Frequency: 836.6 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.907$ S/m; $\epsilon_r = 40.657$; $\rho = 1000$ kg/m³ DASY5 Configuration:

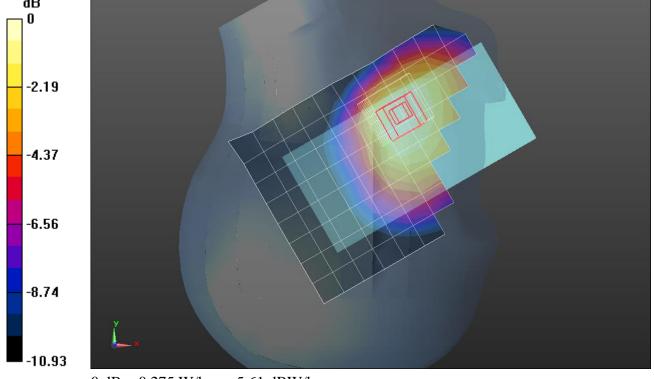
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(8.89, 8.89, 8.89) @ 836.6 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_GPRS 2 slots_ch 190/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.275 W/kg

RHS/Touch_GPRS 2 slots_ch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 17.08 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.174 W/kg

Smallest distance from peaks to all points 3 dB below = 16.5 mm

Ratio of SAR at M2 to SAR at M1 = 77%

Maximum value of SAR (measured) = 0.275 W/kg

0 dB = 0.275 W/kg = -5.61 dBW/kg

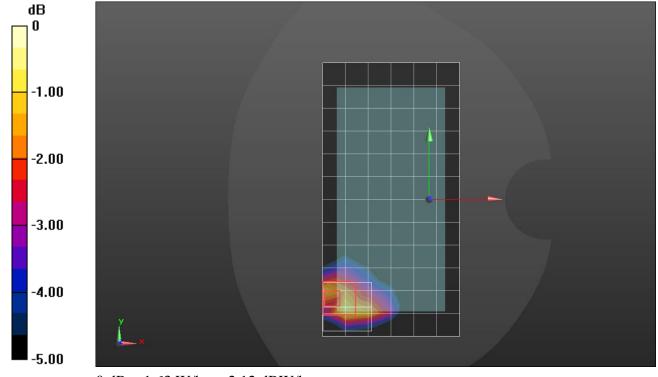
Frequency: 824.2 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 825 MHz; σ = 0.917 S/m; ϵ_r = 42.012; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 824.2 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/GPRS 2 slots_ch 128/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.42 W/kg

Rear/GPRS 2 slots_ch 128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.74 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 0.950 W/kg; SAR(10 g) = 0.506 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 39.6%

Maximum value of SAR (measured) = 1.63 W/kg

0 dB = 1.63 W/kg = 2.12 dBW/kg

Frequency: 836.6 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 39.96$; $\rho = 1000$ kg/m³ DASY5 Configuration:

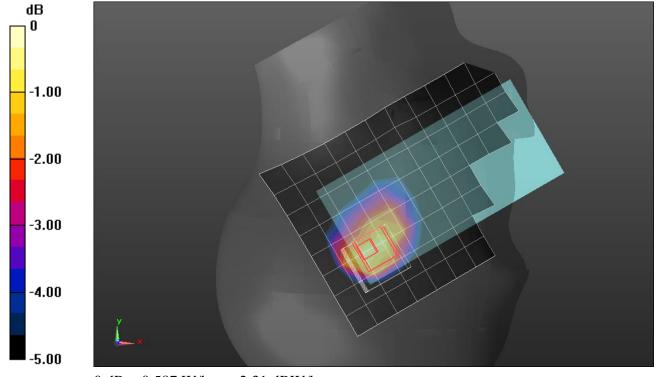
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_GPRS 2 slots_ch 190/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.528 W/kg

RHS/Touch_GPRS 2 slots_ch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 23.13 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 0.744 W/kg

SAR(1 g) = 0.425 W/kg; SAR(10 g) = 0.285 W/kg

Smallest distance from peaks to all points 3 dB below = 17.9 mm

Ratio of SAR at M2 to SAR at M1 = 49.9%

Maximum value of SAR (measured) = 0.587 W/kg

0 dB = 0.587 W/kg = -2.31 dBW/kg

Frequency: 836.6 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.929$ S/m; $\epsilon_r = 40.622$; $\rho = 1000$ kg/m³ DASY5 Configuration:

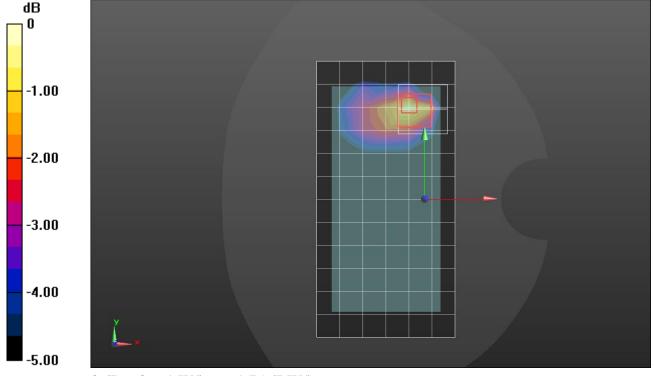
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/GPRS 2 slots_ch 190 spotcheck/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.626 W/kg

Rear/GPRS 2 slots_ch 190 spotcheck/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 25.23 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.474 W/kg; SAR(10 g) = 0.265 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 57.3%

Maximum value of SAR (measured) = 0.669 W/kg

0 dB = 0.669 W/kg = -1.75 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.44 S/m; ϵ_r = 38.288; ρ = 1000 kg/m³ DASY5 Configuration:

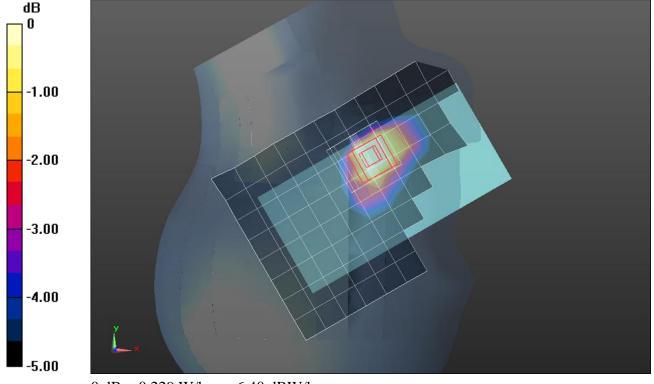
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(7.71, 7.71, 7.71) @ 1880 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_GPRS 2 slots_ch 661/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.228 W/kg

RHS/Touch_GPRS 2 slots_ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 12.04 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.191 W/kg; SAR(10 g) = 0.120 W/kg

Smallest distance from peaks to all points 3 dB below = 14.3 mm

Ratio of SAR at M2 to SAR at M1 = 68%

Maximum value of SAR (measured) = 0.229 W/kg

0 dB = 0.229 W/kg = -6.40 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.439$ S/m; $\epsilon_r = 39.244$; $\rho = 1000$ kg/m³ DASY5 Configuration:

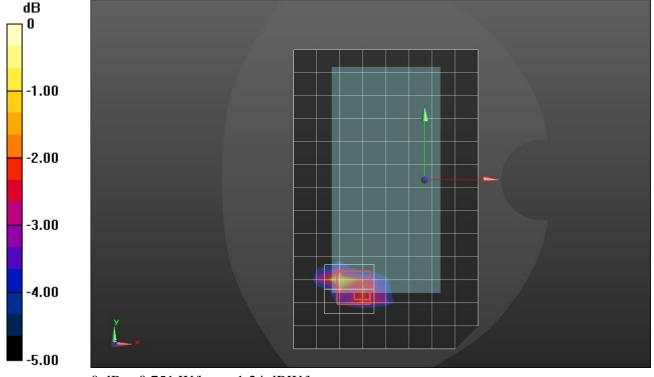
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1880 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/GPRS 2 slots_ch 661/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.613 W/kg

Rear/GPRS 2 slots_ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.76 V/m; Power Drift = 0.04 dB

Reference value = 20.76 v/m, Power Drift = 0.04 db


Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.284 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.751 W/kg

0 dB = 0.751 W/kg = -1.24 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.439 S/m; ϵ_r = 39.244; ρ = 1000 kg/m³ DASY5 Configuration:

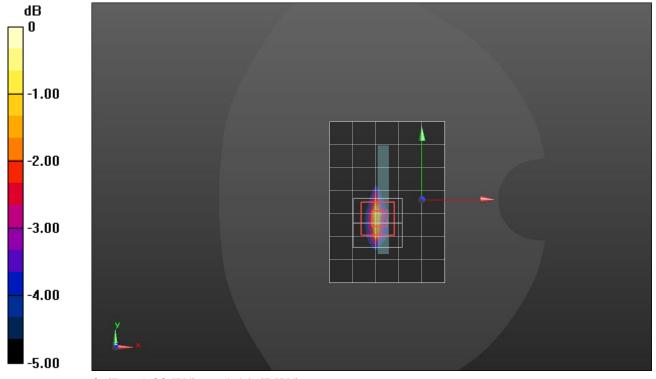
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1880 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 3/GPRS 2 slots_ch 661/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.24 W/kg

Edge 3/GPRS 2 slots_ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 29.75 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 0.936 W/kg; SAR(10 g) = 0.443 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 51.8%

Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

Frequency: 1909.8 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1910 MHz; $\sigma = 1.432 \text{ S/m}$; $\varepsilon_r = 38.237$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

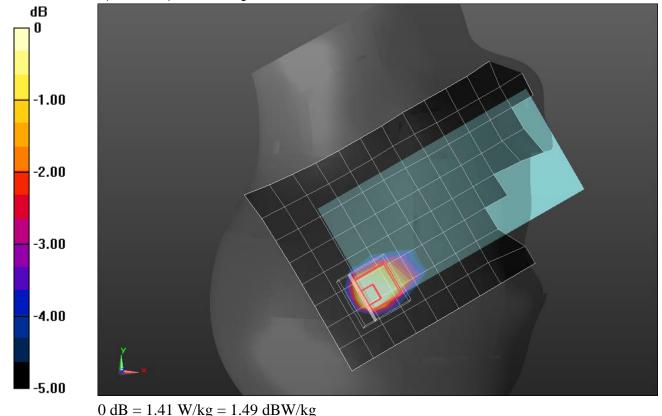
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1909.8 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_GPRS 2 slots_ch 810/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.26 W/kg

RHS/Touch_GPRS 2 slots_ch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 33.31 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 2.32 W/kg

SAR(1 g) = 0.997 W/kg; SAR(10 g) = 0.534 W/kg

Smallest distance from peaks to all points 3 dB below = 8.3 mm

Ratio of SAR at M2 to SAR at M1 = 41.9%

Maximum value of SAR (measured) = 1.41 W/kg

Frequency: 1909.8 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1910 MHz; σ = 1.398 S/m; ϵ_r = 40.253; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1380; Calibrated: 8/27/2019
- Probe: EX3DV4 SN3772; ConvF(7.3, 7.3, 7.3) @ 1909.8 MHz; Calibrated: 2/21/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

Rear/GPRS 2 slots_ch 810/Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 W/kg


Rear/GPRS 2 slots_ch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 29.67 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.387 W/kg Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon_r = 38.288$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/15/2020 4:50:10 PM

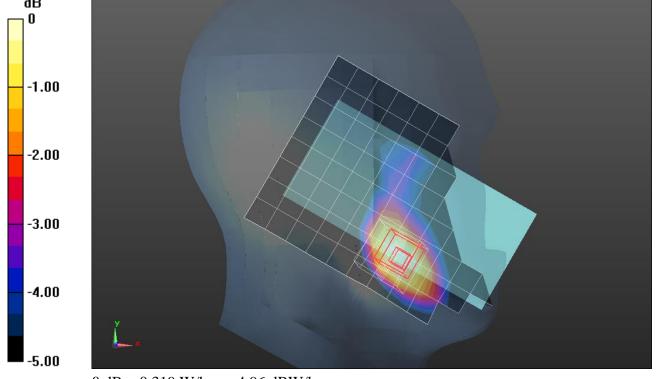
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(7.71, 7.71, 7.71) @ 1880 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

LHS/Touch_GPRS 2 slots_ch 661/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.325 W/kg

LHS/Touch_GPRS 2 slots_ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 14.89 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 0.401 W/kg

SAR(1 g) = 0.262 W/kg; SAR(10 g) = 0.169 W/kg

Smallest distance from peaks to all points 3 dB below = 13.1 mm

Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 0.319 W/kg

0 dB = 0.319 W/kg = -4.96 dBW/kg

Frequency: 1909.8 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1910 MHz; σ = 1.449 S/m; ϵ_r = 39.35; ρ = 1000 kg/m³ DASY5 Configuration:

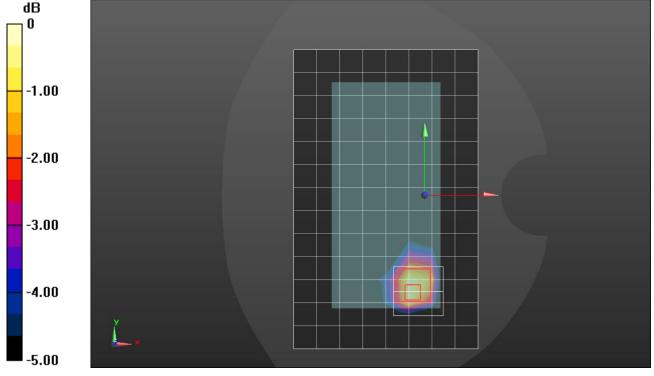
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1909.8 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/GPRS 2 slots_ch 810/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.15 W/kg

Rear/GPRS 2 slots_ch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 28.21 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 0.944 W/kg; SAR(10 g) = 0.500 W/kg

Smallest distance from peaks to all points 3 dB below = 12.9 mm

Ratio of SAR at M2 to SAR at M1 = 49.6%

Maximum value of SAR (measured) = 1.24 W/kg

0 dB = 1.24 W/kg = 0.93 dBW/kg

Frequency: 1909.8 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1910 MHz; σ = 1.451 S/m; ϵ_r = 38.028; ρ = 1000 kg/m³ DASY5 Configuration:

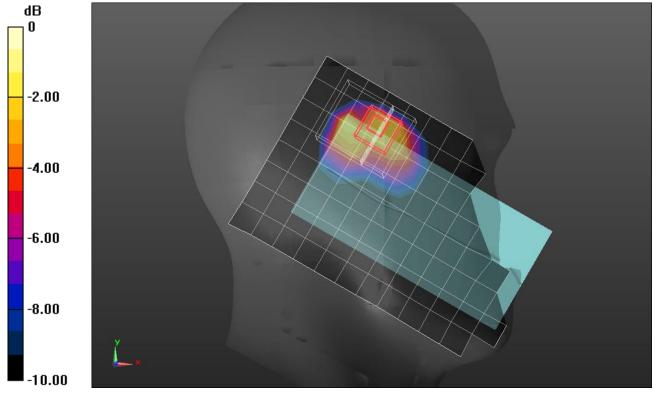
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377; Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1909.8 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

LHS/Touch_GPRS 2 slots_ch 810/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.06 W/kg

LHS/Touch_GPRS 2 slots_ch 810/Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 26.62 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.463 W/kg

Smallest distance from peaks to all points 3 dB below = 6.5 mm

Ratio of SAR at M2 to SAR at M1 = 48.7%

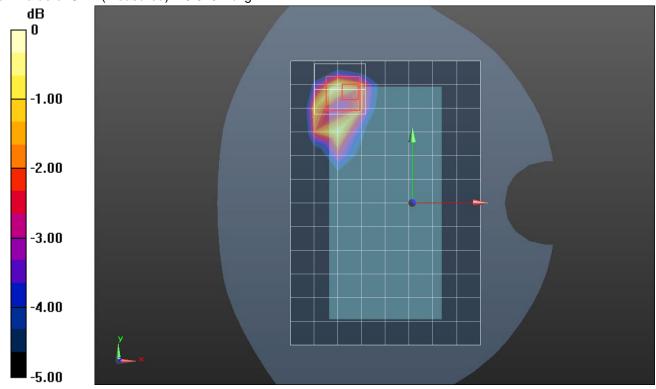
Maximum value of SAR (measured) = 1.44 W/kg

0 dB = 1.44 W/kg = 1.58 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.383$ S/m; $\epsilon_r = 40.324$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/29/2020 10:16:46 AM

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1380: Calibrated: 8/27/2019
- Probe: EX3DV4 SN3772; ConvF(7.3, 7.3, 7.3) @ 1880 MHz; Calibrated: 2/21/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx


Rear/GPRS 2 slots_ch 661/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.565 W/kg

Rear/GPRS 2 slots_ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.43 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.917 W/kg

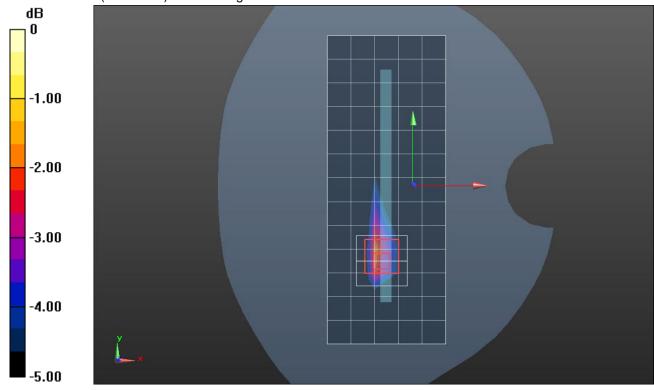
SAR(1 g) = 0.466 W/kg; SAR(10 g) = 0.242 W/kg Maximum value of SAR (measured) = 0.625 W/kg

0 dB = 0.625 W/kg = -2.04 dBW/kg

Frequency: 1909.8 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1910 MHz; σ = 1.398 S/m; ϵ_r = 40.253; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1380: Calibrated: 8/27/2019
- Probe: EX3DV4 SN3772; ConvF(7.3, 7.3, 7.3) @ 1909.8 MHz; Calibrated: 2/21/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

Edge 2/GPRS 2 slots_ch 810/Area Scan (6x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.868 W/kg


Edge 2/GPRS 2 slots_ch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 30.06 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.871 W/kg; SAR(10 g) = 0.425 W/kg Maximum value of SAR (measured) = 1.23 W/kg

0 dB = 1.23 W/kg = 0.90 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.446$ S/m; $\epsilon_r = 38.358$; $\rho = 1000$ kg/m³ DASY5 Configuration:

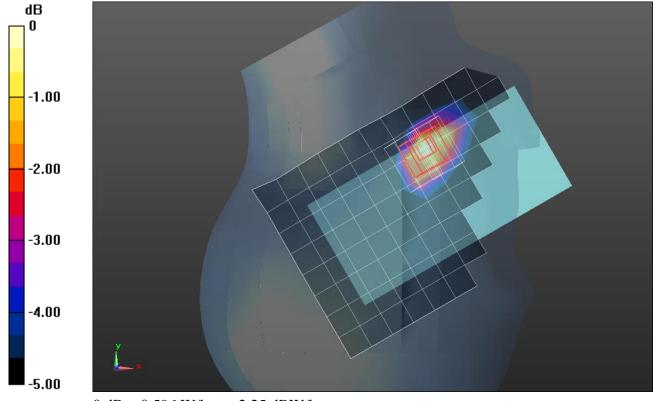
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/20/2019
- Probe: EX3DV4 SN3773; ConvF(7.37, 7.37, 7.37) @ 1880 MHz; Calibrated: 3/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_RMC Rel. 99_ch 9400/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.611 W/kg

RHS/Touch_RMC Rel. 99_ch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 19.74 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 0.701 W/kg

SAR(1 g) = 0.449 W/kg; SAR(10 g) = 0.278 W/kg

Smallest distance from peaks to all points 3 dB below = 13.2 mm

Ratio of SAR at M2 to SAR at M1 = 62%

Maximum value of SAR (measured) = 0.596 W/kg

0 dB = 0.596 W/kg = -2.25 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.439$ S/m; $\epsilon_r = 39.244$; $\rho = 1000$ kg/m³ DASY5 Configuration:

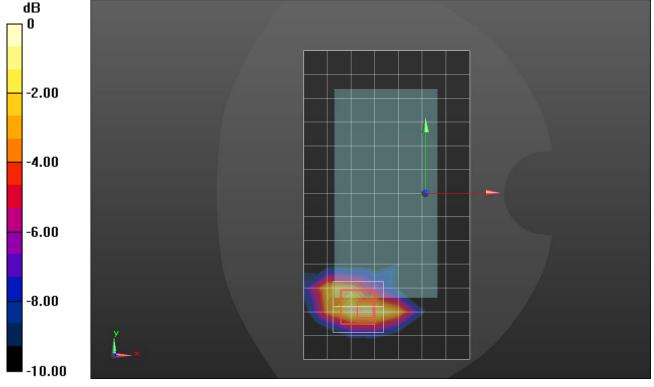
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1880 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/Rel. 99 RMC_ch 9400/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.632 W/kg

Rear/Rel. 99 RMC_ch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 21.12 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 0.928 W/kg

SAR(1 g) = 0.479 W/kg; SAR(10 g) = 0.251 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.662 W/kg

0 dB = 0.662 W/kg = -1.79 dBW/kg

Frequency: 1907.6 MHz; Duty Cycle: 1:1.95434; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1907.6 MHz; σ = 1.448 S/m; ϵ_r = 39.349; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1907.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 3/Rel. 99 RMC_ch 9538/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

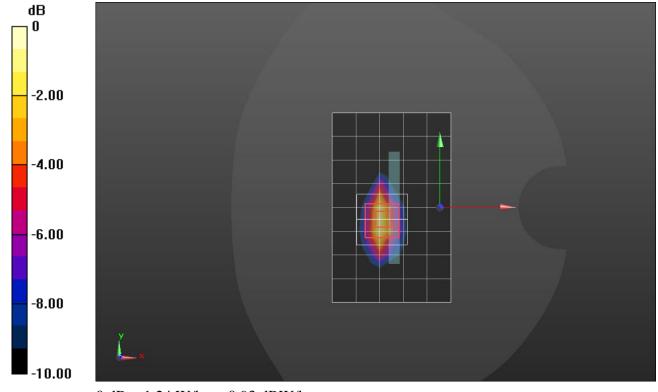
Maximum value of SAR (measured) = 1.07 W/kg

Edge 3/Rel. 99 RMC_ch 9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.53 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.77 W/kg


SAR(1 g) = 0.866 W/kg; SAR(10 g) = 0.401 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 50.5%

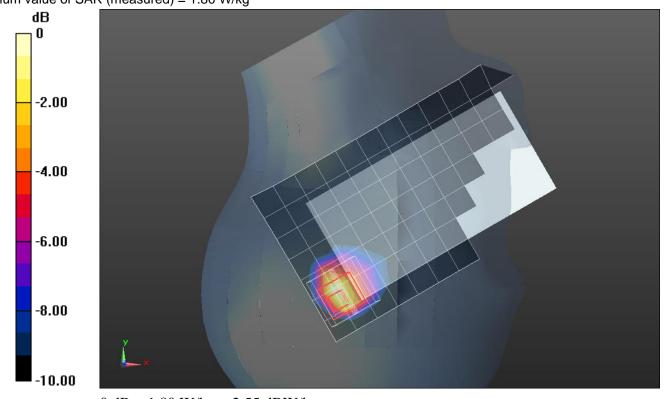
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 W/kg

0 dB = 1.24 W/kg = 0.93 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.383 S/m; ϵ_r = 40.324; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1380; Calibrated: 8/27/2019
- Probe: EX3DV4 SN3772; ConvF(7.3, 7.3, 7.3) @ 1880 MHz; Calibrated: 2/21/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx


RHS/Tilt_RMC Rel. 99_ch 9400/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.80 W/kg

RHS/Tilt_RMC Rel. 99_ch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.76 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 0.994 W/kg; SAR(10 g) = 0.457 W/kg Maximum value of SAR (measured) = 1.80 W/kg

0 dB = 1.80 W/kg = 2.55 dBW/kg

Frequency: 1907.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.448$ S/m; $\epsilon_r = 39.349$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1907.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/Rel. 99 RMC_ch 9538/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

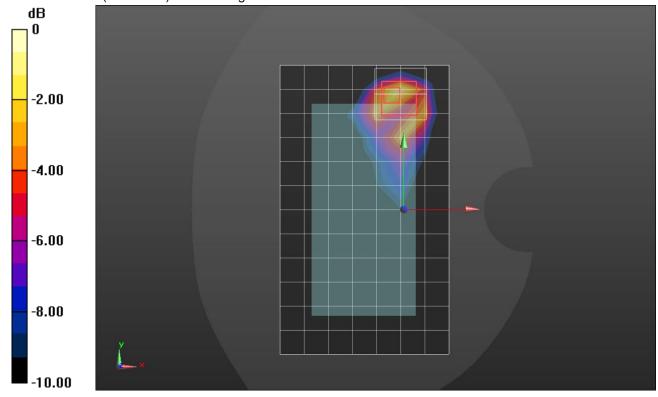
Maximum value of SAR (measured) = 1.25 W/kg

Rear/Rel. 99 RMC_ch 9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 29.74 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.21 W/kg


SAR(1 g) = 0.941 W/kg; SAR(10 g) = 0.444 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 43.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.39 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.446 S/m; ϵ_r = 38.358; ρ = 1000 kg/m³ DASY5 Configuration:

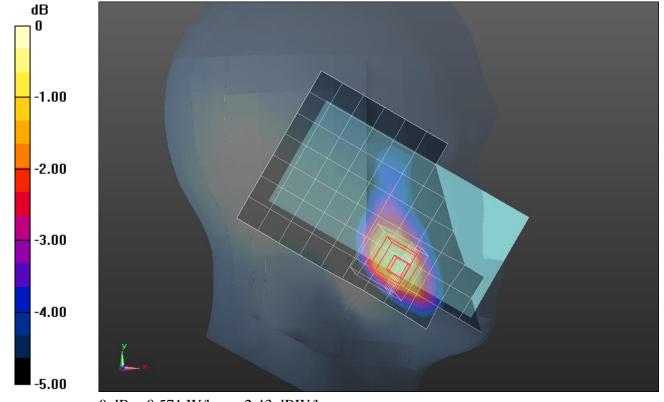
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(7.71, 7.71, 7.71) @ 1880 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

LHS/Touch_RMC Rel. 99_ch 9400/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.515 W/kg

LHS/Touch_RMC Rel. 99_ch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 17.57 V/m; Power Drift = 0.19 dB


Peak SAR (extrapolated) = 0.659 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.267 W/kg

Smallest distance from peaks to all points 3 dB below = 14.7 mm

Ratio of SAR at M2 to SAR at M1 = 63.3%

Maximum value of SAR (measured) = 0.571 W/kg

0 dB = 0.571 W/kg = -2.43 dBW/kg

Frequency: 1907.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.448$ S/m; $\epsilon_r = 39.349$; $\rho = 1000$ kg/m³ DASY5 Configuration:

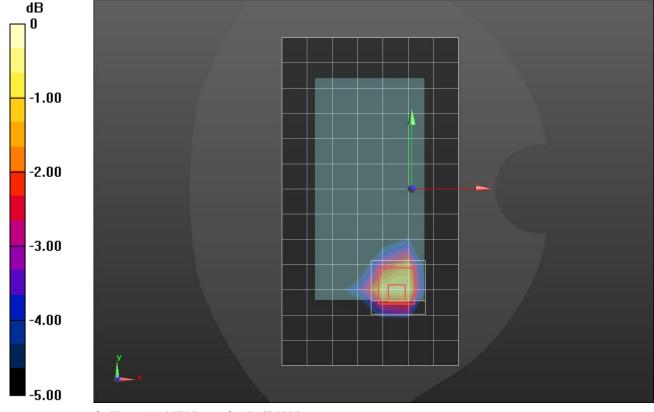
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1907.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/Rel. 99 RMC_ch 9538/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.01 W/kg

Rear/Rel. 99 RMC_ch 9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 26.66 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.867 W/kg; SAR(10 g) = 0.466 W/kg

Smallest distance from peaks to all points 3 dB below = 12.2 mm

Ratio of SAR at M2 to SAR at M1 = 46.5%

Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

Frequency: 1907.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.458$ S/m; $\epsilon_r = 38.09$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1907.6 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

LHS/Touch_RMC Rel. 99_ch 9538/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

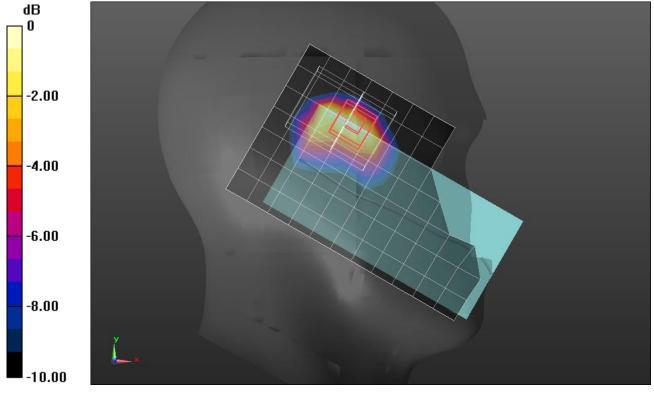
Maximum value of SAR (measured) = 1.68 W/kg

LHS/Touch RMC Rel. 99 ch 9538/Zoom Scan (6x8x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 31.95 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.07 W/kg


SAR(1 g) = 0.986 W/kg; SAR(10 g) = 0.479 W/kg

Smallest distance from peaks to all points 3 dB below = 8.1 mm

Ratio of SAR at M2 to SAR at M1 = 51.1%

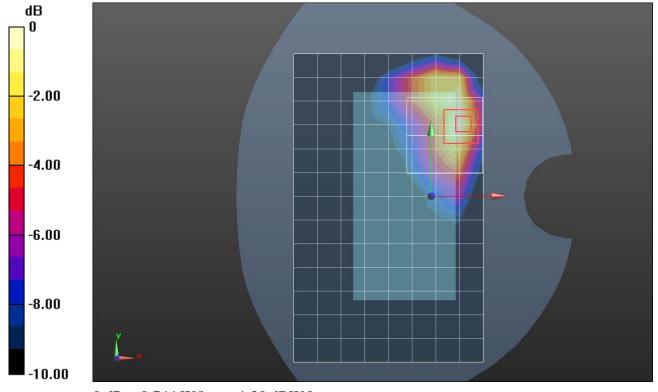
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.383$ S/m; $\epsilon_r = 40.324$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1380: Calibrated: 8/27/2019
- Probe: EX3DV4 SN3772; ConvF(7.3, 7.3, 7.3) @ 1880 MHz; Calibrated: 2/21/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx


Front/_Rel. 99 RMC_ch 9400/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.824 W/kg

Front/_Rel. 99 RMC_ch 9400/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.16 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 0.744 W/kg

0 dB = 0.744 W/kg = -1.28 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.434 S/m; ϵ_r = 38.067; ρ = 1000 kg/m³ DASY5 Configuration:

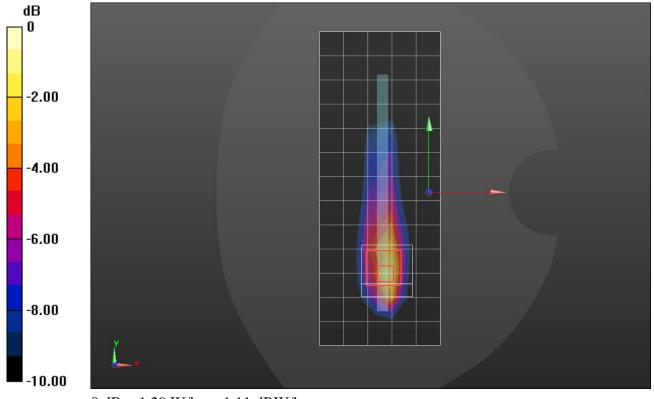
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1880 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Edge 2/Rel. 99 RMC_ch 9400/Area Scan (6x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.12 W/kg

Edge 2/Rel. 99 RMC_ch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.84 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 0.921 W/kg; SAR(10 g) = 0.430 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 48.8%

Maximum value of SAR (measured) = 1.29 W/kg

0 dB = 1.29 W/kg = 1.11 dBW/kg

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.351$ S/m; $\epsilon_r = 38.894$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/20/2019
- Probe: EX3DV4 SN3773; ConvF(7.57, 7.57, 7.57) @ 1732.6 MHz; Calibrated: 3/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_RMC Rel. 99_ch 1413/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

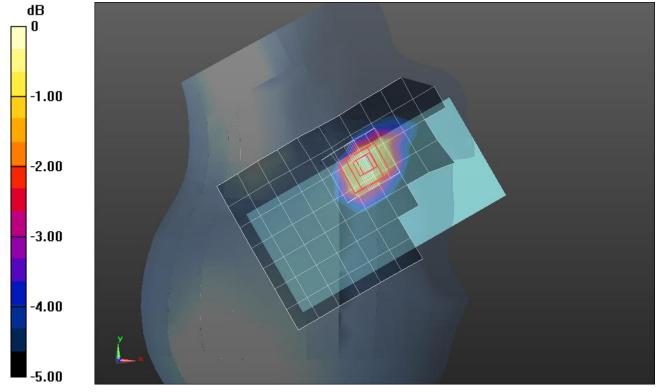
Maximum value of SAR (measured) = 0.192 W/kg

RHS/Touch_RMC Rel. 99_ch 1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 11.40 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.220 W/kg


SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.094 W/kg

Smallest distance from peaks to all points 3 dB below = 15 mm

Ratio of SAR at M2 to SAR at M1 = 67.4%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.194 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.341$ S/m; $\epsilon_r = 39.65$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1617; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1732.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/Rel. 99 RMC_ch 1413/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

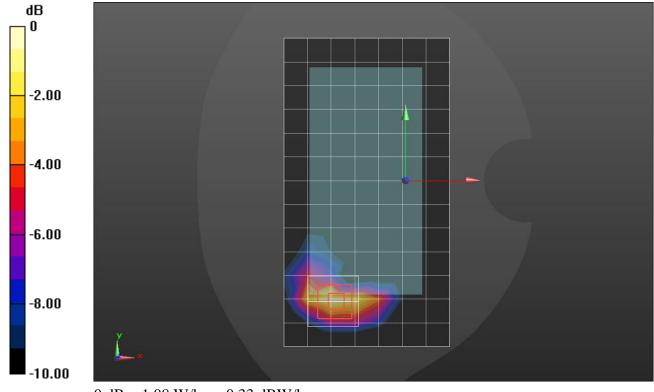
Maximum value of SAR (measured) = 1.07 W/kg

Rear/Rel. 99 RMC_ch 1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 28.59 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.48 W/kg


SAR(1 g) = 0.788 W/kg; SAR(10 g) = 0.411 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 54.4%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.08 W/kg

0 dB = 1.08 W/kg = 0.33 dBW/kg

Frequency: 1712.4 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.328$ S/m; $\epsilon_r = 40.481$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1619: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7589; ConvF(8.66, 8.66, 8.66) @ 1712.4 MHz; Calibrated: 5/8/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)

Date/Time: 8/3/2020 12:42:54 AM

- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CE; Serial: xxxx

Edge 3/Rel. 99 RMC_ch 1312/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

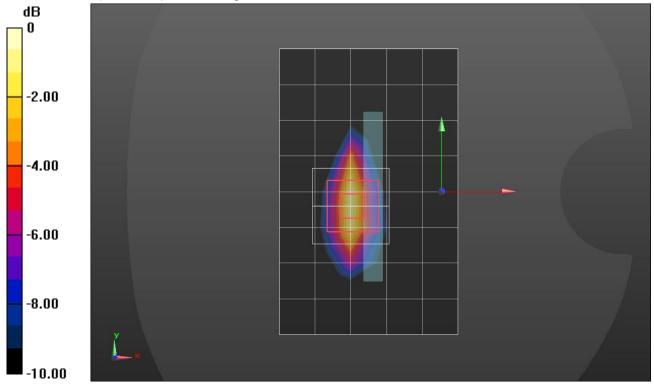
Maximum value of SAR (measured) = 0.954 W/kg

Edge 3/Rel. 99 RMC_ch 1312/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.22 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.50 W/kg


SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.352 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 53.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

Frequency: 1712.4 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.302$ S/m; $\epsilon_r = 39.28$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1617: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1712.4 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Date/Time: 7/24/2020 2:31:35 AM

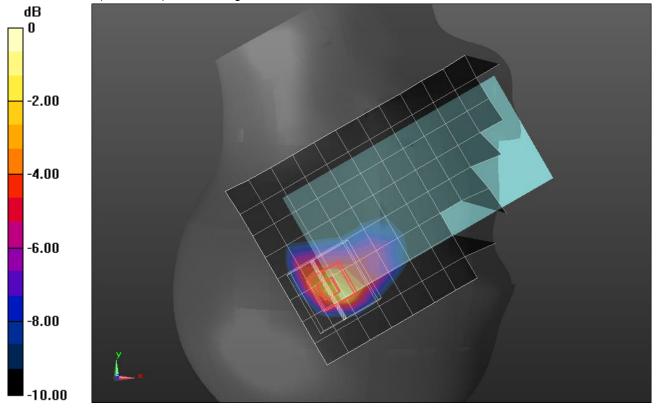
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_RMC Rel. 99_ch 1312/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 W/kg

RHS/Touch_RMC Rel. 99_ch 1312/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 30.13 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.487 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 47.8%

Maximum value of SAR (measured) = 1.61 W/kg

0 dB = 1.61 W/kg = 2.07 dBW/kg

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.385$ S/m; $\epsilon_r = 38.913$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date/Time: 7/29/2020 2:52:34 AM

- Electronics: DAE4ip Sn1617; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1732.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/Rel. 99 RMC_ch 1413/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

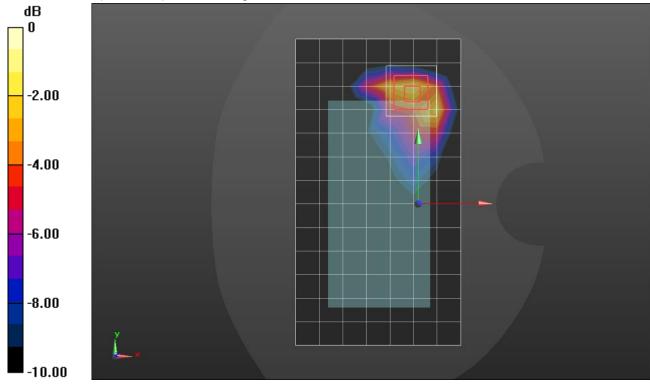
Maximum value of SAR (measured) = 0.745 W/kg

Rear/Rel. 99 RMC_ch 1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 23.26 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.47 W/kg


SAR(1 g) = 0.707 W/kg; SAR(10 g) = 0.342 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 57.2%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.918 W/kg

0 dB = 0.918 W/kg = -0.37 dBW/kg

Frequency: 1712.4 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.391$ S/m; $\epsilon_r = 38.936$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date/Time: 7/28/2020 3:12:01 PM

- Electronics: DAE4ip Sn1617; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1712.4 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 1/Rel. 99 RMC_ch 1312/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

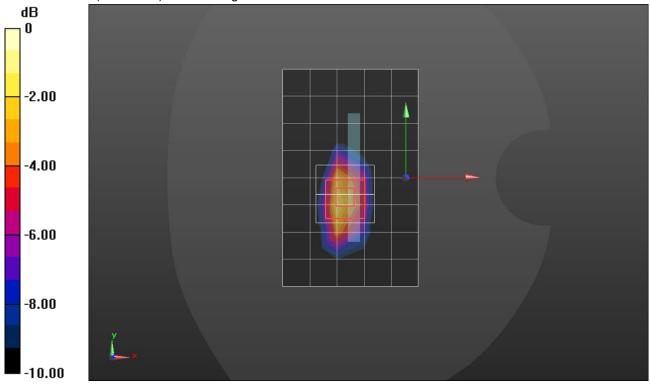
Maximum value of SAR (measured) = 1.08 W/kg

Edge 1/Rel. 99 RMC_ch 1312/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 17.63 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.89 W/kg


SAR(1 g) = 0.981 W/kg; SAR(10 g) = 0.480 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 53.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.35 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.351$ S/m; $\epsilon_r = 38.894$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/20/2019
- Probe: EX3DV4 SN3773; ConvF(7.57, 7.57, 7.57) @ 1732.6 MHz; Calibrated: 3/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

LHS/Touch_RMC Rel. 99_ch 1413/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

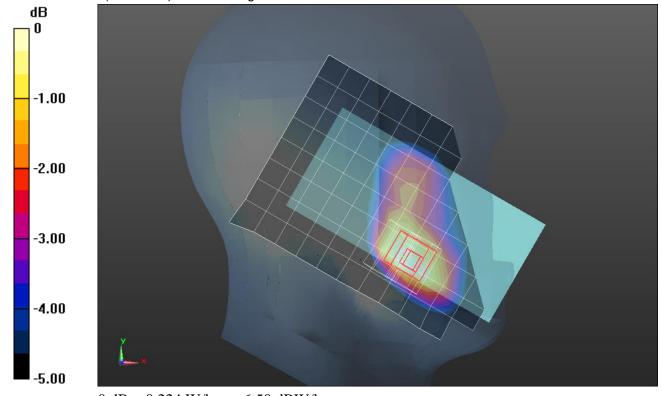
Maximum value of SAR (measured) = 0.239 W/kg

LHS/Touch_RMC Rel. 99_ch 1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 12.26 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.256 W/kg


SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.112 W/kg

Smallest distance from peaks to all points 3 dB below = 14.8 mm

Ratio of SAR at M2 to SAR at M1 = 65.8%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.224 W/kg

0 dB = 0.224 W/kg = -6.50 dBW/kg

Frequency: 1752.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.321$ S/m; $\epsilon_r = 39.277$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1617: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1752.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/Rel. 99 RMC_ch 1513/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

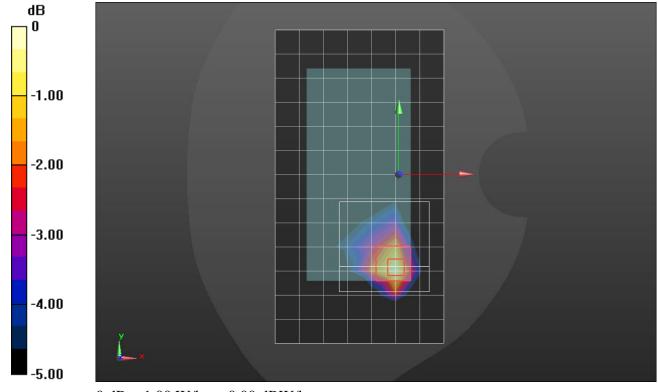
Maximum value of SAR (measured) = 0.995 W/kg

Rear/Rel. 99 RMC_ch 1513/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.78 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.49 W/kg


SAR(1 g) = 0.802 W/kg; SAR(10 g) = 0.452 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 56.4%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.00 W/kg

0 dB = 1.00 W/kg = 0.00 dBW/kg

Frequency: 1752.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 38.249$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date/Time: 8/6/2020 12:22:46 AM

- Electronics: DAE4ip Sn1617: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1752.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

LHS/Touch_RMC Rel. 99_ch 1513/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

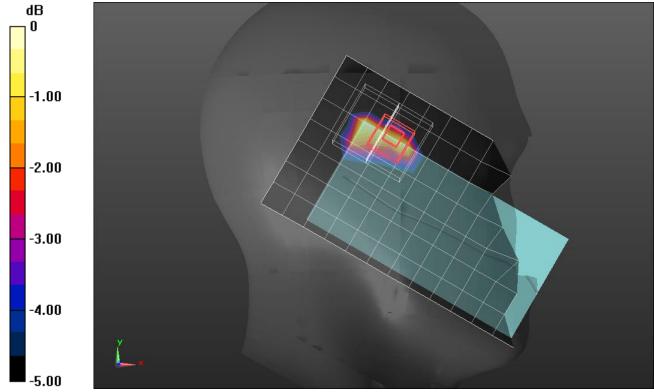
Maximum value of SAR (measured) = 1.25 W/kg

LHS/Touch_RMC Rel. 99_ch 1513/Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 27.45 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.63 W/kg


SAR(1 g) = 0.831 W/kg; SAR(10 g) = 0.431 W/kg

Smallest distance from peaks to all points 3 dB below = 6.5 mm

Ratio of SAR at M2 to SAR at M1 = 53.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.316$ S/m; $\epsilon_r = 39.416$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date/Time: 8/3/2020 5:22:14 AM

- Electronics: DAE4ip Sn1617: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7572; ConvF(8.86, 8.86, 8.86) @ 1732.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Front/Rel. 99 RMC_ch 1413/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

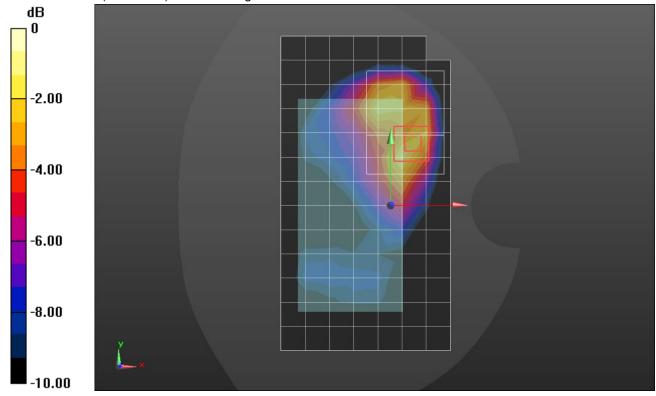
Maximum value of SAR (measured) = 0.514 W/kg

Front/Rel. 99 RMC_ch 1413/Zoom Scan (7x9x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 19.96 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.837 W/kg


SAR(1 g) = 0.474 W/kg; SAR(10 g) = 0.259 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 57.2%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.642 W/kg

0 dB = 0.642 W/kg = -1.92 dBW/kg

Frequency: 1712.4 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.305$ S/m; $\epsilon_r = 39.022$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date/Time: 7/27/2020 7:45:41 PM

- Electronics: DAE4ip Sn1619: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7589; ConvF(8.66, 8.66, 8.66) @ 1712.4 MHz; Calibrated: 5/8/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CE; Serial: xxxx

Edge 2/Rel. 99 RMC_ch 1312/Area Scan (6x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.754 W/kg

Edge 2/Rel. 99 RMC_ch 1312/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 25.37 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 0.916 W/kg; SAR(10 g) = 0.443 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 55.3%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 41.593$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(8.89, 8.89, 8.89) @ 836.6 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_RMC Rel. 99_ch 4183/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

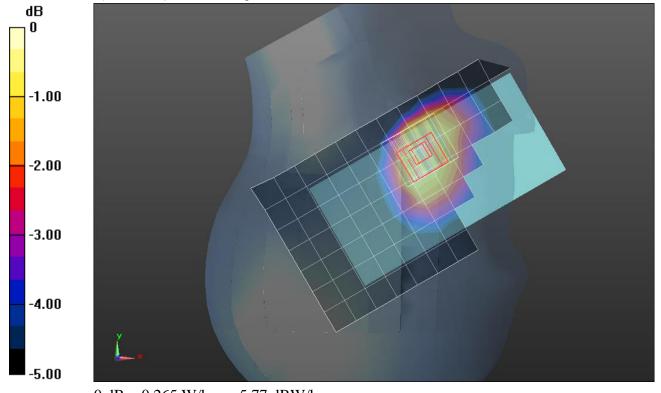
Maximum value of SAR (measured) = 0.256 W/kg

RHS/Touch_RMC Rel. 99_ch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 16.63 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.286 W/kg


SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.173 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid

Ratio of SAR at M2 to SAR at M1 = 78.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.265 W/kg

0 dB = 0.265 W/kg = -5.77 dBW/kg

W-CDMA Band V ANT 1

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 42.661$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/RMC Rel. 99_ch 4183/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

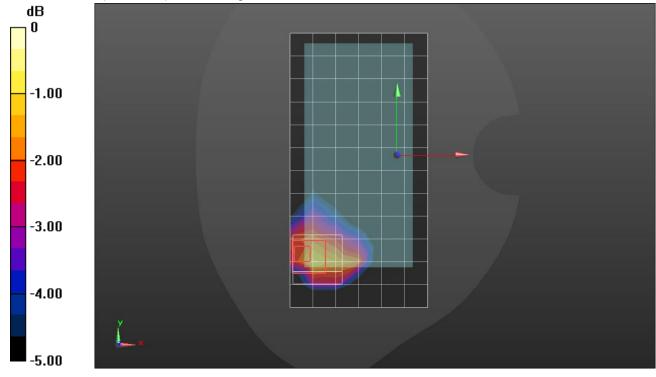
Maximum value of SAR (measured) = 0.900 W/kg

Rear/RMC Rel. 99_ch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 28.20 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.41 W/kg


SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.373 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 45.2%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.10 W/kg

0 dB = 1.10 W/kg = 0.41 dBW/kg

W-CDMA Band V ANT 2

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 39.96$; $\rho = 1000$ kg/m³ DASY5 Configuration:

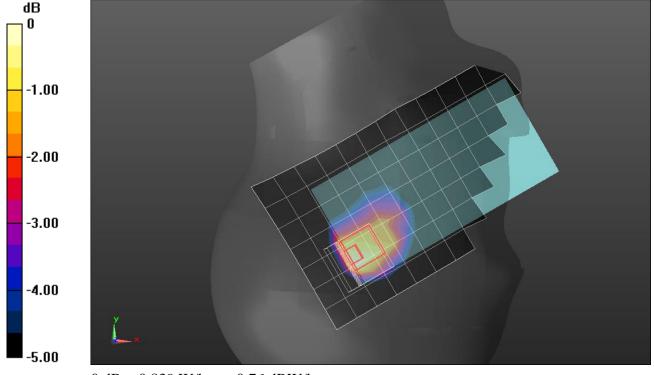
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_RMC Rel. 99_ch 4183/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.862 W/kg

RHS/Touch_RMC Rel. 99_ch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 27.09 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.395 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 44.9%

Maximum value of SAR (measured) = 0.839 W/kg

0 dB = 0.839 W/kg = -0.76 dBW/kg

W-CDMA Band V ANT 2

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.929$ S/m; $\epsilon_r = 40.622$; $\rho = 1000$ kg/m³ DASY5 Configuration:

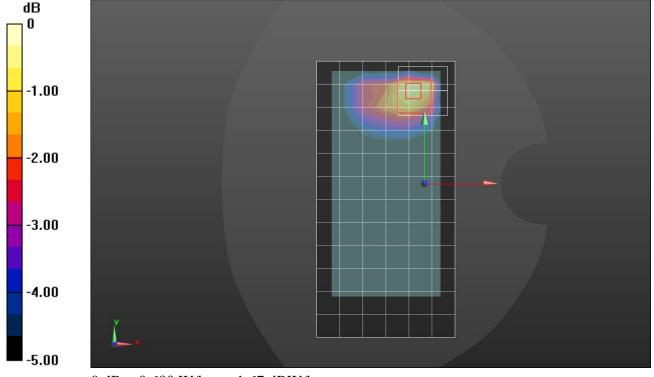
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.6 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/RMC Rel. 99_ch 4183/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.641 W/kg

Rear/RMC Rel. 99_ch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 24.43 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 0.926 W/kg

SAR(1 g) = 0.464 W/kg; SAR(10 g) = 0.272 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.680 W/kg

0 dB = 0.680 W/kg = -1.67 dBW/kg

Frequency: 836.52 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.907$ S/m; $\epsilon_r = 40.658$; $\rho = 1000$ kg/m³ DASY5 Configuration:

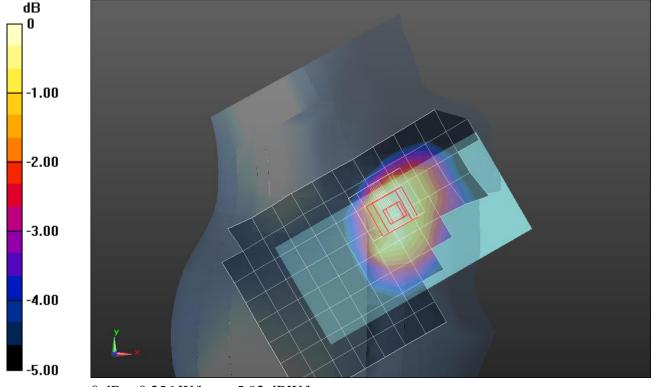
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(8.89, 8.89, 8.89) @ 836.52 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_1xRTT RC3 SO55_ch 384/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.242 W/kg

RHS/Touch_1xRTT RC3 SO55_ch 384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 16.29 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.218 W/kg; SAR(10 g) = 0.167 W/kg

Smallest distance from peaks to all points 3 dB below = 26 mm

Ratio of SAR at M2 to SAR at M1 = 80.6%

Maximum value of SAR (measured) = 0.256 W/kg

Frequency: 836.52 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.902$ S/m; $\epsilon_r = 40.054$; $\rho = 1000$ kg/m³ DASY5 Configuration:

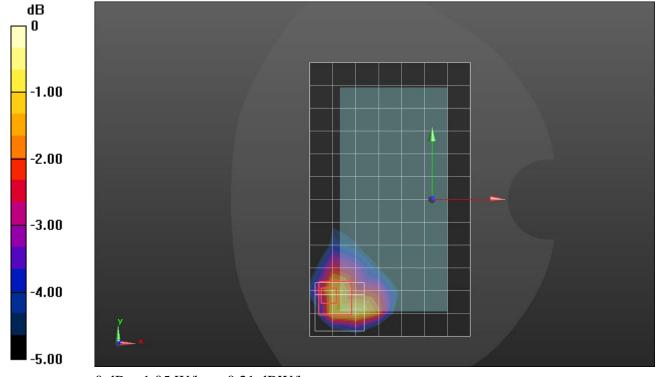
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.52 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/1xRTT RC3 SO32_ch 384/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.937 W/kg

Rear/1xRTT RC3 SO32_ch 384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 28.77 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.609 W/kg; SAR(10 g) = 0.342 W/kg

Smallest distance from peaks to all points 3 dB below = 12.5 mm

Ratio of SAR at M2 to SAR at M1 = 44.1%

Maximum value of SAR (measured) = 1.05 W/kg

0 dB = 1.05 W/kg = 0.21 dBW/kg

Frequency: 836.52 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.902$ S/m; $\epsilon_r = 40.054$; $\rho = 1000$ kg/m³ DASY5 Configuration:

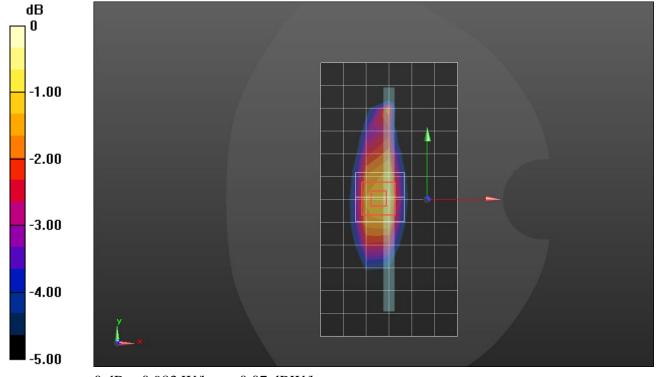
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.52 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 2/1xRTT RC3 SO32_ch 384/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.800 W/kg

Edge 2/1xRTT RC3 SO32_ch 384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.78 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.676 W/kg; SAR(10 g) = 0.425 W/kg

Smallest distance from peaks to all points 3 dB below = 14.4 mm

Ratio of SAR at M2 to SAR at M1 = 57.9%

Maximum value of SAR (measured) = 0.983 W/kg

0 dB = 0.983 W/kg = -0.07 dBW/kg

Frequency: 824.7 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 825 MHz; σ = 0.923 S/m; ϵ_r = 40.675; ρ = 1000 kg/m³ DASY5 Configuration:

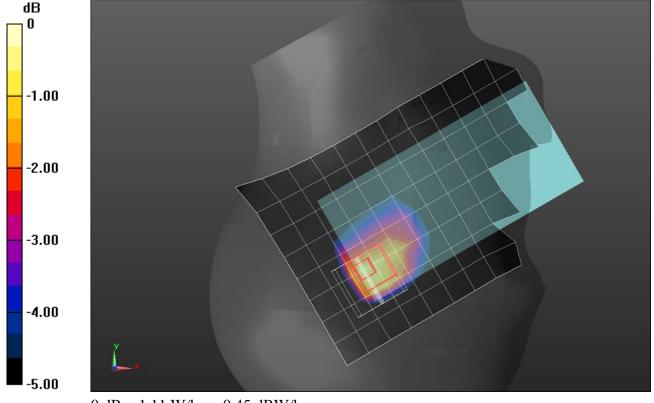
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 824.7 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_1xEVDO Rel. 0_ch 1013/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.953 W/kg

RHS/Touch_1xEVDO Rel. 0_ch 1013/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 32.95 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.786 W/kg; SAR(10 g) = 0.496 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 59.6%

Maximum value of SAR (measured) = 1.11 W/kg

0 dB = 1.11 W/kg = 0.45 dBW/kg

Frequency: 836.52 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 39.96$; $\rho = 1000$ kg/m³ DASY5 Configuration:

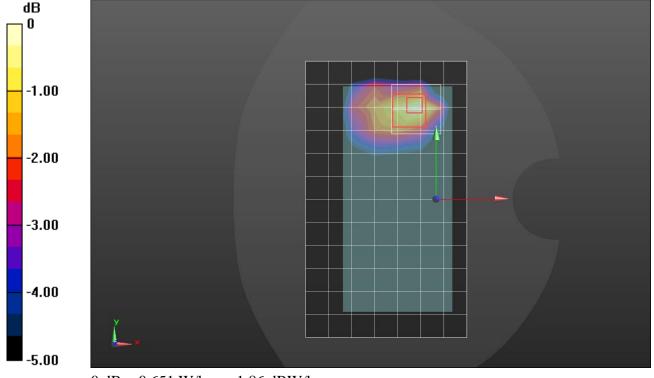
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.52 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/1xRTT RC3 SO32_ch 384/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.660 W/kg

Rear/1xRTT RC3 SO32_ch 384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 24.65 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 0.886 W/kg

SAR(1 g) = 0.468 W/kg; SAR(10 g) = 0.286 W/kg

Smallest distance from peaks to all points 3 dB below = 10.7 mm

Ratio of SAR at M2 to SAR at M1 = 59.7%

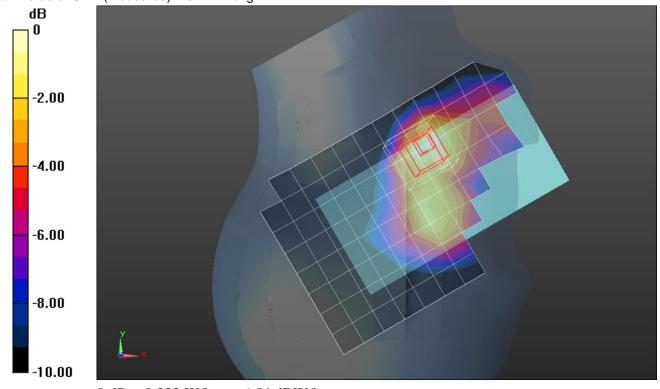
Maximum value of SAR (measured) = 0.651 W/kg

0 dB = 0.651 W/kg = -1.86 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; $\sigma = 1.429$ S/m; $\epsilon_r = 38.214$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1380: Calibrated: 8/27/2019
- Probe: EX3DV4 SN3772; ConvF(7.3, 7.3, 7.3) @ 1880 MHz; Calibrated: 2/21/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

RHS/Touch_1xRTT RC3 SO55_ch 600/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.213 W/kg


RHS/Touch_1xRTT RC3 SO55_ch 600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 11.24 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.103 W/kg Maximum value of SAR (measured) = 0.222 W/kg

0 dB = 0.222 W/kg = -6.54 dBW/kg

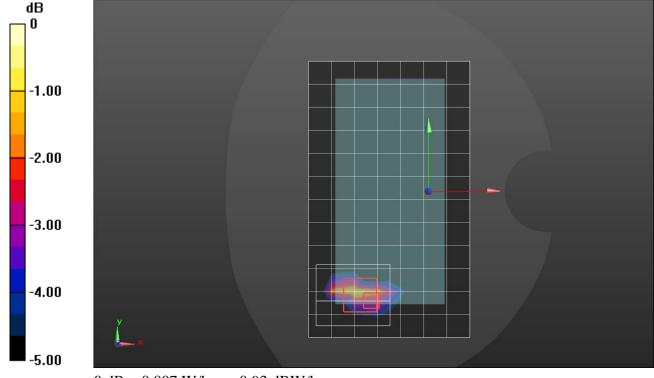
Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.416 S/m; ϵ_r = 38.28; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1880 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/1xRTT RC3 SO32_ch 600/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.645 W/kg

Rear/1xRTT RC3 SO32_ch 600/Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.85 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.256 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 48.1%

Maximum value of SAR (measured) = 0.807 W/kg

0 dB = 0.807 W/kg = -0.93 dBW/kg

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.416 S/m; ϵ_r = 38.28; ρ = 1000 kg/m³ DASY5 Configuration:

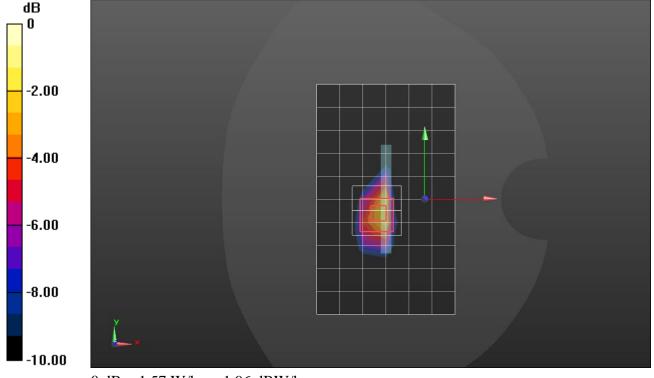
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.88, 7.88, 7.88) @ 1880 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 3/1xRTT RC3 SO32_ch 600/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.988 W/kg

Edge 3/1xRTT RC3 SO32_ch 600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 24.64 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 0.918 W/kg; SAR(10 g) = 0.423 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 47.7%

Maximum value of SAR (measured) = 1.57 W/kg

0 dB = 1.57 W/kg = 1.96 dBW/kg

Frequency: 1908.75 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1908.75 MHz; $\sigma = 1.448$ S/m; $\epsilon_r = 38.212$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1908.75 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

RHS/Tilt_1xRTT RC3 SO55_ch 1175/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

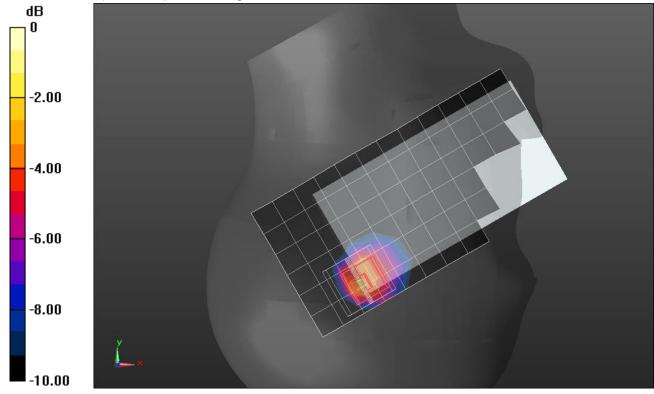
Maximum value of SAR (measured) = 1.03 W/kg

RHS/Tilt_1xRTT RC3 SO55_ch 1175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 24.56 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.61 W/kg


SAR(1 g) = 0.988 W/kg; SAR(10 g) = 0.439 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 35.6%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.02 W/kg

0 dB = 2.02 W/kg = 3.05 dBW/kg

Frequency: 1908.8 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1908.8 MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 38.029$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1908.8 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/1xRTT RC3 SO32_ch 1175/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.83 W/kg

Rear/1xRTT RC3 SO32_ch 1175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 32.21 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.41 W/kg

SAR(1 g) = 0.989 W/kg; SAR(10 g) = 0.450 W/kg

Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 44.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.67 W/kg

0 dB = 1.67 W/kg = 2.23 dBW/kg

Frequency: 820 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 820 MHz; $\sigma = 0.902$ S/m; $\epsilon_r = 40.702$; $\rho = 1000$ kg/m³ DASY5 Configuration:

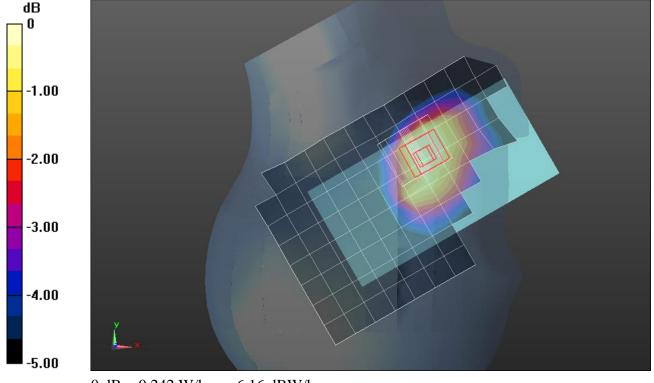
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(8.89, 8.89, 8.89) @ 820 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_1xRTT RC3 SO55_ch 560/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.227 W/kg

RHS/Touch_1xRTT RC3 SO55_ch 560/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 15.76 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.204 W/kg; SAR(10 g) = 0.155 W/kg

Smallest distance from peaks to all points 3 dB below = 24.4 mm

Ratio of SAR at M2 to SAR at M1 = 80.1%

Maximum value of SAR (measured) = 0.242 W/kg

0 dB = 0.242 W/kg = -6.16 dBW/kg

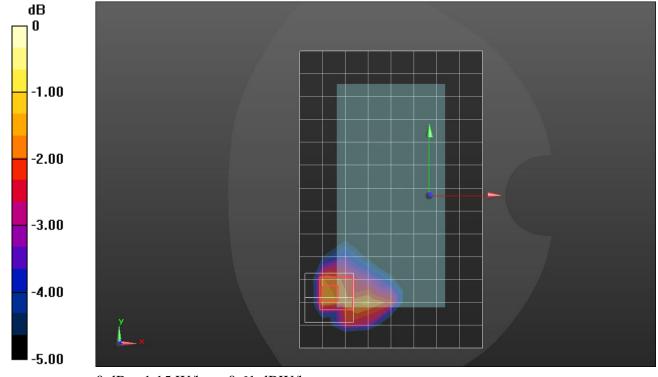
Frequency: 820 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 820 MHz; $\sigma = 0.896$ S/m; $\epsilon_r = 40.032$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 820 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/1xRTT RC3 SO32_ch 560/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.852 W/kg

Rear/1xRTT RC3 SO32_ch 560/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.70 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.667 W/kg; SAR(10 g) = 0.374 W/kg

Smallest distance from peaks to all points 3 dB below = 10.1 mm

Ratio of SAR at M2 to SAR at M1 = 42.8%

Maximum value of SAR (measured) = 1.15 W/kg

0 dB = 1.15 W/kg = 0.61 dBW/kg

Frequency: 820 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 820 MHz; $\sigma = 0.921$ S/m; $\epsilon_r = 40.715$; $\rho = 1000$ kg/m³ DASY5 Configuration:

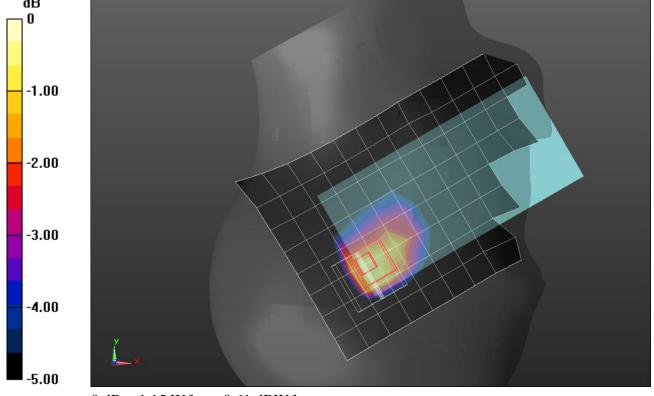
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 820 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_1xEVDO Rel. 0_ch 560/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.998 W/kg

RHS/Touch_1xEVDO Rel. 0_ch 560/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 33.42 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.813 W/kg; SAR(10 g) = 0.513 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 59%

Maximum value of SAR (measured) = 1.15 W/kg

0 dB = 1.15 W/kg = 0.61 dBW/kg

Frequency: 820 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 820 MHz; $\sigma = 0.921$ S/m; $\epsilon_r = 40.715$; $\rho = 1000$ kg/m³ DASY5 Configuration:

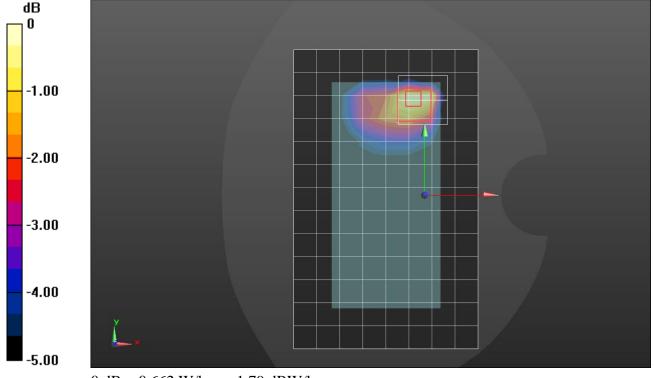
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 820 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/1xRTT RC3 SO32_ch 560/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.636 W/kg

Rear/1xRTT RC3 SO32_ch 560/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 24.77 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 0.910 W/kg

SAR(1 g) = 0.463 W/kg; SAR(10 g) = 0.271 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 51.8%

Maximum value of SAR (measured) = 0.662 W/kg

0 dB = 0.662 W/kg = -1.79 dBW/kg

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.922$ S/m; $\epsilon_r = 42.703$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(8.89, 8.89, 8.89) @ 836.5 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_QPSK RB 1,25 Ch 20525/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

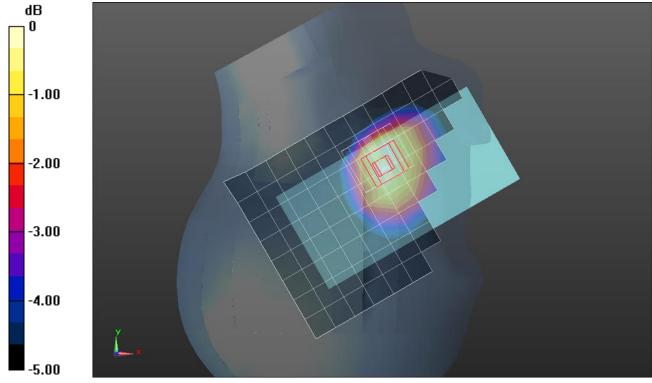
Maximum value of SAR (measured) = 0.246 W/kg

RHS/Touch_QPSK RB 1,25 Ch 20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 16.08 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.276 W/kg


SAR(1 g) = 0.218 W/kg; SAR(10 g) = 0.167 W/kg

Smallest distance from peaks to all points 3 dB below = 22.1 mm

Ratio of SAR at M2 to SAR at M1 = 79.2%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.251 W/kg

0 dB = 0.251 W/kg = -6.00 dBW/kg

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 42.661$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 20525/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

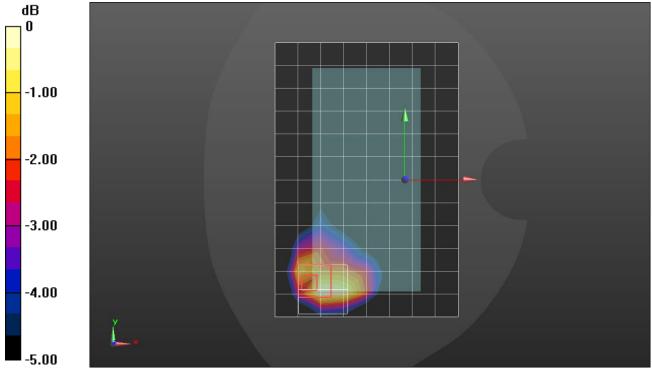
Maximum value of SAR (measured) = 0.980 W/kg

Rear/QPSK RB 1,25 Ch 20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 28.98 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.25 W/kg


SAR(1 g) = 0.580 W/kg; SAR(10 g) = 0.336 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 45.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.955 W/kg

0 dB = 0.955 W/kg = -0.20 dBW/kg

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 42.661$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 2/QPSK RB 1,25 Ch 20525/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

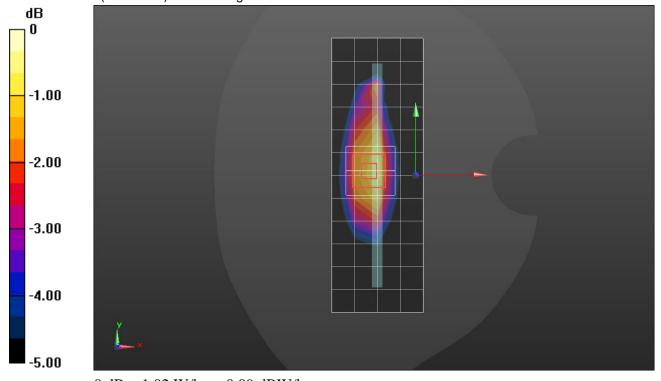
Maximum value of SAR (measured) = 0.905 W/kg

Edge 2/QPSK RB 1,25 Ch 20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 29.27 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.20 W/kg


SAR(1 g) = 0.720 W/kg; SAR(10 g) = 0.462 W/kg

Smallest distance from peaks to all points 3 dB below = 14.4 mm

Ratio of SAR at M2 to SAR at M1 = 59.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 W/kg

0 dB = 1.02 W/kg = 0.09 dBW/kg

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.935$ S/m; $\epsilon_r = 41.674$; $\rho = 1000$ kg/m³ DASY5 Configuration:

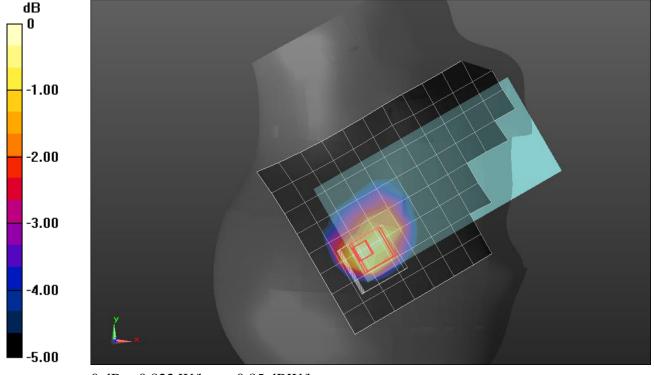
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_QPSK RB 1,25 Ch 20525/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.756 W/kg

RHS/Touch_QPSK RB 1,25 Ch 20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 27.60 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.410 W/kg

Smallest distance from peaks to all points 3 dB below = 14.7 mm

Ratio of SAR at M2 to SAR at M1 = 45.2%

Maximum value of SAR (measured) = 0.822 W/kg

0 dB = 0.822 W/kg = -0.85 dBW/kg

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.928$ S/m; $\epsilon_r = 40.622$; $\rho = 1000$ kg/m³ DASY5 Configuration:

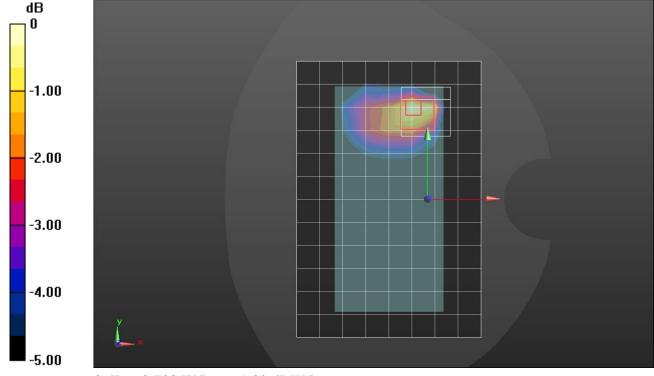
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 836.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 20525/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.724 W/kg

Rear/QPSK RB 1,25 Ch 20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 26.20 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.302 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 52.5%

Maximum value of SAR (measured) = 0.738 W/kg

0 dB = 0.738 W/kg = -1.32 dBW/kg

Frequency: 2535 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2535 MHz; $\sigma = 1.864$ S/m; $\epsilon_r = 39.135$; $\rho = 1000$ kg/m³ DASY5 Configuration:

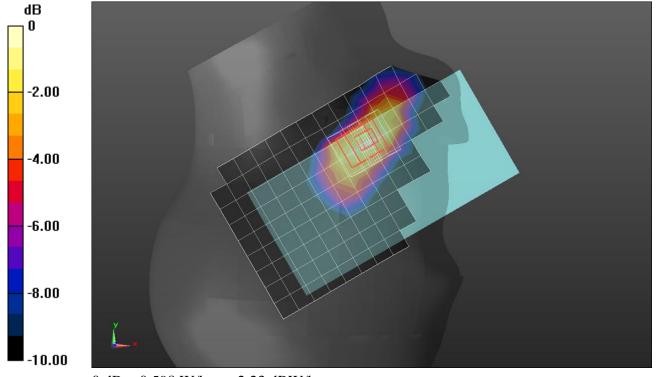
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1259; Calibrated: 7/10/2019
- Probe: EX3DV4 SN7463; ConvF(7.04, 7.04, 7.04) @ 2535 MHz; Calibrated: 7/18/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 AA; Serial: 1948

RHS/Touch_QPSK RB 1,49 Ch 21100/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.572 W/kg

RHS/Touch_QPSK RB 1,49 Ch 21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 17.24 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 0.730 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.214 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm

Ratio of SAR at M2 to SAR at M1 = 53.7%

Maximum value of SAR (measured) = 0.598 W/kg

0 dB = 0.598 W/kg = -2.23 dBW/kg

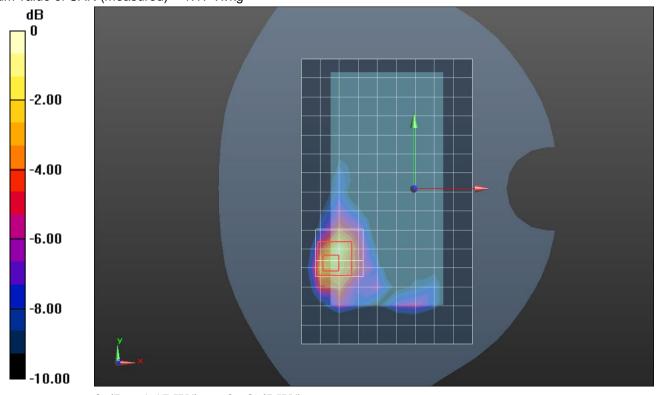
Frequency: 2535 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2535 MHz; $\sigma = 1.904$ S/m; $\epsilon_r = 39.047$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2535 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK_RB 50,24_ch 21100/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.943 W/kg

Rear/QPSK_RB 50,24_ch 21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.49 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.771 W/kg; SAR(10 g) = 0.341 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 41.7%

Maximum value of SAR (measured) = 1.17 W/kg

0 dB = 1.17 W/kg = 0.68 dBW/kg

Frequency: 2510 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2510 MHz; $\sigma = 1.896$ S/m; $\epsilon_r = 39.133$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2510 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Edge 2/QPSK_RB 50,24_ch 20850/Area Scan (7x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.36 W/kg

Edge 2/QPSK_RB 50,24_ch 20850/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 23.67 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 2.28 W/kg

SAR(1 g) = 0.978 W/kg; SAR(10 g) = 0.405 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 46.3%

Maximum value of SAR (measured) = 1.48 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

Frequency: 2510 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2510 MHz; σ = 1.913 S/m; ϵ_r = 40.15; ρ = 1000 kg/m³ DASY5 Configuration:

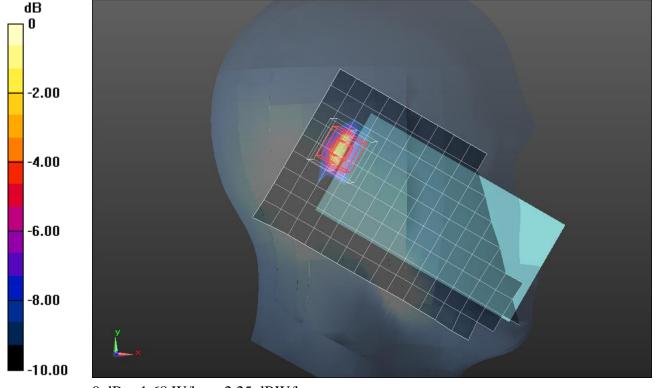
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2510 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

LHS/Tilt_QPSK RB 50,24 Ch 20850/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.37 W/kg

LHS/Tilt_QPSK RB 50,24 Ch 20850/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 25.97 V/m; Power Drift = -0.14 dB


Peak SAR (extrapolated) = 2.45 W/kg

SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.359 W/kg

Smallest distance from peaks to all points 3 dB below = 5 mm

Ratio of SAR at M2 to SAR at M1 = 48.8%

Maximum value of SAR (measured) = 1.68 W/kg

0 dB = 1.68 W/kg = 2.25 dBW/kg

Frequency: 2535 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2535 MHz; σ = 1.916 S/m; ϵ_r = 37.831; ρ = 1000 kg/m³ DASY5 Configuration:

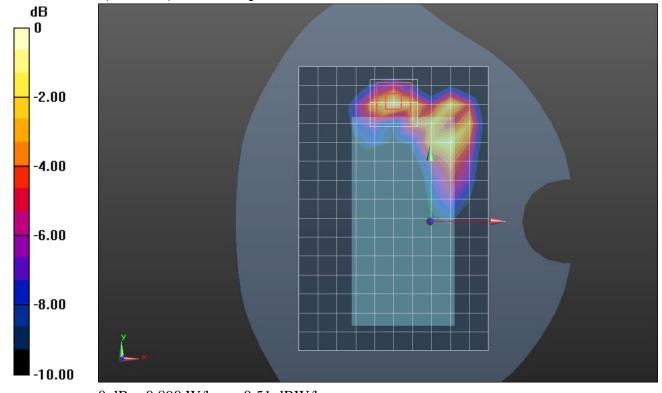
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2535 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK_RB 50/24_ch 21100/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.859 W/kg

Rear/QPSK_RB 50/24_ch 21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 21.38 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.589 W/kg; SAR(10 g) = 0.235 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 47.8%

Maximum value of SAR (measured) = 0.890 W/kg

0 dB = 0.890 W/kg = -0.51 dBW/kg

Frequency: 2510 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2510 MHz; σ = 1.907 S/m; ϵ_r = 37.904; ρ = 1000 kg/m³ DASY5 Configuration:

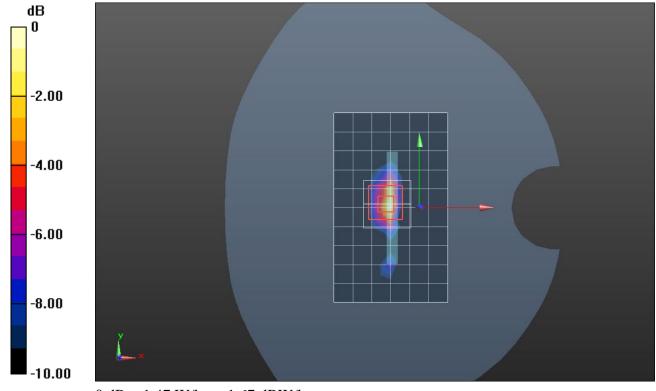
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2510 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Edge 1/QPSK_RB 50/24_ch 20850/Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.34 W/kg

Edge 1/QPSK_RB 50/24_ch 20850/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 25.52 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.342 W/kg

Smallest distance from peaks to all points 3 dB below = 6 mm

Ratio of SAR at M2 to SAR at M1 = 46.2%

Maximum value of SAR (measured) = 1.47 W/kg

0 dB = 1.47 W/kg = 1.67 dBW/kg

Frequency: 2535 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2535 MHz; $\sigma = 1.829$ S/m; $\epsilon_r = 37.307$; $\rho = 1000$ kg/m³ DASY5 Configuration:

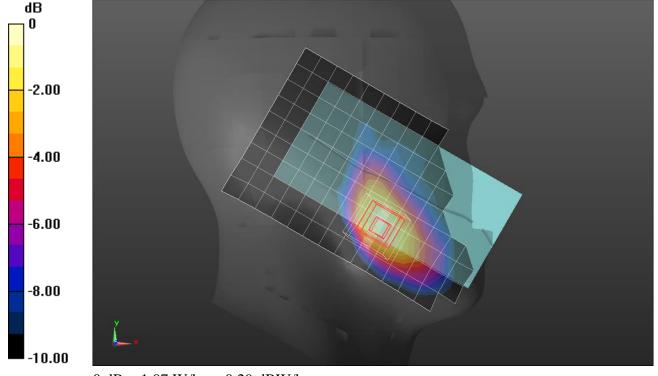
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1259: Calibrated: 7/10/2019
- Probe: EX3DV4 SN7463; ConvF(7.04, 7.04, 7.04) @ 2535 MHz; Calibrated: 7/18/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 AA; Serial: 1948

LHS/Touch_QPSK RB 1,49 Ch 21100/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.952 W/kg

LHS/Touch_QPSK RB 1,49 Ch 21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 21.14 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.744 W/kg; SAR(10 g) = 0.418 W/kg

Smallest distance from peaks to all points 3 dB below = 11.9 mm

Ratio of SAR at M2 to SAR at M1 = 60.1%

Maximum value of SAR (measured) = 1.07 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

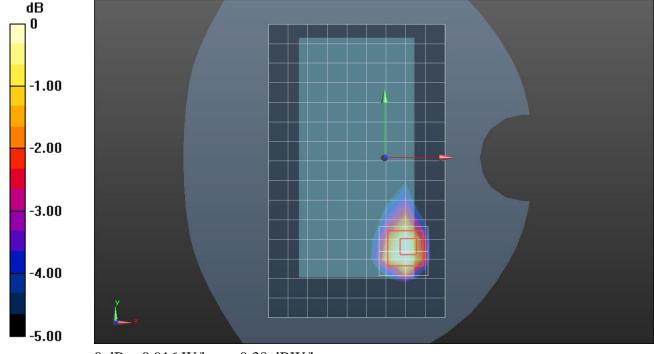
Frequency: 2535 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2535 MHz; $\sigma = 1.904$ S/m; $\epsilon_r = 39.047$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2535 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK_RB 50,24_ch 21100/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.01 W/kg

Rear/QPSK_RB 50,24_ch 21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.18 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.676 W/kg; SAR(10 g) = 0.342 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 0.916 W/kg

0 dB = 0.916 W/kg = -0.38 dBW/kg

Frequency: 2510 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2510 MHz; σ = 1.896 S/m; ϵ_r = 39.133; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2510 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

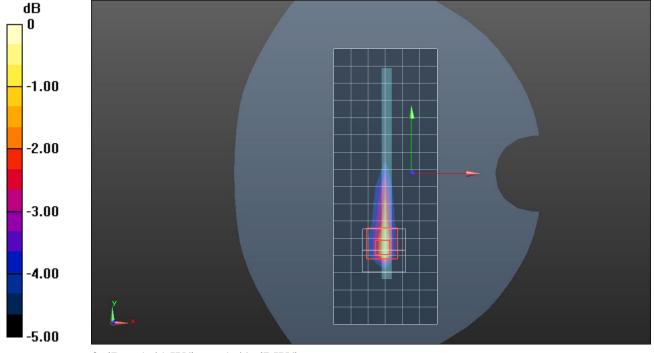
Edge 4/QPSK_RB 50,24_ch 20850 Q 18.5/Area Scan (7x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.31 W/kg

Edge 4/QPSK_RB 50,24_ch 20850 Q 18.5/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.97 V/m; Power Drift = 0.23 dB


Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.425 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 45%

Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

Frequency: 2560 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2560 MHz; $\sigma = 1.955$ S/m; $\epsilon_r = 40.031$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2560 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

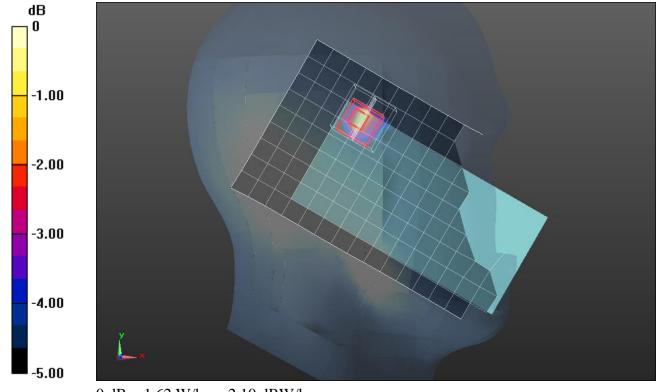
LHS/Touch_QPSK RB 1,49 Ch 21350 Q17.5/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.44 W/kg

LHS/Touch_QPSK RB 1,49 Ch 21350 Q17.5/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.15 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 2.15 W/kg

SAR(1 g) = 0.947 W/kg; SAR(10 g) = 0.394 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 43.9%

Maximum value of SAR (measured) = 1.62 W/kg

0 dB = 1.62 W/kg = 2.10 dBW/kg

Frequency: 2560 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2560 MHz; $\sigma = 1.948$ S/m; $\epsilon_r = 37.807$; $\rho = 1000$ kg/m³ DASY5 Configuration:

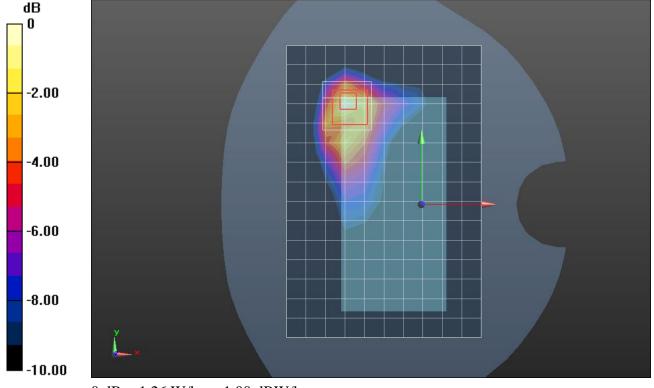
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2560 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK RB 1,49 ch 21350/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.24 W/kg

Rear/QPSK RB 1,49 ch 21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 25.58 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 0.869 W/kg; SAR(10 g) = 0.389 W/kg

Smallest distance from peaks to all points 3 dB below = 9.4 mm

Ratio of SAR at M2 to SAR at M1 = 47.2%

Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

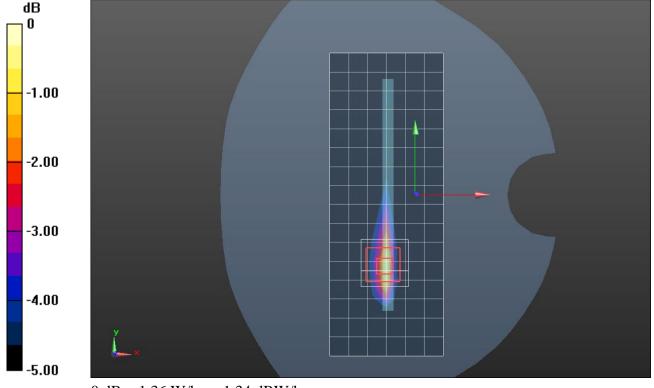
Frequency: 2560 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2560 MHz; $\sigma = 1.895$ S/m; $\epsilon_r = 38.096$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2560 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Edge 2/QPSK_RB 1,49_ch 21350/Area Scan (7x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.26 W/kg

Edge 2/QPSK_RB 1,49_ch 21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.89 V/m; Power Drift = 0.22 dB


Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 0.925 W/kg; SAR(10 g) = 0.406 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 49.1%

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

LTE Band 12 ANT 1

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.863$ S/m; $\epsilon_r = 42.72$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 7/11/2019
- Probe: EX3DV4 SN7356; ConvF(10.74, 10.74, 10.74) @ 707.5 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1629

RHS/Touch_QPSK RB 1,25 Ch 23095/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

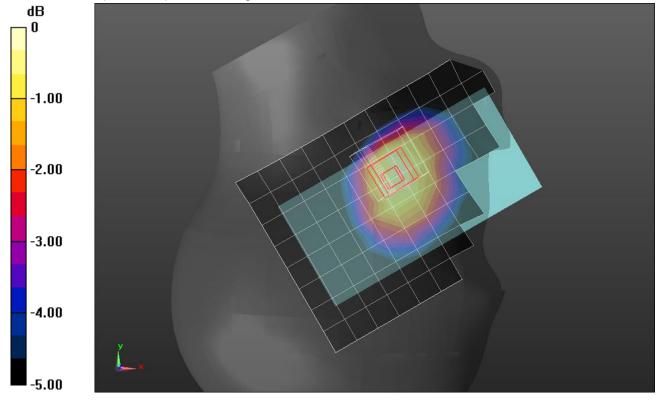
Maximum value of SAR (measured) = 0.220 W/kg

RHS/Touch_QPSK RB 1,25 Ch 23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 15.83 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.249 W/kg


SAR(1 g) = 0.196 W/kg; SAR(10 g) = 0.149 W/kg

Smallest distance from peaks to all points 3 dB below = 23.8 mm

Ratio of SAR at M2 to SAR at M1 = 79.4%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.232 W/kg

0 dB = 0.232 W/kg = -6.35 dBW/kg

LTE Band 12 ANT 1

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.881$ S/m; $\epsilon_r = 43.09$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 707.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 23095/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.736 W/kg

Rear/QPSK RB 1,25 Ch 23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 25.58 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.506 W/kg; SAR(10 g) = 0.301 W/kg

Smallest distance from peaks to all points 3 dB below = 12.8 mm

Ratio of SAR at M2 to SAR at M1 = 44.1%

Maximum value of SAR (measured) = 0.828 W/kg

0 dB = 0.828 W/kg = -0.82 dBW/kg

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.881$ S/m; $\epsilon_r = 43.09$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 707.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 2/QPSK RB 1,25 Ch 23095/Area Scan (6x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.931 W/kg

Edge 2/QPSK RB 1,25 Ch 23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 30.02 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.657 W/kg; SAR(10 g) = 0.426 W/kg

Smallest distance from peaks to all points 3 dB below = 17.3 mm

Ratio of SAR at M2 to SAR at M1 = 60.1%

Maximum value of SAR (measured) = 0.929 W/kg

0 dB = 0.929 W/kg = -0.32 dBW/kg

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.891$ S/m; $\epsilon_r = 42.083$; $\rho = 1000$ kg/m³ DASY5 Configuration:

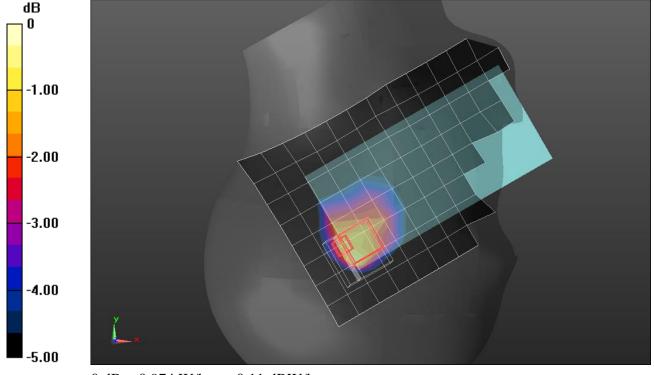
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 707.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_QPSK RB 1,25 Ch 23095/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.904 W/kg

RHS/Touch_QPSK RB 1,25 Ch 23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 24.87 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.585 W/kg; SAR(10 g) = 0.376 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 43.6%

Maximum value of SAR (measured) = 0.974 W/kg

0 dB = 0.974 W/kg = -0.11 dBW/kg

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.891$ S/m; $\epsilon_r = 42.083$; $\rho = 1000$ kg/m³ DASY5 Configuration:

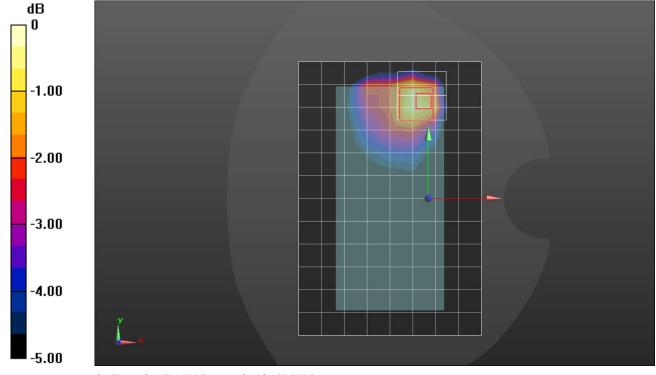
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 707.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 23095/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.544 W/kg

Rear/QPSK RB 1,25 Ch 23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 22.54 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.213 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 46.1%

Maximum value of SAR (measured) = 0.575 W/kg

0 dB = 0.575 W/kg = -2.40 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.888$ S/m; $\epsilon_r = 42.343$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 7/11/2019
- Probe: EX3DV4 SN7356; ConvF(10.74, 10.74, 10.74) @ 782 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1629

RHS/Touch_QPSK RB 1,25 Ch 23230/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

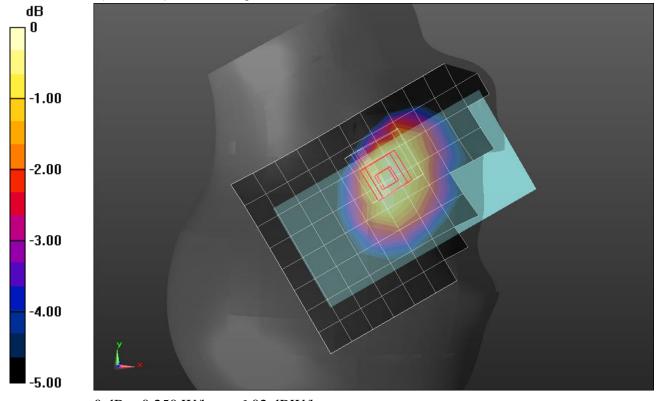
Maximum value of SAR (measured) = 0.240 W/kg

RHS/Touch_QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 16.31 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.267 W/kg


SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.164 W/kg

Smallest distance from peaks to all points 3 dB below = 24.6 mm

Ratio of SAR at M2 to SAR at M1 = 80.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.250 W/kg

0 dB = 0.250 W/kg = -6.02 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.757$; $\rho = 1000$ kg/m³ DASY5 Configuration:

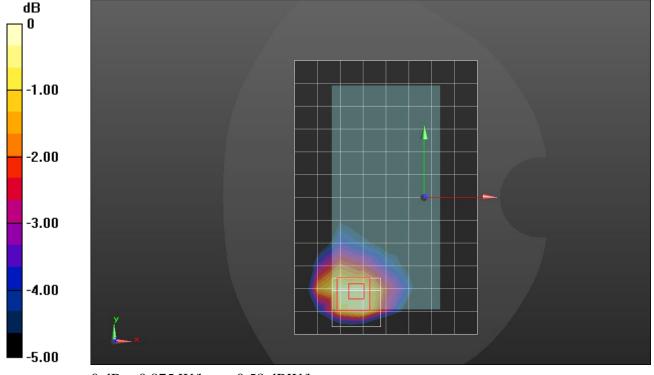
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 782 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 23230/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.830 W/kg

Rear/QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 26.46 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.588 W/kg; SAR(10 g) = 0.358 W/kg

Smallest distance from peaks to all points 3 dB below = 12.8 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 0.875 W/kg

0 dB = 0.875 W/kg = -0.58 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 41.126$; $\rho = 1000$ kg/m³ DASY5 Configuration:

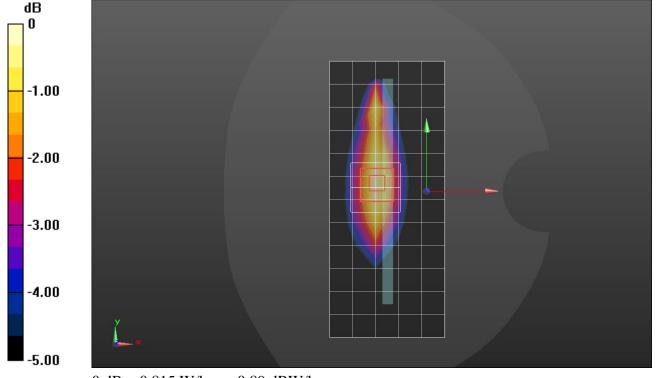
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 782 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 2/QPSK RB 1,25 Ch 23230/Area Scan (6x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.804 W/kg

Edge 2/QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.51 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 0.968 W/kg

SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.357 W/kg

Smallest distance from peaks to all points 3 dB below = 15.8 mm

Ratio of SAR at M2 to SAR at M1 = 58.1%

Maximum value of SAR (measured) = 0.815 W/kg

0 dB = 0.815 W/kg = -0.89 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 41.719$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 782 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

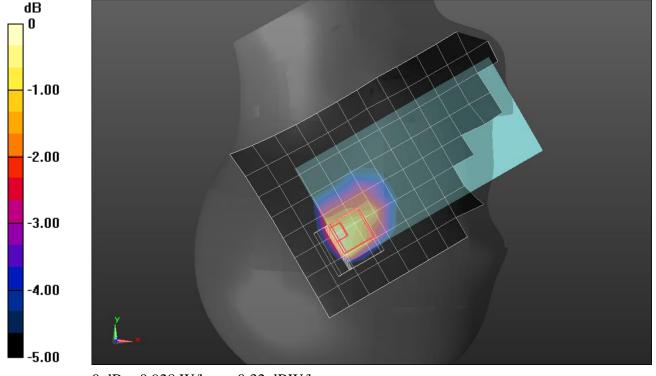
RHS/Touch_QPSK RB 1,25 Ch 23230/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.886 W/kg

RHS/Touch_QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 28.24 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.604 W/kg; SAR(10 g) = 0.393 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 46.1%

Maximum value of SAR (measured) = 0.928 W/kg

0 dB = 0.928 W/kg = -0.32 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 41.719$; $\rho = 1000$ kg/m³ DASY5 Configuration:

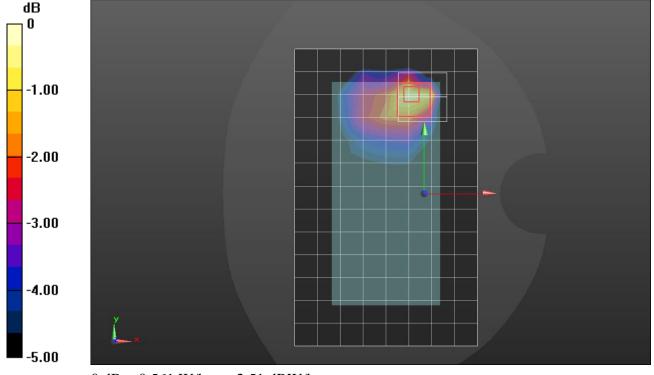
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 782 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 23230/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.538 W/kg

Rear/QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 22.61 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 0.800 W/kg

SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.224 W/kg

Smallest distance from peaks to all points 3 dB below = 10.1 mm

Ratio of SAR at M2 to SAR at M1 = 56.6%

Maximum value of SAR (measured) = 0.561 W/kg

0 dB = 0.561 W/kg = -2.51 dBW/kg

Frequency: 793 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.892$ S/m; $\epsilon_r = 42.309$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 7/11/2019
- Probe: EX3DV4 SN7356; ConvF(10.74, 10.74, 10.74) @ 793 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1629

RHS/Touch_QPSK RB 1,25 Ch 23330/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

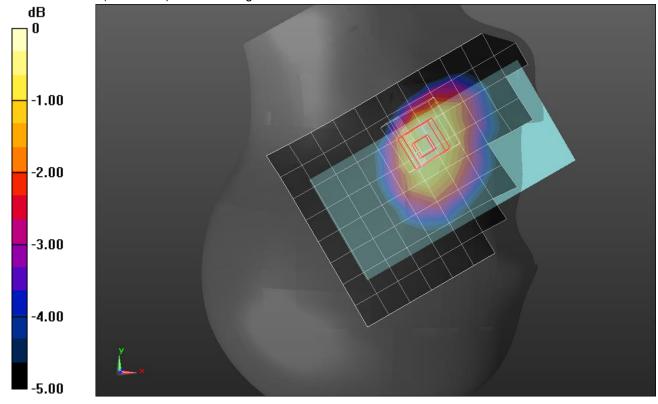
Maximum value of SAR (measured) = 0.221 W/kg

RHS/Touch_QPSK RB 1,25 Ch 23330/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 15.73 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.249 W/kg


SAR(1 g) = 0.200 W/kg; SAR(10 g) = 0.154 W/kg

Smallest distance from peaks to all points 3 dB below = 23.8 mm

Ratio of SAR at M2 to SAR at M1 = 80.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.233 W/kg

0 dB = 0.233 W/kg = -6.33 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.757$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 782 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 23230/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

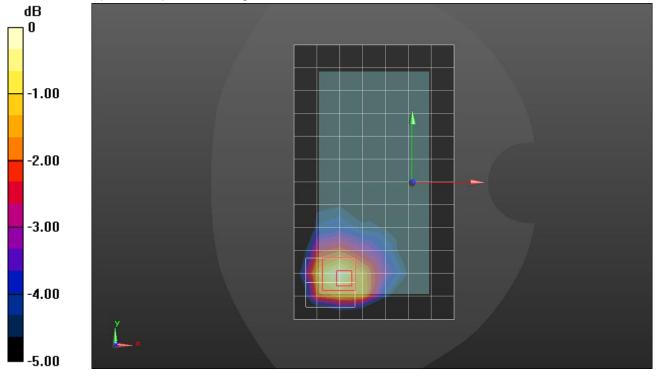
Maximum value of SAR (measured) = 0.567 W/kg

Rear/QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 21.69 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.703 W/kg


SAR(1 g) = 0.402 W/kg; SAR(10 g) = 0.246 W/kg

Smallest distance from peaks to all points 3 dB below = 18.7 mm

Ratio of SAR at M2 to SAR at M1 = 57.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.573 W/kg

0 dB = 0.573 W/kg = -2.42 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.757$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 782 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 2/QPSK RB 1,25 Ch 23230/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

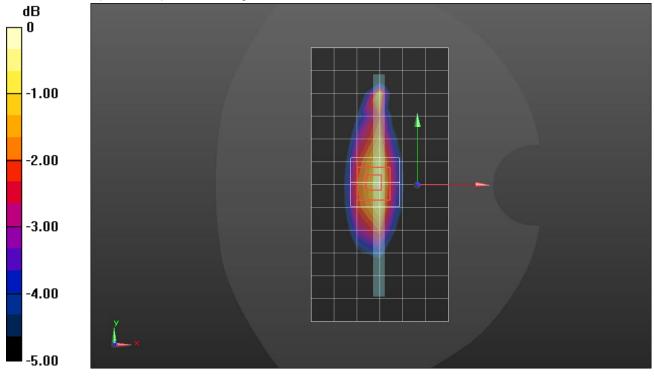
Maximum value of SAR (measured) = 0.693 W/kg

Edge 2/QPSK RB 1,25 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 26.21 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.919 W/kg


SAR(1 g) = 0.542 W/kg; SAR(10 g) = 0.347 W/kg

Smallest distance from peaks to all points 3 dB below = 14.4 mm

Ratio of SAR at M2 to SAR at M1 = 58.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.777 W/kg

0 dB = 0.777 W/kg = -1.10 dBW/kg

Frequency: 793 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 41.689$; $\rho = 1000$ kg/m³ DASY5 Configuration:

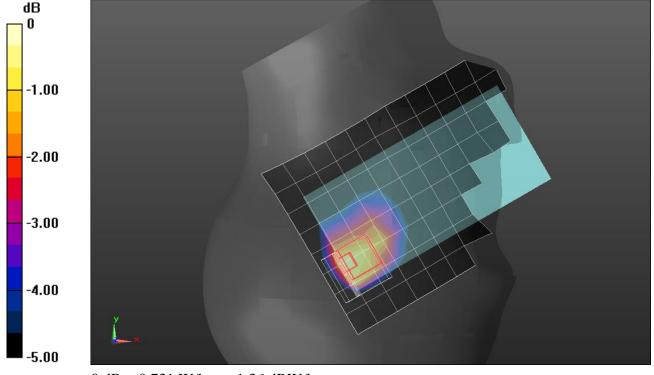
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 793 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_QPSK RB 1,25 Ch 23330/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.690 W/kg

RHS/Touch_QPSK RB 1,25 Ch 23330/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 25.46 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.972 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.328 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.731 W/kg

0 dB = 0.731 W/kg = -1.36 dBW/kg

Frequency: 793 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 41.689$; $\rho = 1000$ kg/m³ DASY5 Configuration:

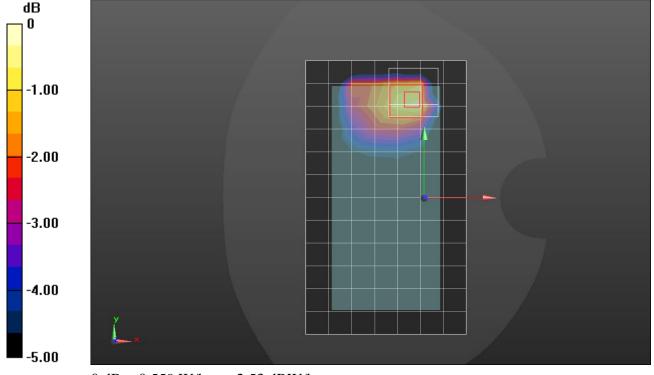
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(10.36, 10.36, 10.36) @ 793 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 23330/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.497 W/kg

Rear/QPSK RB 1,25 Ch 23330/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 22.48 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 0.803 W/kg

SAR(1 g) = 0.384 W/kg; SAR(10 g) = 0.229 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm

Ratio of SAR at M2 to SAR at M1 = 54.8%

Maximum value of SAR (measured) = 0.559 W/kg

0 dB = 0.559 W/kg = -2.53 dBW/kg

Frequency: 1882.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.433$ S/m; $\epsilon_r = 40.436$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN7482; ConvF(7.93, 7.93, 7.93) @ 1882.5 MHz; Calibrated: 7/18/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

RHS/Touch_QPSK RB 1,49 Ch 132332/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

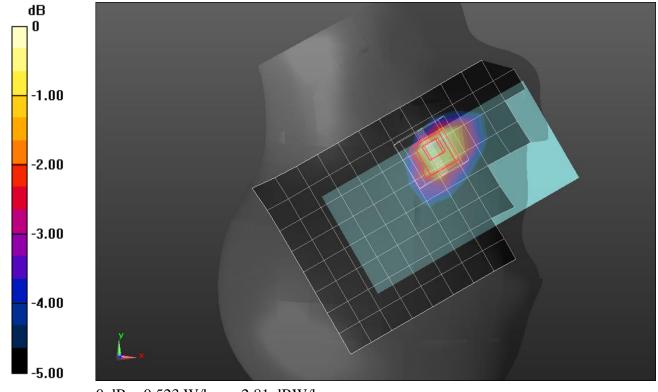
Maximum value of SAR (measured) = 0.492 W/kg

RHS/Touch_QPSK RB 1,49 Ch 132332/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 17.82 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.644 W/kg


SAR(1 g) = 0.395 W/kg; SAR(10 g) = 0.247 W/kg

Smallest distance from peaks to all points 3 dB below = 10.3 mm

Ratio of SAR at M2 to SAR at M1 = 67%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.523 W/kg

0 dB = 0.523 W/kg = -2.81 dBW/kg

Frequency: 1882.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 38.221$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1882.5 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Front/QPSK RB 50,24 ch 26365/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

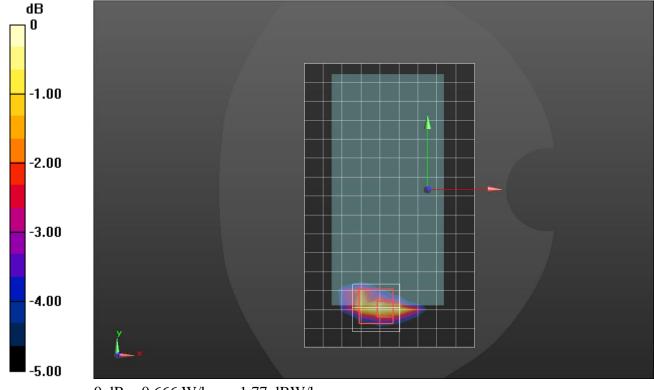
Maximum value of SAR (measured) = 0.656 W/kg

Front/QPSK RB 50,24 ch 26365/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 21.87 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.978 W/kg


SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.246 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 49.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.666 W/kg

0 dB = 0.666 W/kg = -1.77 dBW/kg

Frequency: 1860 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1860 MHz; $\sigma = 1.438$ S/m; $\epsilon_r = 38.232$; $\rho = 1000$ kg/m³ DASY5 Configuration:

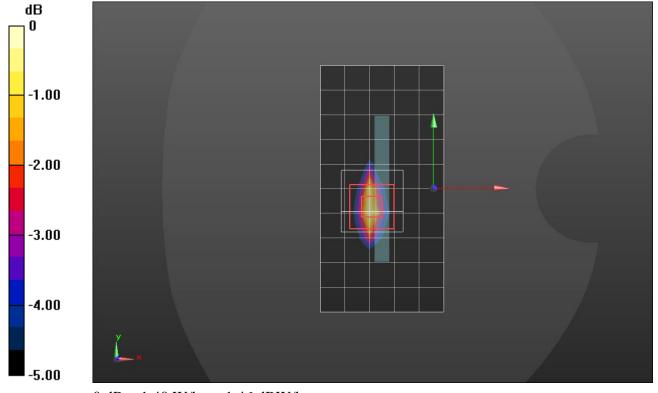
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1860 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Edge 3/_QPSK RB 50,24 ch 26140/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.43 W/kg

Edge 3/_QPSK RB 50,24 ch 26140/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 32.25 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 0.977 W/kg; SAR(10 g) = 0.446 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 50%

Maximum value of SAR (measured) = 1.40 W/kg

0 dB = 1.40 W/kg = 1.46 dBW/kg

Frequency: 1905 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1905 MHz; σ = 1.457 S/m; ϵ_r = 38.102; ρ = 1000 kg/m³ DASY5 Configuration:

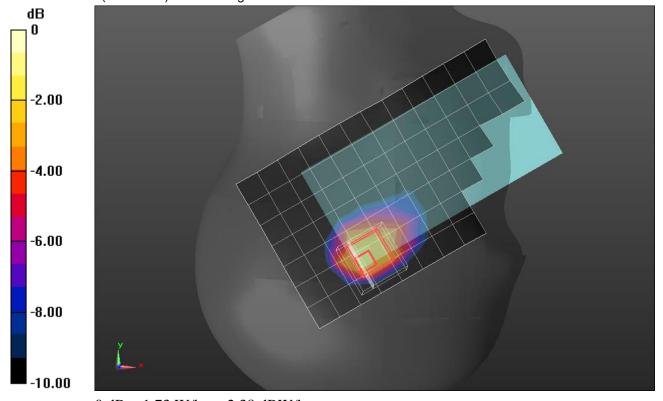
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1905 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

RHS/Touch_QPSK RB 1,49 Ch 26590/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.18 W/kg

RHS/Touch_QPSK RB 1,49 Ch 26590/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 26.95 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 0.985 W/kg; SAR(10 g) = 0.498 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 39.9%

Maximum value of SAR (measured) = 1.73 W/kg

0 dB = 1.73 W/kg = 2.38 dBW/kg

Frequency: 1905 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1905 MHz; $\sigma = 1.457$ S/m; $\epsilon_r = 38.102$; $\rho = 1000$ kg/m³ DASY5 Configuration:

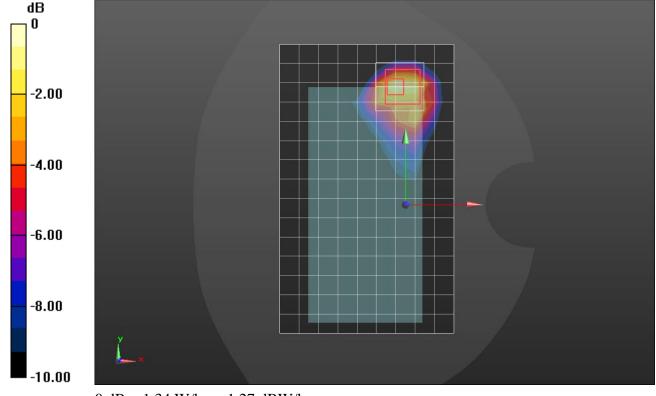
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1905 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/QPSK RB 50,24 ch 26590/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.31 W/kg

Rear/QPSK RB 50,24 ch 26590/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 30.38 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 2.36 W/kg

SAR(1 g) = 0.892 W/kg; SAR(10 g) = 0.384 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 38.5%

Maximum value of SAR (measured) = 1.34 W/kg

0 dB = 1.34 W/kg = 1.27 dBW/kg

Frequency: 1882.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.442$ S/m; $\epsilon_r = 39.342$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(8.24, 8.24, 8.24) @ 1882.5 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

RHS/Touch_QPSK RB 1,49 Ch 26365/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

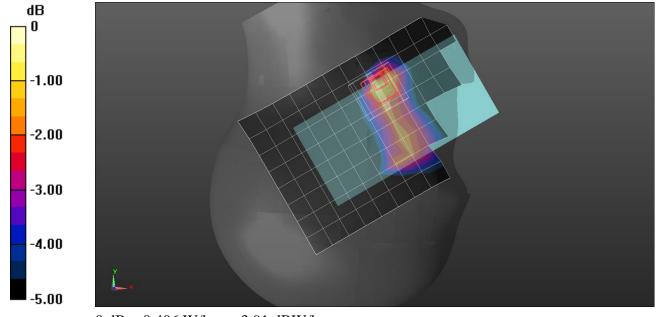
Maximum value of SAR (measured) = 0.344 W/kg

RHS/Touch_QPSK RB 1,49 Ch 26365/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 14.65 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.479 W/kg


SAR(1 g) = 0.277 W/kg; SAR(10 g) = 0.168 W/kg

Smallest distance from peaks to all points 3 dB below = 10.5 mm

Ratio of SAR at M2 to SAR at M1 = 58.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.406 W/kg

0 dB = 0.406 W/kg = -3.91 dBW/kg

Frequency: 1882.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 38.221$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1882.5 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/QPSK RB 50,24 ch 26365 2/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.04 W/kg

Rear/QPSK RB 50,24 ch 26365 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 26.96 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.842 W/kg; SAR(10 g) = 0.458 W/kg

Smallest distance from peaks to all points 3 dB below = 10.4 mm

Ratio of SAR at M2 to SAR at M1 = 54%

Info: Interpolated medium parameters used for SAR evaluation.

0 dB = 1.09 W/kg = 0.37 dBW/kg

Frequency: 1882.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.445$ S/m; $\epsilon_r = 38.181$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1882.5 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

LHS/Touch_QPSK RB 50, 24 Ch 26365/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

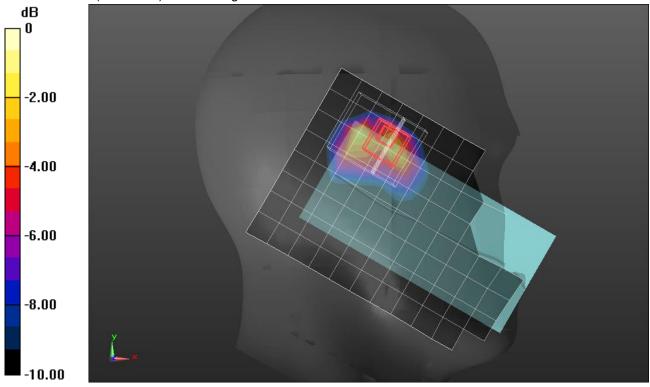
Maximum value of SAR (measured) = 1.28 W/kg

LHS/Touch_QPSK RB 50, 24 Ch 26365/Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 28.06 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.12 W/kg


SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.460 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 45.2%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.76 W/kg

0 dB = 1.76 W/kg = 2.46 dBW/kg

Frequency: 1882.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.445$ S/m; $\epsilon_r = 38.181$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1882.5 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/QPSK RB 50,24 ch 26365/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

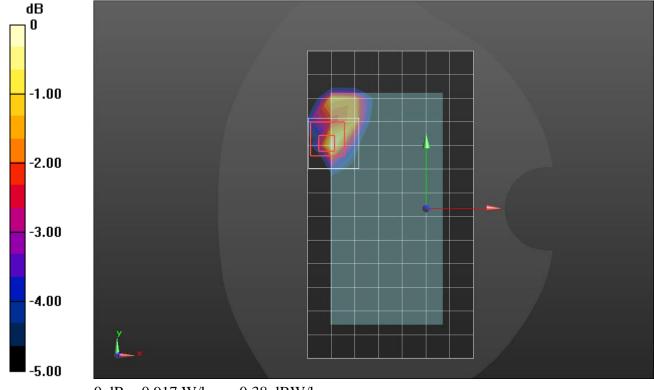
Maximum value of SAR (measured) = 0.906 W/kg

Rear/QPSK RB 50,24 ch 26365/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 25.71 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.26 W/kg


SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.333 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 51.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.917 W/kg

0 dB = 0.917 W/kg = -0.38 dBW/kg

Frequency: 1905 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1905 MHz; $\sigma = 1.456$ S/m; $\epsilon_r = 38.106$; $\rho = 1000$ kg/m³ DASY5 Configuration:

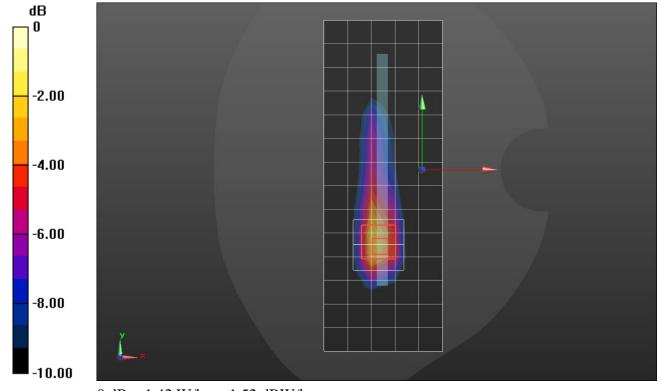
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1377: Calibrated: 10/10/2019
- Probe: EX3DV4 SN3989; ConvF(8.5, 8.5, 8.5) @ 1905 MHz; Calibrated: 1/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Edge 2/QPSK RB 50,24 ch 26590/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.951 W/kg

Edge 2/QPSK RB 50,24 ch 26590/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 26.28 V/m; Power Drift = -0.14 dB


Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 0.989 W/kg; SAR(10 g) = 0.458 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 52.8%

Maximum value of SAR (measured) = 1.42 W/kg

0 dB = 1.42 W/kg = 1.52 dBW/kg

Frequency: 831.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.917$ S/m; $\epsilon_r = 42.751$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(8.89, 8.89, 8.89) @ 831.5 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

RHS/Touch_QPSK RB 1,25 Ch 26865/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

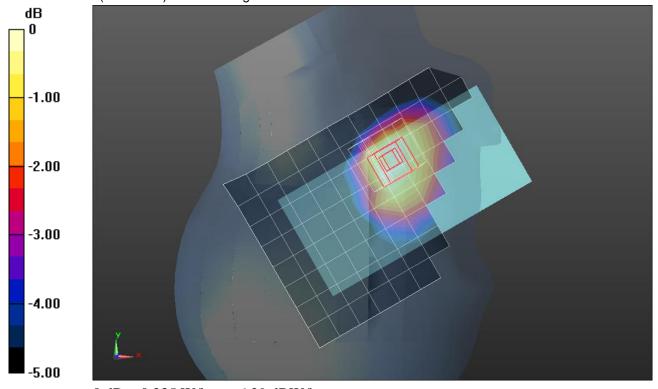
Maximum value of SAR (measured) = 0.243 W/kg

RHS/Touch_QPSK RB 1,25 Ch 26865/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 15.82 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.275 W/kg


SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.154 W/kg

Smallest distance from peaks to all points 3 dB below = 14.8 mm

Ratio of SAR at M2 to SAR at M1 = 75.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.235 W/kg

0 dB = 0.235 W/kg = -6.29 dBW/kg

Frequency: 831.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 42.664$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 831.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,25 Ch 26865/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

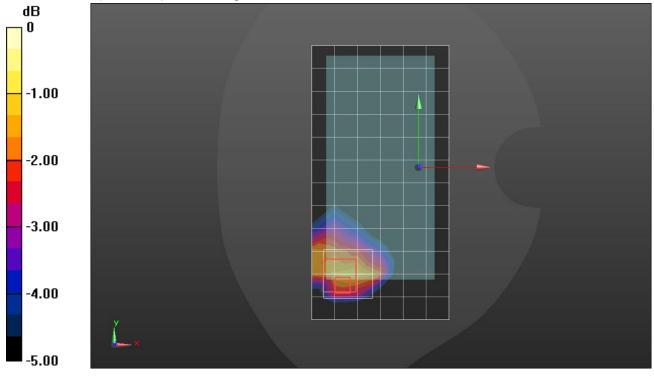
Maximum value of SAR (measured) = 0.806 W/kg

Rear/QPSK RB 1,25 Ch 26865/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.33 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.36 W/kg


SAR(1 g) = 0.584 W/kg; SAR(10 g) = 0.340 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 44.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 W/kg

0 dB = 1.02 W/kg = 0.09 dBW/kg

Frequency: 831.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 42.664$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620: Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 831.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Edge 2/QPSK RB 1,25 Ch 26865/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

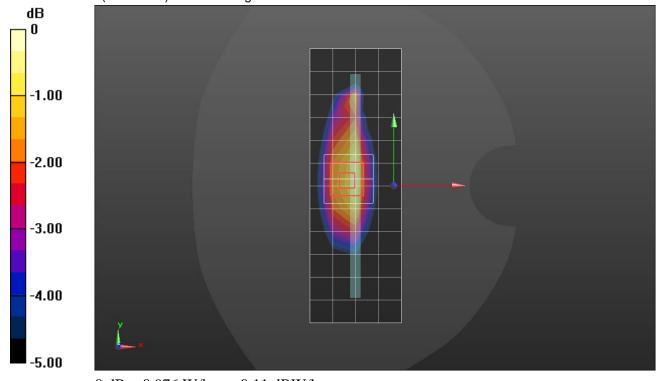
Maximum value of SAR (measured) = 0.869 W/kg

Edge 2/QPSK RB 1,25 Ch 26865/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 28.61 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.15 W/kg


SAR(1 g) = 0.685 W/kg; SAR(10 g) = 0.441 W/kg

Smallest distance from peaks to all points 3 dB below = 14.4 mm

Ratio of SAR at M2 to SAR at M1 = 59.6%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.976 W/kg

0 dB = 0.976 W/kg = -0.11 dBW/kg

Frequency: 831.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.933$ S/m; $\epsilon_r = 41.677$; $\rho = 1000$ kg/m³ DASY5 Configuration:

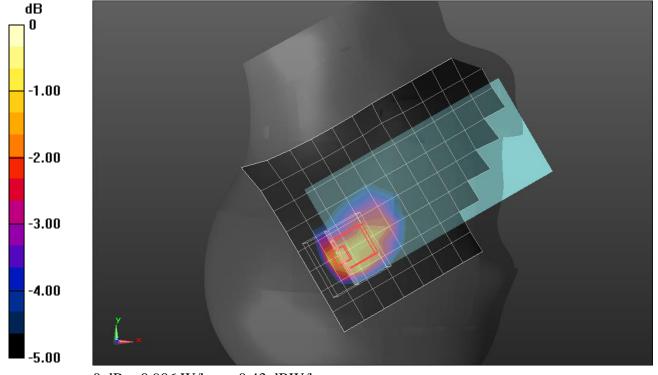
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 831.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

RHS/Touch_QPSK RB 1,24 Ch 26865/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.715 W/kg

RHS/Touch_QPSK RB 1,24 Ch 26865/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 27.14 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.641 W/kg; SAR(10 g) = 0.421 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 59.4%

Maximum value of SAR (measured) = 0.906 W/kg

0 dB = 0.906 W/kg = -0.43 dBW/kg

Frequency: 831.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 40.635$; $\rho = 1000$ kg/m³ DASY5 Configuration:

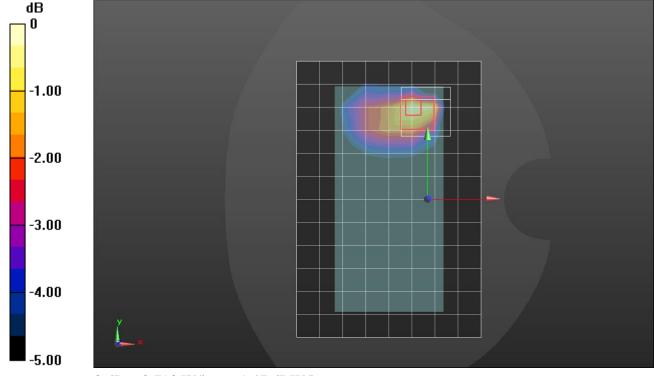
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(9.84, 9.84, 9.84) @ 831.5 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

Rear/QPSK RB 1,24 Ch 26865/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.693 W/kg

Rear/QPSK RB 1,24 Ch 26865/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 25.65 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.288 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 51.8%

Maximum value of SAR (measured) = 0.713 W/kg

0 dB = 0.713 W/kg = -1.47 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; σ = 1.629 S/m; ϵ_r = 40.16; ρ = 1000 kg/m³ DASY5 Configuration:

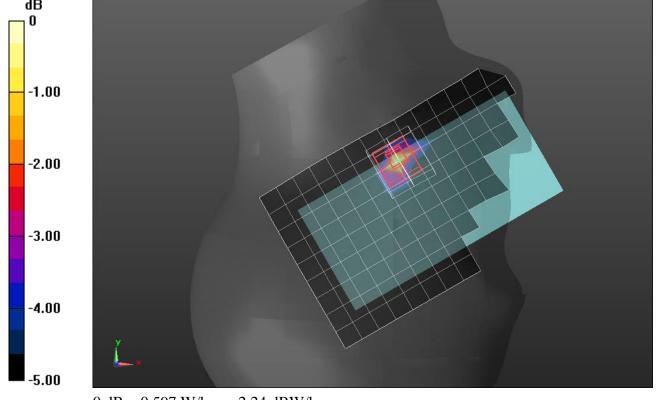
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1544; Calibrated: 3/16/2020
- Probe: EX3DV4 SN7498; ConvF(8.15, 8.15, 8.15) @ 2310 MHz; Calibrated: 4/24/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1831

RHS/Touch QPSK RB 1,25 ch 27710/Area Scan (10x15x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.563 W/kg

RHS/Touch QPSK RB 1,25 ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 19.22 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.873 W/kg

SAR(1 g) = 0.421 W/kg; SAR(10 g) = 0.198 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 0.597 W/kg

0 dB = 0.597 W/kg = -2.24 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; $\sigma = 1.719$ S/m; $\epsilon_r = 37.56$; $\rho = 1000$ kg/m³ DASY5 Configuration:

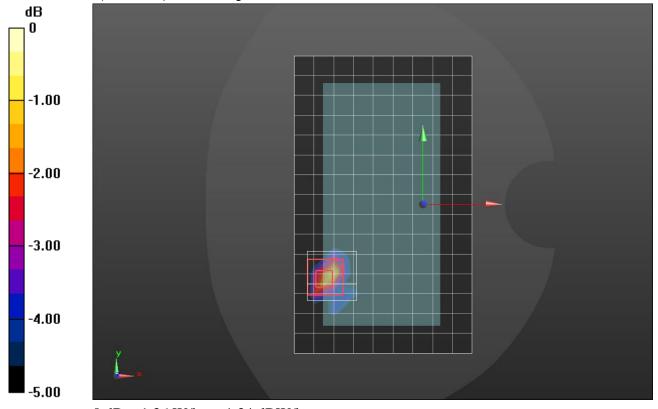
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352; Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/QPSK RB 25,12 ch 27710/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.15 W/kg

Rear/QPSK RB 25,12 ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 25.76 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 0.886 W/kg; SAR(10 g) = 0.379 W/kg

Smallest distance from peaks to all points 3 dB below = 6.3 mm

Ratio of SAR at M2 to SAR at M1 = 41.5%

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; $\sigma = 1.719$ S/m; $\epsilon_r = 37.77$; $\rho = 1000$ kg/m³ DASY5 Configuration:

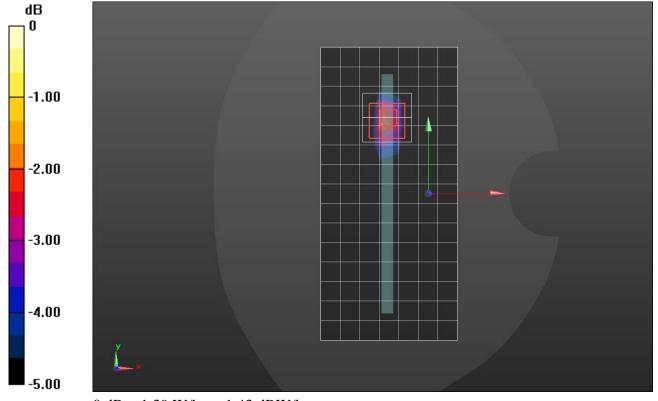
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Edge 2/QPSK RB 1, 25 ch 27710/Area Scan (8x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.920 W/kg

Edge 2/QPSK RB 1, 25 ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.24 V/m; Power Drift = -0.11 dB


Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 0.937 W/kg; SAR(10 g) = 0.401 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 48.4%

Maximum value of SAR (measured) = 1.39 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; $\sigma = 1.719$ S/m; $\epsilon_r = 37.77$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352; Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

RHS/Touch_QPSK_ RB 25,12_ch 27710/Area Scan (9x13x1): Measurement grid: dx=15mm,

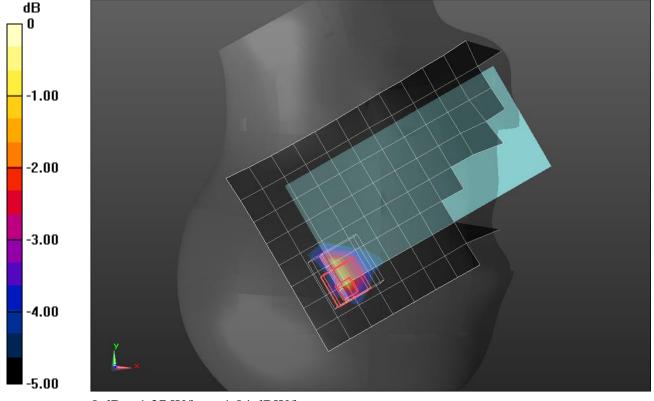
dy=15mm

Maximum value of SAR (measured) = 0.959 W/kg

RHS/Touch_QPSK_ RB 25,12_ch 27710/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 23.25 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.875 W/kg; SAR(10 g) = 0.372 W/kg

Smallest distance from peaks to all points 3 dB below = 6.6 mm

Ratio of SAR at M2 to SAR at M1 = 45.4%

Maximum value of SAR (measured) = 1.27 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

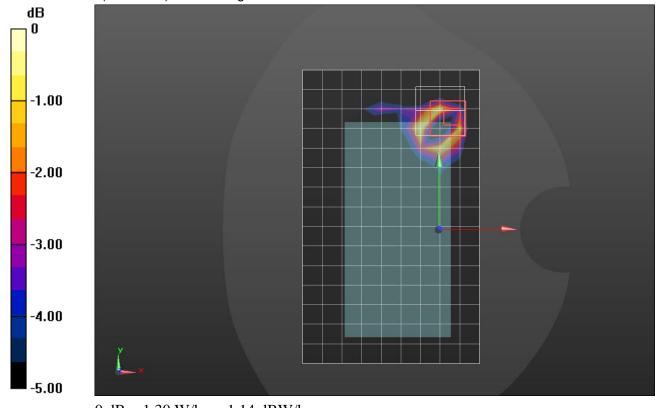
Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; $\sigma = 1.723$ S/m; $\epsilon_r = 38.776$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/QPSK_RB 25,12_ch 27710/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.21 W/kg

Rear/QPSK_RB 25,12_ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.81 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.856 W/kg; SAR(10 g) = 0.371 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 44.3%

Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; $\sigma = 1.722$ S/m; $\epsilon_r = 39.384$; $\rho = 1000$ kg/m³ DASY5 Configuration:

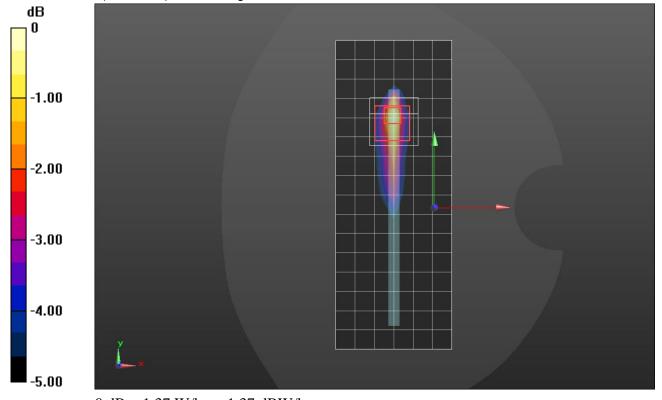
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Edge 4/QPSK_RB 25,12_ch 27710/Area Scan (7x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.35 W/kg

Edge 4/QPSK_RB 25,12_ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 28.12 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.957 W/kg; SAR(10 g) = 0.447 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 48.2%

Maximum value of SAR (measured) = 1.37 W/kg

0 dB = 1.37 W/kg = 1.37 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; σ = 1.723 S/m; ϵ_r = 40.16; ρ = 1000 kg/m³ DASY5 Configuration:

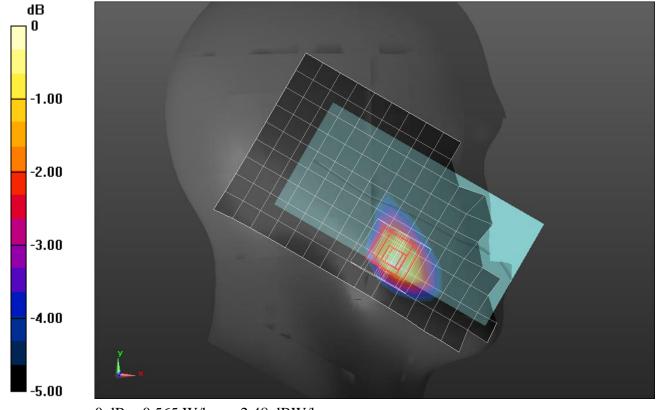
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1544: Calibrated: 3/16/2020
- Probe: EX3DV4 SN7498; ConvF(8.15, 8.15, 8.15) @ 2310 MHz; Calibrated: 4/24/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1831

LHS/Touch QPSK RB 1,24 ch 27710/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.566 W/kg

LHS/Touch QPSK RB 1,24 ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 18.16 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.441 W/kg; SAR(10 g) = 0.251 W/kg

Smallest distance from peaks to all points 3 dB below = 13 mm

Ratio of SAR at M2 to SAR at M1 = 59.3%

Maximum value of SAR (measured) = 0.565 W/kg

0 dB = 0.565 W/kg = -2.48 dBW/kg

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; σ = 1.722 S/m; ϵ_r = 39.384; ρ = 1000 kg/m³ DASY5 Configuration:

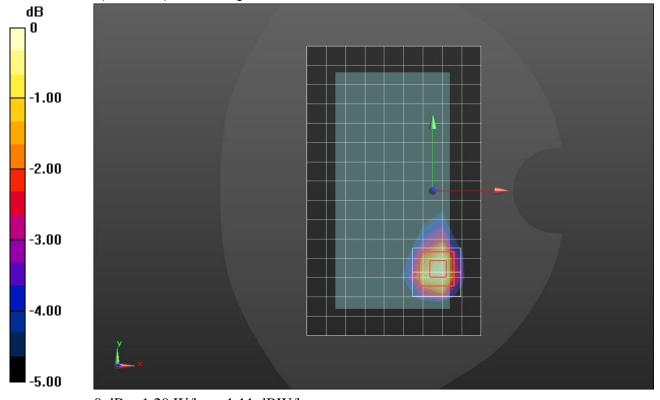
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Rear/QPSK RB 25,12 ch 27710/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.24 W/kg

Rear/QPSK RB 25,12 ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.09 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.987 W/kg; SAR(10 g) = 0.528 W/kg

Smallest distance from peaks to all points 3 dB below = 11.4 mm

Ratio of SAR at M2 to SAR at M1 = 51.8%

Maximum value of SAR (measured) = 1.29 W/kg

0 dB = 1.29 W/kg = 1.11 dBW/kg

LTE Band 30 ANT 4

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; $\sigma = 1.719$ S/m; $\epsilon_r = 38.819$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4ip Sn1620; Calibrated: 5/7/2020
- Probe: EX3DV4 SN7569; ConvF(7.81, 7.81, 7.81) @ 2310 MHz; Calibrated: 5/7/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Type: QD 000 P41 Ax; Serial: xxxx

LHS/Touch_QPSK_ RB 25,12_ch 27710/Area Scan (9x15x1): Measurement grid: dx=12mm,

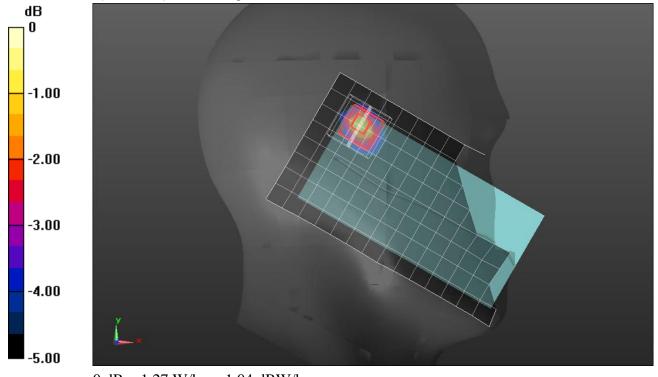
dy=12mm

Maximum value of SAR (measured) = 1.07 W/kg

LHS/Touch_QPSK_ RB 25,12_ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 26.14 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 0.921 W/kg; SAR(10 g) = 0.422 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm

Ratio of SAR at M2 to SAR at M1 = 49.5%

Maximum value of SAR (measured) = 1.27 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

LTE Band 30 ANT 4

Frequency: 2310 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2310 MHz; σ = 1.723 S/m; ϵ_r = 38.776; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1352: Calibrated: 11/15/2019
- Probe: EX3DV4 SN3902; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 5/15/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1740

Front/QPSK_RB 25,12_ch 27710/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.24 W/kg

Front/QPSK_RB 25,12_ch 27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 26.79 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.980 W/kg; SAR(10 g) = 0.488 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 52.5%

Maximum value of SAR (measured) = 1.33 W/kg

0 dB = 1.33 W/kg = 1.24 dBW/kg

Frequency: 2593 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.927$ S/m; $\epsilon_r = 39.064$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1259; Calibrated: 7/10/2019
- Probe: EX3DV4 SN7463; ConvF(7.04, 7.04, 7.04) @ 2593 MHz; Calibrated: 7/18/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 AA; Serial: 1948

RHS/Touch_QPSK RB 1,49 Ch 40620/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

Date/Time: 7/1/2020 8:37:36 PM

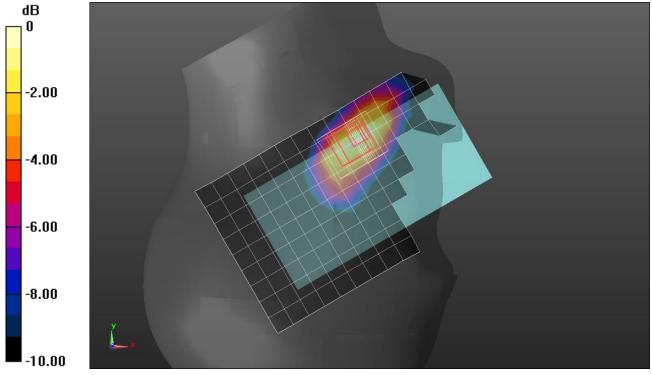
Maximum value of SAR (measured) = 0.418 W/kg

RHS/Touch_QPSK RB 1,49 Ch 40620/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 14.18 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.524 W/kg


SAR(1 g) = 0.274 W/kg; SAR(10 g) = 0.150 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 52.5%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.433 W/kg

0 dB = 0.433 W/kg = -3.64 dBW/kg

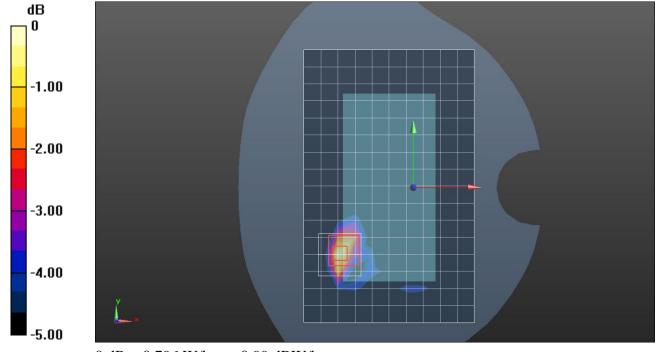
Frequency: 2593 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.931$ S/m; $\epsilon_r = 37.131$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2593 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK RB 50,24 ch 40620/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.801 W/kg

Rear/QPSK RB 50,24 ch 40620/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.54 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.534 W/kg; SAR(10 g) = 0.249 W/kg

Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 41.4%

Maximum value of SAR (measured) = 0.796 W/kg

0 dB = 0.796 W/kg = -0.99 dBW/kg

Frequency: 2506 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 1.859$ S/m; $\epsilon_r = 37.305$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/19/2020 5:56:31 AM

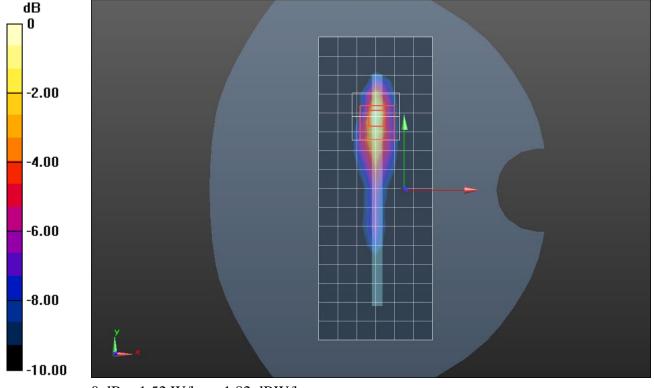
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2506 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Edge 2/QPSK RB 50,24 ch 39750/Area Scan (7x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.50 W/kg

Edge 2/QPSK RB 50,24 ch 39750/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.90 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 2.36 W/kg

SAR(1 g) = 0.996 W/kg; SAR(10 g) = 0.407 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 45.4%

Maximum value of SAR (measured) = 1.52 W/kg

0 dB = 1.52 W/kg = 1.82 dBW/kg

Frequency: 2506 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 1.893$ S/m; $\epsilon_r = 39.121$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/24/2020 10:07:29 PM

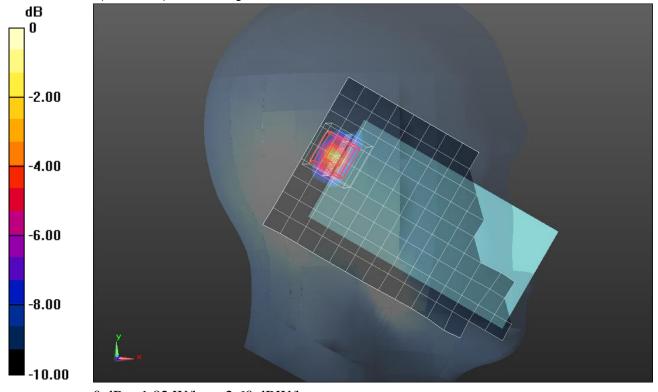
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2506 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

LHS/Tilt_QPSK RB 1,49 Ch 39750/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.03 W/kg

LHS/Tilt_QPSK RB 1,49 Ch 39750/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 22.13 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 2.43 W/kg

SAR(1 g) = 0.988 W/kg; SAR(10 g) = 0.356 W/kg

Smallest distance from peaks to all points 3 dB below = 5 mm

Ratio of SAR at M2 to SAR at M1 = 45.7%

Maximum value of SAR (measured) = 1.82 W/kg

0 dB = 1.82 W/kg = 2.60 dBW/kg

Frequency: 2593 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.985$ S/m; $\epsilon_r = 39.957$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433; Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2593 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Front/QPSK RB 1,49 ch 40620/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.783 W/kg

Front/QPSK RB 1,49 ch 40620/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 23.95 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.718 W/kg; SAR(10 g) = 0.281 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

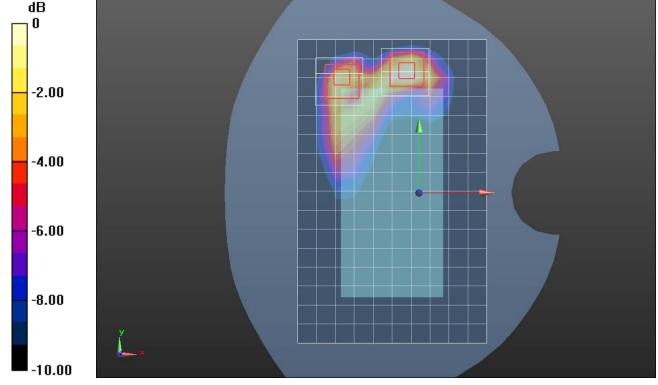
Ratio of SAR at M2 to SAR at M1 = 45.8%

Maximum value of SAR (measured) = 1.10 W/kg

Front/QPSK RB 1,49 ch 40620/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

0Z=5111111

Reference Value = 23.95 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.473 W/kg; SAR(10 g) = 0.190 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 43.4%

Maximum value of SAR (measured) = 0.722 W/kg

0 dB = 0.722 W/kg = -1.41 dBW/kg

Frequency: 2506 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 1.91$ S/m; $\epsilon_r = 40.139$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2506 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Edge 1/QPSK RB 50,24 ch 39750/Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.49 W/kg

Edge 1/QPSK RB 50,24 ch 39750/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.42 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 0.991 W/kg; SAR(10 g) = 0.359 W/kg

Smallest distance from peaks to all points 3 dB below = 6 mm

Ratio of SAR at M2 to SAR at M1 = 46.3%

Maximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

Frequency: 2593 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.927$ S/m; $\epsilon_r = 39.064$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1259: Calibrated: 7/10/2019
- Probe: EX3DV4 SN7463; ConvF(7.04, 7.04, 7.04) @ 2593 MHz; Calibrated: 7/18/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 AA; Serial: 1948

LHS/Touch_QPSK RB 1,49 Ch 40620/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

Date/Time: 7/1/2020 11:40:34 PM

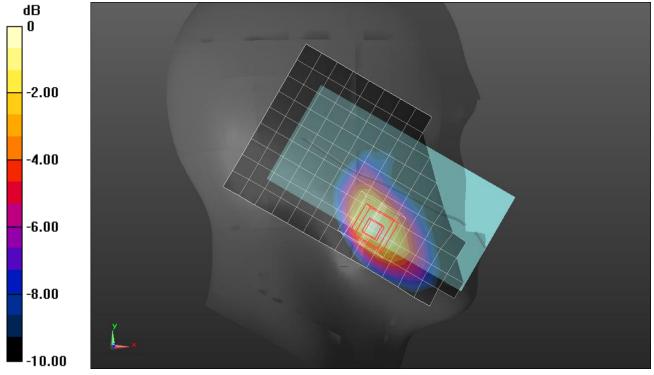
Maximum value of SAR (measured) = 0.658 W/kg

LHS/Touch_QPSK RB 1,49 Ch 40620/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 17.27 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.812 W/kg


SAR(1 g) = 0.456 W/kg; SAR(10 g) = 0.247 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 55.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.668 W/kg

0 dB = 0.668 W/kg = -1.75 dBW/kg

Frequency: 2506 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 1.859$ S/m; $\epsilon_r = 37.305$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/20/2020 3:55:26 PM

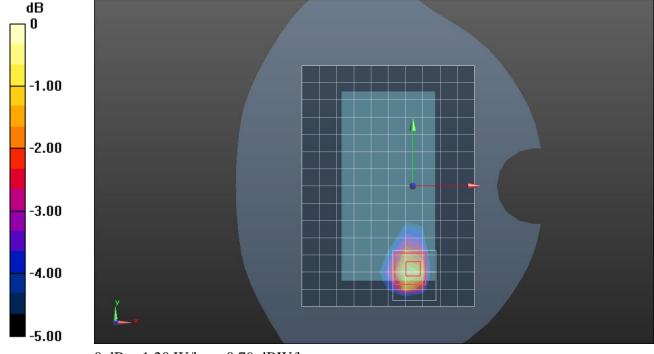
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2506 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK RB 1,49 ch 39750/Area Scan (11x15x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.08 W/kg

Rear/QPSK RB 1,49 ch 39750/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 24.88 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.880 W/kg; SAR(10 g) = 0.446 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 50.3%

Maximum value of SAR (measured) = 1.20 W/kg

0 dB = 1.20 W/kg = 0.79 dBW/kg

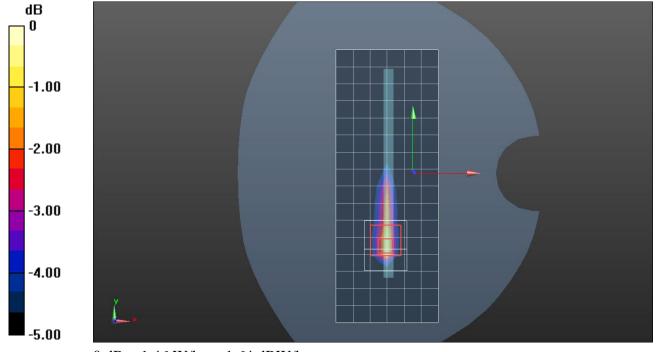
Frequency: 2506 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 1.859$ S/m; $\epsilon_r = 37.305$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2506 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Edge 4/QPSK RB 50,24 ch 39750/Area Scan (7x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.32 W/kg

Edge 4/QPSK RB 50,24 ch 39750/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.35 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 0.992 W/kg; SAR(10 g) = 0.440 W/kg

Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 44.7%

Maximum value of SAR (measured) = 1.46 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

Frequency: 2680 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2680 MHz; $\sigma = 2.038$ S/m; $\epsilon_r = 38.759$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/22/2020 11:38:28 PM

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2680 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

LHS/Touch_QPSK RB 50,24 Ch 41490/Area Scan (10x16x1): Measurement grid: dx=12mm,

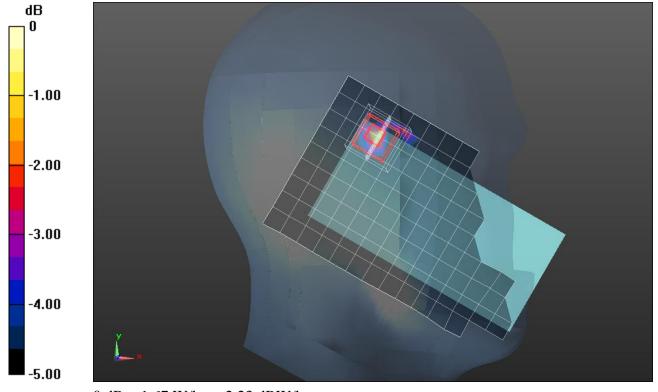
dy=12mm

Maximum value of SAR (measured) = 1.57 W/kg

LHS/Touch_QPSK RB 50,24 Ch 41490/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 24.88 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 2.28 W/kg

SAR(1 g) = 0.990 W/kg; SAR(10 g) = 0.394 W/kg

Smallest distance from peaks to all points 3 dB below = 6.7 mm

Ratio of SAR at M2 to SAR at M1 = 47.8%

Maximum value of SAR (measured) = 1.67 W/kg

0 dB = 1.67 W/kg = 2.23 dBW/kg

Frequency: 2680 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 2680 MHz; $\sigma = 2.046$ S/m; $\epsilon_r = 37.541$; $\rho = 1000$ kg/m³ DASY5 Configuration:

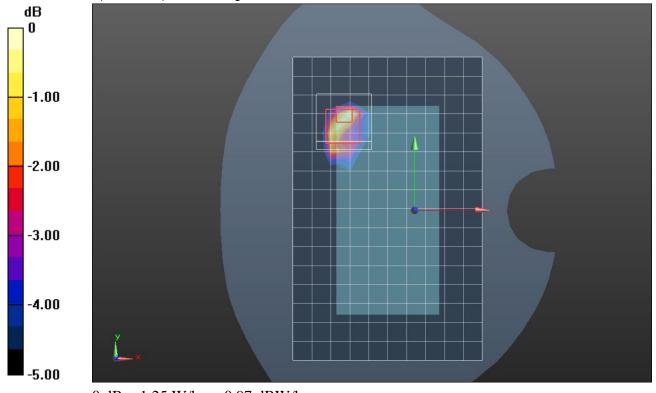
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1433: Calibrated: 3/17/2020
- Probe: EX3DV4 SN3773; ConvF(6.76, 6.76, 6.76) @ 2680 MHz; Calibrated: 3/20/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM (B); Type: QD000P40CD; Serial: 1632

Rear/QPSK RB 1,49 ch 41490/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.22 W/kg

Rear/QPSK RB 1,49 ch 41490/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 24.72 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 0.832 W/kg; SAR(10 g) = 0.359 W/kg

Smallest distance from peaks to all points 3 dB below = 7.3 mm

Ratio of SAR at M2 to SAR at M1 = 41.6%

Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

Frequency: 3646.7 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 3646.7 MHz; $\sigma = 2.976$ S/m; $\epsilon_r = 39.52$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/30/2020 11:04:50 AM

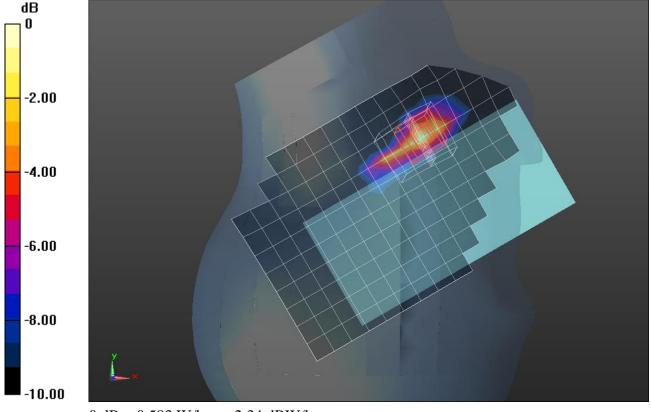
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545: Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.24, 7.24, 7.24) @ 3646.7 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

RHS/Touch_QPSK RB 1,49 Ch 56207/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.585 W/kg

RHS/Touch_QPSK RB 1,49 Ch 56207/Zoom Scan (7x8x8)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=4mm

Reference Value = 12.53 V/m; Power Drift = 0.19 dB


Peak SAR (extrapolated) = 0.833 W/kg

SAR(1 g) = 0.301 W/kg; SAR(10 g) = 0.109 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 44.3%

Maximum value of SAR (measured) = 0.583 W/kg

0 dB = 0.583 W/kg = -2.34 dBW/kg

Frequency: 3646.7 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 3646.7 MHz; $\sigma = 3.013$ S/m; $\epsilon_r = 37.41$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/19/2020 5:16:35 PM

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545: Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.24, 7.24, 7.24) @ 3646.7 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

Rear/QPSK RB 50,24 ch 56207/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

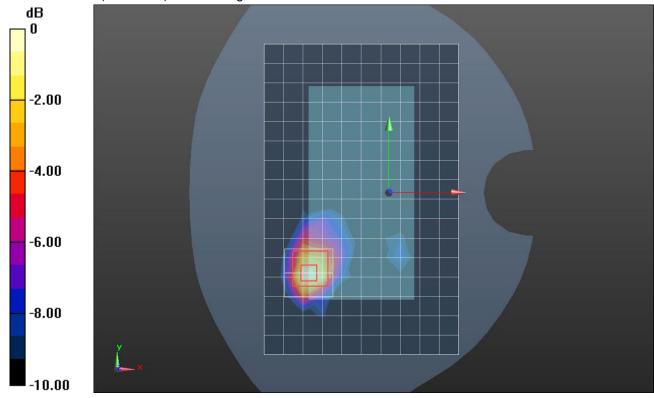
Maximum value of SAR (measured) = 1.87 W/kg

Rear/QPSK RB 50,24 ch 56207/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 23.65 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.83 W/kg


SAR(1 g) = 0.979 W/kg; SAR(10 g) = 0.354 W/kg

Smallest distance from peaks to all points 3 dB below = 6 mm

Ratio of SAR at M2 to SAR at M1 = 46.3%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.62 W/kg

0 dB = 1.62 W/kg = 2.10 dBW/kg

Frequency: 3646.7 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 3646.7 MHz; $\sigma = 3.013$ S/m; $\epsilon_r = 37.41$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545; Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.24, 7.24, 7.24) @ 3646.7 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

Edge 2/QPSK RB 50,24 ch 56207/Area Scan (7x16x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

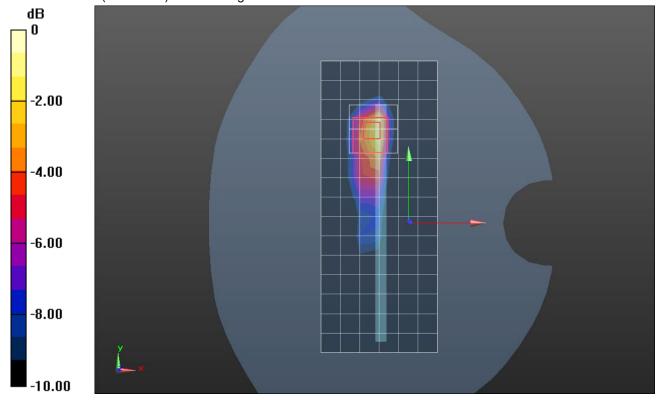
Maximum value of SAR (measured) = 1.16 W/kg

Edge 2/QPSK RB 50,24 ch 56207/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 18.74 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.91 W/kg


SAR(1 g) = 0.991 W/kg; SAR(10 g) = 0.357 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 41.9%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.60 W/kg

0 dB = 1.60 W/kg = 2.04 dBW/kg

Frequency: 3646.7 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 3646.7 MHz; $\sigma = 2.911$ S/m; $\epsilon_r = 39.327$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545; Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.24, 7.24, 7.24) @ 3646.7 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

RHS/Touch_QPSK RB 1,49 Ch 56207/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

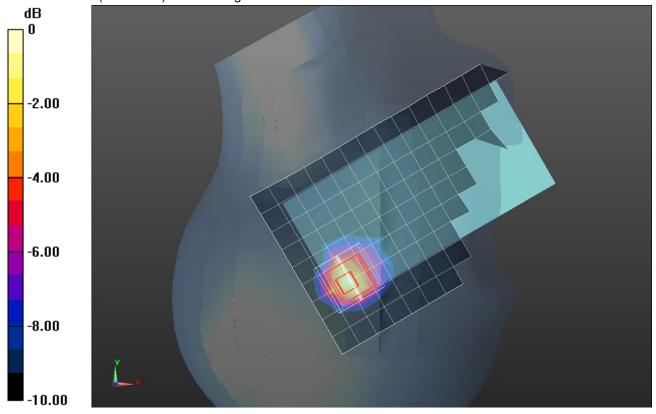
Maximum value of SAR (measured) = 1.23 W/kg

RHS/Touch_QPSK RB 1,49 Ch 56207/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=4mm

Reference Value = 19.29 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.92 W/kg


SAR(1 g) = 0.648 W/kg; SAR(10 g) = 0.254 W/kg

Smallest distance from peaks to all points 3 dB below = 7.1 mm

Ratio of SAR at M2 to SAR at M1 = 40%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

Frequency: 3560 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 3560 MHz; $\sigma = 2.826$ S/m; $\epsilon_r = 39.446$; $\rho = 1000$ kg/m³ DASY5 Configuration:

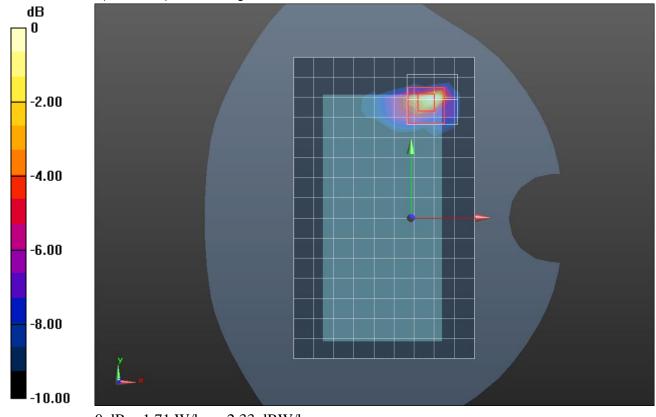
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545: Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.41, 7.41, 7.41) @ 3560 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

Rear/QPSK RB 50, 24 ch 55340/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 2.04 W/kg

Rear/QPSK RB 50, 24 ch 55340/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 24.86 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 0.984 W/kg; SAR(10 g) = 0.281 W/kg

Smallest distance from peaks to all points 3 dB below = 4.5 mm

Ratio of SAR at M2 to SAR at M1 = 41.7%

Maximum value of SAR (measured) = 1.71 W/kg

0 dB = 1.71 W/kg = 2.33 dBW/kg

Frequency: 3646.7 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 3646.7 MHz; $\sigma = 2.913$ S/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/9/2020 2:56:31 AM

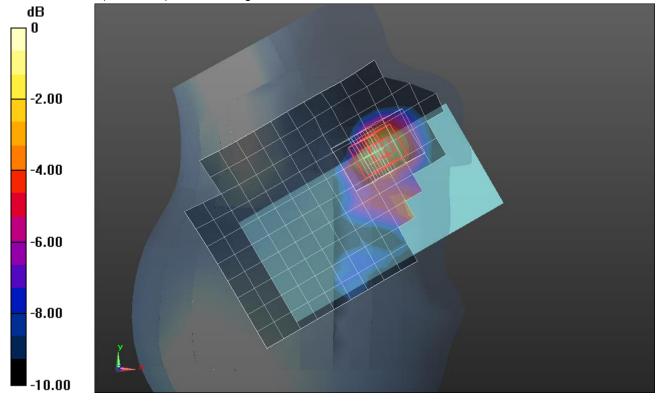
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 7/11/2019
- Probe: EX3DV4 SN7356; ConvF(7.24, 7.24, 7.24) @ 3646.7 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

RHS/Touch_QPSK RB 1,49 Ch 56207/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.630 W/kg

RHS/Touch_QPSK RB 1,49 Ch 56207/Zoom Scan (7x9x8)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=4mm

Reference Value = 14.61 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.868 W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.187 W/kg

Smallest distance from peaks to all points 3 dB below = 11.5 mm

Ratio of SAR at M2 to SAR at M1 = 55.2%

Maximum value of SAR (measured) = 0.699 W/kg

0 dB = 0.699 W/kg = -1.56 dBW/kg

Frequency: 3560 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 3560 MHz; $\sigma = 2.876$ S/m; $\epsilon_r = 37.829$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/20/2020 3:24:52 AM

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258: Calibrated: 5/13/2020
- Probe: EX3DV4 SN3929; ConvF(6.55, 6.55, 6.55) @ 3560 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 AA; Serial: 1948

Front/QPSK RB 50,24 ch 55340/Area Scan (9x15x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.36 W/kg

Front/QPSK RB 50,24 ch 55340/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 20.97 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.840 W/kg; SAR(10 g) = 0.364 W/kg

Smallest distance from peaks to all points 3 dB below = 9.9 mm

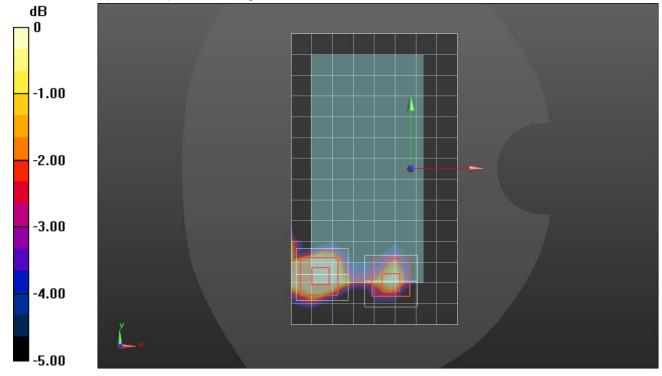
Ratio of SAR at M2 to SAR at M1 = 51%

Maximum value of SAR (measured) = 1.21 W/kg

Front/QPSK RB 50,24 ch 55340/Zoom Scan 2 (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 20.97 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.581 W/kg; SAR(10 g) = 0.225 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 52.2%

Maximum value of SAR (measured) = 0.864 W/kg

0 dB = 0.864 W/kg = -0.63 dBW/kg

Frequency: 3560 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 3560 MHz; σ = 2.891 S/m; ϵ_r = 39.68; ρ = 1000 kg/m³ DASY5 Configuration:

Date/Time: 7/31/2020 8:32:47 PM

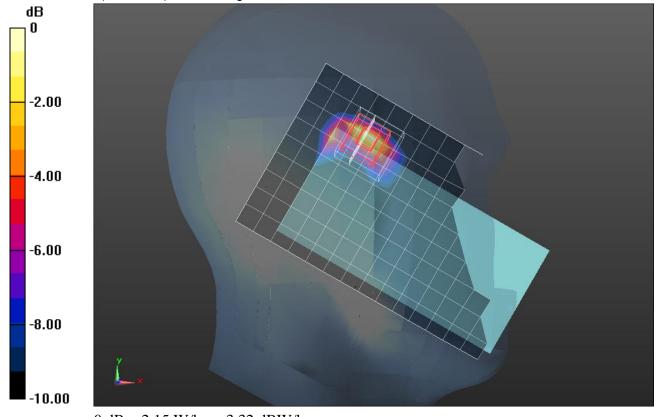
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545: Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.41, 7.41, 7.41) @ 3560 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

LHS/Touch_QPSK RB 1,49 Ch 55340/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 2.04 W/kg

LHS/Touch_QPSK RB 1,49 Ch 55340/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=4mm

Reference Value = 20.29 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 0.982 W/kg; SAR(10 g) = 0.348 W/kg

Smallest distance from peaks to all points 3 dB below = 5.1 mm

Ratio of SAR at M2 to SAR at M1 = 37.6%

Maximum value of SAR (measured) = 2.15 W/kg

0 dB = 2.15 W/kg = 3.32 dBW/kg

Frequency: 3646.7 MHz; Duty Cycle: 1:1.59956; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 3646.7 MHz; $\sigma = 2.908$ S/m; $\epsilon_r = 39.428$; $\rho = 1000$ kg/m³ DASY5 Configuration:

Date/Time: 7/20/2020 8:14:13 AM

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1545: Calibrated: 4/15/2020
- Probe: EX3DV4 SN7356; ConvF(7.24, 7.24, 7.24) @ 3646.7 MHz; Calibrated: 4/23/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: Twin-SAM V5.0 (20deg probe tilt); Type: QD000P40CD; Serial: 1629

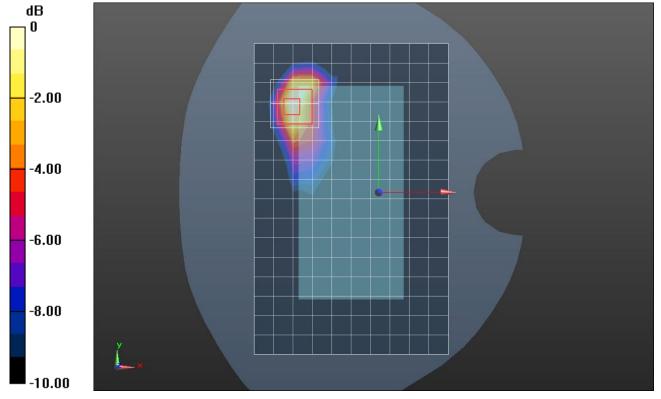
Rear/QPSK RB 1,49 ch 56207/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.995 W/kg

Rear/QPSK RB 1,49 ch 56207/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 15.84 V/m; Power Drift = -0.10 dB


Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.16 W/kg

Smallest distance from peaks to all points 3 dB below = 6.3 mm

Ratio of SAR at M2 to SAR at M1 = 42%

Maximum value of SAR (measured) = 0.724 W/kg

0 dB = 0.724 W/kg = -1.40 dBW/kg