Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Element

Morgan Hill, USA

Certificate No.

D1900V2-5d180 Aug23

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d180

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0,7-3 GHz

Calibration date:

August 08, 2023

YW 10/11/2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
	1		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	NULT -
Approved by:	Sven Kühn	Technical Manager	

Issued: August 9, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d180_Aug23 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d180_Aug23 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.1 Ω + 1.4 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.5 Ω + 6.0 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 04.08.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d180

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\epsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1900 MHz; Calibrated: 10.01.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 19.12.2022

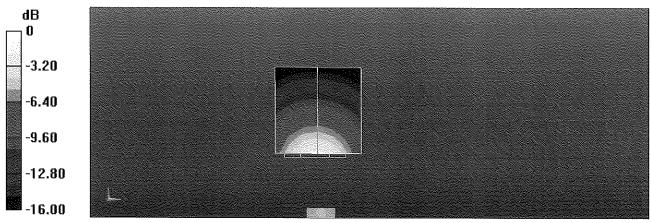
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

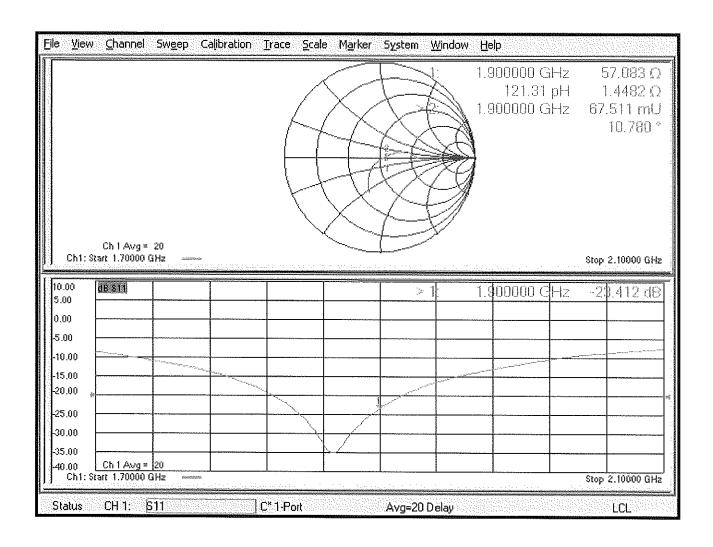
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.0 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.15 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 55.6%

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.08.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d180

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 10.01.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 19.12,2022

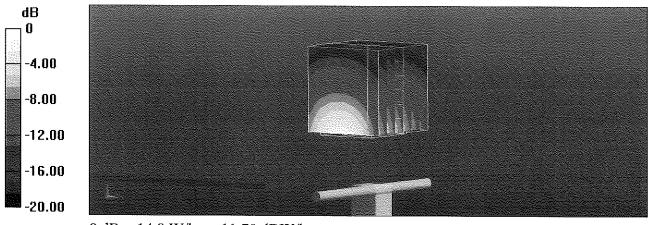
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

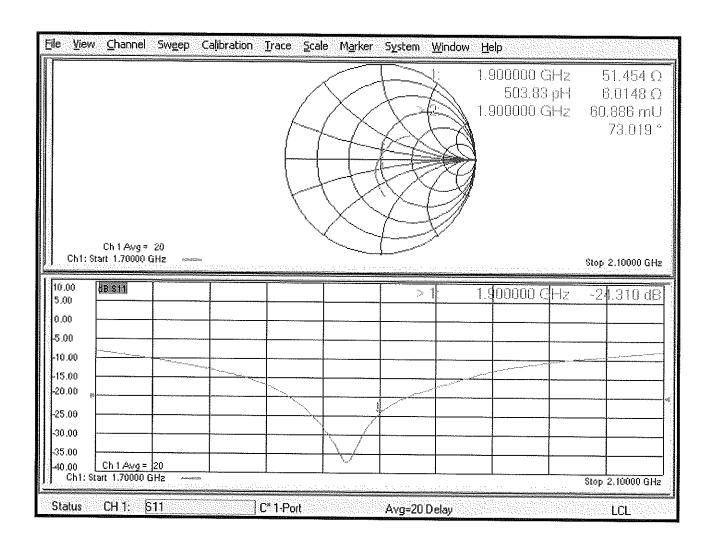
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.9 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.94 W/kg; SAR(10 g) = 5.24 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm


Ratio of SAR at M2 to SAR at M1 = 56.3%

Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dBW/kg

Impedance Measurement Plot for Body TSL

element

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)
18855 Adams Ct, Morgan Hill, CA 95037 USA
Tel. +1.408.538.5600
http://www.element.com

Certification of Calibration

Object D1900V2 – SN: 5d180

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: August 08, 2024

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Hewlett Packard	8753E	RF Vector Network Analyzer	5/21/2024	Annual	5/21/2025	US38161081
Agilent	E4438C	ESG Vector Signal Generator	5/19/2024	Annual	5/19/2025	US41460739
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	7/15/2024	Annual	7/15/2025	1138001
Anritsu	MA2411B	Pulse Power Sensor	7/10/2024	Annual	7/10/2025	1126066
Anritsu	MA2411B	Pulse Power Sensor	7/1/2024	Annual	7/1/2025	1911105
Traceable	4040 90080-06	Therm./ Clock/ Humidity Monitor	1/15/2024	Annual	1/15/2025	160574418
Control Company	4352	Ultra Long Stem Thermometer	1/15/2024	Annual	1/15/2025	160508097
Agilent	85033E	3.5mm Standard Calibration Kit	7/31/2024	Annual	7/31/2025	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	12/5/2022	Biennial	12/5/2024	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/14/2024	Annual	5/14/2025	1070
SPEAG	EX3DV4	SAR Probe	2/9/2024	Annual	2/9/2025	7308
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/15/2024	Annual	1/15/2025	1465

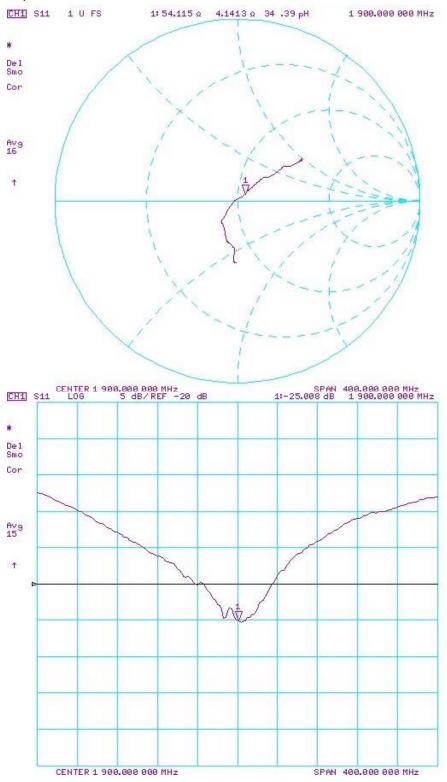
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Compliance Engineer	10
Approved By:	Greg Snyder	Executive VP of Operations	LuggedSyl

Object:	Date Issued:	Page 1 of 3
D1900V2 - SN: 5d180	08/08/2024	rage 1013

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibrati Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)		Deviation (%)	
8/8/202	8/8/2024	1.205	3.92	4.14	5.61%	2.06	2.15	4.37%	57.1	54.1	3	1.4	4.1	2.7	-23.4	-25	-6.90%	1

Object:	Date Issued:	Page 2 of 3
D1900V2 - SN: 5d180	08/08/2024	raye 2 or 3

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 3
D1900V2 - SN: 5d180	08/08/2024	raye 3 or 3

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst Service suisse d'étalonnage

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Element Morgan Hill, USA

Certificate No.

D2450V2-921_Oct24

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 921

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

October 23, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Paulo Pina	Laboratory Technicia	n /
Approved by	Sven Kühn	Technical Manager	522

Issued: October 23, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

D2450V2 - SN: 921 October 23, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2450MHz ±1MHz	

Head TSL parameters at 2450 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.7 ±6%	1.82 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2450 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ±16.5% (k = 2)

D2450V2 - SN: 921 October 23, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 2450 MHz

Impedance	50.9 Ω + 4.8 jΩ
Return Loss	-26.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 157 ne
The state of the s	1.107 118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Page 4 of 6

Certificate No: D2450V2-921 Oct24

System Performance Check Report

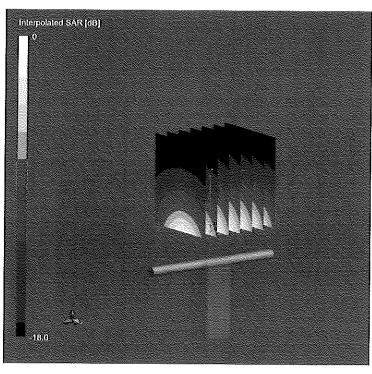
Summary

Dipole	Frequency [MHz]	TSL	Power (dBm)
D2450V2 - SN921	2450	HSL	24

Exposure Conditions

Phantom Section, TSL	Test Distance (mm)	Band	Group, UID	Frequency (MHz), Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSŁ Permittivity
Flat	10		CW, 0	2450, 0	7.24	1,82	37,7

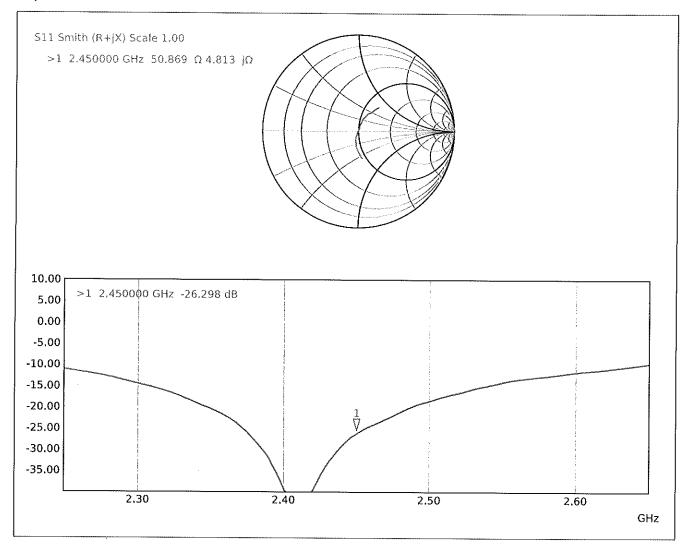
Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-10-23	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

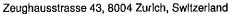
Scans Setup

	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grld Steps [mm]	5.0 x 5.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VM\$ + 6p
Scan Method	Measured

Measurement Results


	Zoom Scan
Date	2024-10-23
psSAR1g [W/Kg]	13.1
psSAR10g [W/Kg]	6.11
Power Drift [dB]	10.0
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 27.3 W/Kg


D2450V2 - SN: 921

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio sylzzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Cllent

Element

Morgan Hill, USA

Certificate No.

D2450V2-750 May25

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 750

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

May 13, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Egulpment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	·SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch: SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 14, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-750_May25

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kallbrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528,"Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-750_May25 Page 2 of 9

May 13, 2025

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2450MHz ±1MHz	

HSL parameters at 2450 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	39.2	1.80 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	37.8 ±6%	1.84 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 2450 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	13.4 W/kg
SAR for nominal HSL parameters	normalized to 1W	53.3 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	6.30 W/kg
SAR for nominal HSL parameters	normalized to 1W	25.1 W/kg ±16.5% (k = 2)

Certificate No: D2450V2-750_May25 Page 3 of 9

D2450V2 - SN: 750 May 13, 2025

MSL parameters at 2450 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal MSL parameters	22.0 °C	52.7	1.95 mho/m
Measured MSL parameters	(22.0 ±0.2)°C	52.1 ±6%	2.02 mho/m ±6%
MSL temperature change during test	< 0.5 °C		

SAR result with MSL at 2450 MHz

SAR averaged over 1 cm ³ (1 g) of MSL	Condition	
SAR for nominal MSL parameters	24 dBm input power	12.7 W/kg
SAR for nominal MSL parameters	normalized to 1W	50.6 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of MSL	Condition	
SAR for nominal MSL parameters	24 dBm input power	6.06 W/kg
SAR for nominal MSL parameters	normalized to 1W	24.1 W/kg ±16.5% (k = 2)

Certificate No: D2450V2-750_May25 Page 4 of 9

D2450V2 - SN: 750

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 2450 MHz

Impedance	54.6 Ω + 4.7 jΩ		
Return Loss	-24.0 dB		

Antenna Parameters with MSL at 2450 MHz

Impedance	50.6 Ω + 6.0 jΩ
Return Loss	-24.4 dB

General Antenna Parameters and Design

_	
Electrical Delay (one direction)	1 150
T EIGGINGAI DEIAV IOHE UNEGNON	1.153.0S
	1.100110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

			_	
Manufactured by		_	SPEAG	

D2450V2 - SN: 750 May 13, 2025

System Performance Check Report

Su	m	m	ary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D2450V2 - SN750	2450	HSL	24

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2450, 0	7.06	1.84	37.8

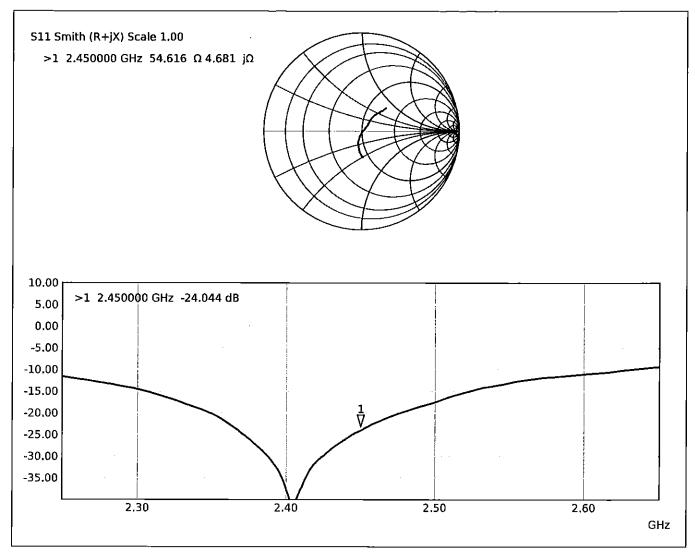
Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-05-13	EX3DV4 - SN7349, 2025-01-10	DAE4Ip Sn1836, 2025-04-17

Scans Setup

	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps (mm)	5.0 x 5.0 x 1.5
Sensor Surface (mm)	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	, N/A
Surface Detection	VMS + 6p
Scan Method	Weasured

Measurement Results


	Zoom Scan
Date	2025-05-13
psSAR1g (W/Kg)	13.4
psSAR10g [W/Kg]	6.30
Power Drift (dB)	0.00
Power Scaling	Disabled
Scaling Factor (dB)	
TSL Correction	Positive / Negative

0 dB = 27.5 W/Kg

D2450V2 - SN: 750

Impedance Measurement Plot for HSL

D2450V2 - SN: 750

System Performance Check Report

Summary

Dipole	Frequency (MHz)	TSL	Power [d8m]
D2450V2 - SN750	2450	MSL	24

Exposure Conditions

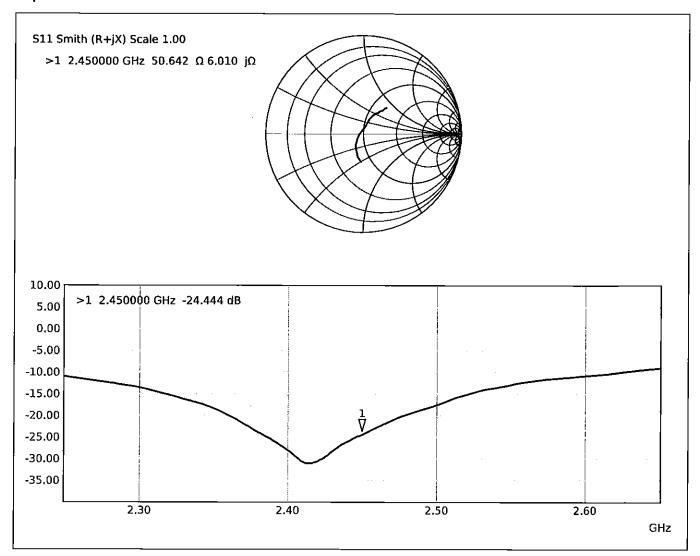
Phantom Section, TSI.	Test Distance [mm]	Band Group, UID	Frequency (MHz), Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0	2450, 0	7.06	2.02	52.1

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	MSL, 2025-05-13	EX3DV4 - SN7349, 2025-01-10	DAE4lp Sn1836, 2025-04-17

Scans Setup

	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grld Steps (mm)	5.0 x 5.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grld	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured


Measurement Results

Incapatement results	
	Zoom Scan
Date	2025-05-13
psSAR1g [W/Kg]	12.7
psSAR10g [W/Kg]	6.06
Power Drift (dB)	0.00
Power Scaling	Disabled
Scaling Factor (dB)	
TSL Correction	Positive / Negative

0 dB = 25.1 W/Kg

Impedance Measurement Plot for MSL

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Element

Certificate No: D2450V2-855_Nov22

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:855

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

12/6/20

Calibration date:

November 15, 2022

✓ YW 12/13/2023

YW 11/19/2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID#	Charle Data (in house)	
Power meter E4419B		Check Date (in house)	Scheduled Check
Power sensor HP 8481A	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
1	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Signature
			12116
	steritorio salista e e e e e e e e e e e e e e e e e e e		
Approved by:	Sven Kühn	Technical Manager	
			A CONTRACTOR OF THE CONTRACTOR

Issued: November 16, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio syizzero di taratura

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity 1.80 mho/m	
Nominal Head TSL parameters	22.0 °C	39.2		
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.87 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C		777	

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity 1.95 mho/m	
Nominal Body TSL parameters	22.0 °C	52.7		
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.01 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-855_Nov22 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.5 \Omega + 6.3 j\Omega$
Return Loss	- 23.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 7.9 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
,	3i LAG

Certificate No: D2450V2-855_Nov22

DASY5 Validation Report for Head TSL

Date: 15.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:855

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 31.08.2022

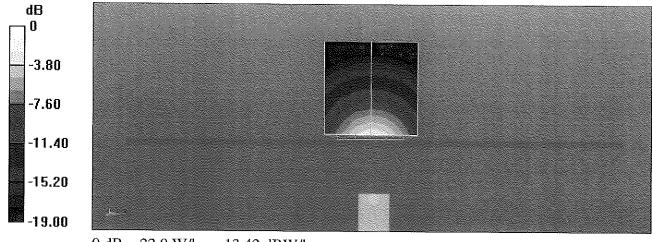
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

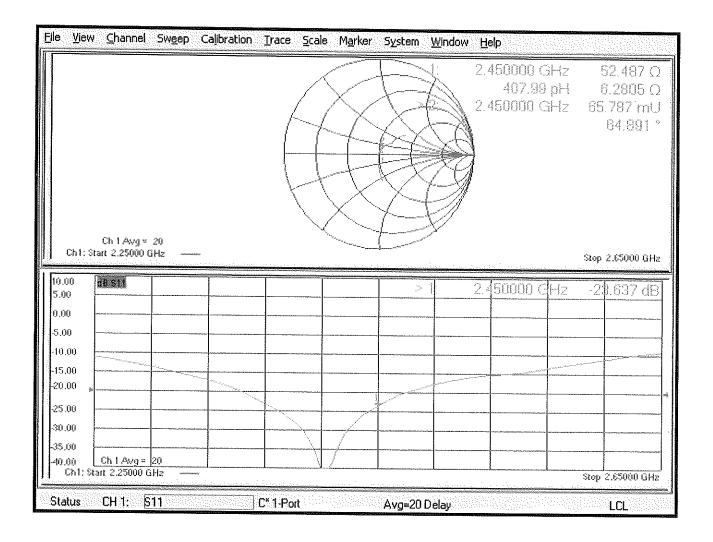
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.1 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.24 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 51.1%

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:855

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 31.08.2022

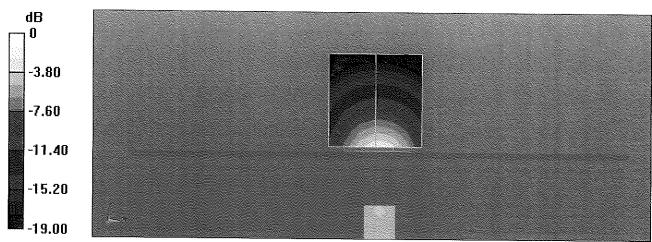
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm 2/Zoom Scan (7x7x7)/Cube 0:

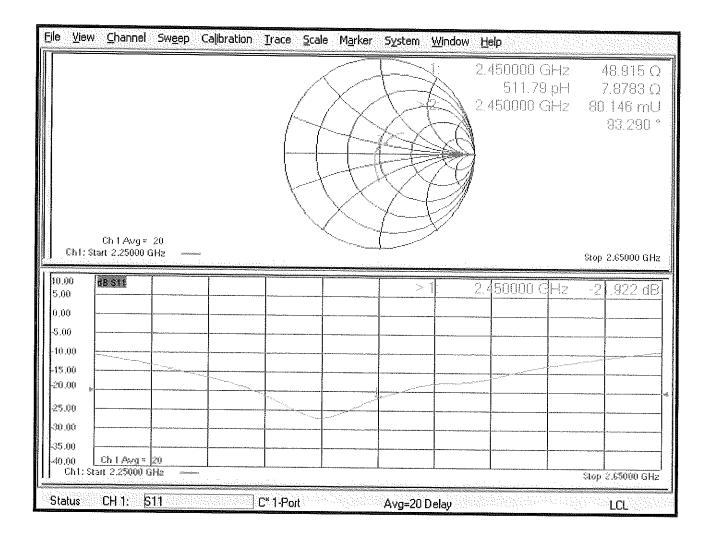
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.4 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.03 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm


Ratio of SAR at M2 to SAR at M1 = 53.7%

Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

Impedance Measurement Plot for Body TSL

element

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com

Certification of Calibration

Object D2450V2 – SN: 855

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: November 15, 2023

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/2/2023	Annual	6/12/2024	MY40003841
Agilent	E4438C	ESG Vector Signal Generator	4/25/2023	Annual	4/25/2024	US41460739
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Rohde & Schwarz	NRX	Power Meter	1/11/2023	Annual	1/11/2024	102583
Rohde & Schwarz	NRP-Z81	Wide Band Power Sensor	1/19/2023	Annual	1/19/2024	106563
Rohde & Schwarz	NRP-Z81	Wide Band Power Sensor	1/11/2023	Annual	1/11/2024	106564
Traceable	4040 90080-06	Therm./ Clock/ Humidity Monitor	5/11/2022	Biennial	5/11/2024	221514974
Control Company	4353	Ultra Long Stem Thermometer	10/24/2023	Annual	10/24/2024	200645916
Agilent	85033E	3.5mm Standard Calibration Kit	7/18/2023	Annual	7/18/2024	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	12/5/2022	Biennial	12/5/2024	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/9/2023	Annual	5/9/2024	1070
SPEAG	EX3DV4	SAR Probe	11/9/2023	Annual	11/9/2024	7639
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/14/2023	Annual	11/14/2024	1403

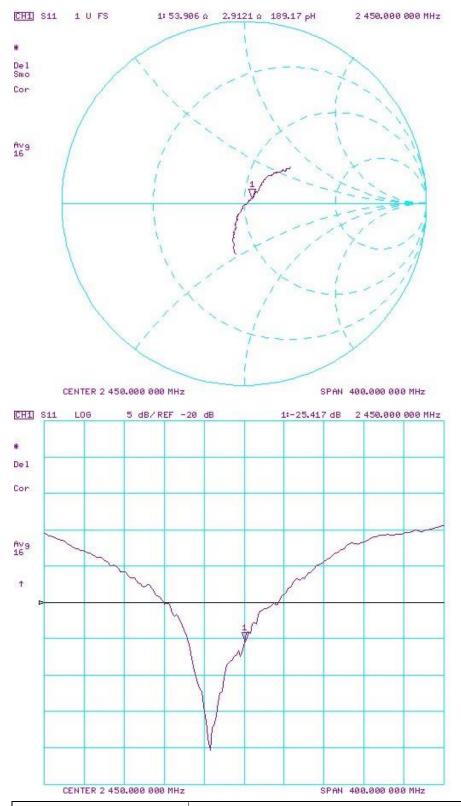
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Compliance Engineer	40
Approved By:	Greg Snyder	Executive VP of Operations	LuggedSyl

Object:	Date Issued:	Page 1 of 3		
D2450V2 – SN: 855	11/15/2023	rage rors		

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibra Da	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	IHead SAR (1a)	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real				Impedance	(Ohm)	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	
11/15/	022 11/15/2023	1.157	5.24	5.13	-2.10%	2.46	2.38	-3.25%	52.5	53.9	1.4	6.3	2.9	3.4	-23.6	-25.4	-7.70%	

Object:	Date Issued:	Page 2 of 3
D2450V2 - SN: 855	11/15/2023	rage 2 01 3

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 3
D2450V2 – SN: 855	11/15/2023	rage 3 01 3

element

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com

Certification of Calibration

Object D2450V2 – SN: 855

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: November 15, 2024

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Hewlett Packard	8753E	RF Vector Network Analyzer	5/21/2024	Annual	5/21/2025	US38161081
Agilent	E4438C	ESG Vector Signal Generator	5/19/2024	Annual	5/19/2025	US41460739
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	7/15/2024	Annual	7/15/2025	1138001
Anritsu	MA2411B	Pulse Power Sensor	7/10/2024	Annual	7/10/2025	1126066
Anritsu	MA2411B	Pulse Power Sensor	7/1/2024	Annual	7/1/2025	1911105
Traceable	4040 90080-06	Therm./ Clock/ Humidity Monitor	1/15/2024	Annual	1/15/2025	160574418
Control Company	4352	Ultra Long Stem Thermometer	1/15/2024	Annual	1/15/2025	160508097
Agilent	85033E	3.5mm Standard Calibration Kit	7/31/2024	Annual	7/31/2025	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	12/5/2022	Biennial	12/5/2024	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/14/2024	Annual	5/14/2025	1070
SPEAG	EX3DV4	SAR Probe	9/9/2024	Annual	9/9/2025	7639
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/4/2024	Annual	9/4/2025	1403

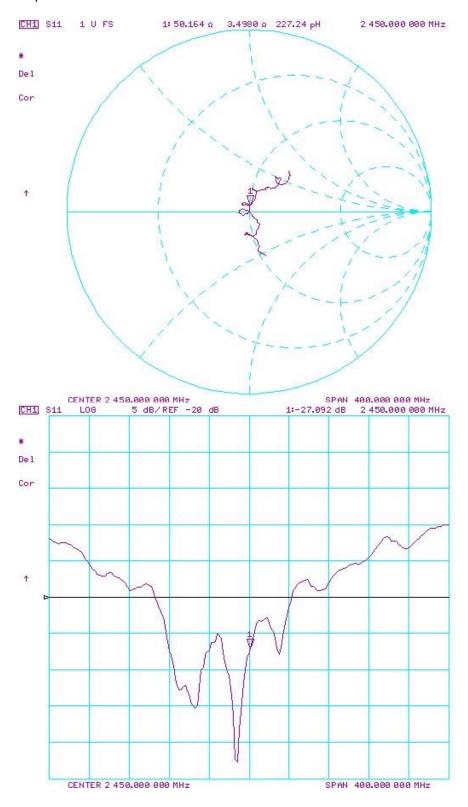
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Compliance Engineer	10
Approved By:	Greg Snyder	Executive VP of Operations	Sugge M. Syla

Object:	Date Issued:	Page 1 of 3
D2450V2 – SN: 855	11/15/2024	rage 1013

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

	ibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real		Certificate Impedance Head (Ohm) Imaginary			Certificate Return Loss Head (dB)		Deviation (%)	
11/	15/2022	11/15/2024	1.157	5.24	5.31	1.34%	2.46	2.49	1.22%	52.5	50.2	2.3	6.3	3.5	2.8	-23.6	-27.1	-14.80%	ı

Object:	Date Issued:	Page 2 of 3
D2450V2 – SN: 855	11/15/2024	raye 2 UI 3

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 3
D2450V2 – SN: 855	11/15/2024	rage 3 01 3

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Element

Morgan Hill, USA

Certificate No.

D2600V2-1042_May25

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1042

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

May 7, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Leif Klysner

Laboratory Technician

>//

Approved by

Sven Kühn

Technical Manager

Issued: May 7, 2025
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1042_May25

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerischer Kalibrierdlenst Service sulsse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power,
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1042_May25 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2600MHz ±1MHz	

HSL parameters at 2600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	39.0	1.96 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	37.3 ±6%	2.00 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 2600 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	13.8 W/kg
SAR for nominal HSL parameters	normalized to 1W	54.9 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	6.16 W/kg
SAR for nominal HSL parameters	normalized to 1W	24.5 W/kg ±16.5% (k = 2)

Certificate No: D2600V2-1042_May25 Page 3 of 9

MSL parameters at 2600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal MSL parameters	22.0 °C	52.5	2.16 mho/m
Measured MSL parameters	(22.0 ±0.2)°C	51.6 ±6%	2.20 mho/m ±6%
MSL temperature change during test	< 0.5 °C		

SAR result with MSL at 2600 MHz

SAR averaged over 1 cm ³ (1 g) of MSL	Condition	
SAR for nominal MSL parameters	24 dBm input power	13.4 W/kg
SAR for nominal MSL parameters	normalized to 1W	53.3 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of MSL	Condition	
SAR for nominal MSL parameters	24 dBm input power	6.03 W/kg
SAR for nominal MSL parameters	normalized to 1W	24.0 W/kg ±16.5% (k = 2)

Certificate No: D2600V2-1042_May25

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 2600 MHz

Impedance	48.1 Ω – 9.3 jΩ
Return Loss	-20,4 dB

Antenna Parameters with MSL at 2600 MHz

Impedance	44.3 Ω – 7.4 jΩ
Return Loss	-20.1 dB

General Antenna Parameters and Design

	·
Electrical Delay (one direction)	1.15 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D2600V2-1042_May25 Page 5 of 9

System Performance Check Report

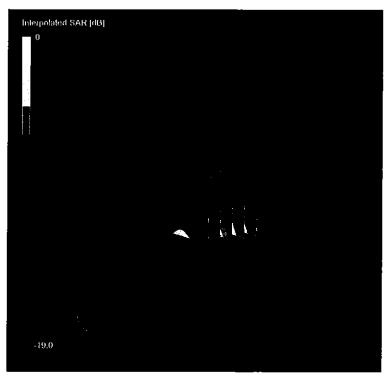
Sum	m	2	n
JUIT		•	1 Y

Dipole	Frequency [MHz]	TSL	Power [dBm]
D2600V2 - SN1042	2600	HSL	24

Exposure Conditions

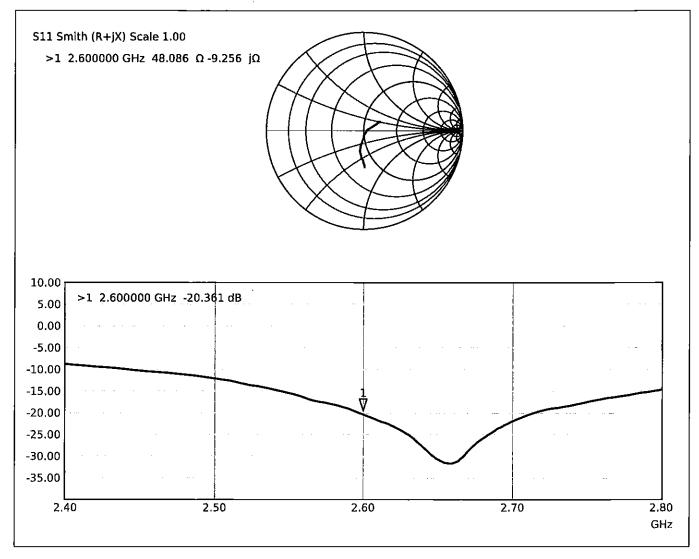
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [5/m]	TSL Permittivity
Flat	10		CW, 0	2600, 0	7.26	2.00	37.3

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-05-07	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17

Scans Setup

	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grld Steps [mm]	5.0 x 5.0 x 1.5
Sensor Surface (mm)	1.4
Craded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured


Measurement Results

	Zoom Scan
Date	2025-05-07
psSAR1g (W/Kg)	13.8
psSAR10g [W/Kg]	6.16
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 30.3 W/Kg

Impedance Measurement Plot for HSL

System Performance Check Report

Summan	į
--------	---

Dipole	Frequency [MHz]	TSL	Power (d8m)
D2600V2 - 5N1042	2600	MSL	24

Exposure Conditions

Phantom Section, TSL	Test Distance (mm)	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permitthvity
Flat	10		CW, 0	2600, 0	7.19	2.20	51.6

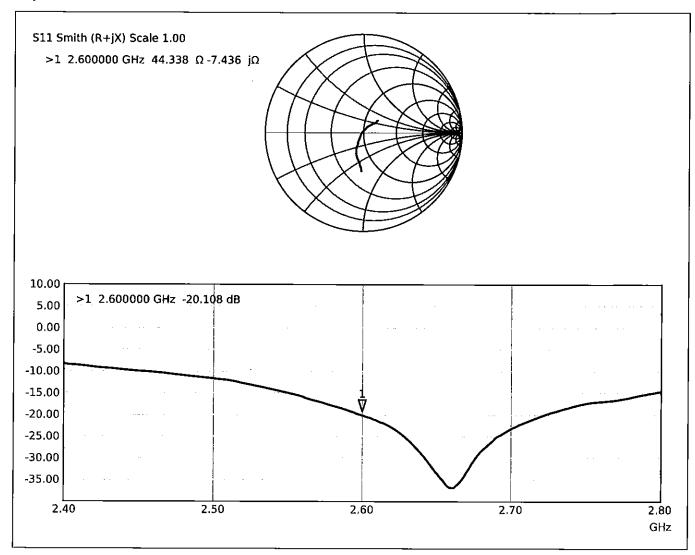
Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	MSL, 2025-05-06	EX3DV4 - SN7349, 2025-01-10	DAE4Ip Sn1836, 2025-04-17

Scans Setup

	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps (mm)	5.0 × 5.0 × 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	. Measured

Measurement Results


incusurement results	
	Zoom Scan
Date	2025-05-06
psSAR1g [W/Kg]	13.4
psSAR10g [W/Kg]	6.03
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor (dB)	
TSL Correction	Positive / Negative

0 dB = 27.7 W/Kg

D2600V2 - SN: 1042

Impedance Measurement Plot for MSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

Certificate No: D2600V2-1068_Nov22

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1068

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

November 15, 2022

Y YW 12/28/2023

✓ YW 11/19/2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	9/

Issued: November 16, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1068_Nov22

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.19 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C				

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1068_Nov22 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8 Ω - 5.9 jΩ
Return Loss	- 23.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.5 Ω - 5.0 jΩ					
Return Loss	- 22.1 dB					

General Antenna Parameters and Design

Electrical Delay (one direction)	1.148 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured b	y	SPEAG

Certificate No: D2600V2-1068_Nov22

DASY5 Validation Report for Head TSL

Date: 15.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1068

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 31.12.2021

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 31.08.2022

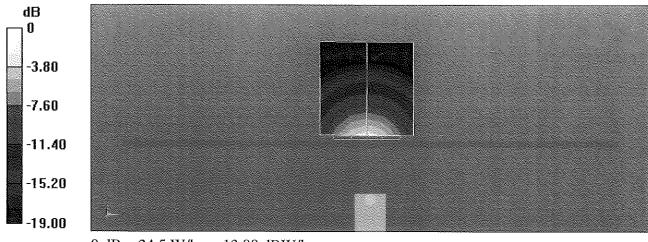
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

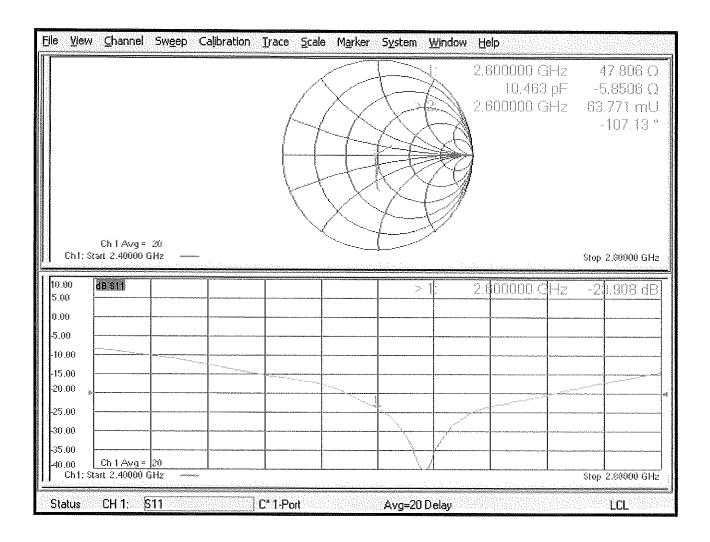
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.5 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.43 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 24.5 W/kg

0 dB = 24.5 W/kg = 13.88 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1068

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.19$ S/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.91, 7.91, 7.91) @ 2600 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 31.08.2022

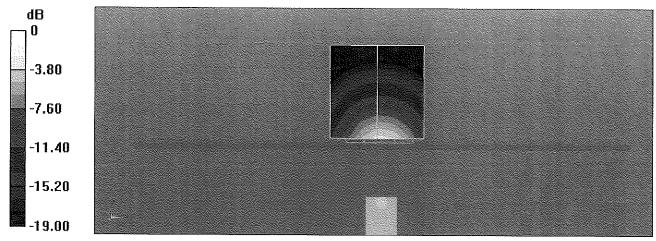
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

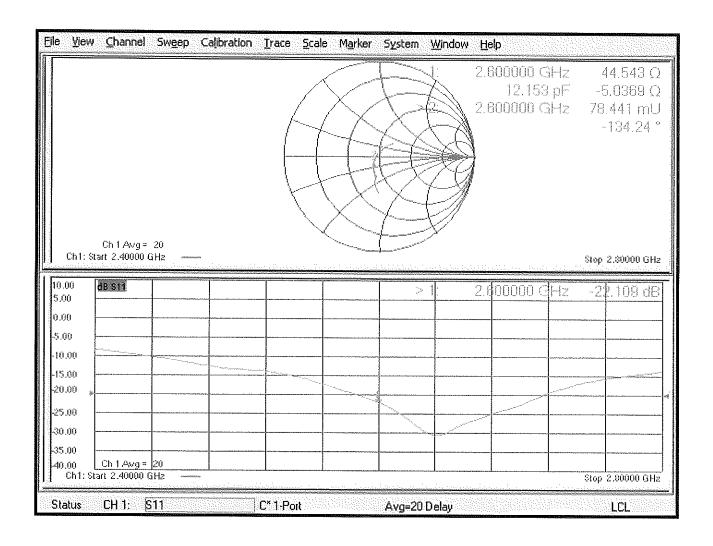
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.9 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.07 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm


Ratio of SAR at M2 to SAR at M1 = 51.2%

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.51 dBW/kg

Impedance Measurement Plot for Body TSL

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com

Certification of Verification

Object D2600V2 – SN: 1068

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration Date: November 15, 2022

Extension Calibration date: November 15, 2023

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Model Description		Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/2/2023	Annual	6/12/2024	MY40003841
Agilent	E4438C	ESG Vector Signal Generator	4/25/2023	Annual	4/25/2024	US41460739
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Rohde & Schwarz	NRX	Power Meter	1/11/2023	Annual	1/11/2024	102583
Rohde & Schwarz	NRP-Z81	Wide Band Power Sensor	1/19/2023	Annual	1/19/2024	106563
Rohde & Schwarz NRP-Z81		Wide Band Power Sensor	1/11/2023	Annual	1/11/2024	106564
Traceable 4040 90080-06		Therm./ Clock/ Humidity Monitor	5/11/2022	Biennial	5/11/2024	221514974
Control Company	4353	Ultra Long Stem Thermometer		Annual	10/24/2024	200645916
Agilent	85033E	3.5mm Standard Calibration Kit	7/18/2023	Annual	7/18/2024	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	12/5/2022	Biennial	12/5/2024	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit		Annual	5/9/2024	1070
SPEAG	EX3DV4	SAR Probe		Annual	11/9/2024	7639
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/14/2023	Annual	11/14/2024	1403

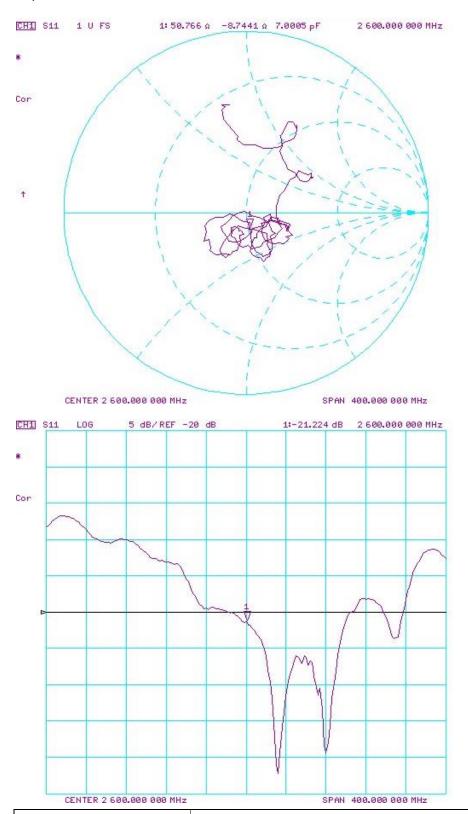
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Compliance Engineer	10
Approved By:	Greg Snyder	Executive VP of Operations	Lugge M. Sola

Object:	Date Issued:	Page 1 of 3
D2600V2 - SN: 1068	11/15/2023	rage 1015

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibrat Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real		Certificate Impedance Head (Ohm) Imaginary			Certificate Return Loss Head (dB)		Deviation (%)
11/15/20	22 11/15/2023	1.148	5.65	5.2	-7.96%	2.54	2.35	-7.48%	47.8	50.8	3	-5.9	-8.7	2.8	-23.9	-21.2	11.20%

Object:	Date Issued:	Page 2 of 3
D2600V2 - SN: 1068	11/15/2023	rage 2 01 3

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 3
D2600V2 – SN: 1068	11/15/2023	rage 3 01 3

element

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com

Certification of Calibration

Object D2600V2 – SN: 1068

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: November 15, 2024

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Hewlett Packard	8753E	RF Vector Network Analyzer	5/21/2024	Annual	5/21/2025	US38161081
Agilent	E4438C	ESG Vector Signal Generator	5/19/2024	Annual	5/19/2025	US41460739
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	7/15/2024	Annual	7/15/2025	1138001
Anritsu	MA2411B	Pulse Power Sensor	7/10/2024	Annual	7/10/2025	1126066
Anritsu	MA2411B	Pulse Power Sensor	7/1/2024	Annual	7/1/2025	1911105
Traceable	4040 90080-06	Therm./ Clock/ Humidity Monitor	1/15/2024	Annual	1/15/2025	160574418
Control Company	4352	Ultra Long Stem Thermometer	1/15/2024	Annual	1/15/2025	160508097
Agilent	85033E	3.5mm Standard Calibration Kit	7/31/2024	Annual	7/31/2025	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	12/5/2022	Biennial	12/5/2024	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/14/2024	Annual	5/14/2025	1070
SPEAG	EX3DV4	SAR Probe	9/9/2024	Annual	9/9/2025	7639
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/4/2024	Annual	9/4/2025	1403

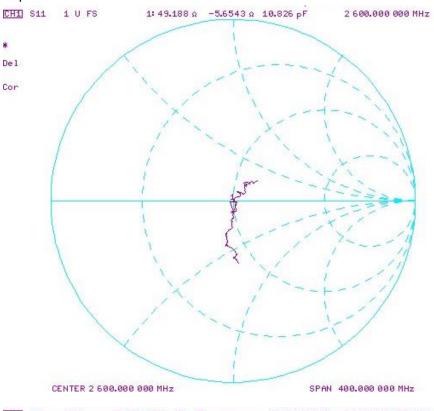
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Compliance Engineer	10
Approved By:	Greg Snyder	Executive VP of Operations	Lagge W. Sola

Object:	Date Issued:	Page 1 of 3
D2600V2 - SN: 1068	11/15/2024	rage 1015

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real		Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	
11/15/2022	11/15/2024	1.148	5.65	5.62	-0.53%	2.54	2.55	0.39%	47.8	49.2	1.4	-5.9	-5.7	0.2	-23.9	-24.7	-3.50%	1

Object:	Date Issued:	Page 2 of 3
D2600V2 - SN: 1068	11/15/2024	raye 2 01 3

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 3
D2600V2 - SN: 1068	11/15/2024	rage 3 01 3

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Element Morgan Hill, USA

Certificate No. D2600V2-1069_Sep23

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1069

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

YW 10/11/2024

Issued: September 14,

Calibration date:

September 12, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Krešimir Franjić	Laboratory Technician	MA
Approved by:	Sven Kühn	Technical Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1069 Sep23

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1069_Sep23 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	***************************************

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	***************************************
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	 -	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1069_Sep23 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω - 5.0 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 5.5 jΩ
Return Loss	- 23.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2600V2-1069_Sep23 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 12.09.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.99 \text{ S/m}$; $\varepsilon_r = 37.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 10.01.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 19.12.2022

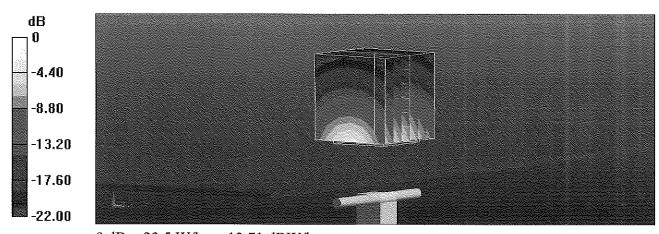
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

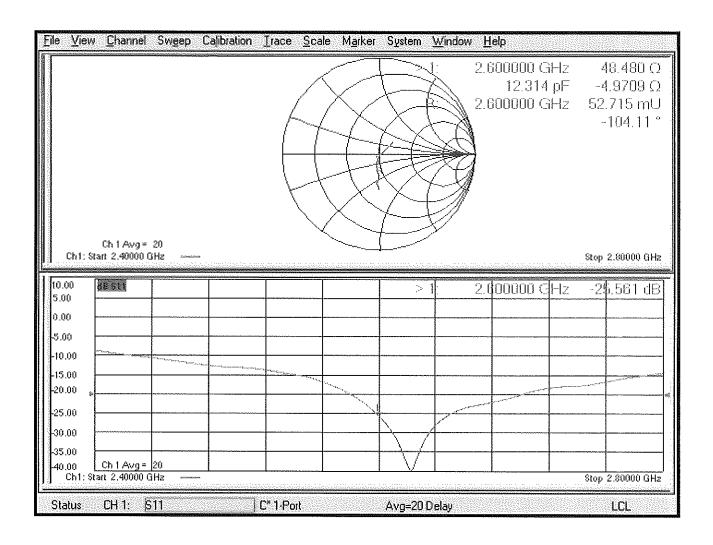
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 120.2 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.45 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 23.5 W/kg

0 dB = 23.5 W/kg = 13.71 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 06.09.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.83, 7.83, 7.83) @ 2600 MHz; Calibrated: 10.01.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 19.12.2022

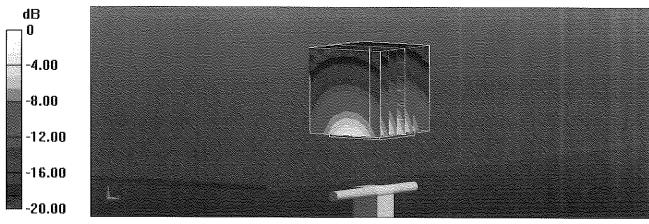
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

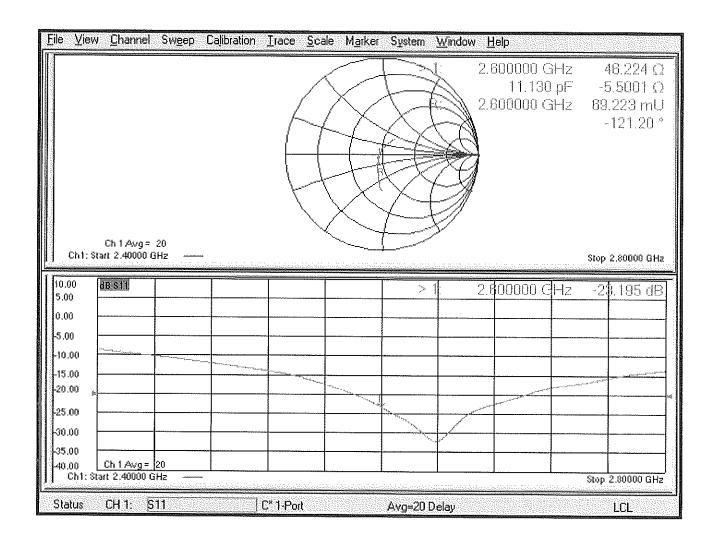
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.7 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.10 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm


Ratio of SAR at M2 to SAR at M1 = 53.3%

Maximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.37 dBW/kg

Impedance Measurement Plot for Body TSL

element

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)
18855 Adams Ct, Morgan Hill, CA 95037 USA
Tel. +1.408.538.5600
http://www.element.com

Certification of Calibration

Object D2600V2 – SN: 1069

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: September 12, 2024

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Hewlett Packard	8753E	RF Vector Network Analyzer	5/21/2024	Annual	5/21/2025	US38161081
Agilent	E4438C	ESG Vector Signal Generator	5/19/2024	Annual	5/19/2025	US41460739
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	7/15/2024	Annual	7/15/2025	1138001
Anritsu	MA2411B	Pulse Power Sensor	7/10/2024	Annual	7/10/2025	1126066
Anritsu	MA2411B	Pulse Power Sensor	7/1/2024	Annual	7/1/2025	1911105
Traceable	4040 90080-06	Therm./ Clock/ Humidity Monitor	1/15/2024	Annual	1/15/2025	160574418
Control Company	4352	Ultra Long Stem Thermometer	1/15/2024	Annual	1/15/2025	160508097
Agilent	85033E	3.5mm Standard Calibration Kit	7/31/2024	Annual	7/31/2025	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	12/5/2022	Biennial	12/5/2024	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/14/2024	Annual	5/14/2025	1070
SPEAG	EX3DV4	SAR Probe	5/13/2024	Annual	5/13/2025	7552
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2024	Annual	5/8/2025	1676

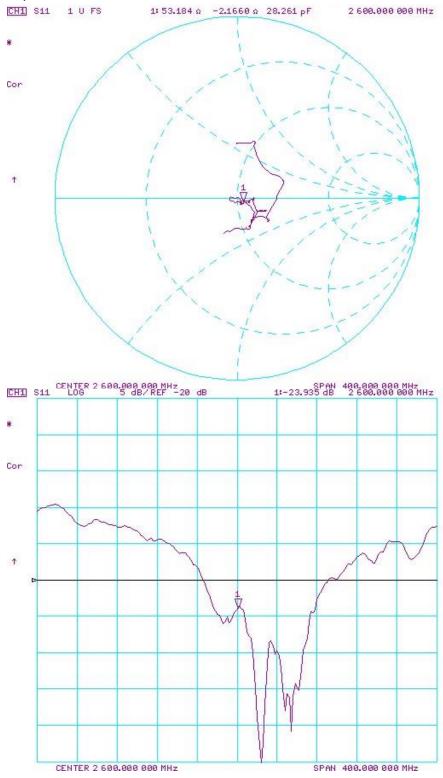
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Compliance Engineer	10
Approved By:	Greg Snyder	Executive VP of Operations	Sugge M. Syla

Object:	Date Issued:	Page 1 of 3
D2600V2 – SN: 1069	09/12/2024	Page 1 of 3

DIPOLE CALIBRATION EXTENSION

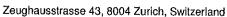
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibra Date		Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary			Deviation (%)
9/12/20	9/12/2024	1.152	5.62	5.56	-1.07%	2.55	2.42	-5.10%	48.5	53.2	4.7	-5	-2.2	2.8	-25.6	-23.9	6.50%

Object:	Date Issued:	Page 2 of 3
D2600V2 - SN: 1069	09/12/2024	rage 2 01 3


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 3
D2600V2 - SN: 1069	09/12/2024	raye 3 or 3

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Schweizerischer Kallbrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

Morgan Hill, USA

Certificate No.

D5GHzV2-1066_Nov24

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1066

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

November 8, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4lp	SN: 1836	28-Oct-24 (No. DAE4ip-1836_Oct24)	Oct-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: November 12, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1066 Nov24

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service sulsse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528,"Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled
 phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return
 Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1066_Nov24 Page 2 of 11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 4mm, dz = 1.4mm	Graded Ratio = 1.4 mm (Z direction)
Frequency	5250MHz ±1MHz 5600MHz ±1MHz 5750MHz ±1MHz 5850MHz ±1MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.8 ±6%	4.58 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.9 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ±19.5% (k = 2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittlvity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.2 ±6%	4.96 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ±19.5% (k = 2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.0 ±6%	5.12 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1066_Nov24 Page 4 of 11

Head TSL parameters at 5850 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.2	5.32 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	34.9 ±6%	5.21 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.4 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1066_Nov24 Page 5 of 11

D5GHzV2 - SN: 1066

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance	48.2 Ω – 2.3 j Ω
Return Loss	-30.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance	57.0 Ω – 0.7 jΩ
Return Loss	-23.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance	55.3 Ω + 1.1 JΩ
Return Loss	-25.8 dB

Antenna Parameters with Head TSL at 5850 MHz

Impedance	55.7 Ω – 3.6 jΩ
Return Loss	-23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
Lieutical Delay (Offe Offection)	1.195 ns
	1.10010
	*·····································

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	T
Manufactured by	SDEAC
Manufactured by	I SPEAG I

Certificate No: D5GHzV2-1066_Nov24

D5GHzV2 - SN: 1066

System Performance Check Report

Summary

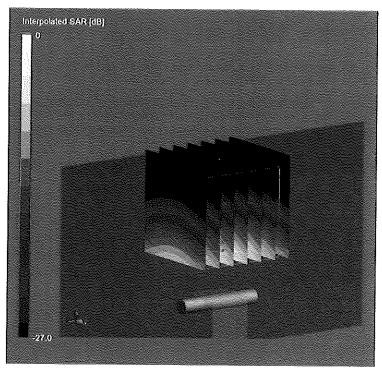
Dipole	Frequency (MHz)	TSL	Power (d8m)
DSGHzV2 - SN1066	5250	HSL.	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	5250, 0	5.39	4.58	35.8

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Left	HSL, 2024-11-08	EX3DV4 - \$N7349, 2024-06-03	DAE4lp Sn1836, 2024-10-28


Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1,4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results

	Zoom Scan
Date	2024-11-08
psSAR1g [W/Kg]	7.79
ps\$AR10g [W/Kg]	2.25
Power Drift [dB]	0.03
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

November 8, 2024

0 dB = 30.9 W/Kg

System Performance Check Report

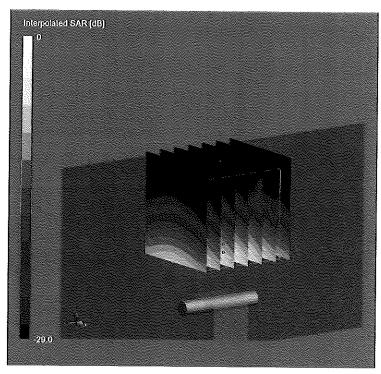
Summary

Dipole	Frequency [MHz]	TSL	Power (dBm)
D5GHzV2 SN1066	5600	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency (MHz), Channel Number		TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	5600, 0	4.93	4.96	35.2

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Left	HSL, 2024-11-08	EX3DV4 - SN7349, 2024-06-03	DAE4Ip Sn1836, 2024-10-28

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps (mm)	4.0 × 4.0 × 1.4
Sensor Surface [mm]	1,4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results

Zoom Scan
2024-11-08
8.18
2.37
-0.09
Disabled
Positive / Negative

0 dB = 35.1 W/Kg

System Performance Check Report

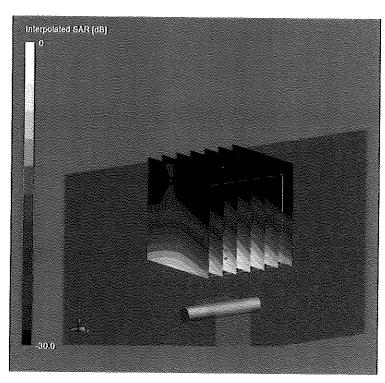
Summary

Dipole	Frequency (MHz)	TSL	Power [d8m]
D5GHzV2 - SN1066	5750	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Вала	Group, UID	Frequency (MHz), Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	***************************************	CW, 0	5750, 0	4.93	5.12	35.0

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Left	HSL, 2024-11-08	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-10-28

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grld Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface (mm)	1,4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	
Surface Detection	All points
Scan Method	Measured

Measurement Results

	Zoom Scan
Date	2024-11-08
psSAR1g [W/Kg]	8.07
psSAR10g [W/Kg]	2.32
Power Drift [d8]	0.00
Power Scaling	Disabled
Scaling Factor (dB)	
TSL Correction	Positive / Negative

0 dB = 35.6 W/Kg

System Performance Check Report

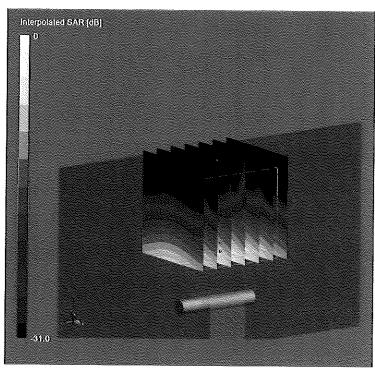
Summary

Dipole	Frequency (MHz)	TSL	Power [dBm]
D5GHzV2 ~ SN1066	5850	HSL	20

Exposure Conditions

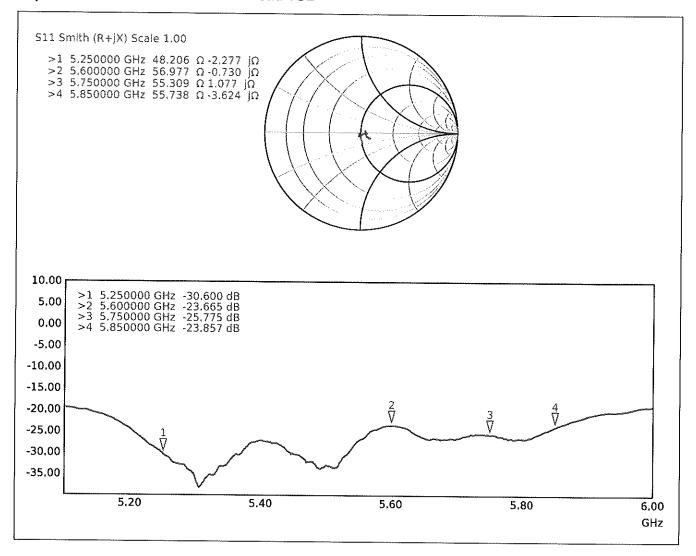
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	5850, 0	4.96	5.21	34.9

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Left	HSL, 2024-11-08	EX3DV4 - \$N7349, 2024-06-03	DAE4lp Sn1836, 2024-10-28

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1,4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured


Measurement Results

	Zoom Scan
Date	2024-11-08
psSAR1g [W/Kg]	7.74
psSAR10g [W/Kg]	2,22
Power Drift (d8)	-0.09
Power Scaling	Disabled
Scaling Factor [d8]	
TSL Correction	Positive / Negative

0 dB = 35.0 W/Kg

Impedance Measurement Plot for Head TSL

