

Part 0: SAR and Power Density Characterization EUT RF Exposure Compliance Test Report

For **SMARTPHONE**

FCC ID: BCG-E3548A Model Name: A2342

Report Number: 13335182-S6V2 Issue Date: 9/29/2020

Prepared for
APPLE INC
1 APPLE PARK WAY
CUPERTINO, CA 95014-2084

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	Date	Revisions	Revised By
V1	9/25/2020	Initial Issue	
V2	9/29/2020	Updated Tables 2-2 and 2-3 with updated SAR/power for n41	Nathan Sousa

Table of Contents

1 Introduction	4
2 SAR Characterization	5
2.1 Worst-case SAR determination	5
2.2 Usage Scenarios in SAR Evaluation	6
2.3 SAR design target	
2.4 SAR Char of EUT	8
3 Power Density Characterization	12
3.1 Exposure scenarios in PD evaluation	. 12
3.2 PD characterization overview	. 13
3.3 Codebook for EUT	. 14
3.4 Simulation and modeling validation	
3.4.1 Modeling for simulation	
3.4.2 Modeling validation	
3.4.3 Simulation for power density	
3.5 PD_design_target	
3.6 Worst-case housing influence determination	
3.7 PD Char of the EUT	
3.7.1 Scaling factor for beam pairs	
3.7.3 Input power limit	
A Worst Phase Derivation for Beam Pair	28
B Simulated input.power.limit Figures	29
Figure 2-1: SAR evaluation for smartphone application	5
Figure 2-2: Worst-case SAR determination based on DSI	6
Figure 3-1: EUT surface definition: S1=Front, S2=Rear, S3=Edge 4, S4=Edge 2, S5=Edge 1, S6=Edge 3 Figure 3-2 High level flow chart for power density characterization	
Tables	_
Table 2-1: Usage/Exposure Scenario	
Table 2-2: Worst-case reported SAR (extracted from UL report 13335182-S1)	
Table 2-3: SAR Char of EUT	
Table 3-1: Codebook of EUT	
Table 3-2: Beams and surfaces selection for PD correlation	
Table 3-3: Measured and simulated 4cm ² averaged PD for selected beams with 12 dBm input power for n261 and	
power for n260	
Table 3-4: PD evaluation plane	
Table 3-5: <i>Amin</i> for ANT M0, ANT M1 and ANT M2	
Table 3-6: input.power.limit calculation	
Table 3-7: PD Char of the EUT	
Table B-1: Lists input power limit per channel per band for all the beams that EUT supports	. 29

1 Introduction

The equipment under test (EUT) is a smart phone. It contains the Qualcomm modem supporting 2G/3G/4G WWAN technologies and mmW 5G NR bands. These WWAN modems enable Qualcomm Smart Transmit feature to control and manage transmitting power in real time and to ensure at all times the time-averaged RF exposure is in compliance with the FCC requirement.

In the Part 0 report, the EUT SAR and power density (PD) are characterized for WWAN radios (2G/3G/4G/5G mmW NR) to determine the power limit that corresponds to the exposure design target after accounting for all device design related uncertainties, i.e., SAR_design_target (< FCC SAR limit) for sub-6 radio and PD_design_target (< FCC PD limit) for mmW radio. The SAR characterization and PD characterization are denoted as SAR Char and PD Char.

SAR Char and PD Char will be used as input for Qualcomm Smart Transmit to operate. Both SAR Char and PD Char will be loaded and store in the EUT via the Embedded File System (EFS).

The EUT supports WLAN/BT radio as well but WLAN/BT modem is not enabled with Smart Transmit.

2 SAR Characterization

SAR Char is generated to cover all radio configurations and usage scenarios that are reported in the initial FCC submission.

2.1 Worst-case SAR determination

Based on FCC KDBs, in general, for a smartphone, the SAR evaluation is required for the exposure scenarios shown in Figure 2-1.

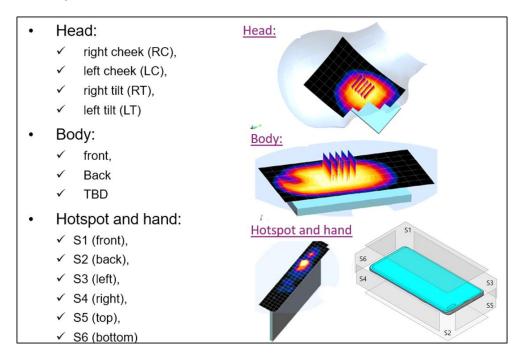


Figure 2-1: SAR evaluation for smartphone application

The device state index (DSI) used in Figure 2-2 represents each exposure scenario. Depending on the detection scheme implemented in the smartphone, the worst-case SAR is further grouped and determined for each or combined exposure scenario(s). Note for the 1g SAR versus 10g SAR exposure scenario, the worst-case is determined in term of exposure ratio (i.e., exposure level relative to the corresponding 1gor 10g-SAR limit).

- If the device does not have any detection mechanism (all "no" in Figure 2-2), then the worstcase SAR is determined by taking the maximum SAR value among all exposure scenarios, i.e., worst-case SAR = $max{SAR_{head}, SAR_{body}, SAR_{hotspot/extremity}}$
- If the device can distinguish each of the above scenarios (all "yes" in Figure 2-2), then the worst-case SAR for each individual exposure scenario is given by corresponding SAR_{head}, SAR_{body}, and SAR_{hotspot/extremity}
- If the device can only distinguish a subset of the scenarios (some "yes", some "no" in Figure 2-2), then the worst-case SAR is given by:
 - □ Corresponding SAR for each exposure scenario that can be distinguished (DSI=yes)
 - □ Worst-case SAR among all other exposure scenario(s) that cannot be distinguished (DSI=no)

Page 5 of 31

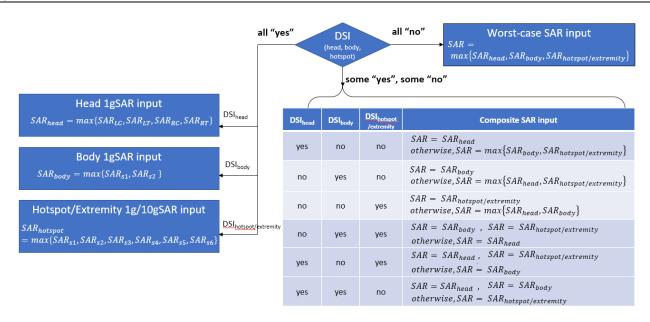


Figure 2-2: Worst-case SAR determination based on DSI

2.2 Usage Scenarios in SAR Evaluation

The EUT has a detection mechanism to distinguish head/body-worn/hotspot exposure, which is represented using DSI = 0 or DSI = 1. These two DSI states were used to determine power limit for Smart Transmit to operate.

The corresponding usage scenarios supported by EUT are summarized in Table 2-1:

Table 2-1: Usage/Exposure Scenario

Scenario	Description	SAR Definition	Worst-case SAR
Head (DSI = 0)	 Device positioned next to head 1g SAR evaluated in four positions (left/right cheek/tilt) 	SAR _{head} = max{SAR _{LC} , SAR _{LT} , SAR _{RC} , SAR _{RT} }	SARhead
Body worn/Hotspot (DSI = 1)	 Device state is either body worn or Hotspot at 5mm 1g SAR evaluated at all surfaces (S₁-S₆ as shown in Figure 2-1) of the EUT with 5 mm test separation distance relative to the flat phantom for body worn exposure 	$SAR_{body_DSl=1}$ = $max{SAR_{s1_DSl=1}, SAR_{s2}}$ $DSl=1, SAR_{s3}$ $DSl=1, SAR_{s4}$ $DSl=1, SAR_{s5}$ $DSl=1, SAR_{s6}$ $DSl=1$ }	SAR _{body_DSI=1}

2.3 SAR design target

The total device design related uncertainties of EUT is 1dB (k=2), which includes TxAGC and device to device variation.

To account for the total uncertainty, SAR_design_target needs to be:

$$SAR_design_target < SAR_{regulatory_limit} \times 10^{\frac{-total\ uncertainty}{10}}$$

For FCC SAR requirement of 1.6 W/kg for 1g SAR the SAR_design_target for EUT is determined as $SAR_design_target = 0.8 \, W/kg \, for \, 1gSAR$.

2.4 SAR Char of EUT

Referring to the initial FCC submission, the worst-case *reported* SAR for each antenna/technology/band/DSI is summarized in Table 2-2:

Table 2-2: Worst-case reported SAR (extracted from UL report 13335182-S1)

Tech/Band		ort	Worst-c			P _{limit} Max Tune-up Power (dBm)	
10011/20110	DSI: 0	DSI: 1	DSI: 0	DSI: 1	DSI: 0	DSI: 1	
GSM850	В	В	0.591	0.519	31.00	31.00	
GSM1900	В	В	0.941	0.951	26.50	26.50	
W-CDMA B2	D	Α	0.975	0.969	19.25	21.00	
W-CDMA B4	D	С	0.938	0.971	21.00	21.25	
W-CDMA B5	В	В	0.199	0.528	23.90	23.90	
CDMA BC0	В	В	0.668	0.572	23.90	23.90	
CDMA BC1	В	Α	0.991	0.892	20.50	21.00	
CDMA BC10	В	А	0.654	0.419	23.90	25.70	
LTE B5	В	Α	0.528	0.864	23.90	25.70	
LTE B7	D	В	0.962	0.991	19.50	19.50	
LTE B12	В	А	0.383	0.785	23.90	25.70	
LTE B13	В	А	0.443	0.629	23.90	25.70	
LTE B14	В	А	0.369	0.617	23.90	25.70	
LTE B25/2	D	D	0.959	0.927	19.25	20.00	
LTE B26	В	В	0.657	0.471	23.90	23.90	
LTE B30	В	А	0.949	0.990	21.00	21.25	
LTE B41	D	С	0.999	0.976	21.75	2.50	
LTE B48	В	В	0.913	0.981	22.20	21.00	
LTE B66/4	D	А	0.912	0.968	21.00	19.25	
LTE B71	В	А	0.435	0.664	23.90	25.70	
FR1 n5	В	В	0.367	0.253	23.90	23.90	
FR1 n12	В	А	0.275	0.280	23.90	25.70	
FR1 n25/n2	D	С	0.728	0.764	19.25	21.00	
FR1 n41	В	С	0.862	0.886	18.00	20.50	
FR1 n66	D	С	0.715	0.874	21.00	21.25	
FR1 n71	В	А	0.188	0.230	23.90	25.70	
FR1 n77	В	С	0.937	0.983	19.50	18.75	

Using the reported SAR listed in Table 2-2, and following the procedure described in Section 2.1, the SAR Char of this EUT, i.e., P_{limit} corresponding to SAR_design_target , is determined for each supported antenna/technology/band/DSI as:

- 1. for DSI = 0, P_{limit} is calculated based on 1gSAR head exposure evaluation
- 2. for DSI = 1, P_{limit} is calculated based on body-worn/hotspot 1gSAR evaluation at 5 mm spacing

P_{limit}= min { P_{limit} corresponding to body worn 1gSAR evaluation at 5mm spacing, P_{limit} corresponding to 1g SAR extremity evaluation at 5mm spacing, P_{max}maximum RF tuneup power for the case that the SAR test is excluded}

The SAR Char is listed in Table 2-3.

Table 2-3: SAR Char of EUT

Exposure Scenario		Head		Body-worn		
Sp	atial-average	19	g	1g		
Test Distance		0 mm		5 mm		P _{max} (dBm)
Pow	ver Mode (DSI)	Mode A	(DSI=0)	Mode B	(DSI=1)	Tune-up power table
Antenna	Tech/Band	P _{design} (dBm) corresponding to 1 0 W/kg (SAR_design_target)	P _{limit} (dBm) Tune-up power table	P _{design} (dBm) corresponding to 1.0 W/kg (SAR_design_target)	P _{limit} (dBm) Tune-up power table	table
	Transmit Average	Burst A	verage	Burst A	verage	Burst Average
	GSM 850 2 slots	41.06	32.50	36.83	32.50	32.50
	GSM 1900 2 slots	36.27	31.00	27.39	27.00	31.00
	W-CDMA B2	29.95	25.70	21.14	21.00	25.70
	W-CDMA B4	32.14	25.70	19.52	19.25	25.70
	W-CDMA B5	33.76	25.70	29.22	25.70	25.70
	CDMA BC0	35.32	25.70	29.76	25.70	25.70
	CDMA BC1	30.06	25.70	21.50	21.00	25.70
	CDMA BC10	34.27	25.70	29.47	25.70	25.70
	LTE Band 5	33.32	25.70	26.34	25.70	25.70
	LTE Band 7	29.90	25.70	21.07	20.75	25.70
	LTE Band 12/17	34.80	25.70	26.75	25.70	25.70
	LTE Band 13	34.37	25.70	27.71	25.70	25.70
	LTE Band 14	34.37	25.70	27.80	25.70	25.70
Α	LTE Band 25/2	30.39	25.70	21.52	21.00	25.70
	LTE Band 26	32.32	25.70	29.32	25.70	25.70
	LTE Band 30	27.53	25.70	21.29	21.25	25.70
	LTE Band 41	32.08	25.70	23.43	23.25	25.70
	LTE Band 48	34.87	25.70	24.43	23.00	25.70
	LTE Band 66/4	34.59	25.70	19.39	19.25	25.70
	LTE Band 71	35.11	25.70	27.48	25.70	25.70
	NR n5	36.51	25.70	31.74	25.70	25.70
	NR n12	36.56	25.70	31.23	25.70	25.70
	NR n25/2	31.12	25.70	22.20	21.00	25.70
	NR n41	33.34	25.70	22.11	21.25	23.70
	NR n66	37.64	25.70	20.62	19.25	25.70
	NR n71	37.71	25.70	32.08	25.70	25.70
	NR n77	29.96	25.70	19.75	19.50	25.70

Page 9 of 31

Exposure Scenario		Head		Body-worn		
Spatial-average		1g		1g		
Test Distance		0 mm		5 mm		P _{max} (dBm)
Pov	ver Mode (DSI)	Mode A	(DSI=0)	Mode B	(DSI=1)	Tune-up power table
Antenna	Tech/Band	P _{design} (dBm) corresponding to 1 0 W/kg (SAR_design_target)	P _{limit} (dBm) Tune-up power table	P _{design} (dBm) corresponding to 1.0 W/kg (SAR_design_target)	P _{limit} (dBm) Tune-up power table	table
	Transmit Average	Burst A	verage	Burst A	verage	Burst Average
	GSM 850 2 slots	33.28	31.00	33.85	31.00	31.00
	GSM 1900 2 slots	26.77	26.50	26.72	26.50	28.50
	W-CDMA B2	20.95	20.50	20.75	20.50	23.10
	W-CDMA B4	21.97	21.50	21.84	21.00	23.10
	W-CDMA B5	30.92	23.90	26.67	23.90	23.90
	CDMA BC0	25.65	23.90	26.32	23.90	23.90
	CDMA BC1	20.54	20.50	22.07	20.50	23.10
	CDMA BC10	25.75	23.90	28.44	23.90	23.90
	LTE Band 5	26.67	23.90	26.85	23.90	23.90
	LTE Band 7	17.78	17.50	19.54	19.50	22.80
	LTE Band 12/17	28.07	23.90	27.43	23.90	23.90
	LTE Band 13	27.44	23.90	30.88	23.90	23.90
	LTE Band 14	28.23	23.90	28.58	23.90	23.90
В	LTE Band 25/2	20.99	20.50	21.17	20.50	23.10
	LTE Band 26	25.73	23.90	27.17	23.90	23.90
	LTE Band 30	21.23	21.00	21.20	21.00	22.80
	LTE Band 41	20.01	20.00	23.24	22.75	22.80
	LTE Band 48	22.60	22.20	21.08	21.00	22.20
	LTE Band 66/4	22.00	21.50	21.61	21.00	23.10
	LTE Band 71	27.51	23.90	28.77	23.90	23.90
	NR n5	28.25	23.90	29.87	23.90	23.90
	NR n12	29.51	23.90	32.02	23.90	23.90
	NR n25/2	21.92	20.50	21.80	20.50	23.10
	NR n41	18.64	18.00	22.79	20.75	25.70
	NR n66	24.41	21.50	22.59	21.00	23.10
	NR n71	31.16	23.90	32.17	23.90	23.90
	NR n77	19.78	19.50	19.64	19.50	22.50

Exp	osure Scenario	He	ad	Body-worn		
Sp	atial-average	1g		1g		
Test Distance		0 n	ım	5 n	nm	P _{max} (dBm)
Pov	ver Mode (DSI)	Mode A	(DSI=0)	Mode B	(DSI=1)	Tune-up power table
Antenna	Tech/Band	P _{design} (dBm) corresponding to 1 0 W/kg (SAR_design_target)	P _{limit} (dBm) Tune-up power table	P _{design} (dBm) corresponding to 1.0 W/kg (SAR_design_target)	P _{limit} (dBm) Tune-up power table	14313
	Transmit Average	Burst A	verage	Burst A	verage	Burst Average
	GSM 1900 2 slots	36.63	30.00	27.51	27.00	30.00
	W-CDMA B2	30.65	24.70	21.50	21.00	24.70
	W-CDMA B4	29.68	24.70	21.38	21.25	24.70
	LTE Band 7	28.80	24.70	20.55	20.50	24.70
	LTE Band 25/2	30.19	24.70	21.78	21.00	24.70
	LTE Band 30	26.40	24.70	20.01	19.50	23.10
С	LTE Band 41	32.20	24.70	2.61	2.50	24.70
	LTE Band 48	33.91	25.20	23.39	23.25	25.20
	LTE Band 66/4	29.04	24.70	21.70	21.25	24.70
	NR n25/2	31.44	24.70	22.17	21.00	24.70
	NR n41	33.03	25.20	21.03	20.50	21.70
	NR n66	36.31	24.70	21.83	21.25	24.70
	NR n77	35.91	25.20	18.82	18.75	25.20
	GSM 1900 2 slots	25.57	25.25	26.84	26.50	28.00
	W-CDMA B2	19.36	19.25	20.51	20.00	22.70
	W-CDMA B4	21.28	21.00	21.99	21.50	22.70
	LTE Band 7	19.67	19.50	18.63	18.50	22.20
	LTE Band 25/2	19.43	19.25	20.33	20.00	22.70
	LTE Band 30	20.29	20.00	19.62	19.00	22.20
D	LTE Band 41	21.75	21.75	20.67	20.50	22.20
	LTE Band 48	23.49	22.20	23.95	22.20	22.20
	LTE Band 66/4	21.40	21.00	21.85	21.50	22.70
	NR n25/2	20.63	19.25	22.92	20.00	22.70
	NR n41	20.43	19.75	19.57	18.50	25.20
	NR n66	22.46	21.00	23.16	21.50	22.70
	NR n77	22.42	22.00	21.55	21.25	22.20

3 Power Density Characterization

EUT 5G mmW NR contains three mmW antenna modules (module 0, 1 and 2), denoted as ANT M0, ANT M1, ANT M2, which are installed at three different locations as shown in the operational description. A Total of 117 antenna array configurations per band are supported. In this chapter, a hybrid approach using electromagnetic (EM) simulation in combination with measurement is used to efficiently and conservatively characterize power density profile for the EUT.

3.1 Exposure scenarios in PD evaluation

In general, for a smartphone operating at frequencies > 6 GHz, the PD is required to be assessed for all antenna configurations (beams) from all mmW antenna modules installed inside the device. Furthermore, this PD evaluation should be performed at low, mid, and high channels for each supported mmW band.

For this EUT, the 4cm² spatially-averaged PD is evaluated along the surfaces (*S1, S2, S3, S4, S5, S6* as shown in Figure 3-2) of the EUT, and the worst-case PD is determined by taking the maximum PD among all PD at the evaluated surfaces for each beam/band.

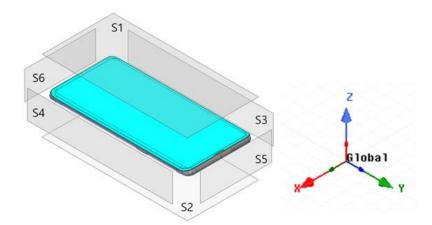


Figure 3-1: EUT surface definition: S1=Front, S2=Rear, S3=Edge 4, S4=Edge 2, S5=Edge 1, S6=Edge 3

3.2 PD characterization overview

Parameters used in PD characterization:

- The EUT supports total 117 beams per band, where 78 beams are single beams (SISO) and 39 are beam pairs (MIMO) where 2 single beams are excited at the same time.
- **PD_design_target**: The design target for PD compliance as defined in the summary report. It should be less than FCC PD limit to account for all device design related uncertainties.
- input.power.limit: For a PD characterized wireless device, the input power level at antenna port(s) for each beam corresponding to PD_design_target.
- PD Char: the table that contains input.power.limit fed to antenna port(s) for all supported beams.

•

■ Figure 3-3 outlines the PD Char process.

Simulation modeling and validation

 Correlate the simulated PD distributions with measured PD distribution for the selected beams to validate simulation model

Uncertainty Budget

 Calculate the total device design uncertainty to include worst case RF tune-up accuracy and device-to-device variation

PD_design_target

Specify a power density design target, which should be less than power density regulatory limit to account for the total device design uncertainties

Worst-case housing material Influence Quantification

Determine

 Δ_{min} = min{simulated PD@reference_power - measured PD@reference_power}

to quantify the worst-case housing influence

PD Char Generation

 Use validated simulation approach to determine input power limit for all the beams after accounting for the worst-case housing influence

Figure 3-2 High level flow chart for power density characterization

Page 13 of 31

UL Verification Services Inc. Doc. No.: 1.0

3.3 Codebook for EUT

In general, all the beams that the EUT supports are specified in the pre-defined codebook. The codebook is device design specific and generated after evaluating radiation coverage from this specific device.

Table 3-1 shows all the beams and their relevant information in the codebook of the EUT. Note modules ANT M0, M1 and M2, respectively, in Figure 3-1.

The PD evaluation needs to be performed for all the beams listed in Table 3-1.

Table 3-1: Codebook of EUT

					# of
Band	Beam ID	Paired With	Module	Ant Type	Elements
	0	128	ANT M1	PATCH	1
	1	129	ANT M1	PATCH	1
	2	130	ANT M0	PATCH	1
	3	131	ANT M0	PATCH	1
	4	132	ANT M2	PATCH	1
	5	133	ANT M2	PATCH	1
	6	134	ANT M1	PATCH	2
	7	135	ANT M1	PATCH	2
	8	136	ANT M1	PATCH	2
	9	137	ANT M0	PATCH	2
	10	138	ANT M0	PATCH	2
	11	139	ANT M0	PATCH	2
	12	140	ANT M2	PATCH	2
	13	141	ANT M2	PATCH	2
	14	142	ANT M2	PATCH	2
260	15	143	ANT M1	PATCH	2
	16	144	ANT M1	PATCH	2
	17	145	ANT M0	PATCH	2
	18	146	ANT M0	PATCH	2
	19	147	ANT M2	PATCH	2
	20	148	ANT M2	PATCH	2
	21	149	ANT M1	PATCH	4
	22	150	ANT M1	PATCH	4
	23	151	ANT M1	PATCH	4
	24	152	ANT M1	PATCH	4
	25	153	ANT M1	PATCH	4
	26	154	ANT M2	PATCH	4
	27	155	ANT M2	PATCH	4
	28	156	ANT M2	PATCH	4
	29	157	ANT M2	PATCH	4
	30	158	ANT M2	PATCH	4

					# of
Band	Beam ID	Paired With	Module	Ant Type	Elements
	31	159	ANT M1	PATCH	4
	32	160	ANT M1	PATCH	4
	33	161	ANT M1	PATCH	4
	34	162	ANT M1	PATCH	4
	35	163	ANT M2	PATCH	4
	36	164	ANT M2	PATCH	4
	37	165	ANT M2	PATCH	4
	38	166	ANT M2	PATCH	4
	128	0	ANT M1	PATCH	1
	129	1	ANT M1	PATCH	1
	130	2	ANT M0	PATCH	1
	131	3	ANT M0	PATCH	1
	132	4	ANT M2	PATCH	1
	133	5	ANT M2	PATCH	1
	134	6	ANT M1	PATCH	2
	135	7	ANT M1	PATCH	2
	136	8	ANT M1	PATCH	2
	137	9	ANT M0	PATCH	2
	138	10	ANT M0	PATCH	2
	139	11	ANT M0	PATCH	2
260	140	12	ANT M2	PATCH	2
	141	13	ANT M2	PATCH	2
	142	14	ANT M2	PATCH	2
	143	15	ANT M1	PATCH	2
	144	16	ANT M1	PATCH	2
	145	17	ANT M0	PATCH	2
	146	18	ANT M0	PATCH	2
	147	19	ANT M2	PATCH	2
	148	20	ANT M2	PATCH	2
	149	21	ANT M1	PATCH	4
	150	22	ANT M1	PATCH	4
	151	23	ANT M1	PATCH	4
	152	24	ANT M1	PATCH	4
	153	25	ANT M1	PATCH	4
	154	26	ANT M2	PATCH	4
	155	27	ANT M2	PATCH	4
	156	28	ANT M2	PATCH	4
	157	29	ANT M2	PATCH	4
	158	30	ANT M2	PATCH	4
	159	31	ANT M1	PATCH	4
	160	32	ANT M1	PATCH	4

Band	Beam ID	Paired With	Module	Ant Type	# of
					Elements
	161	33	ANT M1	PATCH	4
260	162	34	ANT M1	PATCH	4
	163	35	ANT M2	PATCH	4
	164	36	ANT M2	PATCH	4
	165	37	ANT M2	PATCH	4
	166	38	ANT M2	PATCH	4
	0	128	ANT M1	PATCH	1
	1	129	ANT M1	PATCH	1
	2	130	ANT M0	PATCH	1
	3	131	ANT M0	PATCH	1
	4	132	ANT M2	PATCH	1
	5	133	ANT M2	PATCH	1
	6	134	ANT M1	PATCH	2
	7	135	ANT M1	PATCH	2
	8	136	ANT M1	PATCH	2
	9	137	ANT M0	PATCH	2
	10	138	ANT M0	PATCH	2
	11	139	ANT M0	PATCH	2
	12	140	ANT M2	PATCH	2
	13	141	ANT M2	PATCH	2
	14	142	ANT M2	PATCH	2
	15	143	ANT M1	PATCH	2
	16	144	ANT M1	PATCH	2
	17	145	ANT M0	PATCH	2
261	18	146	ANT M0	PATCH	2
	19	147	ANT M2	PATCH	2
	20	148	ANT M2	PATCH	2
	21	149	ANT M1	PATCH	4
	22	150	ANT M1	PATCH	4
	23	151	ANT M1	PATCH	4
	24	152	ANT M1	PATCH	4
	25	153	ANT M1	PATCH	4
	26	154	ANT M2	PATCH	4
	27	155	ANT M2	PATCH	4
	28	156	ANT M2	PATCH	4
	29	157	ANT M2	PATCH	4
	30	158	ANT M2	PATCH	4
	31	159	ANT M1	PATCH	4
	32	160	ANT M1	PATCH	4
	33	161	ANT M1	PATCH	4
	34	162	ANT M1	PATCH	4
	35	163	ANT M2	PATCH	4
	36	164	ANT M2	PATCH	4

Band	Beam ID	Paired With	Module	Ant Type	# of Elements
	128	0	ANT M1	PATCH	1
	129	1	ANT M1	PATCH	1
	130	2	ANT MO	PATCH	1
	131	3	ANT MO	PATCH	1
	132	4	ANT M2	PATCH	1
	133	5	ANT M2	PATCH	1
	134	6	ANT M1	PATCH	2
	135	7	ANT M1	PATCH	2
	136	8	ANT M1	PATCH	2
	137	9	ANT MO	PATCH	2
	138	10	ANT MO	PATCH	2
	139	11	ANT MO	PATCH	2
	140	12	ANT M2	PATCH	2
	141	13	ANT M2	PATCH	2
	142	14	ANT M2	PATCH	2
	143	15	ANT M1	PATCH	2
	144	16	ANT M1	PATCH	2
	145	17	ANT M0	PATCH	2
261	146	18	ANT M0	PATCH	2
	147	19	ANT M2	PATCH	2
	148	20	ANT M2	PATCH	2
	149	21	ANT M1	PATCH	4
	150	22	ANT M1	PATCH	4
	151	23	ANT M1	PATCH	4
	152	24	ANT M1	PATCH	4
	153	25	ANT M1	PATCH	4
	154	26	ANT M2	PATCH	4
	155	27	ANT M2	PATCH	4
	156	28	ANT M2	PATCH	4
	157	29	ANT M2	PATCH	4
	158	30	ANT M2	PATCH	4
	159	31	ANT M1	PATCH	4
	160	32	ANT M1	PATCH	4
	161	33	ANT M1	PATCH	4
	162	34	ANT M1	PATCH	4
	163	35	ANT M2	PATCH	4
	164	36	ANT M2	PATCH	4

3.4 Simulation and modeling validation

3.4.1 Modeling for simulation

Device modeling is described in the operational description.

3.4.2 Modeling validation

To validate modeling and simulation:

- 1. Select one beam (i.e., antenna array configuration) per antenna type (patch) and per antenna module. All three antenna modules contain only patch arrays. Therefore, the beam selection criteria for each mmW antenna are:
 - a) Two beams from each of ANT M0, M1, and M2 (module 1)

 Note: Since the relative phase between two single beams in a beam pair is uncontrolled and could vary from run to run, for the validation purpose, the selection is limited to the single beam antenna array configuration. Additionally, single beam containing a higher number of active antenna elements is selected. For example, a single beam with four active patches should be selected over beam with a single active patch antenna beam.
- 2. The beams selected for modeling validation are highlighted in grey in Table 3-1.
- 3. For a given input power, perform both PD simulation and PD measurement to obtain the simulated PD distributions and measured PD distributions on the surface in front of the antenna array.
- 4. Validate modeling and simulation by correlating the simulated PD distribution and measured PD distribution for all antenna array configurations selected in Step 1.
- 5. The modeling validation is performed through correlating the simulated 4cm²-avg PD distribution to measured 4cm²-avg PD distribution.
- 6. These discrepancies in PD magnitude will be used to determine the worst-case housing influence (due to non-metal material property uncertainty) in Section 3.6. The worst-case housing influence will be accounted for in PD Char generation for conservative RF exposure assessment, see Section 3.7 for details.

Based on the selection criteria described in Step 1 and Step 2, the beams and surfaces selected for modeling validation of the EUT are listed in Table 3-2.

Table 3-2: Beams and surfaces selection for PD correlation

Band	Beam ID	Antenna	Pol	Surface
	32	M1	V	S2
	160	IVII	Ι	S2
n061	29	M2	V	S4
n261	157	IVIZ	Ι	S4
	10	MO	V	S1
	145	IVIO	Ι	S1
	23	M1	V	S2
	159	IVII	Н	S2
n260	27	M2	V	S4
11200	157	IVIZ	Ι	S4
	17	MO	V	S1
	139	IVIU	Н	S1

With an input power of 12 dBm for n261 band and 11 dBm for n260 band, PD measurement and PD simulation are conducted for all beams and surfaces listed in Table 3-2. Both PD measurement and PD simulation are performed at mid channel of each mmW beam, PD measurement is conducted with CW modulation.

PD distribution

Refer to the operational description

4cm²-averaged PD value

Table 3-3 lists the measured 4cm²-averaged PD and simulated 4cm²-averaged PD for all selected beams and surfaces for both n261 and n260 bands. The discrepancy between simulated and measured PD value will be used to determine worst-case housing influence for conservative assessment (see Section 3.6).

Table 3-3: Measured and simulated 4cm² averaged PD for selected beams with 12 dBm input power for n261 and 11 dBm input power for n260

					4cm² a	Delta ¹	
Band	Beam ID	Antenna	Pol	Surface	(W/		
					Meas.	Sim	
	32	M1	V	S2	53.20	48.50	-0.40
	160	IVII	Н	S2	53.80	59.10	0.41
n261	29	M2	V	S4	93.10	73.20	-1.04
11201	157	IVIZ	Н	S4	81.40	73.50	-0.37
	10	МО	V	S1	5.00	4.40	-0.55
	145		Н	S1	4.80	6.60	0.58
	23	M1	V	S2	30.00	47.90	2.03
	159	IVII	Н	S2	25.00	49.60	2.98
n260	27	M2	V	S4	51.40	55.20	0.31
11260	157	IVIZ	Н	S4	42.10	54.20	1.10
	17	MO	V	S1	4.20	9.00	3.34
	139	IVIO	Н	S1	8.50	13.50	2.00

Issue Date: 9/29/2020 Report No.: 13335182-S6V2

3.4.3 Simulation for power density

The model is validated in Section 3.4.3, the PD exposure of EUT can be reliably assessed using the validated simulation approach.

In general, all six surfaces of wireless device as shown in Figure 3-2 should be assessed for RF exposure from mmW radio, and the worst-case PD should be determined by:

$$PD_{worst-case} = max\{PD_{s1}, PD_{s2}, PD_{s3}, PD_{s4}, PD_{s5}, PD_{s6}\}$$
 (1)

where PDs1, PDs2, PDs3, PDs4, PDs5, PDs6 are the highest 4cm2-avgeraged PD on surface S1, S2, S3, S4, S5 and S6 of the device. respectively.

However, depending on the location of the mmW module and the antenna array orientation relative to the surface of the device, one or more surface(s) can be excluded for PD calculation as the PD value(s) on the excluded surface(s) will be undoubtedly lower when comparing to other surfaces, thus, the exclusion will have no impact for the worst-case PD determined using Equation 1.

For this EUT, based on the location of ANT M0, ANT M1 and ANT M2 shown in the operational description, and type of antenna array (containing in each mmW Ant), the surface planes identified for PD evaluation to determine the worst-case PD are selected and listed in Table 3-4.

Bottom Front Back Left Right Top **ANT** S2 **S3 S4 S1 S5 S6** М1 No Yes Yes No No No **M2** No Yes Yes Yes No No MO Yes Yes No No Yes No

Table 3-4: PD evaluation plane

The EM simulation is performed to characterize PD at low, mid, and high channels for each supported band. The simulation setup (mesh, convergence criteria and radiation boundary settings) as described in the operational description, ensures the accurate and reliable result for PD simulation on the planes identified. Both point PD and 4cm2-averaged PD distributions on the worst surface plane (i.e., the surface having highest PD value for the beam tested) are plotted and provided in the operational description to show that the PD hotspots are captured in this analysis.

3.5 PD design target

A2172 has their own internal controls for managing uncertainty and declared 2.2 dB uncertainty for use in determining the PD design target for the EUT using Qualcomm SDX50.

To account for the total design related uncertainty, PD_design_target needs to be:

$$PD_design_target < PD_{regulatory_limit} \times 10^{\frac{-total\,uncertainty}{10}}$$

With FCC 4cm²-averaged PD requirement of 10 W/m² and OEM declared 2.2 dB device design related uncertainty, the PD design target for the EUT is determined as:

$$PD_design_target = 7.5 W/m^2$$

Page 20 of 31

3.6 Worst-case housing influence determination

For non-metal material, the material property cannot be accurately characterized at mmW frequencies to date. The estimated material property for the device housing is used in the simulation model, which could influence the accuracy in simulation for PD amplitude quantification. Since the housing influence on PD could vary from surface to surface where the EM field propagates through, the most underestimated surface is used to quantify the worst-case housing influence for conservative assessment.

Since the mmW antenna modules are placed at different location as shown in the operational description only material/housing surrounded has impact on EM field propagation, in turn impact on power density. Furthermore, depending on the type of antenna array, i.e., dipole antenna array or patch antenna array, the nature of EM field propagation in the near field is different. Therefore, the worst-case housing influence is determined per antenna module and per antenna type.

For this EUT, when comparing a simulated 4cm^2 -avgeraged PD and measured 4 cm^2 -avgerated PD, the worst error introduced for each type of antenna array and antenna module when using the estimated material property in the simulation is highlighted in bold numbers in Table 3-5. Thus, the worst-case housing influence, denoted as $\Delta_{min} = \text{Sim. PD}$ – Meas. PD, is determined as:

Table 3-5: Δ_{min} for ANT M0, ANT M1 and ANT M2

Band	Ant	Pol	<i>∆</i> _{min} (dB)
	M1	V	-0.40
	(Patch Beam)	Н	0.41
m201	M2	V	-1.04
n261	(Patch Beam)	Н	-0.37
	M0	V	-0.55
	(Patch Beam)	Н	0.58
	M1	V	2.03
	(Patch Beam)	Н	2.98
n260	M2	V	0.31
N260	(Patch Beam)	Н	1.10
	M0	V	3.34
	(Patch Beam)	Н	2.00

 Δ_{min} represents the worst case where RF exposure is underestimated the most in simulation when using the estimated material property for glass/plastics of the housing. For conservative assessment, the Δ_{min} is used as the worst-case factor and applied to all the beams in the corresponding beam group to determine input power limits in PD char for compliance (see Section 3.7.3 for details).

3.7 PD Char of the EUT

This section describes the PD Char generation that complies with the *PD_design_target* determined in Section 3.5 and is in compliance with the regulatory power density limit.

3.7.1 Scaling factor for single beams

To determine the input power limit at each antenna port, perform simulation at low, mid and high channel for each mmW band supported, with a given input power per active port (P_{ref}):

- 1. Obtain *PD*_{surface} value (the worst PD among all identified surfaces of the EUT) at all three channels for all single beams specified in the codebook of Table 3-1.
- 2. Derive a scaling factor at low, mid and high channel, $s(i)_{low\ or\ mid\ or\ high}$, by:

$$s(i)_{low_or_mid_or_high} = \frac{PD \ design \ target}{sim.PD_{surface}(i)}, \ i \in single \ beams$$
 (2)

3. Determine the worst-case scaling factor, s(i), among low, mid and high channels:

$$s(i) = min\{s_{low}(i), s_{mid}(i), s_{high}(i)\}, i \in single beams (3)$$

and this scaling factor applies to the input power at each antenna port.

3.7.2 Scaling factor for beam pairs

The relative phase between beam pair is not controlled in the EUT and could vary from run to run. Therefore, for beam pair, based on the simulation results, the worst-case scaling factor needs to be determined mathematically to ensure the compliance.

For beam pair, extract the E-fields and H-fields from the corresponding single beams at low, mid and high channel for each supported band and for all identified surfaces of the EUT.

For a given beam pair containing $beam_a$ and $beam_b$, and for a given channel, let relative phase between $beam_a$ and $beam_b = \emptyset$, and the total PD of the beam pair can be expressed as:

$$total PD (\emptyset) = \frac{1}{2} \sqrt{Re\{PD_x(\emptyset)\}^2 + Re\{PD_y(\emptyset)\}^2 + Re\{PD_z(\emptyset)\}^2}$$
$$= \frac{1}{2} Re\left\{ \left(\overrightarrow{E_a} + \overrightarrow{E_b} e^{J\omega \overrightarrow{\emptyset}} \right) \times \left(\overrightarrow{H_a} + \overrightarrow{H_b} e^{J\omega \overrightarrow{\emptyset}} \right)^* \right\} (4)$$

where, $PD_x(\emptyset)$, $PD_y(\emptyset)$ and $PD_z(\emptyset)$ are the three components of the $total\ PD\ (\emptyset)$; E_a and H_a are the extracted E-fields and H-fields of $beam_a$, while E_b and H_b are the extracted E-fields and H-fields of $beam_b$.

Sweep \emptyset with a 5° step from 0° to 360° to determine the worst-case, $\emptyset_{worstcase}$, which results in the highest $total\ PD\ (\emptyset)$ among all identified surfaces for this beam pair at this channel. For details on worst case $total\ PD\ (\emptyset)$ derivation, see Appendix A.

Follow the above procedure to determine $\emptyset_{worstcase}$ for all three channels, and obtain the scaling factor given by the below equation for low, mid and high channels:

$$s(i)_{low_or_mid_or_high} = \frac{PD \ design \ target}{total \ PD \ (\emptyset(i)_{worstcase})}, i \in beam \ pairs$$
 (5)

The $\emptyset_{worstcase}$ varies with channel and beam pair, the lowest scaling factor among all three channels, s(i), is determined for the beam pair i:

$$s(i) = min\{s_{low}(i), s_{mid}(i), s_{high}(i)\}, i \in beam \ pairs \ \ (6)$$

Page 22 of 31

3.7.3 Input power limit

The PD Char specifies the limit of input power at antenna port that corresponds to PD_design_target for all the beams.

Ideally, if there is no uncertainty associated with hardware design, the input power limit, denoted as input.power.limit(i), for beam i can be obtained after accounting for the housing influence (Δ_{min}) determined in Table 3-6 of Section 3.7.3, given by:

input.power.limit(i) =
$$P_{ref} + 10 * log(s(i)) + \Delta_{min}$$
, $i \in all beams$ (7)

where $8 \, dBm$ is the input power using in simulation; s(i) is the scaling factor obtained from Eq. (3) or Eq. (6) for beam i, Δ_{min} is the worst-case housing influence factor (determined in Table 3-8) for beam i.

If simulation overestimates the housing influence, then Δ_{min} (= simulated PD – measured PD) is negative, which means that the measured PD would be higher than the simulated PD. The input power to antenna elements determined via simulation must be decreased for compliance.

Similarly, if simulation underestimates the loss, then Δ_{min} is positive (measured PD would be lower than the simulated value). Input power to antenna elements determined via simulation can be increased and still be PD compliant.

In reality, the hardware design has uncertainty which must be properly considered. In Section 3.6, the TxAGC uncertainty is embedded in the process of Δ_{min} determination. Since TxAGC uncertainty is already accounted for in PD_design_target (see Section 3.5), it needs to be removed to avoid double counting this uncertainty.

Thus, Equation 7 is modified to:

If -TxAGC uncertainty $< \Delta_{min} <$ TxAGC uncertainty,

input.power.limit(i) = $P_{ref} + 10 * log(s(i))$, $i \in all beams$ (8)

else if Δ_{min} < -TxAGC uncertainty,

input. power. $limit(i) = P_{ref} + 10 * log(s(i)) + (\Delta_{min} + TxAGC uncertainty), i \in all beams (9)$

else if Δ_{min} > TxAGC uncertainty,

input. power. $limit(i) = P_{ref} + 10 * log(s(i)) + (\Delta_{min} - TxAGC uncertainty), i \in all beams (10)$

Following above logic, the *input.power.limit* for this EUT can be calculated using Equations (8), (9) and (10), i.e.,

Table 3-6: input.power.limit calculation

Band	Ant	Pol	Δ _{min} (dB)	Input.power.limit (dBm) =	Notes
	M1	V	-0.40	12 dBm + 10 * log(s(i))	Using Eq. 8
	(Patch Beam)	Н	0.41	12 dBm + 10 * log(s(i))	Using Eq. 8
n261	M2	V	-1.04	12 dBm + 10 * log(s(i)) - 1.04	Using Eq. 9
11201	(Patch Beam)	Н	-0.37 12 dBm + 10 * log(s(i))		Using Eq. 8
	MO	V	-0.55	12 dBm + 10 * log(s(i))	Using Eq. 8
	(Patch Beam)	Н	0.58 12 dBm + 10 * log(s(i))		Using Eq. 8
	M1	V	2.03	12 dBm + 10 * log(s(i)) + 1.03	Using Eq. 10
	(Patch Beam)	Н	2.98 11 dBm + 10 * log(s(i)) + 1.98		Using Eq. 10
n260	M2	V	0.31	12 dBm + 10 * log(s(i))	Using Eq. 8
11200	(Patch Beam)	Н	1.10	11 dBm + 10 * log(s(i)) + 0.1	Using Eq. 10
	MO	V	3.34	11 dBm + 10 * log(s(i)) + 2.34	Using Eq. 10
	(Patch Beam)	Н	2.00	11 dBm + 10 * log(s(i)) + 1.0	Using Eq. 10

Thus, the EUT PD Char for n261 and n260 bands is as shown in Table 3-7.

Table 3-7: PD Char of the EUT

Table 3-7: PD Char of the EUT										
	n261			n260						
Paired ID (Beam Pair)	Beam ID	Input Power Limit (dBm)	Paired ID (Beam Pair)	Beam ID	Input Power Limit (dBm)					
	0	6.4		0	7.0					
	1	6.4		1	7.0					
	2	16.2		2	14.6					
	3	16.2		3	14.6					
	4	6.3		4	6.2					
	5	6.3		5	6.2					
	6	3.4		6	4.6					
	7	3.6		7	4.9					
	8	4.8		8	4.3					
	9	12.4		9	10.7					
	10	13.3		10	11.6					
	11	12.5		11	10.8					
	12	3.2		12	4.3					
	13	3.1		13	3.1					
	14	3.2		14	3.6					
	15	3.3		15	4.2					
	16	4.7		16	4.8					
	17	13.2		17	11.6					
	18	12.6		18	10.9					
N/A	19	3.1	N/A	19	3.6					
	20	3.1		20	2.8					
	21	1.5		21	1.8					
	22	1.9		22	2.3					
	23	2.3		23	3.0					
	24	2.8		24	2.5					
	25	1.7		25	1.9					
	26	-0.1		26	1.9					
	27	0.3		27	1.4					
	28	0.4		28	0.1					
	29	0.1		29	0.4					
	30	0.1		30	1.4					
	31	1.8		31	2.3					
	32	2.9		32	2.5					
	33	3.0		33	2.8					
	34	1.9		34	2.2					
	35	0.1		35	1.5					
	36	0.4		36	0.5					
		λ1/Λ		37	0.1					
		N/A		38	1.0					

	n261		n260			
Paired ID (Beam Pair)	Beam ID	Input Power Limit (dBm)	Paired ID (Beam Pair)	Beam ID	Input Power Limit (dBm)	
	128	6.4		128	8.0	
	129	6.4		129	8.0	
	130	13.5		130	12.0	
	131	13.5		131	12.0	
	132	6.8		132	6.7	
	133	6.8		133	6.7	
	134	3.6		134	5.0	
	135	3.4		135	4.9	
	136	3.2		136	5.5	
	137	10.1		137	8.5	
	138	10.5		138	9.0	
	139	10.0		139	8.5	
	140	3.6		140	4.0	
	141	4.0		141	3.8	
	142	3.6		142	3.8	
	143	3.5		143	5.0	
	144	3.1		144	5.3	
	145	10.1		145	8.5	
	146	11.1		146	9.5	
N/A	147	4.0	N/A	147	3.7	
	148	3.7		148	4.3	
	149	0.5		149	3.4	
	150	1.5		150	3.2	
	151	0.7		151	2.6	
	152	1.0		152	2.9	
	153	1.1		153	2.7	
	154	1.2		154	1.5	
	155	1.0		155	1.4	
	156	1.3		156	0.9	
	157	1.0		157	1.5	
	158	1.6		158	1.4	
	159	0.4		159	3.8	
	160	2.1		160	2.5	
	161	0.6		161	2.8	
	162	1.5		162	2.8	
	163	0.9		163	2.0	
	164	1.2		164	1.0	
		ΛΙ/Λ		165	0.8	
		N/A		166	2.1	

	n261			n260	
Paired ID (Beam Pair)	Beam ID	Input Power Limit (dBm)	Paired ID (Beam Pair)	Beam ID	Input Power Limit (dBm)
128	0	3.1	128	0	4.0
129	1	3.1	129	1	4.0
130	2	9.0	130	2	12.0
131	3	9.0	131	3	12.0
132	4	3.2	132	4	3.8
133	5	3.2	133	5	3.8
134	6	0.4	134	6	1.4
135	7	0.4	135	7	1.0
136	8	0.9	136	8	1.0
137	9	5.0	137	9	8.5
138	10	6.2	138	10	9.0
139	11	5.0	139	11	8.5
140	12	-0.4	140	12	1.0
141	13	0.0	141	13	0.6
142	14	-0.4	142	14	1.0
143	15	0.4	143	15	1.1
144	16	0.8	144	16	1.1
145	17	6.6	145	17	8.5
146	18	5.5	146	18	9.5
147	19	-0.3	147	19	1.2
148	20	-0.3	148	20	1.2
149	21	-2.0	149	21	-1.2
150	22	-2.0	150	22	-1.2
151	23	-1.4	151	23	-0.9
152	24	-1.4	152	24	-1.2
153	25	-1.8	153	25	-1.2
154	26	-3.0	154	26	-1.4
155	27	-2.7	155	27	-1.1
156	28	-2.7	156	28	-1.5
157	29	-2.8	157	29	-1.1
158	30	-3.0	158	30	-1.4
159	31	-1.8	159	31	-1.2
160	32	-1.8	160	32	-1.3
161	33	-1.6	161	33	-1.3
162	34	-1.7	162	34	-1.2
163	35	-3.1	163	35	-1.0
164	36	-2.6	164	36	-1.4
	N/A		165	37	-1.4
	11//7		166	38	-1.0

A Worst Phase Derivation for Beam Pair

For beam pairs, since the relative phase between two beams is unknown – finding the worst-case PD by sweeping the relative phase for all possible angles is required for conservative assessment.

Assuming E-field and H-field of *beam_a* are $\{Ex_{_a}, Ey_{_a}, Ez_{_a}\}$ and $\{Hx_{_a}, Hy_{_a}, Hz_{_a}\}$, respectively; E-field and H-field of *beam_b* are $\{Ex_{_b}, Ey_{_b}, Ez_{_b}\}$ and $\{Hx_{_b}, Hy_{_b}, Hz_{_b}\}$, respectively; and the relative phase is \emptyset , for beam pair consisting of *beam_a* and *beam_b*, the combined E and H, $\{Ex_{_pair_i}, Ey_{_pair_i}, Ez_{_pair_i}\}$ and $\{Hx_{_pair_i}, Hy_{_pair_i}, Hz_{_pair_i}\}$, can be expressed as:

$$\begin{split} Ex(\emptyset)_{pair_i} &= E_{x_a} + E_{x_b} \times e^{-j\omega\phi} \\ Ey(\emptyset)_{pair_i} &= E_{y_a} + E_{y_b} \times e^{-j\omega\phi} \\ Ez(\emptyset)_{pair_i} &= E_{z_a} + E_{z_b} \times e^{-j\omega\phi} \\ Hx(\emptyset)_{pair_i} &= H_{x_a} + H_{x_b} \times e^{-j\omega\phi} \\ Hy(\emptyset)_{pair_i} &= H_{y_a} + H_{y_b} \times e^{-j\omega\phi} \\ Hz(\emptyset)_{pair_i} &= H_{z_a} + H_{z_b} \times e^{-j\omega\phi} \end{split}$$

The combined PD can then be calculated:

$$\begin{split} PDx(\emptyset)_{pair_i} &= Ey(\emptyset)_{pair_i} \times Hz(\emptyset)^*_{pair_i} - Ez(\emptyset)_{pair_i} \times Hy(\emptyset)^*_{pair_i} \\ PDy(\emptyset)_{pair_i} &= Ez(\emptyset)_{pair_i} \times Hx(\emptyset)^*_{pair_i} - Ex(\emptyset)_{pair_i} \times Hz(\emptyset)^*_{pair_i} \\ PDz(\emptyset)_{pair_i} &= Ex(\emptyset)_{pair_i} \times Hy(\emptyset)^*_{pair_i} - Ey(\emptyset)_{pair_i} \times Hx(\emptyset)^*_{pair_i} \\ PD(\emptyset) &= \frac{1}{2} \sqrt{Re\{PDx(\emptyset)\}^2_{pair_i} + Re\{PDy(\emptyset)\}^2_{pair_i} + Re\{PDz(\emptyset)\}^2_{pair_i}} \end{split}$$

Sweep \emptyset from 0 degree to 360 degree to find the highest PD (out of low, mid and high channel) and its corresponding \emptyset , $\emptyset_{worstcase}$, for all the beam pairs specified in the $codebook_sim$. The worst-case scaling factor s(i) for beam pair should be determined with $\emptyset(i)_{worstcase}$.

B Simulated input.power.limit

Table B-1: Lists input power limit per channel per band for all the beams that EUT supports.

able B-1. Li	n261					n260				
		11201			11200					
Paired ID (Beam Pair)	Beam ID	Low	Mid	High	Paired ID (Beam Pair)	Beam ID	Low	Mid	High	
	0	19.6	21.7	17.3		0	19.0	19.3	18.2	
	1	19.6	21.7	17.3		1	19.0	19.3	18.2	
	2	2.3	2.0	2.3		2	4.5	4.1	4.5	
	3	2.3	2.0	2.3		3	4.5	4.1	4.5	
	4	16.7	17.2	17.4		4	16.7	17.4	18.3	
	5	16.7	17.2	17.4		5	16.7	17.4	18.3	
	6	39.1	43.7	41.6		6	33.0	29.7	29.3	
	7	41.5	38.0	36.1		7	30.8	29.2	28.2	
	8	28.0	31.7	29.2		8	35.7	34.2	31.0	
	9	4.8	5.5	4.3		9	9.6	11.0	8.6	
	10	4.4	4.3	3.9		10	8.9	8.7	7.9	
	11	5.4	5.2	4.5		11	10.7	10.4	9.0	
	12	32.3	32.6	36.1		12	28.2	22.8	27.2	
	13	31.8	37.0	33.9		13	32.9	36.8	37.2	
	14	34.1	34.1	35.8		14	31.9	32.0	33.0	
	15	44.8	42.3	39.7		15	34.8	36.3	30.9	
	16	31.9	31.0	31.2		16	31.8	30.8	31.2	
	17	4.3	4.5	4.0		17	8.7	9.0	7.9	
	18	5.2	5.0	4.4		18	10.5	9.9	8.8	
N/A	19	33.6	36.0	36.9	N/A	19	32.9	30.7	31.4	
	20	34.1	36.3	35.4		20	32.2	35.4	39.3	
	21	44.6	66.7	55.3		21	62.8	58.7	53.6	
	22	49.9	61.2	56.6		22	56.1	55.9	50.7	
	23	56.3	35.6	39.5		23	44.6	47.9	46.7	
	24	50.0	45.6	47.8		24	53.1	48.7	54.4	
	25	64.9	62.3	61.5		25	62.5	60.9	55.8	
	26	73.8	66.8	76.3		26	48.5	39.4	46.0	
	27	62.1	69.9	67.7		27	55.2	54.9	50.7	
	28	58.6	67.9	64.2		28	68.0	69.8	74.4	
	29	69.9	73.3	72.7		29	60.7	68.3	66.4	
	30	70.1	72.9	73.2		30	54.4	43.7	47.2	
	31	49.4	62.9	53.5		31	56.6	55.6	50.7	
	32	43.7	48.4	48.5		32	46.5	49.4	54.0	
	33	47.8	30.6	42.2		33	49.7	50.1	47.0	
	34	61.3	57.3	54.0		34	58.2	56.8	55.2	
	35	67.7	71.8	72.3		35	53.5	42.4	46.5	
	36	58.8	68.4	64.8		36	61.3	66.8	61.0	
		N	/A			37	64.9	73.6	74.4	
						38	56.7	60.6	60.4	

		n261			n260				
Paired ID (Beam Pair)	Beam ID	Low	Mid	High	Paired ID (Beam Pair)	Beam ID	Low	Mid	High
	128	21.8	21.0	17.7		128	18.9	18.1	16.9
	129	21.8	21.0	17.7		129	18.9	18.1	16.9
	130	2.7	2.7	3.0		130	5.3	5.5	6.0
	131	2.7	2.7	3.0		131	5.3	5.5	6.0
	132	13.9	18.4	19.9		132	16.5	15.9	13.8
	133	13.9	18.4	19.9		133	16.5	15.9	13.8
	134	41.7	40.4	39.8		134	37.4	36.7	32.7
	135	39.0	43.3	36.9		135	35.8	37.8	38.4
	136	37.9	45.5	40.8		136	33.6	33.6	31.4
	137	5.8	4.8	6.6		137	11.6	9.5	13.3
	138	4.0	5.3	6.0		138	8.0	10.6	12.0
	139	6.8	4.0	4.6		139	13.5	7.9	9.1
	140	28.0	31.1	41.2		140	30.5	25.9	25.1
	141	19.1	38.0	34.2		141	30.1	31.9	30.0
	142	30.2	33.7	41.3		142	32.1	25.2	24.7
	143	42.7	39.0	36.3		143	37.6	37.6	36.1
	144	37.7	47.0	38.4		144	34.3	34.8	33.5
	145	3.7	5.5	6.6		145	7.4	11.0	13.3
	146	4.5	5.0	5.3		146	9.0	9.9	10.6
N/A	147	23.9	36.9	38.1	N/A	147	32.6	28.2	30.4
	148	27.0	38.1	40.8		148	29.0	28.9	28.6
	149	84.2	74.5	60.3		149	54.7	53.6	44.5
	150	66.8	66.1	64.3		150	52.5	49.0	56.5
	151	76.4	81.1	58.7		151	59.6	62.9	66.0
	152	69.0	75.8	65.7		152	61.7	61.0	52.7
	153	67.5	73.5	68.8		153	61.1	63.2	55.5
	154	60.4	59.5	72.7		154	54.8	49.5	48.0
	155	42.2	75.8	72.7		155	56.3	50.9	48.0
	156	36.7	70.0	61.9		156	60.3	62.6	59.3
	157	52.9	73.0	76.3		157	48.1	54.2	44.1
	158	55.6	65.1	66.5		158	54.2	48.9	55.5
	159	87.0	75.7	63.8		159	47.9	47.3	49.6
	160	59.1	49.1	54.0		160	56.4	50.8	66.3
	161	74.4	83.4	66.3		161	62.9	61.3	56.6
	162	65.8	67.6	62.9		162	60.6	62.3	51.7
	163	57.3	76.5	77.8		163	48.7	45.3	41.8
	164	37.9	72.9	62.3		164	61.6	59.4	56.1
		NI NI	/A			165	55.9	63.8	53.8
		IN				166	47.8	43.0	40.8

	n261		n260			
Paired ID (Beam Pair)	Beam ID	Worst Case Sim Beam Pair	Paired ID (Beam Pair)	Beam ID	Worst Case Sim Beam Pair	
128	0	47.1	128	0	38.1	
129	1	47.1	129	1	38.1	
130	2	8.6	130	2	5.0	
131	3	8.6	131	3	5.0	
132	4	35.6	132	4	31.4	
133	5	35.6	133	5	31.4	
134	6	87.5	134	6	69.6	
135	7	87.3	135	7	56.0	
136	8	77.6	136	8	75.8	
137	9	21.6	137	9	11.8	
138	10	14.4	138	10	8.8	
139	11	16.2	139	11	8.5	
140	12	74.6	140	12	54.2	
141	13	74.7	141	13	65.1	
142	14	81.2	142	14	59.6	
143	15	86.8	143	15	75.0	
144	16	79.4	144	16	69.0	
145	17	15.0	145	17	11.5	
146	18	19.0	146	18	9.3	
147	19	79.9	147	19	56.8	
148	20	79.5	148	20	46.8	
149	21	142.0	149	21	127.0	
150	22	149.2	150	22	125.7	
151	23	130.2	151	23	117.9	
152	24	130.5	152	24	107.6	
153	25	143.0	153	25	116.2	
154	26	143.6	154	26	68.7	
155	27	139.1	155	27	98.3	
156	28	129.7	156	28	105.8	
157	29	136.1	157	29	90.5	
158	30	147.9	158	30	104.4	
159	31	123.3	159	31	125.1	
160	32	143.3	160	32	127.8	
161	33	138.4	161	33	119.7	
162	34	139.7	162	34	116.8	
163	35	152.0	163	35	89.9	
164	36	136.2	164	36	104.4	
	N/A		165	37	88.8	
	1 N/ / \		166	38	95.7	