Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

EX-7810_May25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7810

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

May 08, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID		Calibration Date (Certificate No.)	Sched. Cal.
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Type-N mismatch combination	SN: L1119	26-Mar-25 (No. 217-04292)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Name

Function

Signature

Calibrated by

Aidonia Georgiadou

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 08, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7810_May25

Page 1 of 22

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

 φ rotation around probe axis

Polarization ϑ

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900 \, \text{MHz}$ in TEM-cell; $f > 1800 \, \text{MHz}$: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800 \,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $+50 \,\mathrm{MHz}$ to $\pm 100 \,\mathrm{MHz}$.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 22 Certificate No: EX-7810_May25

EX3DV4 - SN:7810 May 08, 2025

Parameters of Probe: EX3DV4 - SN:7810

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)^A$	0.59	0.69	0.65	±10.1%
DCP (mV) B	110.1	107.0	106.4	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	143.7	±1.2%	±4.7%
		Y	0.00	0.00	1.00		130.4		
		Z	0.00	0.00	1.00		149.4		
10352	Pulse Waveform (200Hz, 10%)	X	1.63	60.95	6.48	10.00	60.0	±2.6%	±9.6%
	·	Y	1.40	60.00	5.96		60.0		
		Z	1.47	60.43	6.35		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.84	60.00	4.91	6.99	80.0	±2.4%	±9.6%
	, , , , , , , , , , , , , , , , , , ,	Y	0.81	60.00	4.80		80.0		
		Z	46.00	80.00	11.00		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.45	60.00	3.73	3.98	95.0	±2.7%	±9.6%
	, , , ,	Y	0.01	125.28	0.33		95.0	İ	
		Z	0.16	140.59	0.19		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	10.11	89.44	0.01	2.22	120.0	±1.7%	±9.6%
	, , ,	Y	5.95	159.98	1.45		120.0	1	
		Z	6.49	160.00	15.35		120.0		
10387	QPSK Waveform, 1 MHz	X	0.49	64.70	13.41	1.00	150.0	±3.1%	±9.6%
	· ·	Y	0.45	62.15	11.58		150.0	1	
		Z	0.58	65.39	13.98		150.0		
10388	QPSK Waveform, 10 MHz	X	1.31	67.40	14.22	0.00	150.0	±1.0%	±9.6%
		Y	1.21	65.18	13.33		150.0	1	
		Z	1.42	67.34	14.78		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.77	65.53	16.12	3.01	150.0	±1.1%	±9.6%
		Y	1.60	63.78	15.63		150.0		
		Z	1.65	64.26	16.05		150.0		
10399	64-QAM Waveform, 40 MHz	X	2.77	67.03	15.36	0.00	150.0	±1.5%	±9.6%
		Y	2.71	65.99	14.88		150.0]	
		Z	2.84	66.65	15.41		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.63	66.58	15.33	0.00	150.0	±2.5%	±9.6%
	, , ,	Y	3.80	66.44	15.38		150.0	1	
		Z	3.92	66.81	15.73		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX-7810_May25 Page 3 of 22

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

May 08, 2025

Parameters of Probe: EX3DV4 - SN:7810

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ^{−1}	ms V ⁻²	ms V ⁻¹	ms	V ⁻²	V ⁻¹	
х	7.3	50.94	31.44	3.84	0.00	4.90	0.64	0.00	1.00
v	8.6	62.10	33.06	2.90	0.00	4.90	0.28	0.00	1.00
z	8.9	64.32	33.53	2.32	0.00	4.90	0.30	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	63.5°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7810_May25 Page 4 of 22

EX3DV4 - SN:7810 May 08, 2025

Parameters of Probe: EX3DV4 - SN:7810

Calibration Parameter Determined in HSL

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
750	41.9	0.89	9.62	9.50	9.76	0.36	1.27	±11.0%
900	41.5	0.97	9.08	8.97	9.21	0.36	1.27	±11.0%
1450	40.5	1.20	7.93	7.83	8.05	0.36	1.27	±11.0%
1640	40.2	1.31	7.74	7.65	7.86	0.36	1.27	±11.0%
1750	40.1	1.37	7.81	7.72	7.93	0.36	1.27	±11.0%
1900	40.0	1.40	7.72	7.63	7.84	0.36	1.27	±11.0%
2100	39.8	1.49	7.51	7.42	7.62	0.36	1.27	±11.0%
2300	39.5	1.67	7.51	7.42	7.62	0.36	1.27	±11.0%
2450	39.2	1.80	7.31	7.22	7.42	0.36	1.27	±11.0%
2600	39.0	1.96	7.16	7.08	7.27	0.36	1.27	±11.0%
3300	38.2	2.71	6.31	6.23	6.40	0.37	1.27	±13.1%
3500	37.9	2.91	6.38	6.30	6.47	0.37	1.27	±13.1%
3700	37.7	3.12	6.37	6.29	6.46	0.37	1.27	±13.1%
3900	37.5	3.32	6.21	6.14	6.30	0.37	1.27	±13.1%
4100	37.2	3.53	6.08	6.00	6.17	0.37	1.27	±13.1%
4200	37.1	3.63	6.14	6.07	6.23	0.37	1.27	±13.1%
4400	36.9	3.84	5.95	5.88	6.04	0.37	1.27	±13.1%
4600	36.7	4.04	5.84	5.77	5.93	0.37	1.27	±13.1%
4800	36.4	4.25	6.00	5.93	6.09	0.37	1.27	±13.1%
4950	36.3	4.40	5.88	5.81	5.97	0.35	1.27	±13.1%
5250	35.9	4.71	5.71	5.64	5.79	0.32	1.27	±13.1%
5600	35.5	5.07	5.28	5.22	5.36	0.29	1.27	±13.1%
5750	35.4	5.22	5.23	5.16	5.31	0.27	1.27	±13.1%
5850	35.2	5.32	5.36	5.29	5.44	0.26	1.27	±13.1%

C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX-7810_May25 Page 5 of 22

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$ if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

EX3DV4 - SN:7810 May 08, 2025

Parameters of Probe: EX3DV4 - SN:7810

Calibration Parameter Determined in HSL

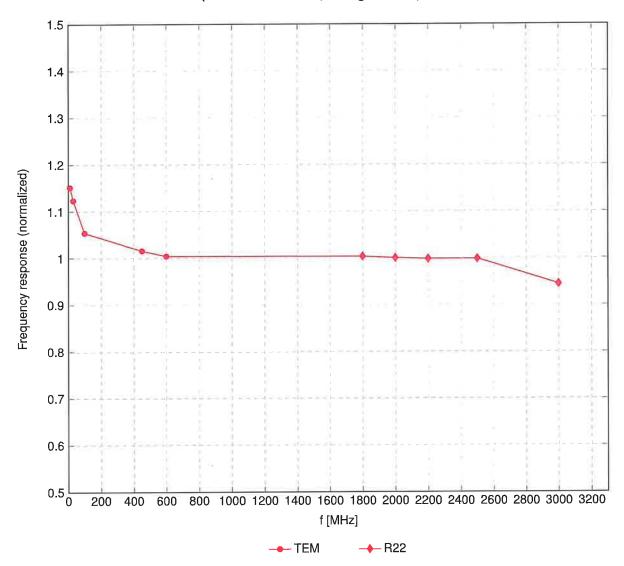
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	5.17	5.11	5.25	0.20	1.27	±18.6%

C Frequency validity is -600/+700 MHz at 6.5 GHz, ±700 MHz at or above 7 GHz, and ±150 MHz at 9.85 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX-7810_May25 Page 6 of 22

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.

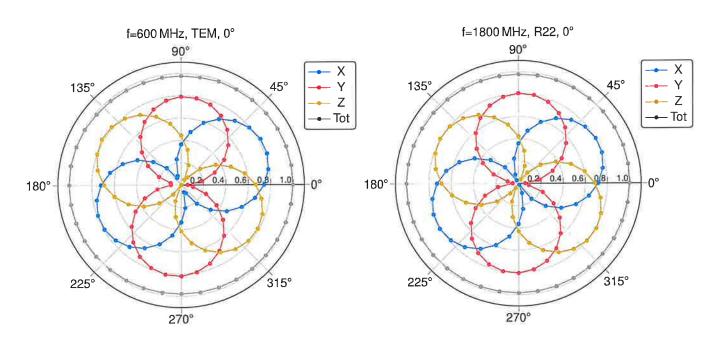
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

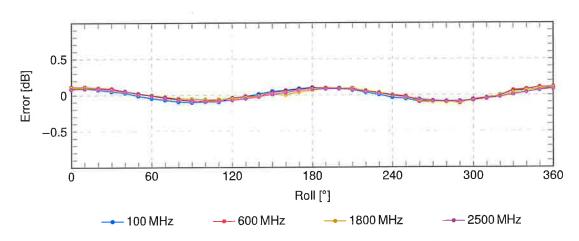

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

May 08, 2025

Frequency Response of E-Field

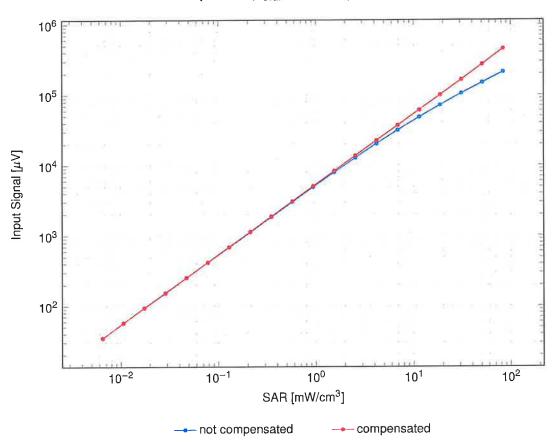

(TEM-Cell:ifi110 EXX, Waveguide:R22)

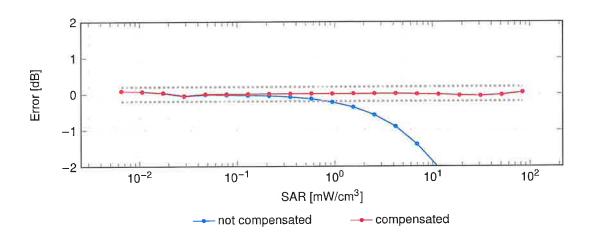


Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

May 08, 2025

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

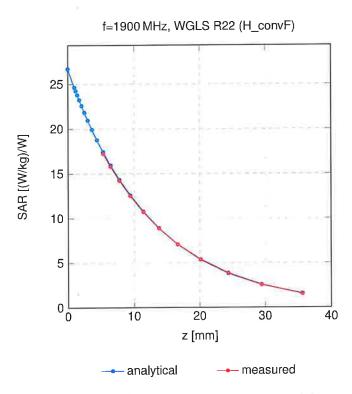


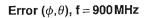


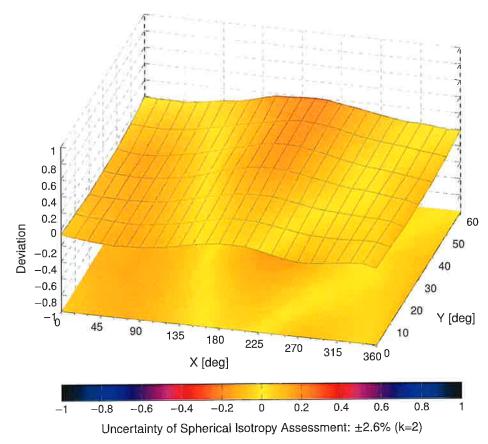
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

$\textbf{Dynamic Range } \textbf{f}(\textbf{SAR}_{\textbf{HSL}})$

(TEM cell, $f_{eval} = 1900\,\text{MHz})$




Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)


EX3DV4 - SN:7810 May 08, 2025

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

EX-3990 Feb25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3990

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

February 07, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched. Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349 Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Name Function Signature

Calibrated by Paulo Pina Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: February 07, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-3990_Feb25

Page 1 of 22

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3990_Feb25 Page 2 of 22

EX3DV4 - SN:3990 February 07, 2025

Parameters of Probe: EX3DV4 - SN:3990

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.61	0.62	0.62	±10.1%
DCP (mV) B	100.7	100.5	99.6	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	B dD /w/	С	D dB	VR mV	Max dev.	Max Unc ^E
			dB	dB√μV		uв	IIIV		k = 2
0	CW	X	0.00	0.00	1.00	0.00	145.2	±0.7%	±4.7%
		Y	0.00	0.00	1.00		141.1		
		Z	0.00	0.00	1.00		121.1		
10352	Pulse Waveform (200Hz, 10%)	X	84.00	108.00	25.00	10.00	60.0	±3.2%	±9.6%
		Y	20.00	89.32	19.50		60.0		
		Z	20.00	94.17	22.38		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	94.32	21.38	6.99	80.0	±1.5%	±9.6%
	,	Y	20.00	90.15	19.01		80.0		
		Z	20.00	98.86	23.69		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	98.72	22.24	3.98	95.0	±1.1%	±9.6%
	,	Y	20.00	91.78	18.66	1	95.0	[
		Z	20.00	100.96	23.30	i	95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	103.98	23.46	2.22	120.0	±1.1%	±9.6%
	, , , ,	Y	20.00	95.35	19.28	1	120.0	1	
		Z	20.00	105.45	24.08		120.0		
10387	QPSK Waveform, 1 MHz	X	1.65	65.31	14.46	1.00	150.0	±1.8%	±9.6%
	,	Y	1.69	65.94	14.79		150.0	1	
		Z	1.60	64.85	14.07		150.0	i	
10388	QPSK Waveform, 10 MHz	X	2.17	67.14	15.16	0.00	150.0	±1.2%	±9.6%
	,	Y	2.25	67.84	15.53	Ī	150.0		
		Z	2.11	66.59	14.80	1	150.0	i	
10396	64-QAM Waveform, 100 kHz	X	2.77	69.26	18.11	3.01	150.0	±0.7%	±9.6%
		Y	2.80	69.79	18.43		150.0	1	
		Z	2.66	68.61	17.83	İ	150.0		
10399	64-QAM Waveform, 40 MHz	X	3.34	66.11	15.17	0.00	150.0	±1.0%	±9.6%
		Y	3.40	66.50	15.39	1	150.0	1	
		Z	3.30	65.81	14.97	1	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.74	65.05	15.14	0.00	150.0	±2.2%	±9.6%
		Y	4.78	65.27	15.27	1	150.0	1	
		Z	4.71	64.91	15.04	Ī	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Linearization parameter uncertainty for maximum specified field strength.

 $^{^{\}rm A}$ The uncertainties of Norm X,Y,Z do not affect the ${\rm E^2}$ -field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

February 07, 2025

Parameters of Probe: EX3DV4 - SN:3990

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
х	46.4	342.58	34.81	15.50	0.01	5.09	0.95	0.25	1.01
у	45.6	337.22	34.81	18.01	0.00	5.05	0.91	0.24	1.01
Z	44.9	333.81	35.15	14.24	0.00	5.10	0.82	0.25	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-47.0°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job.

February 07, 2025

Parameters of Probe: EX3DV4 - SN:3990

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
750	41.9	0.89	9.29	10.11	9.10	0.37	1.27	±11.0%
900	41.5	0.97	8.87	9.65	8.69	0.37	1.27	±11.0%
1640	40.2	1.31	7.86	8.54	7.70	0.36	1.27	±11.0%
1750	40.1	1.37	7.89	8.58	7.73	0.36	1.27	±11.0%
1900	40.0	1.40	7.51	8.17	7.35	0.36	1.27	±11.0%
2100	39.8	1.49	7.39	8.04	7.24	0.36	1.27	±11.0%
2300	39.5	1.67	7.19	7.82	7.04	0.36	1.27	±11.0%
2450	39.2	1.80	6.94	7.55	6.80	0.36	1.27	±11.0%
2600	39.0	1.96	6.95	7.56	6.81	0.36	1.27	±11.0%
3300	38.2	2.71	6.44	7.00	6.31	0.35	1.27	±13.1%
3500	37.9	2.91	6.58	7.16	6.45	0.35	1.27	±13.1%
3700	37.7	3.12	6.46	7.03	6.33	0.35	1.27	±13.1%
3900	37.5	3.32	6.51	7.08	6.38	0.35	1.27	±13.1%
4100	37.2	3.53	6.45	7.02	6.32	0.34	1.27	±13.1%
4200	37.1	3.63	6.34	6.89	6.21	0.34	1.27	±13.1%
4400	36.9	3.84	6.16	6.70	6.03	0.34	1.27	±13.1%
4600	36.7	4.04	6.18	6.72	6.05	0.34	1.27	±13.1%
4800	36.4	4.25	6.30	6.85	6.17	0.34	1.27	±13.1%
4950	36.3	4.40	6.18	6.72	6.06	0.33	1.27	±13.1%
5250	35.9	4.71	5.44	5.92	5.33	0.30	1.27	±13.1%
5600	35.5	5.07	5.11	5.56	5.00	0.27	1.27	±13.1%
5750	35.4	5.22	4.94	5.37	4.84	0.26	1.27	±13.1%
5850	35.2	5.32	4.97	5.40	4.86	0.25	1.27	±13.1%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$ if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

EX3DV4 - SN:3990 February 07, 2025

Parameters of Probe: EX3DV4 - SN:3990

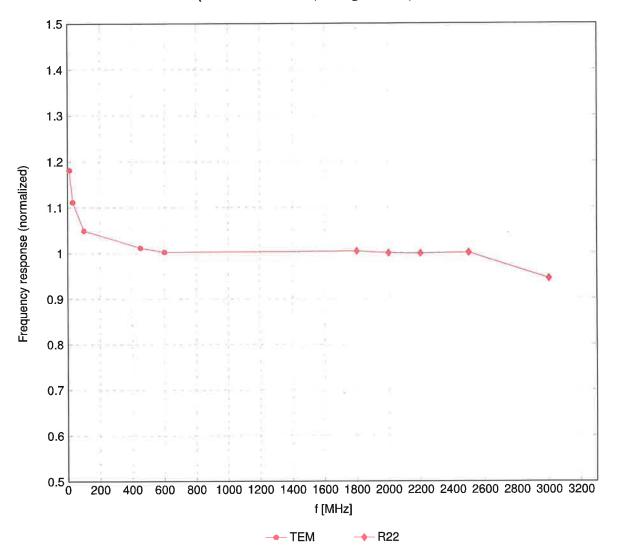
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	5.23	5.69	5.12	0.20	1.27	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

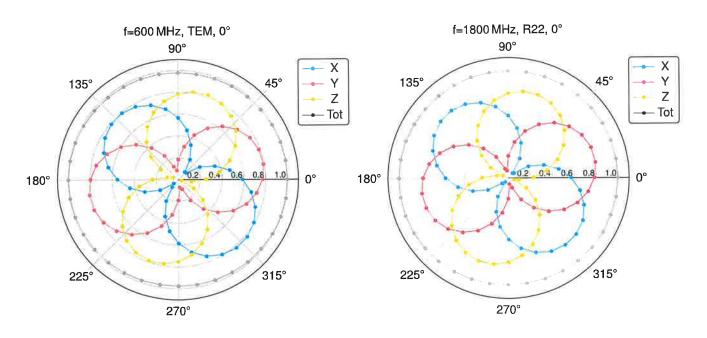
Certificate No: EX-3990_Feb25 Page 6 of 22

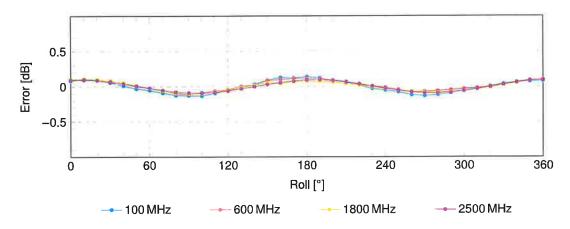
The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$


and are valid for TSL with deviations of up to $\pm 10\%$.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz; below $\pm 2\%$ for frequencies between 3–6 GHz; and below $\pm 4\%$ for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

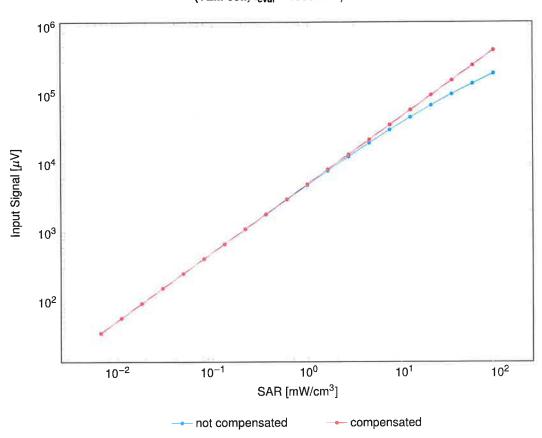
H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

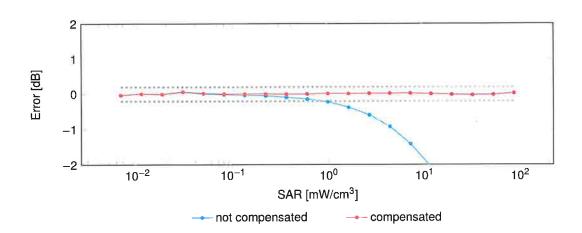

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

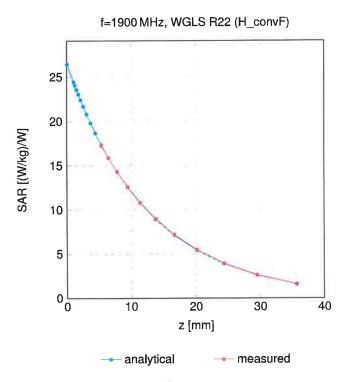
Receiving Pattern (ϕ), $\theta = 0^{\circ}$

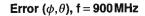


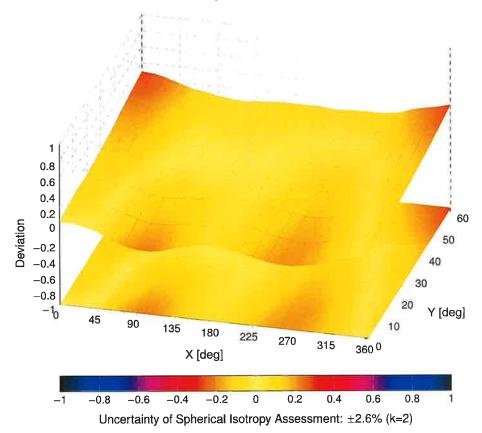


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range f(SAR_{head})


(TEM cell, $f_{eval} = 1900\,\text{MHz})$




Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

EX-7915_Mar25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7915

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

March 21, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched, Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Name

Function

Signature

Calibrated by

Aidonia Georgiadou

Laboratory Technician

5.0

Approved by

Sven Kühn

Technical Manager

Issued: March 26, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7915_Mar25

Page 1 of 21

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL

tissue simulating liquid

NORMx,y,z

sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

 φ rotation around probe axis

Polarization $\hat{\vartheta}$

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle

Certificate No: EX-7915_Mar25

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvE
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 21

EX3DV4 - SN:7915 March 21, 2025

Parameters of Probe: EX3DV4 - SN:7915

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)$ A	0.65	0.58	0.61	±10.1%
DCP (mV) B	104.2	105.9	107.1	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	${\sf B}$ ${\sf dB}\sqrt{\mu {\sf V}}$	С	D dB	VR mV	Max dev.	Max Unc ^E
			ив	υБ√μν		ub	1114	uev.	k=2
0	CW	X	0.00	0.00	1.00	0.00	122.3	±0.9%	±4.7%
		Y	0.00	0.00	1.00		146.4		
		Z	0.00	0.00	1.00		146.7		
10352	Pulse Waveform (200Hz, 10%)	X	1.48	60.42	6.34	10.00	60.0	±2.5%	±9.6%
		Y	1.48	60.40	6.22		60.0		
		Z	1.65	61.14	6.51		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	44.00	80.00	11.00	6.99	80.0	±2.3%	±9.6%
	, , ,	Y	0.81	60.00	4.86		80.0		
		Z	22.00	74.00	9.00		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.07	130.69	0.59	3.98	95.0	±2.4%	±9.6%
.000,	(2001)	Y	0.08	127.37	0.08		95.0		
		Z	78.00	74.00	7.00		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	7.84	159.57	15.11	2.22	120.0	±1.6%	±9.6%
10000	1 4160 11410101111 (200112, 00011)	Y	0.38	60.00	2.51		120.0	İ	
		Z	9.80	127.52	4.55		120.0	i	
10387	QPSK Waveform, 1 MHz	X	0.57	62.99	12.01	1.00	150.0	±3.7%	±9.6%
,000.		Y	0.55	62.72	11.56	1	150.0	İ	
		Z	0.74	66.95	14.01		150.0	i	
10388	QPSK Waveform, 10 MHz	X	1.33	65.14	13.64	0.00	150.0	±1.2%	±9.6%
10000		Y	1.30	64.88	13.32		150.0	j	
		Z	1.51	67.24	14.83	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	1.59	63.31	15.44	3.01	150.0	±1.1%	±9.6%
70000		Y	1.66	63.98	15.52	1	150.0	1	1
		Z	1.78	65.60	16.57		150.0		
10399	64-QAM Waveform, 40 MHz	X	2.82	65.87	14.90	0.00	150.0	±1.8%	±9.6%
		Y	2.80	65.87	14.80	1	150.0	1	
		Z	2.95	66.82	15.43		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.99	66.34	15.48	0.00	150.0	±3.2%	±9.6%
		Y	3.81	65.64	15.04	1	150.0	1	
		Z	3.98	66.32	15.53		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX-7915_Mar25 Page 3 of 21

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

March 21, 2025

Parameters of Probe: EX3DV4 - SN:7915

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	10.5	76.64	33.89	1.64	0.00	4.90	0.12	0.02	1.00
V	10.3	74.38	33.46	2.90	0.00	4.90	0.41	0.00	1.00
Z	11.1	79.49	33.10	3.30	0.00	4.90	0.51	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-3.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

EX3DV4 - SN:7915 March 21, 2025

Parameters of Probe: EX3DV4 - SN:7915

Calibration Parameter Determined in HSL

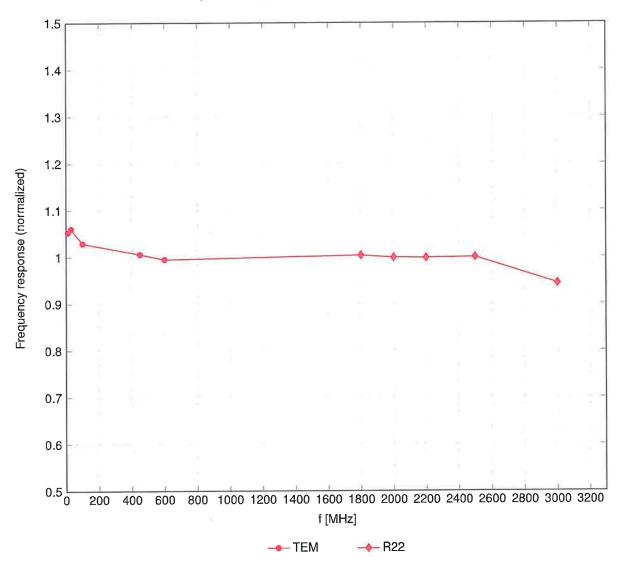
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
750	41.9	0.89	9.54	9.48	9.60	0.35	1.27	±11.0%
900	41.5	0.97	9.21	9.16	9.27	0.35	1.27	±11.0%
1750	40.1	1.37	8.01	7.96	8.06	0.34	1.27	±11.0%
1900	40.0	1.40	7.75	7.71	7.81	0.34	1.27	±11.0%
2300	39.5	1.67	7.35	7.31	7.40	0.33	1.27	±11.0%
2450	39.2	1.80	7.20	7.16	7.25	0.33	1.27	±11.0%
2600	39.0	1.96	7.06	7.02	7.11	0.33	1.27	±11.0%
5250	35.9	4.71	5.87	5.83	5.91	0.29	1.27	±13.1%
5600	35.5	5.07	5.34	5.31	5.38	0.27	1.27	±13.1%
5750	35.4	5.22	5.52	5.49	5.56	0.26	1.27	±13.1%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Certificate No: EX-7915_Mar25 Page 5 of 21

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

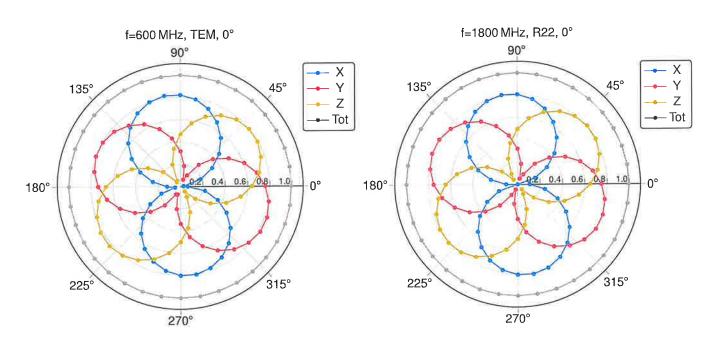
The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL, with deviations of up to $\pm 10\%$ if SAB correction is applied.

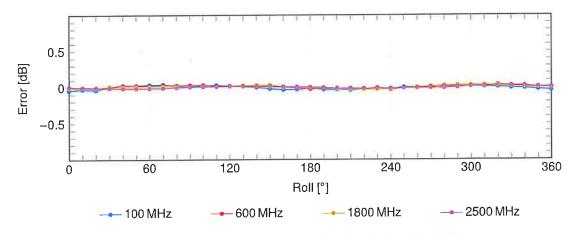

and are valid for TSL with deviations of up to ±10% if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

Frequency Response of E-Field

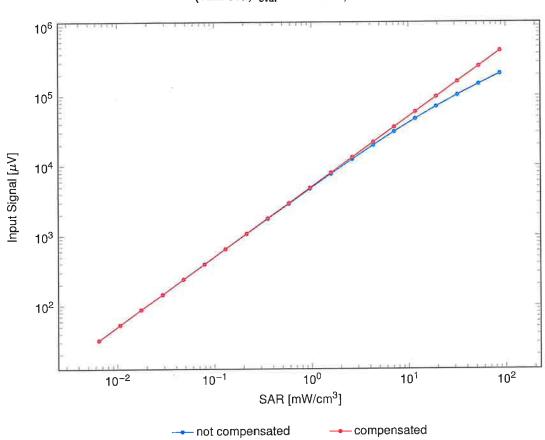

(TEM-Cell:ifi110 EXX, Waveguide:R22)

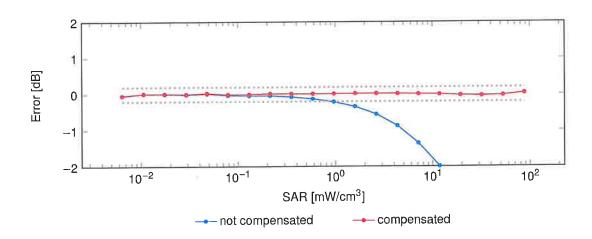


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

March 21, 2025

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

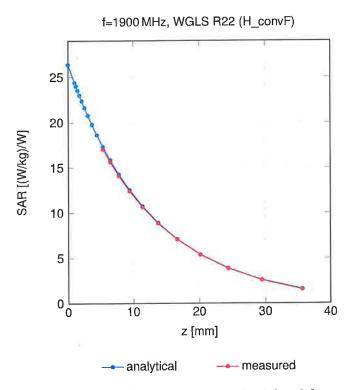


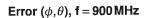


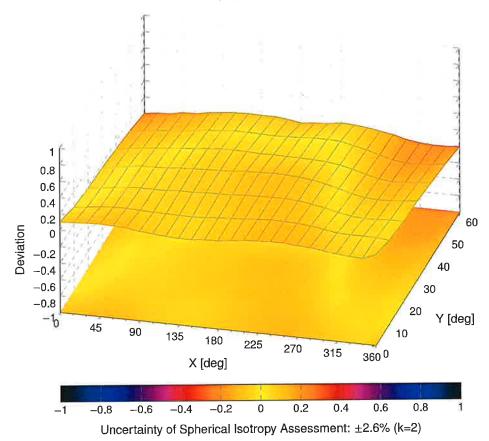
Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

$\textbf{Dynamic Range f}(\textbf{SAR}_{\textbf{HSL}})$

(TEM cell, $f_{eval} = 1900\,\text{MHz})$




Uncertainty of Linearity Assessment: ±0.6% (k=2)


EX3DV4 - SN:7915 March 21, 2025

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

ŲL

Fremont, USA

Certificate No.

EX-7808_Mar25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7808

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

March 12, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched, Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249 Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349 Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched, Check
ACAP 2020 Calibration Box	SN: L1404	30-Sep-24 (No. Report_ACAP2020E-Cave_20240930s)	

Name

Function

Signature

Calibrated by

Krešimir Franjić

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: March 12, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7808_Mar25

Page 1 of 23

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ∂ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800 \,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7808_Mar25 Page 2 of 23 EX3DV4 - SN:7808 March 12, 2025

Parameters of Probe: EX3DV4 - SN:7808

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.61	0.70	0.70	±10.1%
DCP (mV) B	108.4	103.9	104.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	B B	С	D	VR	Max	Max
			dB	dB√μV		dB	mV	dev.	Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	145.5	±1.5%	±4.7%
		Y	0.00	0.00	1.00		132.8	İ	
		Z	0.00	0.00	1.00		128.4		
10352	Pulse Waveform (200Hz, 10%)	X	2.00	62.00	7.00	10.00	60.0	±2.9%	±9.6%
		Y	1.57	60.77	6.45		60.0		
		Z	1.61	61.02	6.60		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	10.00	72.00	9.00	6.99	80.0	±2.1%	±9.6%
		Y	0.78	60.00	4.85		80.0		
		Z	0.78	60.00	4.92		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.40	60.00	4.01	3.98	95.0	±2.4%	±9.6%
		Y	0.00	125.12	0.64		95.0		
		Z	0.28	152.25	1.36		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	11.26	91.99	0.54	2.22	120.0	±1.7%	±9.6%
		Y	6.17	159.97	2.70		120.0		
		Z	8.18	123.15	10.14		120.0		
10387	QPSK Waveform, 1 MHz	X	0.51	64.72	13.70	1.00	150.0	±2.8%	±9.6%
		Y	0.51	62.94	12.03		150.0		
		Z	0.49	63.98	13.14		150.0		
10388	QPSK Waveform, 10 MHz	X	1.31	67.33	14.10	0.00	150.0	±0.8%	±9.6%
		Y	1.29	65.45	13.60		150.0		
		Z	1.28	66.63	13.89		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.77	65.29	16.19	3.01	150.0	±1.4%	±9.6%
		Y	1.66	64.07	15.53		150.0		
		Z	1.54	63.29	15.55		150.0		
10399	64-QAM Waveform, 40 MHz	Х	2.79	67.10	15.42	0.00	150.0	±1.4%	±9.6%
		Y	2.79	66.11	14.99		150.0		
		Z	2.76	66.66	15.29		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.64	66.72	15.38	0.00	150.0	±2.4%	±9.6%
		Y	3.75	65.83	15.15		150.0		
		Z	3.62	66.25	15.27		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX-7808_Mar25 Page 3 of 23

 $^{^{\}rm A}$ The uncertainties of Norm X,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Pages 5 to 7). $^{\rm B}$ Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:7808

Parameters of Probe: EX3DV4 - SN:7808

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
х	6.8	48.19	32.24	2.78	0.00	4.90	0.51	0.00	1.00
У	9.2	66.87	33.66	1.24	0.00	4.90	0.48	0.00	1.00
Z	7.4	53.66	33.78	1.85	0.00	4.90	0.00	0.01	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	4.4°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7808_Mar25

EX3DV4 - SN:7808

Parameters of Probe: EX3DV4 - SN:7808

Calibration Parameter Determined in HSL

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6	55.0	0.75	18.51	18.83	17.73	0.00	1.25	±13.3%
13	55.0	0.75	18.27	18.58	17.50	0.00	1.25	±13.3%
30	55.0	0.75	16.78	17.06	16.06	0.00	1.25	±13.3%
64	54.2	0.75	14.41	14.65	13.79	0.00	1.25	±13.3%
450	43.5	0.87	10.91	10.91	10.91	0.16	1.30	±13.3%
750	41.9	0.89	9.80	9.74	9.36	0.37	1.27	±11.0%
900	41.5	0.97	9.43	9.37	9.01	0.37	1.27	±11.0%
1450	40.5	1.20	8.36	8.31	7.99	0.36	1.27	±11.0%
1640	40.2	1.31	8.21	8.16	7.85	0.36	1.27	±11.0%
1750	40.1	1.37	8.07	8.02	7.71	0.36	1.27	±11.0%
1900	40.0	1.40	7.88	7.84	7.53	0.36	1.27	±11.0%
2100	39.8	1.49	7.69	7.64	7.34	0.36	1.27	±11.0%
2300	39.5	1.67	7.48	7.44	7.15	0.36	1.27	±11.0%
2450	39.2	1.80	7.32	7.27	6.99	0.36	1.27	±11.0%
2600	39.0	1.96	7.16	7.12	6.84	0.36	1.27	±11.0%
3300	38.2	2.71	6.61	6.57	6.32	0.35	1.27	±13.1%
3500	37.9	2.91	6.52	6.48	6.23	0.35	1.27	±13.1%
3700	37.7	3.12	6.45	6.41	6.16	0.35	1.27	±13.1%
3900	37.5	3.32	6.40	6.36	6.11	0.35	1.27	±13.1%
4100	37.2	3.53	6.30	6.27	6.02	0.35	1.27	±13.1%
4200	37.1	3.63	6.25	6.21	5.97	0.35	1.27	±13.1%
4400	36.9	3.84	6.16	6.12	5.88	0.35	1.27	±13.1%
4600	36.7	4.04	6.06	6.02	5.79	0.34	1.27	±13.1%
4800	36.4	4.25	6.00	5.96	5.73	0.34	1.27	±13.1%
4950	36.3	4.40	5.88	5.85	5.62	0.33	1.27	±13.1%
5250	35.9	4.71	5.68	5.65	5.43	0.30	1.27	±13.1%
5600	35.5	5.07	5.26	5.23	5.02	0.28	1.27	±13.1%
5750	35.4	5.22	5.36	5.33	5.12	0.26	1.27	±13.1%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Certificate No: EX-7808_Mar25

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$ if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

Parameters of Probe: EX3DV4 - SN:7808

Calibration Parameter Determined in HSL

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
5850	35.2	5.32	5.43	5.40	5.19	0.25	1.27	±13.1%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

and are valid for TSL with deviations of up to ±10% if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

March 12, 2025

Parameters of Probe: EX3DV4 - SN:7808

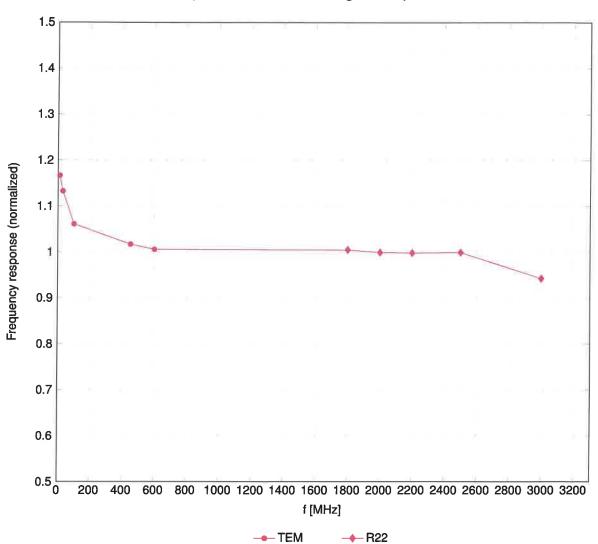
Calibration Parameter Determined in HSL

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	5.37	5.34	5.13	0.20	1.27	±18.6%

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration

frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$)

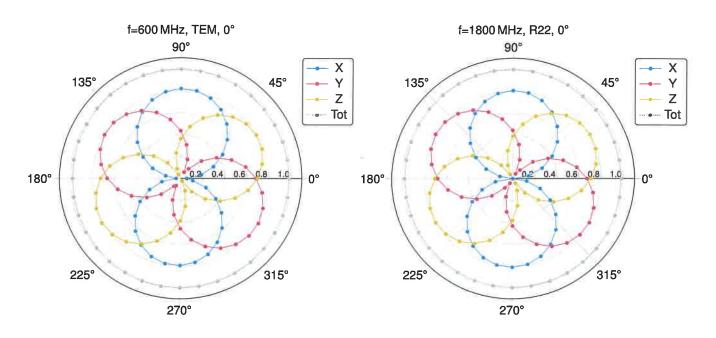
Page 7 of 23

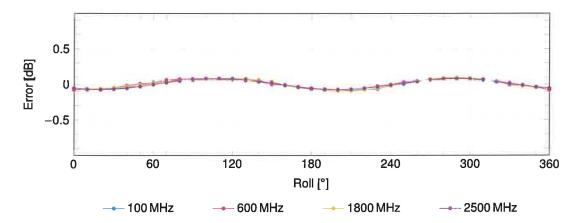

and are valid for TSL with deviations of up to $\pm 10\%$.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

Frequency Response of E-Field

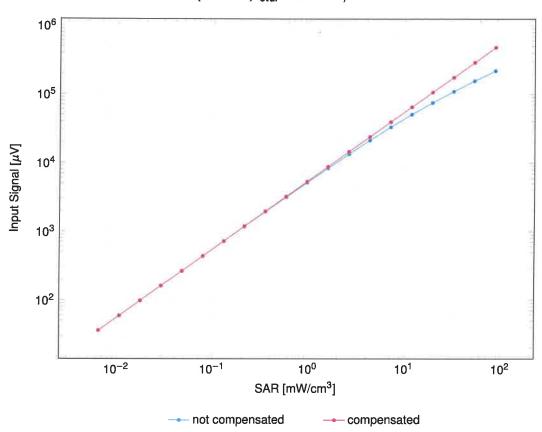

(TEM-Cell:ifi110 EXX, Waveguide:R22)

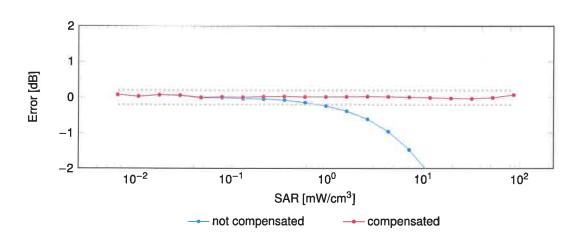


Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

EX3DV4 - SN:7808 March 12, 2025

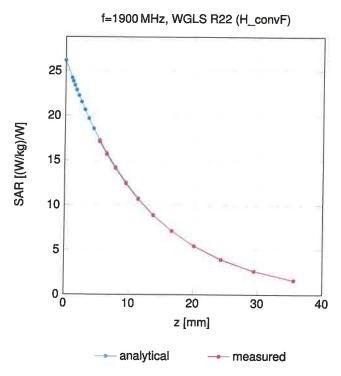
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

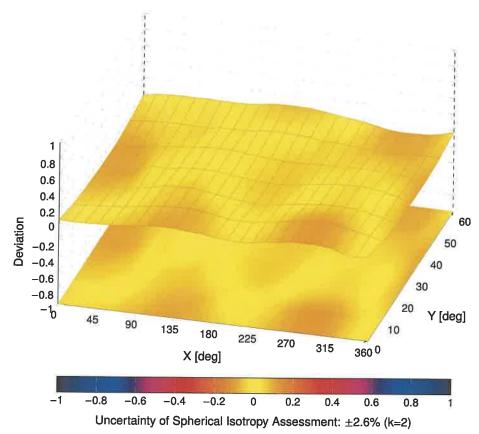




Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range $f(SAR_{HSL})$


(TEM cell, $f_{\text{eval}} = 1900\,\text{MHz})$


Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

EX-3902_Mar25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3902

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

March 10, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched, Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016 Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249 Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301 Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched, Check
ACAP 2020 Calibration Box	SN: L1404	30-Sep-24 (No. Report_ACAP2020E-Cave_20240930s)	

Name

Function

Signature

Calibrated by

Joanna Lleshaj

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: March 10, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-3902_Mar25

Page 1 of 22

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP
 does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3902_Mar25 Page 2 of 22

EX3DV4 - SN:3902

Parameters of Probe: EX3DV4 - SN:3902

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.43	0.45	0.47	±10.1%
DCP (mV) B	104.5	100.6	101.5	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$dB\sqrt{\mu V}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	144.7	±0.8%	±4.7%
		Υ	0.00	0.00	1.00		121.0		/0
		Z	0.00	0.00	1.00		146.1	1	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	93.04	22.24	10.00	60.0	±3.1%	±9.6%
		Y	64.00	106.00	25.00		60.0		
		Z	20.00	94.17	22.82		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	95.16	22.31	6.99	80.0	±1.3%	±9.6%
		Y	20.00	93.47	20.91		80.0		
		Z	20.00	96.80	23.25		80.0	1	
10354	Pulse Waveform (200Hz, 40%)	X	20.00	101.30	24.02	3.98	95.0	±1.4%	±9.6%
		Y	20.00	96.93	21.11		95.0		
		Z	20.00	98.53	22.78		95.0	1	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	110.48	27.02	2.22	120.0	±1.4%	±9.6%
		Y	20.00	101.53	21.96		120.0		
		Z	20.00	105.10	24.65		120.0	-	
10387	QPSK Waveform, 1 MHz	X	1.72	67.09	15.49	1.00	150.0	±1.7%	±9.6%
		Y	1.62	64.98	14.34		150.0		
		Z	1.81	66.73	15.56		150.0	ľ	
10388	QPSK Waveform, 10 MHz	X	2.27	68.60	16.12	0.00	150.0	±1.0%	±9.6%
		Y	2.13	66.82	15.02		150.0		
		Z	2.42	69.01	16.29		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.79	70.26	18.68	3.01	150.0	±0.7%	±9.6%
		Y	2.84	69.55	18.23		150.0		
		Z	2.93	69.98	18.62		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.55	67.50	15.98	0.00	150.0	±0.8%	±9.6%
		Y	3.48	66.73	15.48	İ	150.0		
		7	3.52	67.05	15.80	ŀ	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.70	65.35	15.36	0.00	150.0	±1.8%	±9.6%
		Y	4.69	64.83	15.04	1	150.0		
		Z	4.88	65.50	15.49		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

March 10, 2025

Parameters of Probe: EX3DV4 - SN:3902

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
х	41.6	302.02	33.91	18.63	0.13	5.10	1.21	0.17	1.01
v	47.2	350.28	35.03	11.50	0.39	5.05	1.15	0.25	1.01
z	50.3	372.68	35.14	21.75	0.18	5.10	0.55	0.37	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	4.0°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3902_Mar25

March 10, 2025

Parameters of Probe: EX3DV4 - SN:3902

Calibration Parameter Determined in HSL

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
2450	39.2	1.80	8.17	7.71	7.26	0.31	1.27	±11.0%
5250	35.9	4.71	5.93	5.59	5.27	0.28	1.27	±13.1%
5600	35.5	5.07	5.49	5.18	4.88	0.26	1.27	±13.1%
5750	35.4	5.22	5.56	5.25	4.94	0.25	1.27	±13.1%
5850	35.2	5.32	5.60	5.28	4.98	0.24	1.27	±13.1%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$ if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

EX3DV4 - SN:3902 March 10, 2025

Parameters of Probe: EX3DV4 - SN:3902

Calibration Parameter Determined in HSL

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	5.74	5.42	5.10	0.20	1.27	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

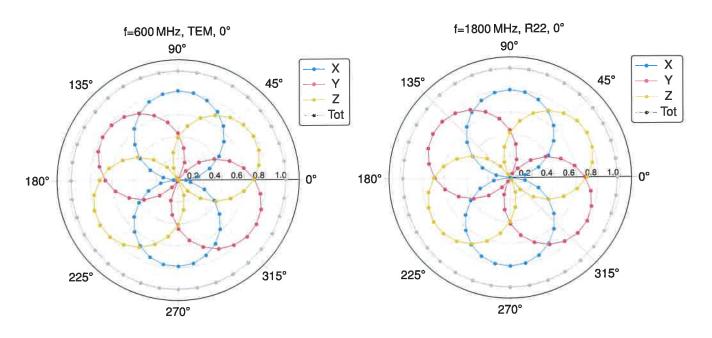
Certificate No: EX-3902_Mar25 Page 6 of 22

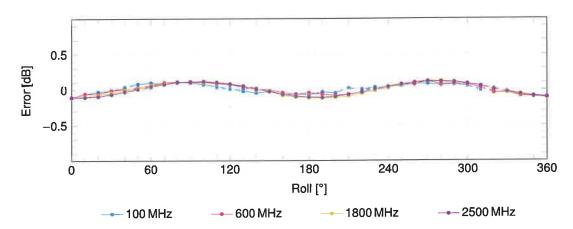
F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.

and are valid for TSL with deviations of up to ±10%.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

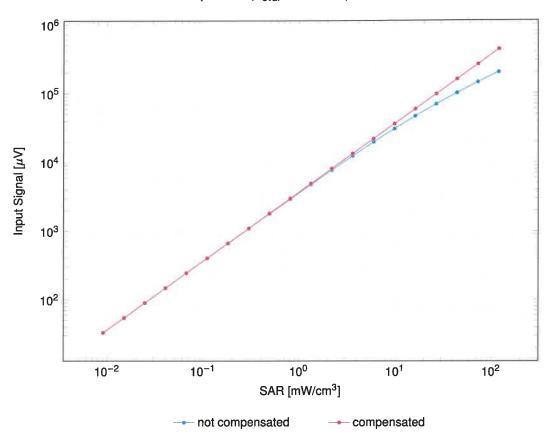
H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

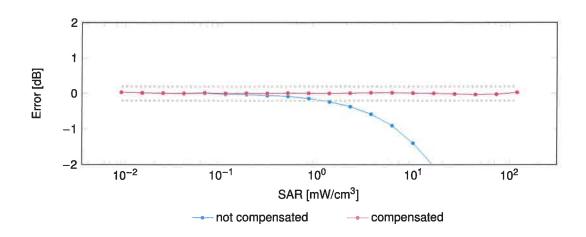

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

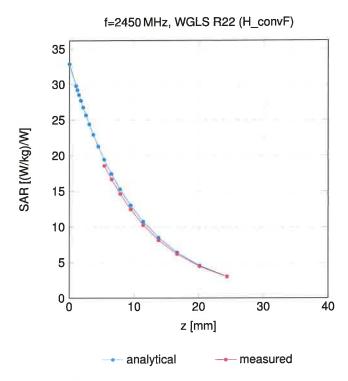
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

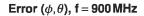


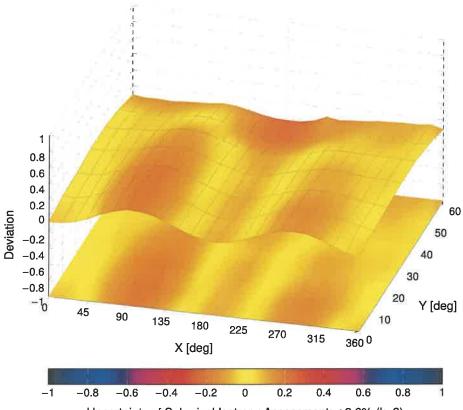


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

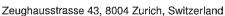
$\textbf{Dynamic Range f}(\textbf{SAR}_{\textbf{HSL}})$


(TEM cell, $f_{\text{eval}} = 1900\,\text{MHz})$




Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment


Deviation from Isotropy in Liquid

Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL

Fremont, USA

Certificate No.

EX-7335 Jan25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7335

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

January 13, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched. Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Name Function Signature

Calibrated by Aidonia Georgiadou Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: January 13, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ϑ or rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7335_Jan25 Page 2 of 22

EX3DV4 - SN:7335 January 13, 2025

Parameters of Probe: EX3DV4 - SN:7335

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.40	0.42	0.54	±10.1%
DCP (mV) B	104.6	102.2	99.1	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	134.8	±0.9%	±4.7%
		Y	0.00	0.00	1.00		145.2		
		Z	0.00	0.00	1.00		132.0		
10352	Pulse Waveform (200Hz, 10%)	X	6.79	75.38	14.23	10.00	60.0	±2.8%	±9.6%
		Y	8.73	79.99	16.99		60.0		
		Z	20.00	90.68	20.49		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	86.85	16.80	6.99	80.0	±1.5%	±9.6%
		Y	20.00	90.32	18.88		80.0		
		Z	20.00	92.12	20.24		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	92.35	18.28	3.98	95.0	±1.2%	±9.6%
		Y	20.00	93.76	19.02		95.0	1	
		Z	20.00	96.53	21.20		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	108.49	24.63	2.22	120.0	±1.3%	±9.6%
		Y	20.00	100.26	20.81		120.0		
		Z	20.00	103.35	23.23		120.0		
10387	QPSK Waveform, 1 MHz	X	2.10	74.38	18.38		150.0	±2.3%	±9.6%
		Y	1.63	65.65	14.75		150.0		
		Z	1.79	66.07	15.28		150.0		
10388	QPSK Waveform, 10 MHz	X	2.20	70.02	17.15	0.00	150.0	±1.1%	±9.6%
		Y	2.14	67.28	15.41		150.0		
		Z	2.37	68.42	15.98		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.92	65.71	16.67	3.01	150.0	±1.0%	±9.6%
		Y	2.79	70.22	18.66		150.0		
		Z	2.96	70.30	18.75		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.43	67.83	16.32	0.00	150.0	±0.8%	±9.6%
		Y	3.48	66.90	15.65		150.0		
		Z	3.64	67.41	15.96		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.58	66.21	15.89	0.00	150.0	±1.7%	±9.6%
		Y	4.85	65.62	15.48		150.0		
		Z	4.85	65.18	15.33		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:7335

Parameters of Probe: EX3DV4 - SN:7335

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms V ⁻²	msV ^{−1}	ms	V ⁻²	V ⁻¹	
Х	24.4	175.23	33.34	11.37	0.00	5.00	0.38	0.10	1.00
у	43.7	321.67	34.60	7.12	0.45	4.99	1.70	0.09	1.01
Z	53.4	399.50	35.71	17.88	0.00	5.07	1.03	0.28	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-0.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

January 13, 2025 EX3DV4 - SN:7335

Parameters of Probe: EX3DV4 - SN:7335

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
750	41.9	0.89	9.91	10.10	9.53	0.37	1.27	±11.0%
900	41.5	0.97	9.25	9.44	8.89	0.37	1.27	±11.0%
1450	40.5	1.20	8.12	8.28	7.81	0.37	1.27	±11.0%
1640	40.2	1.31	8.16	8.32	7.84	0.38	1.27	±11.0%
1750	40.1	1.37	8.15	8.31	7.84	0.38	1.27	±11.0%
1900	40.0	1.40	8.05	8.21	7.74	0.38	1.27	±11.0%
2100	39.8	1.49	7.67	7.83	7.38	0.38	1.27	±11.0%
2300	39.5	1.67	7.60	7.75	7.31	0.38	1.27	±11.0%
2450	39.2	1.80	7.33	7.48	7.05	0.38	1.27	±11.0%
2600	39.0	1.96	7.41	7.56	7.13	0.38	1.27	±11.0%
3300	38.2	2.71	6.90	7.04	6.64	0.39	1.27	±13.1%
3500	37.9	2.91	6.78	6.92	6.52	0.39	1.27	±13.1%
3700	37.7	3.12	6.86	7.00	6.60	0.39	1.27	±13.1%
3900	37.5	3.32	6.64	6.78	6.39	0.39	1.27	±13.1%
4100	37.2	3.53	6.52	6.65	6.27	0.39	1.27	±13.1%
4200	37.1	3.63	6.72	6.86	6.46	0.39	1.27	±13.1%
4400	36.9	3.84	6.35	6.47	6.10	0.39	1.27	±13.1%
4600	36.7	4.04	6.43	6.56	6.19	0.39	1.27	±13.1%
4800	36.4	4.25	6.31	6.44	6.07	0.39	1.27	±13.1%
4950	36.3	4.40	6.08	6.20	5.84	0.38	1.27	±13.1%
5250	35.9	4.71	5.92	6.04	5.70	0.34	1.27	±13.1%
5600	35.5	5.07	5.37	5.48	5.17	0.30	1.27	±13.1%
5750	35.4	5.22	5.42	5.53	5.21	0.29	1.27	±13.1%
5850	35.2	5.32	5.40	5.50	5.19	0.27	1.27	±13.1%

 $^{^{}m C}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

Certificate No: EX-7335_Jan25

and are valid for TSL with deviations of up to ±10% if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

January 13, 2025

Parameters of Probe: EX3DV4 - SN:7335

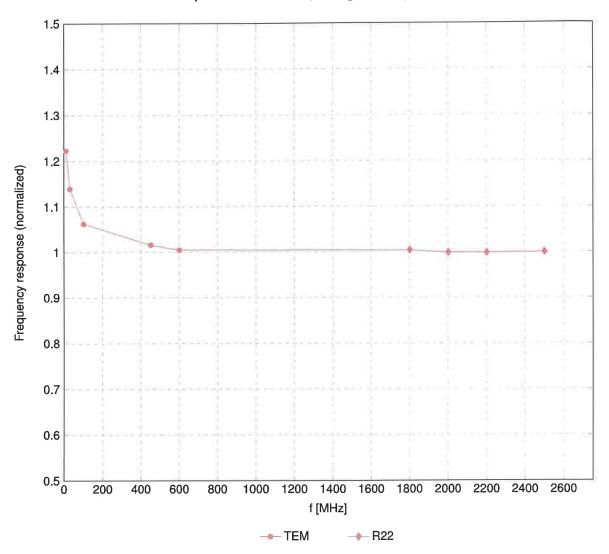
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (<i>k</i> = 2)
6500	34.5	6.07	5.71	5.82	5.49	0.20	1.27	±18.6%

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$)

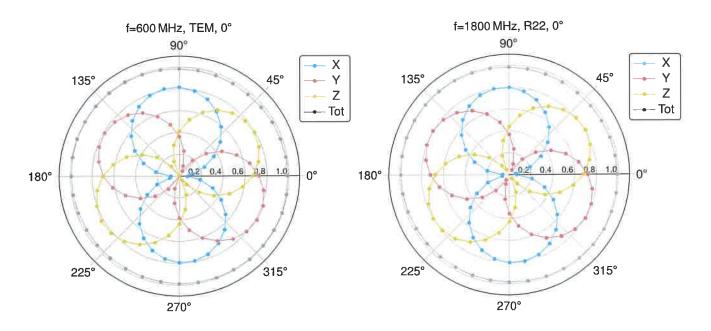
and are valid for TSL with deviations of up to ±10%.

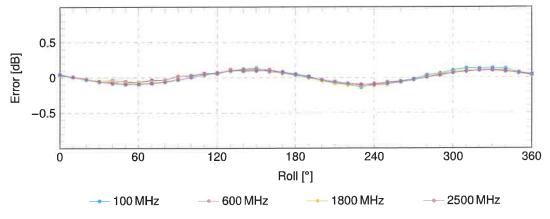

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less. than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

January 13, 2025

Frequency Response of E-Field

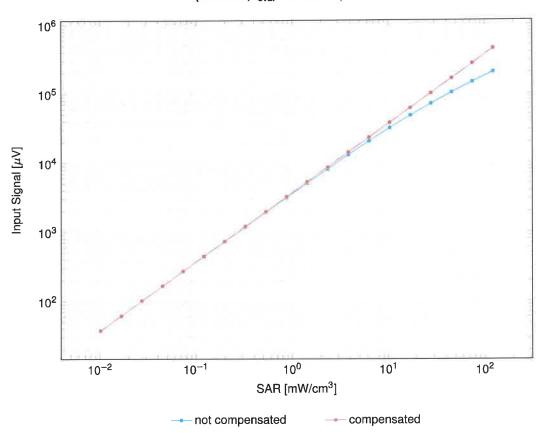

(TEM-Cell:ifi110 EXX, Waveguide:R22)

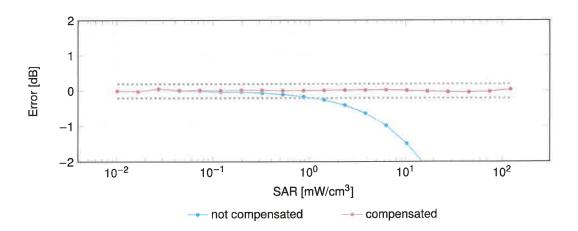


Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

January 13, 2025

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

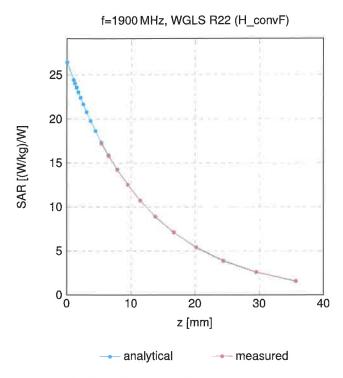


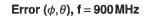


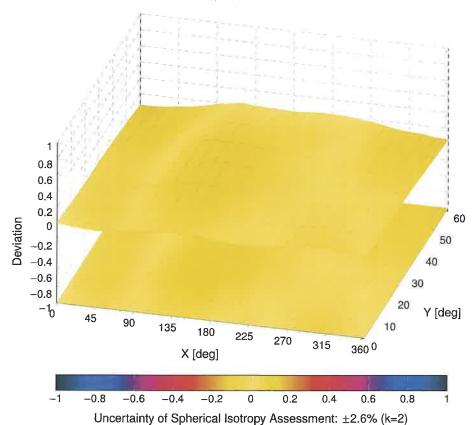
Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range f(SAR_{head})

 $(\text{TEM cell},\,f_{eval}=1900\,\text{MHz})$




Uncertainty of Linearity Assessment: ±0.6% (k=2)


EX3DV4 - SN:7335 January 13, 2025

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

AppleCupertino, USA

Certificate No.

EUmm-9532 Feb25

CALIBRATION CERTIFICATE

Object

EUmmWV4 - SN:9532

Calibration procedure(s)

QA CAL-02.v9, QA CAL-25.v8, QA CAL-42.v3

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date

February 17, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched. Cal.
Power sensor NRP33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power sensor NRP110T	SN: 101244	04-Apr-24 (No. 0001A300740056)	Apr-25
Spectrum analyzer FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
Harmonic mixer FS-Z75	SN: 101566	11-Apr-24 (No. 0001A300740054)	Apr-25
Harmonic mixer FS-Z110	SN: 101633	05-Apr-24 (No. 0001A300740055)	Apr-25
Ref. Probe EUmmWV3	SN: 9374	28-Aug-24 (No. EUmm-9374_Aug24)	Aug-25
DAE4ip	SN: 1662	05-Nov-24 (No. DAE4ip-1662_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
Generator APSIN26G	SN: 2023	30-Nov-21 (in house check Jun-24)	In house check: Jun-25
Power sensor NRP40T	SN: 101439	08-Nov-21 (in house check Jun-24)	In house check: Jun-25
Power sensor NRP110T	SN: 101226	15-Nov-21 (in house check Jun-24)	In house check: Jun-25

Name

Function

Signature

Calibrated by

Joanna Lleshaj

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

sued: February 18, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EUmm-9532_Feb25

Page 1 of 18

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

NORMx,y

sensitivity in free space diode compression point

DCP CF

crest factor (1/duty cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

 φ rotation around probe axis

Polarization ϑ

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system sensor deviation from the probe axis, used to calculate the field orientation and polarization

Sensor Angles k

is the wave propagation direction

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx,y: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
 - Note: As the field is measured with a diode detector sensor, it is warrantied that the probe response is linear (E2) below the documented lowest calibrated value.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, \dot{C}_{n}).
- Ax,y; Bx,y; Cx,y; Dx,y; VRx,y: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.

Parameters of Probe: EUmmWV4 - SN:9532

Basic Calibration Parameters

	Sensor X	Sensor Y	Unc (k = 2)
Norm (μ V/(V/m) ²)	0.01753	0.02053	±10.1%
DCP (mV) B	106.0	105.0	±4.7%
Equivalent Sensor Angle	-59.2	35.8	

Calibration Results for Frequency Response (750 MHz - 110 GHz)

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k = 2) dB
0.75	77.2	-0.34	-0.29	±0.43
1.8	140.4	-0.02	-0.04	±0.43
2.0	133.0	0.13	0.15	±0.43
2.2	124.8	-0.07	-0.04	±0.43
2.5	123.0	0.09	0.14	±0.43
3.5	256.2	-0.07	-0.06	±0.43
3.7	249.8	0.09	0.08	±0.43
6.6	63.4	-0.10	-0.27	±0.98
8.0	58.5	-0.07	-0.16	±0.98
10.0	57.9	-0.01	0.02	±0.98
15.0	45.6	0.19	0.21	±0.98
26.6	115.1	0.17	0.23	±0.98
30.0	125.1	0.01	0.01	±0.98
35.0	123.5	-0.15	-0.19	±0.98
40.0	101.8	-0.23	-0.32	±0.98
50.0	60.8	0.09	-0.02	±0.98
55.0	73.7	-0.09	-0.05	±0.98
60.0	76.4	0.01	0.03	±0.98
65.0	72.0	0.17	0.13	±0.98
70.0	68.5	0.12	0.07	±0.98
75.0	67.9	-0.04	-0.08	±0.98
75.0	89.9	-0.07	-0.07	±0.98
80.0	88.2	-0.14	-0.10	±0.98
85.0	54.3	-0.03	-0.05	±0.98
90.0	80.6	0.02	0.02	±0.98
92.0	80.8	-0.01	0.03	±0.98
95.0	73.2	-0.05	-0.02	±0.98
97.0	65.9	-0.03	-0.04	±0.98
100.0	63.4	0.03	0.05	±0.98
105.0	63.2	-0.10	-0.12	±0.98
110.0	72.1	0.07	0.05	±0.98

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 $^{^{\}mbox{\footnotesize B}}$ Linearization parameter uncertainty for maximum specified field strength.

Parameters of Probe: EUmmWV4 - SN:9532

Calibration Results for Modulation Response

UID	Communication System Name		Α	В	С	D	VR	Max	Max
	•		dB	$dB\sqrt{\mu V}$		dB	m۷	dev.	Unc ^E
				• -					k = 2
0	CW	X	0.00	0.00	1.00	0.00	123.9	±2.5%	±4.7%
		Y	0.00	0.00	1.00		69.0		
10352	Pulse Waveform (200Hz, 10%)	X	2.34	60.00	14.87	10.00	6.0	±1.0%	±9.6%
	,	Y	2.06	60.00	15.63		6.0		
10353	Pulse Waveform (200Hz, 20%)	X	1.62	60.00	13.75	6.99	12.0	±1.1%	±9.6%
		Y	1.42	60.00	14.64		12.0		
10354	Pulse Waveform (200Hz, 40%)	Х	0.99	60.27	12.69	3.98	23.0	±1.5%	±9.6%
	·	Y	0.89	60.00	13.44		23.0		
10355	Pulse Waveform (200Hz, 60%)	X	0.58	60.00	12.08	2.22	27.0	±1.1%	±9.6%
		Y	0.63	60.00	12.37		27.0		
10387	QPSK Waveform, 1 MHz	X	1.15	60.00	12.44	1.00	22.0	±1.2%	±9.6%
		Y	1.27	60.00	12.04		22.0		
10388	QPSK Waveform, 10 MHz	X	1.23	60.00	12.30	0.00	22.0	±0.6%	±9.6%
		Y	1.45	60.00	11.85		22.0		
10396	64-QAM Waveform, 100 kHz	X	3.26	66.13	16.37	3.01	17.0	±0.6%	±9.6%
		Y	2.13	60.00	13.90]	17.0		
10399	64-QAM Waveform, 40 MHz	X	2.02	60.00	12.67	0.00	19.0	±0.8%	±9.6%
		Y	2.20	60.00	12.43	1	19.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.16	60.17	13.12	0.00	12.0	±1.0%	±9.6%
		Y	3.29	60.00	12.87	1	12.0	1	

Note: For details on UID parameters see Appendix

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Parameters of Probe: EUmmWV4 - SN:9532

Calibration Results for Linearity Response

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (<i>k</i> = 2) dB
0.9	50.0	-0.02	-0.13	±0.2
0.9	100.0	-0.02	0.01	±0.2
0.9	500.0	-0.01	-0.01	±0.2
0.9	1000.0	0.01	0.01	±0.2
0.9	1500.0	-0.00	0.01	±0.2
0.9	2100.0	-0.02	0.00	±0.2

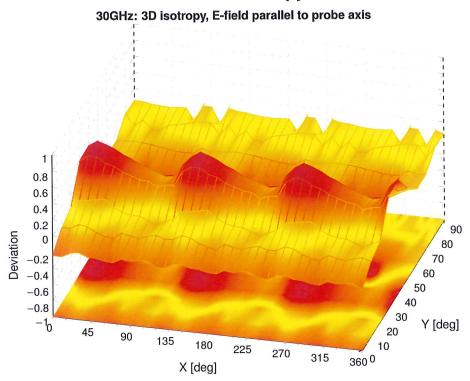
Sensor Frequency Model Parameters (750 MHz – 55 GHz)

	Sensor X	Sensor Y
R (Ω)	61.95	93.28
R _p (Ω)	83.25	116.19
L (nH)	0.05692	0.07457
C (pF)	0.2808	0.2696
C _p (pF)	0.1065	0.0780

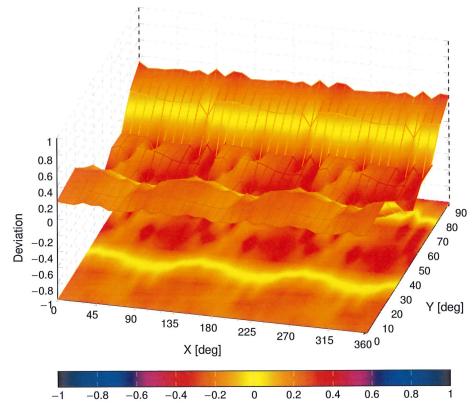
Sensor Frequency Model Parameters (55 GHz – 110 GHz)

	Sensor X	Sensor Y
R (Ω)	18.10	24.81
R _p (Ω)	102.72	127.19
L (nH)	0.05806	0.07297
C (pF)	0.0719	0.0599
C _p (pF)	0.0917	0.0704

Sensor Model Parameters


	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	50.7	363.96	33.11	0.92	5.71	5.00	0.00	1.45	1.01
У	46.2	331.69	33.08	0.92	5.07	5.03	0.00	1.81	1.01

Other Probe Parameters


Sensor Arrangement	Rectangular
Connector Angle	-72.3°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	320 mm
Probe Body Diameter	8 mm
Tip Length	23 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm

Certificate No: EUmm-9532_Feb25

Deviation from Isotropy in Air

60GHz: 3D isotropy, E-field parallel to probe axis

Probe isotropy for E_{tot}: probe rotated $\phi=0^\circ$ to 360°, tilted from field propagation direction \vec{k} Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 30 GHz: deviation within ± 0.49 dB Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 60 GHz: deviation within ± 0.38 dB