized to 1W	291 W/kg ±24.7% (k = 2)

SAR averaged over 8 cm ³ (8 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	6.58 W/kg
SAR for nominal HSL parameters	normalized to 1W	65.8 W/kg ±24.4% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	5.42 W/kg
SAR for nominal HSL parameters	normalized to 1W	54.2 W/kg ±24.4% (k = 2)

April 14, 2025

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 6500 MHz

Impedance	52.5 Ω – 6.7 jΩ
Return Loss	-23.1 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ³	Condition	
APD measured	20 dBm input power	291 W/kg
APD measured	normalized to 1W	2910 W/kg ±29.2% (k = 2)

APD averaged over 4 cm ³	Condition	
APD measured	20 dBm input power	132 W/kg
APD measured	normalized to 1W	1320 W/kg ±28.9% (k = 2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

D6.5GHzV2 - SN: 1032 April 14, 2025

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D6.5GHzV2-1032_Apr25 Page 5 of 7

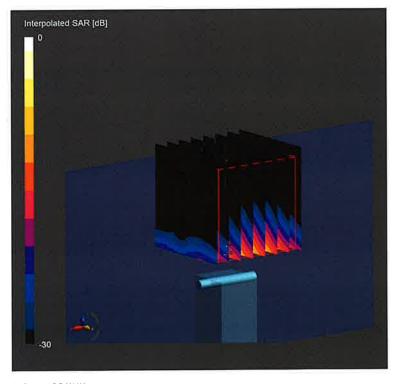
System Performance Check Report

Summai	∿

Dipole	Frequency [MHz]	TSL	Power [dBm]
D6.5GHzV2 – SN1032	6500	HSL	20

Exposure Conditions

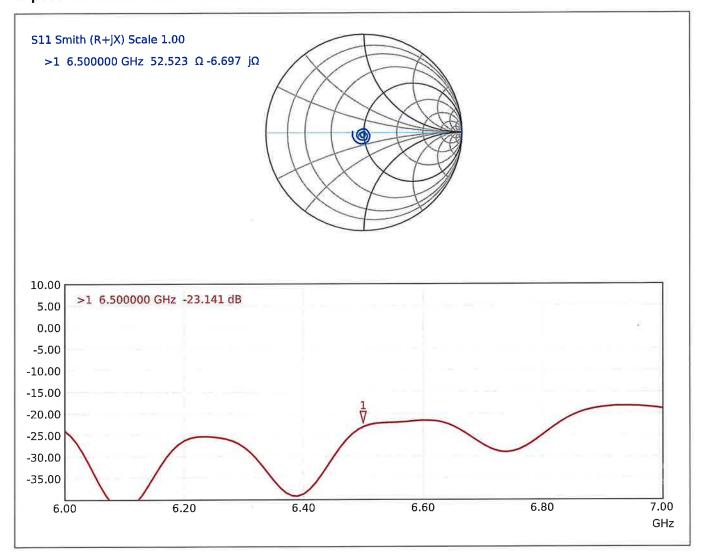
Phantom Section, TSL	Test Distance [mm]	Band	Group, UiD	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	5		CW, 0	6500, 0	5.49	6.20	35.2


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-04-14	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2024-10-28

Scans Setup

	Zoom Scar
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	3.4 x 3.4 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Меаѕигес


ileasare recours	
,	Zoom Scan
Date	2025-04-14
psSAR1g [W/Kg]	29.1
psSAR10g [W/Kg]	5.42
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0~dB = 186~W/Kg

D6.5GHzV2 - SN: 1032 April 14, 2025

Impedance Measurement Plot for HSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No. 5G-Veri10-1015_Sep24

JG-1

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 1015

Calibration procedure(s)

QA CAL-45.v5

Calibration procedure for sources in air above 6 GHz

Calibration date:

Primary Standards

September 06, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Reference Probe EUmmWV3	SN: 9374	28-Aug-24 (No. EUmm-9374_Aug24)	Aug-25
DAE4ip SN: 1602		08-Nov-23 (No. DAE4ip-1602_Nov23)	Nov-24
DALTIP JON. 1002		25 . 15 . 25 (2.15 . 2.12 hp /00210125)	
	Ĺıp.ii	Ob I - D - I	Only advised Objects
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards RF generator R&S SMF100A	ID # SN: 100184	Check Date (in house) 29-Nov-23 (in house check Nov-23)	Scheduled Check In house check: Nov-24
		A	

Cal Date (Certificate No.)

Calibrated by:

Name

Function

Signatur

Scheduled Calibration

Joanna Lleshaj

Laboratory Technician

CVI

Approved by:

Sven Kühn

Technical Manager

Issued: September 13, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1015_Sep24

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- *E- field distribution:* E field is measured in two x-y-plane (10mm, 10mm + λ /4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Certificate No: 5G-Veri10-1015_Sep24

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Ollouidi 7170145	···· 3							
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty		
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)		
Measured Plane				(W/m²)				
				1 cm ²	4 cm ²			
10 mm	93.3	153	1.27 dB	60.9	56.8	1.28 dB		

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ² 4 cm ²		
10 mm	93.3	153	1.27 dB	60.8, 60.9, 61.1	56.6, 56.8, 57.0	1.28 dB

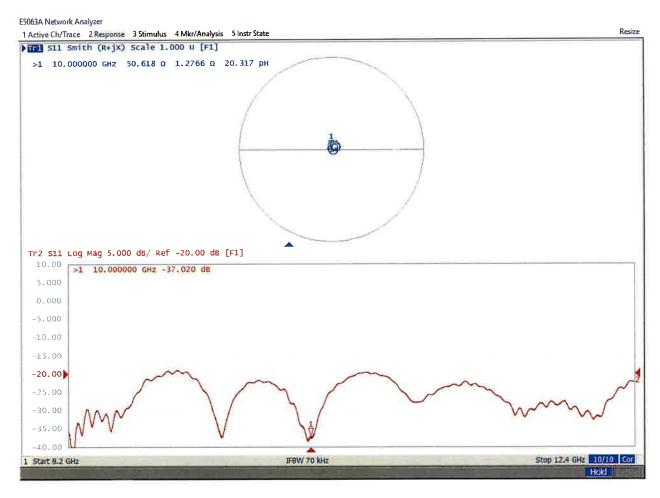
Square Averaging

Square Average	''9					
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.9	56.7	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ² 4 cm ²		
10 mm	93.3	153	1.27 dB	60.7, 60.9, 61.1	56.4, 56.7, 56.9	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	93.3	153	1.27 dB	62.4, 62.5, 62.6	1.28 dB


¹ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	$50.6 \Omega + 1.3 j\Omega$	
Return Loss	- 37.0 dB	

Impedance Measurement Plot

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer

Dimensions [mm]

IMEI

DUT Type

5G Verification Source 10 GHz

100.0 x 100.0 x 172.0

SN: 1015

Exposure Conditions

Phantom Section

Position, Test Distance

Group,

Frequency [MHz],

Channel Number

Conversion Factor

5G Scan

1.00

60.8

60.9

61.1 62.4

62.5

62.6

153

0.01

10.0 mm 5G -

[mm]

Validation band

CW

10000.0,

10000

1.0

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

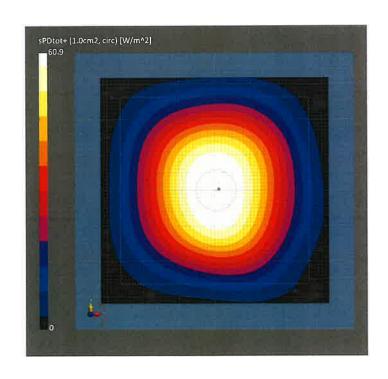
EUmmWV3 - SN9374_F1-55GHz,

2024-08-28

DAE, Calibration Date

DAE4ip Sn1602, 2023-11-08

Scan Setup


Sensor Surface [mm]

MAIA

5G Scan 10.0 MAIA not used

Measurement Results

2024-09-06, 10:24 Date Avg. Area [cm²] Avg. Type Circular Averaging psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m2] Max(Stot) [W/m2] Max(|Stot|) [W/m²] $E_{max}[V/m]$ Power Drift [dB]

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1015 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Band

Group,

Frequency [MHz], **Channel Number**

Conversion Factor

[mm] 5G -

10.0 mm

Validation band

CW

10000.0, 10000

1.0

Hardware Setup

Phantom mmWave Phantom - 1002 Medium

Air

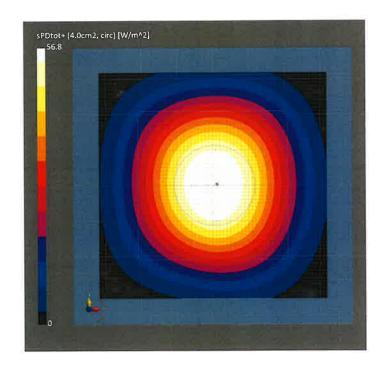
Probe, Calibration Date

EUmmWV3 - SN9374_F1-55GHz,

2024-08-28

DAE, Calibration Date

DAE4ip Sn1602, 2023-11-08


Scan Setup

Sensor Surface [mm]

MAIA

5G Scan 10.0 MAIA not used **Measurement Results**

5G Scan 2024-09-06, 10:24 Date 4.00 Avg. Area [cm2] Circular Averaging Avg. Type psPDn+ [W/m²] 56.6 psPDtot+ [W/m2] 56.8 57.0 psPDmod+ [W/m²] Max(Sn) [W/m²] 62.4 Max(Stot) [W/m²] 62.5 Max(|Stot|) [W/m²] 62.6 153 E_{max} [V/m] 0.01 Power Drift [dB]

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer Dimensions [mm] 5G Verification Source 10 GHz

IMEI SN: 1015 100.0 x 100.0 x 172.0

DUT Type

Exposure Conditions

Phantom Section

Position, Test Distance

Band

Group,

CW

Frequency [MHz],

Channel Number

Conversion Factor

[mm] 10.0 mm 5G -

Validation band

10000.0, 10000

1.0

Hardware Setup

Phantom mmWave Phantom - 1002 Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374 F1-55GHz,

2024-08-28

DAE, Calibration Date

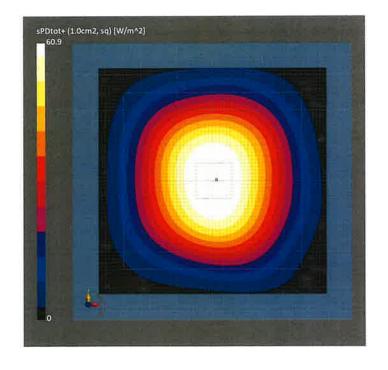
DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm]

MAIA

5G Scan 10.0


MAIA not used

Measurement Results

2024-09-06, 10:24 Date Avg. Area [cm²] 1.00 Avg. Type Square Averaging 60.7 psPDn+ [W/m²] psPDtot+ [W/m²] 60.9 61.1 psPDmod+ [W/m²] 62.4 Max(Sn) [W/m²] Max(Stot) [W/m²] 62.5 Max(|Stot|) [W/m²]

E_{max} [V/m] Power Drift [dB] 62.6 153 0.01

5G Scan

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1015 **DUT Type**

Exposure Conditions

Phantom Section

5G -

Position, Test Distance

Band

Group,

CW

Frequency [MHz], **Channel Number**

10.0 mm

[mm]

Validation band

10000.0, 10000

1.0

Conversion Factor

Hardware Setup

Phantom mmWave Phantom - 1002

Medium Air

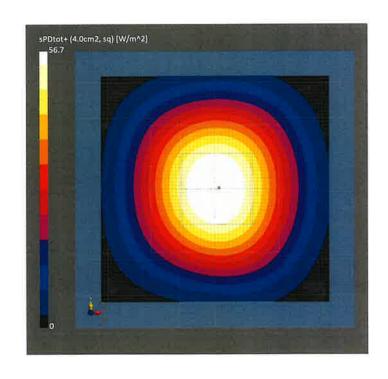
Probe, Calibration Date

EUmmWV3 - SN9374_F1-55GHz,

2024-08-28

DAE, Calibration Date

DAE4ip Sn1602, 2023-11-08


Scan Setup

Sensor Surface [mm]

MAIA

5G Scan 10.0 MAIA not used **Measurement Results**

5G Scan 2024-09-06, 10:24 Date 4.00 Avg. Area [cm²] Square Averaging Avg. Type psPDn+ [W/m²] 56.4 56.7 psPDtot+ [W/m²] 56.9 psPDmod+ [W/m²] Max(Sn) [W/m²] 62.4 Max(Stot) [W/m²] 62.5 62.6 Max(|Stot|) [W/m²] 153 E_{max} [V/m] Power Drift [dB] 0.01

