### **ELEMENT MATERIALS TECHNOLOGY**



(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.element.com



### SAR EVALUATION REPORT

**Applicant Name:** 

Apple, Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing:

06/12/2024 - 07/10/2024

**Test Report Issue Date:** 

08/06/2024

Test Site/Location:

Element, Morgan Hill, CA, USA

**Document Serial No.:** 

1C2405230019-01.BCG (Rev 1)

FCC ID: BCG-A2997

APPLICANT: APPLE, INC.

DUT Type: Watch
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: A2997, A2998

|                    |                       |                                                                                                                | SAR                   |                         |  |
|--------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--|
| Equipment<br>Class | Band & Mode           | Tx Frequency                                                                                                   | 1g Head<br>(W/kg)     | 10g Extremity<br>(W/kg) |  |
| DTS                | 2.4 GHz WIFI          | 2412 - 2472 MHz                                                                                                | 0.56                  | <0.1                    |  |
| NII                | 5 GHz WIFI            | U-NII-1: 5180 - 5240 MHz<br>U-NII-2A: 5260 - 5320 MHz<br>U-NII-2C: 5500 - 5720 MHz<br>U-NII-3: 5745 - 5825 MHz | 0.26                  | <0.1                    |  |
| DSS/DTS            | 2.4 GHz Bluetooth     | 2402 - 2480 MHz 0.41                                                                                           |                       | <0.1                    |  |
| NII                | 802.15.4 ab-NB        | 5728.75 - 5846.25 MHz                                                                                          | <0.1                  | <0.1                    |  |
| DXX                | NFC                   | 13.56 MHz                                                                                                      | N/A                   | <0.1                    |  |
| UWB                | UWB                   | 6489.6 - 7987.2 MHz                                                                                            | N/A                   | <0.1                    |  |
| Sim                | ultaneous SAR per KDB | 690783 D01v01r03:                                                                                              | 0.67                  | <0.1                    |  |
| Equipment<br>Class | Band & Mode           | Tx Frequency                                                                                                   | APD (W/m²)            | APD (W/m²)              |  |
| UWB                | UWB                   | 6489.6 - 7987.2 MHz                                                                                            | N/A                   | <0.1                    |  |
| Equipment<br>Class | Band & Mode           | Tx Frequency                                                                                                   | Reported PD<br>(W/m²) | Reported PD<br>(W/m²)   |  |
| UWB                | UWB                   | 6489.6 - 7987.2 MHz                                                                                            | N/A 0.60              |                         |  |

Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 0 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

RJ Ortanez
Executive Vice President







The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

|                             |                       | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dog 1 of 10       |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 1 of 42      |

## TABLE OF CONTENTS

| 1     | DEVICE  | UNDER TEST                                       | 3  |
|-------|---------|--------------------------------------------------|----|
| 2     | INTROD  | UCTION                                           | 8  |
| 3     | DOSIME  | TRIC ASSESSMENT                                  | 9  |
| 4     | TEST CO | ONFIGURATION POSITIONS                           | 10 |
| 5     | RF EXPO | OSURE LIMITS                                     | 11 |
| 6     | FCC ME  | ASUREMENT PROCEDURES                             | 13 |
| 7     | RF CON  | DUCTED POWERS                                    | 16 |
| 8     | SYSTEM  | I VERIFICATION                                   | 21 |
| 9     | SAR DAT | TA SUMMARY                                       | 27 |
| 10    | FCC MU  | LTI-TX AND ANTENNA SAR CONSIDERATIONS            | 32 |
| 11    | SAR ME  | ASUREMENT VARIABILITY                            | 35 |
| 12    | EQUIPM  | ENT LIST                                         | 36 |
| 13    | MEASUF  | REMENT UNCERTAINTIES                             | 37 |
| 14    | CONCLU  | JSION                                            | 40 |
| 15    | REFERE  | NCES                                             | 41 |
| APPEN | NDIX A: | SAR TEST PLOTS                                   |    |
| APPEN | IDIX B: | SAR DIPOLE VERIFICATION PLOTS                    |    |
| APPEN | NDIX C: | PROBE AND DIPOLE CALIBRATION CERTIFICATES        |    |
| APPEN | NDIX D: | SAR TISSUE SPECIFICATIONS                        |    |
| APPEN | NDIX E: | SAR SYSTEM VALIDATION                            |    |
| APPEN | NDIX F: | DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS |    |

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID. BCG-A2991           | SAK EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dogo 2 of 42      |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 2 of 42      |

# 1 DEVICE UNDER TEST

### 1.1 Device Overview

| Band & Mode    | Operating Modes | Tx Frequency                                                                                                   |
|----------------|-----------------|----------------------------------------------------------------------------------------------------------------|
| 2.4 GHz WLAN   | Voice/Data      | 2412 - 2472 MHz                                                                                                |
| 5 GHz WIFI     | Voice/Data      | U-NII-1: 5180 - 5240 MHz<br>U-NII-2A: 5260 - 5320 MHz<br>U-NII-2C: 5500 - 5720 MHz<br>U-NII-3: 5745 - 5825 MHz |
| Bluetooth      | Data            | 2402 - 2480 MHz                                                                                                |
| 802.15.4 ab-NB | Data            | 5728.75 - 5846.25 MHz                                                                                          |
| UWB            | Data            | 6489.6 - 7987.2 MHz                                                                                            |
| NFC            | Data            | 13.56 MHz                                                                                                      |

### 1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 CC ID. BCC-A2991          | OAK EVALUATION KEI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Page 3 of 42      |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 3 01 42      |

## 1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D04v01.

1.3.1 Maximum Output Power – WiFi Mode

| Mode/ Band      |                     |         | IEEE 802.1 | 1b (2.4 GHz) | IEEE 802.11g (2.4 GHz) |         | IEEE 802.11n (2.4 GHz) |         |
|-----------------|---------------------|---------|------------|--------------|------------------------|---------|------------------------|---------|
|                 |                     | Channel | Maximum    | Nominal      | Maximum                | Nominal | Maximum                | Nominal |
|                 |                     | 1       | 20.00      | 19.00        | 17.00                  | 16.00   | 17.00                  | 16.00   |
|                 |                     | 2       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
|                 | 20 MHz<br>Bandwidth | 3       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
|                 |                     | 4       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
| Modulated       |                     | 5       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
| Average -       |                     | 6       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
| Single Tx Chain |                     | 7       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
| (dBm)           |                     | 8       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
| (ubiii)         |                     | 9       | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
|                 |                     | 10      | 20.00      | 19.00        | 19.00                  | 18.00   | 19.00                  | 18.00   |
|                 |                     | 11      | 20.00      | 19.00        | 16.50                  | 15.50   | 16.50                  | 15.50   |
|                 |                     | 12      | 20.00      | 19.00        | 15.00                  | 14.00   | 15.00                  | 14.00   |
|                 |                     | 13      | 18.00      | 17.00        | 2.50                   | 1.50    | 2.50                   | 1.50    |

|                     |                  | IEEE 802. | 11a (5 GHz) | IEEE 802.1 | IEEE 802.11n (5 GHz) |         |
|---------------------|------------------|-----------|-------------|------------|----------------------|---------|
| Mode/ Band          |                  | Channel   | Maximum     | Nominal    | Maximum              | Nominal |
|                     |                  | 36        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 40        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 44        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 48        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 52        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 56        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 60        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 64        | 17.00       | 16.00      | 17.00                | 16.00   |
|                     | 20 MHz Bandwidth | 100       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 104       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 108       | 17.00       | 16.00      | 17.00                | 16.00   |
| Modulated Average - |                  | 112       | 17.00       | 16.00      | 17.00                | 16.00   |
| Single Tx Chain     |                  | 116       | 17.00       | 16.00      | 17.00                | 16.00   |
| (dBm)               |                  | 120       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 124       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 128       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 132       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 136       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 140       | 13.50       | 12.50      | 13.50                | 12.50   |
|                     |                  | 144       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 149       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 153       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 157       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 161       | 17.00       | 16.00      | 17.00                | 16.00   |
|                     |                  | 165       | 17.00       | 16.00      | 17.00                | 16.00   |

|                             |                       | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dog 4 of 40       |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 4 of 42      |

## 1.3.2 Maximum Output Power – Bluetooth Mode

| Mode / Band      | Modulated Average - Single Tx<br>Chain (dBm) |       |
|------------------|----------------------------------------------|-------|
| Plustaath PDP/LE | Maximum                                      | 19.00 |
| Bluetooth BDR/LE | Nominal                                      | 18.00 |
| District FDD     | Maximum                                      | 14.50 |
| Bluetooth EDR    | Nominal                                      | 13.50 |
| Bluetooth HDR    | Maximum                                      | 14.50 |
| Bidetootii HDK   | Nominal                                      | 13.50 |

### 1.3.3 Maximum Output Power – 802.15.4 ab-NB

| Mode / Band    | Modulated Average - Single Tx<br>Chain (dBm) |       |
|----------------|----------------------------------------------|-------|
| 002 15 4 -b ND | Maximum                                      | 16.00 |
| 802.15.4 ab-NB | Nominal                                      | 14.00 |

#### 1.4 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in the DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

### 1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in the DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 00 ID. BOO 7/2007         | OAK EVALOATION KEI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Page 5 of 42      |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 5 01 42      |

### 1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D04v01, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D04v01 procedures.

Table 1-1
Simultaneous Transmission Scenarios

| No. | Capable Transmit Configuration           | Head | Extremity |
|-----|------------------------------------------|------|-----------|
| 1   | 2.4 GHz WI-FI + 802.15.4 ab-NB + NFC     | Yes* | Yes       |
| 2   | 2.4 GHz WI-FI + UWB + NFC                | Yes* | Yes       |
| 3   | 2.4 GHz Bluetooth + 5 GHz WI-FI + NFC    | Yes* | Yes       |
| 4   | 2.4 GHz Bluetooth + 802.15.4 ab-NB + NFC | Yes* | Yes       |
| 5   | 2.4 GHz Bluetooth + UWB + NFC            | Yes* | Yes       |

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth cannot transmit simultaneously.
- 2. 2.4 GHz WLAN and 5 GHz WLAN cannot transmit simultaneously.
- 3. 802.15.4 ab-NB, 5 GHz WLAN and UWB cannot transmit simultaneously.
- 4. This device supports VoWIFI.
- 5. \*UWB and NFC were evaluated for extremity based on expected usage conditions.

### 1.7 Miscellaneous SAR Test Considerations

#### (A) WIFI/BT

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Per FCC guidance, SAR was performed using 8 GHz SAR probe calibration factors for UWB. Absorbed power density (APD) using a  $4\text{cm}^2$  averaging area is reported based on SAR measurements. Incident power density is evaluated at 2mm ensuring that the resolution is sufficient such that integrated power density (iPD) between d=2mm and d= $\lambda$ /5mm is  $\geq$  -1dB per equipment manufacturer guidance. Power density results are scaled up for uncertainty above 30%.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by: Technical Manager |
|-----------------------------|-----------------------|--------------------------------|
| Document S/N:               | DUT Type:             | D 0 -f 40                      |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 6 of 42                   |

### 1.8 Guidance Applied

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D04v01 (General SAR Guidance, Wrist-worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- IEEE 1528-2013
- November 2017, October 2018, April 2019, November 2019, October 2020 TCBC Workshop Notes
- SPEAG DASY6 System Handbook
- SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz) (Nov 2021)
- IEC 62479:2010
- IEC/IEEE 63195-1:2022

#### 1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

### 1.10 Device Housing Types and Wrist Band Types

This device has one housing type that was evaluated independently for SAR: Aluminum. The device can also be used with different wristband accessories. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 CC ID. BCC-A2991          | SAK LVALGATION KLI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Dogo 7 of 42      |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Page 7 of 42      |

### 2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996, and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

#### 2.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

### Equation 2-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left( \frac{dU}{dm} \right) = \frac{d}{dt} \left( \frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue-simulating material (S/m) = mass density of the tissue-simulating material (kg/m<sup>3</sup>)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by: Technical Manager |
|-----------------------------|-----------------------|--------------------------------|
| Document S/N:               | DUT Type:             | Dags 0 of 40                   |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 8 of 42                   |

### **DOSIMETRIC ASSESSMENT**

#### 3.1 **Measurement Procedure**

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

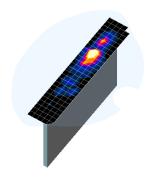



Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
  - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04\*

|           | Maximum Area Scan<br>Resolution (mm)       | Maximum Zoom Scan<br>Resolution (mm)       | Max                    | imum Zoom So<br>Resolution (1 |                                 | Minimum Zoom Scan      |
|-----------|--------------------------------------------|--------------------------------------------|------------------------|-------------------------------|---------------------------------|------------------------|
| Frequency | (Δx <sub>area</sub> , Δy <sub>area</sub> ) | (Δx <sub>200m</sub> , Δy <sub>200m</sub> ) | Uniform Grid           | Gı                            | raded Grid                      | Volume (mm)<br>(x,y,z) |
|           | Turcus Furcus                              | 1 200117                                   | Δz <sub>zoom</sub> (n) | Δz <sub>zoom</sub> (1)*       | Δz <sub>zoom</sub> (n>1)*       | , ,,, ,                |
| ≤2 GHz    | ≤15                                        | ≤8                                         | ≤5                     | ≤4                            | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 2-3 GHz   | ≤ 12                                       | ≤5                                         | ≤5                     | ≤4                            | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 3-4 GHz   | ≤ 12                                       | ≤5                                         | ≤4                     | ≤3                            | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28                   |
| 4-5 GHz   | ≤ 10                                       | ≤ 4                                        | ≤3                     | ≤2.5                          | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25                   |
| 5-6 GHz   | ≤ 10                                       | ≤4                                         | ≤2                     | ≤2                            | ≤ 1.5*∆z <sub>zoom</sub> (n-1)  | ≥ 22                   |

\*Also compliant to IEEE 1528-2013 Table 6

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID. BCG-A2997           | SAK EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dogo 0 of 42      |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 9 of 42      |

### 4 TEST CONFIGURATION POSITIONS

#### 4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon$  = 3 and loss tangent  $\delta$  = 0.02. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

### 4.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

### 4.3 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet, and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with head tissue-equivalent medium. The device was evaluated with Sport wristband unstrapped and touching the phantom. For Metal Loop and Metal Links wristbands, the device was evaluated with wristbands strapped and the distance between wristbands and the phantom was minimized to represent the spacing created by actual use conditions.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 00 IB. BOO 1/2001         | OAK EVALOATION KEI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Page 10 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 10 01 42     |

### **5 RF EXPOSURE LIMITS**

#### 5.1 **Uncontrolled Environment**

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

#### 5.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e., as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

#### 5.3 RF Exposure Limits for Frequencies Below 6 GHz

Table 5-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

| HUMAN EXPOSURE LIMITS                                        |                                        |                                    |  |  |
|--------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                              | UNCONTROLLED<br>ENVIRONMENT            | CONTROLLED<br>ENVIRONMENT          |  |  |
|                                                              | General Population<br>(W/kg) or (mW/g) | Occupational<br>(VV/kg) or (mVV/g) |  |  |
| <b>Peak Spatial Average SAR</b><br>Head                      | 1.6                                    | 8.0                                |  |  |
| Whole Body SAR                                               | 0.08                                   | 0.4                                |  |  |
| Peak Spatial Average SAR<br>Hands, Feet, Ankle, Wrists, etc. | 4.0                                    | 20                                 |  |  |

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

|                             |                       | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dags 11 of 12     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 11 of 42     |

#### RF Exposure Limits for Frequencies Above 6 GHz 5.4

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m<sup>2</sup> or mW/cm<sup>2</sup>.

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm<sup>2</sup> per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

> Table 6-2 Human Exposure Limits Specified in FCC 47 CFR §1.1310

| Human Exposure to Radiofrequency (RF) Radiation Limits              |                                                       |  |  |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Frequency Range Power Density Average Time [MHz] [mW/cm²] [Minutes] |                                                       |  |  |  |  |
| (A) Limi                                                            | (A) Limits For Occupational / Controlled Environments |  |  |  |  |
| 1,500 – 100,000                                                     | 1,500 – 100,000 5.0 6                                 |  |  |  |  |
| (B) Limits For General Population / Uncontrolled Environments       |                                                       |  |  |  |  |
| 1,500 – 100,000 1.0 30                                              |                                                       |  |  |  |  |

Note: 1.0 mW/cm<sup>2</sup> is 10 W/m<sup>2</sup>

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 CC ID. BCC-A2991          | SAK EVALUATION KEI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Dogo 12 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Page 12 of 42     |

### **6 FCC MEASUREMENT PROCEDURES**

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

### 6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D04v01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

### 6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset-based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

### 6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

#### 6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

#### 6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 00 IB. BOO 1/2001         | OAK EVALUATION KEI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Page 13 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 13 01 42     |

tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

### 6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel, i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

#### 6.2.5 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation, and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

### 6.2.6 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is  $\leq 0.8$  W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is  $\leq 1.2$  W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID. BCG-A2997           |                       | Technical Manager |
| Document S/N:               | DUT Type:             | Page 14 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 14 01 42     |

### 6.2.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is  $\leq 1.2$  W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by: Technical Manager |
|-----------------------------|-----------------------|--------------------------------|
| Document S/N:               | DUT Type:             | Dog 45 of 40                   |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 15 of 42                  |

# 7 RF CONDUCTED POWERS

### 7.1 WLAN Conducted Powers

Table 7-1
2.4 GHz WLAN Maximum Average RF Power

| 2.4GHz WIFI (20MHz 802.11b SISO) |         |                       |  |  |
|----------------------------------|---------|-----------------------|--|--|
| Freq. [MHz]                      | Channel | Conducted Power [dBm] |  |  |
| 2412                             | 1       | 19.42                 |  |  |
| 2437                             | 6       | 19.36                 |  |  |
| 2462                             | 11      | 19.21                 |  |  |

| 2.4GHz WIFI (20MHz 802.11g SISO) |    |                       |  |  |
|----------------------------------|----|-----------------------|--|--|
| Freq. [MHz] Channel              |    | Conducted Power [dBm] |  |  |
| 2412                             | 1  | 16.44                 |  |  |
| 2437 6                           |    | 17.76                 |  |  |
| 2462                             | 11 | 15.13                 |  |  |

| 2.4GHz WIFI (20MHz 802.11n SISO) |    |                       |  |  |
|----------------------------------|----|-----------------------|--|--|
| Freq. [MHz] Channel              |    | Conducted Power [dBm] |  |  |
| 2412                             | 1  | 16.48                 |  |  |
| 2437                             | 6  | 17.38                 |  |  |
| 2462                             | 11 | 14.74                 |  |  |

| FCC ID: BCG-A2997 SAR EVALUATION REPORT | Approved by:           |                   |
|-----------------------------------------|------------------------|-------------------|
|                                         | SAR ETAESATION RELIGIT | Technical Manager |
| Document S/N:                           | DUT Type:              | Dogo 16 of 42     |
| 1C2405230019-01.BCG (Rev 1)             | Watch                  | Page 16 of 42     |

Table 7-2 5 GHz WLAN Maximum Average RF Power

| 5GHz WIFI (20MHz 802.11a SISO) |                |         |                               |  |  |
|--------------------------------|----------------|---------|-------------------------------|--|--|
| Band                           | Freq.<br>[MHz] | Channel | Avg. Conducted<br>Power [dBm] |  |  |
|                                | 5180           | 36      | 16.35                         |  |  |
| UNII-1                         | 5200           | 40      | 16.29                         |  |  |
| OINII- I                       | 5220           | 44      | 16.38                         |  |  |
|                                | 5240           | 48      | 16.24                         |  |  |
|                                | 5260           | 52      | 16.47                         |  |  |
| UNII-2A                        | 5280           | 56      | 16.43                         |  |  |
| UNII-ZA                        | 5300           | 60      | 16.58                         |  |  |
|                                | 5320           | 64      | 16.55                         |  |  |
|                                | 5500           | 100     | 16.38                         |  |  |
| UNII-2C                        | 5600           | 120     | 16.48                         |  |  |
| UNII-2C                        | 5620           | 124     | 16.40                         |  |  |
|                                | 5720           | 144     | 16.64                         |  |  |
|                                | 5745           | 149     | 16.65                         |  |  |
| UNII-3                         | 5785           | 157     | 16.61                         |  |  |
|                                | 5825           | 165     | 16.64                         |  |  |

| 5GHz WIFI (20MHz 802.11n SISO) |                |         |                               |  |  |
|--------------------------------|----------------|---------|-------------------------------|--|--|
| Band                           | Freq.<br>[MHz] | Channel | Avg. Conducted<br>Power [dBm] |  |  |
|                                | 5180           | 36      | 16.24                         |  |  |
| UNII-1                         | 5200           | 40      | 16.30                         |  |  |
| OINII- I                       | 5220           | 44      | 16.36                         |  |  |
|                                | 5240           | 48      | 16.55                         |  |  |
|                                | 5260           | 52      | 16.43                         |  |  |
| UNII-2A                        | 5280           | 56      | 16.37                         |  |  |
|                                | 5300           | 60      | 16.40                         |  |  |
|                                | 5320           | 64      | 16.24                         |  |  |
|                                | 5500           | 100     | 16.29                         |  |  |
| UNII-2C                        | 5600           | 120     | 16.22                         |  |  |
| UNII-2C                        | 5620           | 124     | 16.22                         |  |  |
|                                | 5720           | 144     | 16.36                         |  |  |
| UNII-3                         | 5745           | 149     | 16.18                         |  |  |
|                                | 5785           | 157     | 16.19                         |  |  |
|                                | 5825           | 165     | 16.40                         |  |  |

|                             |                       | 1                 |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|                             | SAK EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dogo 17 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 17 of 42     |

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

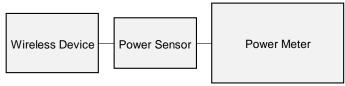



Figure 7-1
Power Measurement Setup

| SAR EVALUATION REPORT | Approved by: Technical Manager |
|-----------------------|--------------------------------|
| DUT Type:<br>Watch    | Page 18 of 42                  |
|                       | IT Type:                       |

### 7.2 Bluetooth Conducted Powers

Table 7-3
Bluetooth Maximum Average RF Power

| Frequency [MHz] | Modulation | Data<br>Rate<br>[Mbps] | Rate | Channel | Avg Cor<br>Pov | nducted<br>wer |
|-----------------|------------|------------------------|------|---------|----------------|----------------|
|                 | Woddiation |                        |      | No.     | [dBm]          | [mW]           |
| 2402            | GFSK       | 1.0                    | 0    | 17.90   | 61.660         |                |
| 2441            | GFSK       | 1.0                    | 39   | 17.94   | 62.230         |                |
| 2480            | GFSK       | 1.0                    | 78   | 17.87   | 61.235         |                |

Note 1: Bluetooth was evaluated with a test mode with 100% transmission duty factor.

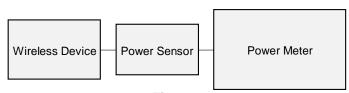



Figure 7-2
Power Measurement Setup

### 7.3 802.15.4 ab-NB Conducted Powers

Table 7-4 802.15.4 ab-NB Average RF Power

| Frequency [MHz]  | Modulation | Data<br>Rate |          | Channel | Avg Cor<br>Pov | nducted<br>wer |
|------------------|------------|--------------|----------|---------|----------------|----------------|
| rrequency [Min2] | Wodulation | [Kbps]       | Chamilei | [dBm]   | [mW]           |                |
| 5728.75          | O-QPSK     | 1000.0       | Low      | 15.15   | 32.734         |                |
| 5786.25          | O-QPSK     | 1000.0       | Mid      | 15.04   | 31.915         |                |
| 5846.25          | O-QPSK     | 1000.0       | High     | 14.96   | 31.333         |                |

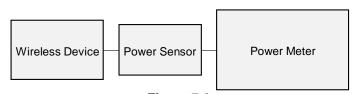



Figure 7-3
Power Measurement Setup

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID. BCG-A2991           | SAK EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dogo 10 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 19 of 42     |

### 7.4 802.15.4 ab-NB Duty Cycle

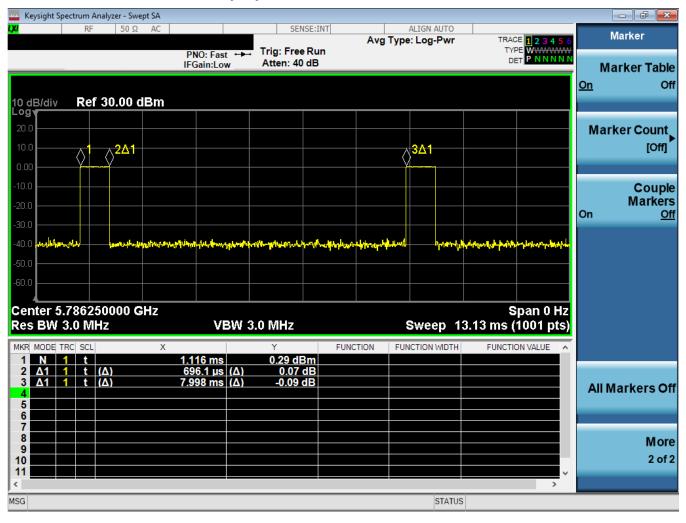



Figure 7-4 802.15.4 ab-NB Transmission Plot

Equation 7-1 802.15.4 ab-NB Duty Cycle Calculation

$$Duty\ Cycle = \frac{Pulse\ Width}{Period} * 100\% = \frac{0.6961}{7.998} * 100\% = 8.70\%$$

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 CC ID. BCC-A2991          | SAK LVALGATION KLI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Page 20 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Page 20 01 42     |

# 8 SYSTEM VERIFICATION

#### 8.1 **Tissue Verification**

Table 8-1 **Measured Head Tissue Properties** 

| Calibrated for      | T T              | Tissue Temp                | Measured           | Measured                 | Measured                  | TARGET                   | TARGET                    | 04               | 0/ atoms         |        |
|---------------------|------------------|----------------------------|--------------------|--------------------------|---------------------------|--------------------------|---------------------------|------------------|------------------|--------|
| Tests Performed on: | Tissue Type      | During Calibration<br>(*C) | Frequency<br>(MHz) | Conductivity,<br>σ (S/m) | Dielectric<br>Constant, ε | Conductivity,<br>σ (S/m) | Dielectric<br>Constant, ε | % dev σ          | % dev ε          |        |
|                     |                  |                            | 12                 | 0.723                    | 52.434                    | 0.750                    | 55.000                    | -3.60%           | -4.67%           |        |
| 07/09/2024          | 30 Head          | 24.0                       | 13                 | 0.723                    | 52.424                    | 0.750                    | 55.000                    | -3.60%           | -4.68%           |        |
|                     |                  |                            | 14                 | 0.723                    | 52.364                    | 0.750                    | 55.000                    | -3.60%           | -4.79%           |        |
|                     |                  |                            | 2300               | 1.638                    | 40.049                    | 1.670                    | 39.500                    | -1.92%           | 1.39%            |        |
|                     |                  |                            | 2310               | 1.645                    | 40.029                    | 1.679                    | 39.480                    | -2.03%           | 1.39%            |        |
|                     |                  |                            | 2320               | 1.653                    | 40.010                    | 1.687                    | 39.460                    | -2.02%           | 1.39%            |        |
|                     |                  |                            | 2400               | 1.714                    | 39.899                    | 1.756                    | 39.289                    | -2.39%           | 1.55%            |        |
|                     |                  |                            | 2450               | 1.755                    | 39.819                    | 1.800                    | 39.200                    | -2.50%           | 1.58%            |        |
| 07/08/2024          | 2450 Head        | 19.0                       | 2480<br>2500       | 1.778<br>1.793           | 39.780<br>39.745          | 1.833<br>1.855           | 39.162<br>39.136          | -3.00%<br>-3.34% | 1.58%<br>1.56%   |        |
| 07/00/2024          | 2430 i leau      | 19.0                       | 2510               | 1.801                    | 39.727                    | 1.866                    | 39.123                    | -3.48%           | 1.54%            |        |
|                     |                  |                            | 2535               | 1.822                    | 39.688                    | 1.893                    | 39.092                    | -3.75%           | 1.52%            |        |
|                     |                  |                            | 2550               | 1.835                    | 39.667                    | 1.909                    | 39.073                    | -3.88%           | 1.52%            |        |
|                     |                  |                            | 2560               | 1.843                    | 39.653                    | 1.920                    | 39.060                    | -4.01%           | 1.52%            |        |
|                     |                  |                            | 2600               | 1.876                    | 39.583                    | 1.964                    | 39.009                    | -4.48%           | 1.47%            |        |
|                     |                  |                            | 2650               | 1.921                    | 39.505                    | 2.018                    | 38.945                    | -4.81%           | 1.44%            |        |
|                     |                  |                            | 5180               | 4.546                    | 34.831                    | 4.635                    | 36.009                    | -1.92%           | -3.27%           |        |
|                     |                  |                            | 5190               | 4.554                    | 34.808                    | 4.645                    | 35.998                    | -1.96%           | -3.31%           |        |
|                     |                  |                            | 5200               | 4.562                    | 34.780                    | 4.655                    | 35.986                    | -2.00%           | -3.35%           |        |
|                     |                  |                            | 5210               | 4.569                    | 34.756                    | 4.666                    | 35.975                    | -2.08%           | -3.39%           |        |
|                     |                  |                            | 5220               | 4.580                    | 34.736                    | 4.676                    | 35.963                    | -2.05%           | -3.41%           |        |
|                     |                  |                            | 5240               | 4.599                    | 34.693                    | 4.696                    | 35.940                    | -2.07%           | -3.47%           |        |
|                     |                  |                            | 5250               | 4.605                    | 34.673                    | 4.706                    | 35.929                    | -2.15%           | -3.50%           |        |
|                     |                  |                            | 5260               | 4.617                    | 34.662                    | 4.717                    | 35.917                    | -2.12%           | -3.49%           |        |
|                     |                  |                            | 5270               | 4.633                    | 34.652                    | 4.727                    | 35.906                    | -1.99%           | -3.49%           |        |
|                     |                  |                            | 5280               | 4.648                    | 34.629                    | 4.737                    | 35.894                    | -1.88%           | -3.52%           |        |
|                     |                  |                            | 5290               | 4.652                    | 34.628                    | 4.748                    | 35.883                    | -2.02%           | -3.50%           |        |
|                     |                  |                            | 5300<br>5310       | 4.657<br>4.668           | 34.620<br>34.602          | 4.758<br>4.768           | 35.871<br>35.860          | -2.12%<br>-2.10% | -3.49%<br>-3.51% |        |
|                     |                  |                            | 5320               | 4.680                    | 34.575                    | 4.778                    | 35.849                    | -2.05%           | -3.55%           |        |
|                     |                  |                            | 5500               | 4.881                    | 34.307                    | 4.963                    | 35.643                    | -1.65%           | -3.75%           |        |
|                     |                  |                            | 5510               | 4.890                    | 34.291                    | 4.973                    | 35.632                    | -1.67%           | -3.76%           |        |
|                     |                  |                            |                    |                          | 5520                      | 4.900                    | 34.271                    | 4.983            | 35.620           | -1.67% |
|                     |                  |                            | 5530               | 4.909                    | 34.245                    | 4.994                    | 35.609                    | -1.70%           | -3.83%           |        |
|                     |                  |                            | 5540               | 4.917                    | 34.237                    | 5.004                    | 35.597                    | -1.74%           | -3.82%           |        |
|                     |                  |                            | 5550               | 4.926                    | 34.227                    | 5.014                    | 35.586                    | -1.76%           | -3.82%           |        |
|                     |                  |                            | 5560               | 4.936                    | 34.199                    | 5.024                    | 35.574                    | -1.75%           | -3.87%           |        |
| 06/12/2024          | 5200-5800 Head   | 20.0                       | 5580               | 4.968                    | 34.124                    | 5.045                    | 35.551                    | -1.53%           | -4.01%           |        |
| 00/12/2024          | 3200-3000 i lead | 20.0                       | 5600               | 4.996                    | 34.114                    | 5.065                    | 35.529                    | -1.36%           | -3.98%           |        |
|                     |                  |                            | 5610               | 5.007                    | 34.111                    | 5.076                    | 35.518                    | -1.36%           | -3.96%           |        |
|                     |                  |                            | 5620               | 5.014                    | 34.108                    | 5.086                    | 35.506                    | -1.42%           | -3.94%           |        |
|                     |                  |                            | 5640               | 5.025                    | 34.086                    | 5.106                    | 35.483                    | -1.59%           | -3.94%           |        |
|                     |                  |                            | 5660               | 5.046                    | 34.012                    | 5.127                    | 35.460                    | -1.58%           | -4.08%           |        |
|                     |                  |                            | 5670<br>5680       | 5.068<br>5.087           | 33.970<br>33.946          | 5.137<br>5.147           | 35.449<br>35.437          | -1.34%<br>-1.17% | -4.17%<br>-4.21% |        |
|                     |                  |                            | 5690               | 5.087                    | 33.946                    | 5.147                    | 35.437                    | -1.17%           | -4.21%<br>-4.20% |        |
|                     |                  |                            | 5745               | 5.138                    | 33.895                    | 5.136                    | 35.363                    | -1.46%           | -4.15%           |        |
|                     |                  |                            | 5750               | 5.146                    | 33.877                    | 5.219                    | 35.357                    | -1.40%           | -4.19%           |        |
|                     |                  |                            | 5755               | 5.153                    | 33.856                    | 5.224                    | 35.351                    | -1.36%           | -4.23%           |        |
|                     |                  |                            | 5765               | 5.170                    | 33.819                    | 5.234                    | 35.340                    | -1.22%           | -4.30%           |        |
|                     |                  |                            | 5775               | 5.186                    | 33.793                    | 5.245                    | 35.329                    | -1.12%           | -4.35%           |        |
|                     |                  |                            | 5785               | 5.199                    | 33.778                    | 5.255                    | 35.317                    | -1.07%           | -4.36%           |        |
|                     |                  |                            | 5800               | 5.217                    | 33.794                    | 5.270                    | 35.300                    | -1.01%           | -4.27%           |        |
|                     |                  |                            | 5835               | 5.239                    | 33.770                    | 5.305                    | 35.230                    | -1.24%           | -4.14%           |        |
|                     |                  |                            | 5845               | 5.247                    | 33.735                    | 5.315                    | 35.210                    | -1.28%           | -4.19%           |        |
|                     |                  |                            | 5850               | 5.253                    | 33.714                    | 5.320                    | 35.200                    | -1.26%           | -4.22%           |        |
|                     |                  |                            | 5855               | 5.260                    | 33.688                    | 5.325                    | 35.197                    | -1.22%           | -4.29%           |        |
|                     |                  |                            | 5865               | 5.279                    | 33.649                    | 5.336                    | 35.190                    | -1.07%           | -4.38%           |        |
|                     |                  |                            | 5875               | 5.288                    | 33.624                    | 5.347                    | 35.183                    | -1.10%           | -4.43%           |        |
|                     |                  |                            | 5885               | 5.294                    | 33.623                    | 5.357                    | 35.177                    | -1.18%           | -4.42%           |        |

|                             |                       | Ammuniad biii     |  |
|-----------------------------|-----------------------|-------------------|--|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |  |
| 1 00 121 200 / 1200         |                       | Technical Manager |  |
| Document S/N:               | DUT Type:             | Dogo 21 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 21 of 42     |  |

| Calibrated for<br>Tests Performed<br>on: | Tissue Type    | Tissue Temp<br>During Calibration<br>(°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET<br>Dielectric<br>Constant, ε | % dev σ | % dev ε          |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|------------------------------------------|----------------|-------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|---------|------------------|--------|-------|--------|--------|--------|--|------|-------|--------|-------|--------|--------|--------|-------|--------|-------|--------|--------|--------|--------|--------|--------|--------|------|-------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
|                                          |                |                                           | 5180                           | 4.534                                | 34.774                                | 4.635                              | 36.009                              | -2.18%  | -3.43%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5190                           | 4.544                                | 34.758                                | 4.645                              | 35.998                              | -2.17%  | -3.44%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5200                           | 4.556                                | 34.755                                | 4.655                              | 35.986                              | -2.13%  | -3.42%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5210                           | 4.564                                | 34.743                                | 4.666                              | 35.975                              | -2.19%  | -3.42%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5220                           | 4.575                                | 34.721                                | 4.676                              | 35.963                              | -2.16%  | -3.45%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5240                           | 4.600                                | 34.684                                | 4.696                              | 35.940                              | -2.04%  | -3.49%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5250                           | 4.610                                | 34.681                                | 4.706                              | 35.929                              | -2.04%  | -3.47%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5260                           | 4.620                                | 34.659                                | 4.717                              | 35.917                              | -2.06%  | -3.50%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                | 5270                                 | 4.633                                 | 34.639                             | 4.727                               | 35.906  | -1.99%           | -3.53% |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5280                           | 4.641                                | 34.612                                | 4.737                              | 35.894                              | -2.03%  | -3.57%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5290                           | 4.642                                | 34.606                                | 4.748                              | 35.883                              | -2.23%  | -3.56%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5300                           | 4.650                                | 34.591                                | 4.758                              | 35.871                              | -2.27%  | -3.57%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5310                           | 4.663                                | 34.580                                | 4.768                              | 35.860                              | -2.20%  | -3.57%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5320                           | 4.680                                | 34.565                                | 4.778                              | 35.849                              | -2.05%  | -3.58%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5500                           | 4.863                                | 34.250                                | 4.963                              | 35.643                              | -2.01%  | -3.91%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5510                           | 4.871                                | 34.232                                | 4.973                              | 35.632                              | -2.05%  | -3.93%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5520                           | 4.883                                | 34.209                                | 4.983                              | 35.620                              | -2.01%  | -3.96%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5530                           | 4.895                                | 34.182                                | 4,994                              | 35.609                              | -1.98%  | -4.01%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5540                           | 4.905                                | 34.175                                | 5.004                              | 35.597                              | -1.98%  | -3.99%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5550                           | 4.914                                | 34.171                                | 5.014                              | 35.586                              | -1.99%  | -3.98%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          | 5200-5800 Head |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  | 5560 | 4.922 | 34.157 | 5.024 | 35.574 | -2.03% | -3.98% |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     | 5580    | 4.952            | 34.107 | 5.045 | 35.551 | -1.84% | -4.06% |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        | 5600   | 4.977 | 34.075 | 5.065 | 35.529 | -1.74% | -4.09% |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        | 5610 | 4.989 | 34.060 | 5.076 | 35.518 | -1.71% | -4.10% |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       | 5620   | 5.000  | 34.049 | 5.086  | 35.506 | -1.69% | -4.10% |      |       |        |       |        |        |        |        |        |        |        |
| 06/22/2024                               |                | 20.7                                      | 5640                           | 5.018                                | 34.036                                | 5.106                              | 35.483                              | -1.72%  | -4.08%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
| ***                                      |                | 20.1                                      | 20.7                           | 20.7                                 | 20.1                                  | 20.7                               | 20.1                                |         |                  | 20.1   |       | 20.1   | 20.7   |        |  |      |       |        |       |        |        | 20.7   | 2500  | 5660   | 5.042 | 34.012 | 5.127  | 35.460 | -1.66% | -4.08% |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       | 5670   | 5.060  | 33.990 | 5.137  | 35.449 | -1.50% | -4.12% |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       | 5680   | 5.077 | 33.963 | 5.147  | 35.437 | -1.36% | -4.16% |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       | 5690   | 5.090  | 33.949 | 5.158  | 35.426 | -1.32% | -4.17% |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        | 5700  | 5.098  | 33.934 | 5.168  | 35.414 | -1.35% | -4.18% |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5710                           | 5.105                                | 33.919                                | 5.178                              | 35,403                              | -1.41%  | -4.19%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5720                           | 5.115                                | 33.900                                | 5.188                              | 35.391                              | -1.41%  | -4.21%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5745                           | 5.138                                | 33.883                                | 5.214                              | 35.363                              | -1.46%  | -4.19%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5750                           | 5.144                                | 33.871                                | 5.219                              | 35.357                              | -1.44%  | -4.20%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5755                           | 5.150                                | 33.859                                | 5.224                              | 35.351                              | -1.42%  | -4.22%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5765                           | 5.164                                | 33.828                                | 5.234                              | 35.340                              | -1.34%  | -4.28%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5775                           | 5.176                                | 33.803                                | 5.245                              | 35.329                              | -1.32%  | -4.32%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5785                           | 5.187                                | 33.786                                | 5.255                              | 35.317                              | -1.29%  | -4.34%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5795                           | 5.194                                | 33.777                                | 5.265                              | 35.305                              | -1.35%  | -4.33%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5800                           | 5.201                                | 33.773                                | 5.270                              | 35.300                              | -1.31%  | -4.33%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        | 5805   | 5.204 | 33.763 | 5.275 | 35.294 | -1.35% | -4.34% |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        | _     | 5825   | 5.215  | 33.733 | 5.296  | 35.294 | -1.53% | -4.36% |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           |                                |                                      |                                       |                                    |                                     |         |                  |        |       |        |        |        |  |      |       |        |       |        |        |        |       | 5835   | 5.215 | 33.733 | 5.305  | 35.271 | -1.47% | -4.30% |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5845                           | 5.243                                | 33.705                                | 5.315                              | 35.210                              | -1.35%  | -4.27%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5850                           | 5.250                                | 33.700                                | 5.320                              | 35.200                              | -1.32%  | -4.26%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5855                           | 5.258                                | 33.691                                | 5.325                              | 35.200                              | -1.32%  | -4.28%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5865                           | 5.267                                | 33.662                                | 5.336                              | 35.197                              | -1.20%  | -4.26%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5875                           | 5.276                                | 33.639                                | 5.347                              | 35.183                              | -1.29%  | -4.39%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          |                |                                           | 5885                           | 5.286                                | 33.618                                | 5.357                              | 35.177                              | -1.33%  | -4.43%           |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |
|                                          | l              |                                           | 5905                           | 5.298                                | 33.578                                | 5.357                              | 35.177                              | -1.51%  | -4.43%<br>-4.51% |        |       |        |        |        |  |      |       |        |       |        |        |        |       |        |       |        |        |        |        |        |        |        |      |       |        |       |        |        |        |        |        |        |        |

|                             |                       | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Page 22 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Fage 22 01 42     |

| Calibrated for  |                | Tissue Temp        | Measured  | Measured      | Measured    | TARGET        | TARGET      |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|-----------------|----------------|--------------------|-----------|---------------|-------------|---------------|-------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|
| Tests Performed | Tissue Type    | During Calibration | Frequency | Conductivity, | Dielectric  | Conductivity, | Dielectric  | % dev σ | % dev ε |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
| on:             |                | (°C)               | (MHz)     | σ (S/m)       | Constant, ε | σ (S/m)       | Constant, ε |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           | 5180          | 4.543       | 34.779        | 4.635       | 36.009  | -1.98%  | -3.42% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5190      | 4.554         | 34.765      | 4.645         | 35.998      | -1.96%  | -3.43%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5200      | 4.563         | 34.743      | 4.655         | 35.986      | -1.98%  | -3.45%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5210      | 4.574         | 34.721      | 4.666         | 35.975      | -1.97%  | -3.49%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5220      | 4.587         | 34.705      | 4.676         | 35.963      | -1.90%  | -3.50%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5240      | 4.607         | 34.678      | 4.696         | 35.940      | -1.90%  | -3.51%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5250      | 4.618         | 34.665      | 4.706         | 35.929      | -1.87%  | -3.52%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        | 5260   | 4.630  | 34.647 | 4.717  | 35.917 | -1.84% | -3.54% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5270      | 4.641         | 34.622      | 4.727         | 35.906      | -1.82%  | -3.58%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5280      | 4.650         | 34.600      | 4.737         | 35.894      | -1.84%  | -3.61%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5290      | 4.659         | 34.582      | 4.748         | 35.883      | -1.87%  | -3.63%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5300      | 4.670         | 34.566      | 4.758         | 35.871      | -1.85%  | -3.64%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5310      | 4.683         | 34.541      | 4.768         | 35.860      | -1.78%  | -3.68%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5320      | 4.696         | 34.512      | 4.778         | 35.849      | -1.72%  | -3.73%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5500      | 4.891         | 34.216      | 4.963         | 35.643      | -1.45%  | -4.00%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5510      | 4.900         | 34.196      | 4.973         | 35.632      | -1.47%  | -4.03%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5520      | 4.912         | 34.172      | 4.983         | 35.620      | -1.42%  | -4.07%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5530      | 4.926         | 34.146      | 4.994         | 35.609      | -1.36%  | -4.11%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5540      | 4.939         | 34.123      | 5.004         | 35.597      | -1.30%  | -4.14%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5550      | 4.951         | 34.106      | 5.014         | 35.586      | -1.26%  | -4.16%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                | 19.3               | 19.3      | 19.3          | 19.3        | 19.3          | 19.3        | 19.3    | 5560    | 4.963  | 34.102 | 5.024  | 35.574 | -1.21% | -4.14% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         | 19.3    | d 19.3 | d 19.3 | d 19.3 | 19.3   | 19.3   | i 19.3 | 5580   | 4.986  | 34.072 | 5.045  | 35.551 | -1.17% | -4.16% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        | 5600   | 5.010  | 34.029 | 5.065  | 35.529 | -1.09% | -4.22% |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | 5610   | 5.019  | 34.010 | 5.076  | 35.518 | -1.12% | -4.25% |        |        |        |        |        |       |        |        |        |
|                 | 5200-5800 Head |                    |           |               |             |               |             |         |         |        |        |        |        |        |        | 5620   | 5.030  | 33.988 | 5.086  | 35.506 | -1.10% | -4.28% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
| 07/10/2024      |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        | 19.3   | 19.3   | 19.3   | 19.3   | 19.3   | 19.3   | d 19.3 | 19.3   | 19.3   | 19.3   | i 19.3 | 19.3   | 19.3   | 5640   | 5.053  | 33.933 | 5.106  | 35.483 | -1.04% | -4.37% |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | 5660   | 5.079  | 33.894 | 5.127  | 35.460 | -0.94% | -4.42% |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | 5670  | 5.093  | 33.886 | 5.137  |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | 5680   | 5.103  | 33.876 | 5.147  | 35.437 | -0.85% | -4.41% |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | I      |        |        |        |        |        |        | 5690   | 5.112  | 33.862 | 5.158 | 35.426 | -0.89% | -4.41% |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        | 5700   | 5.125  | 33.846 | 5.168  | 35.414 | -0.83% | -4.43% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        | 5710   | 5.137  | 33.825 | 5.178  | 35.403 | -0.79% | -4.46% |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        |        |        |        |        |        | 5720   | 5.148  | 33.802 | 5.188  | 35.391 | -0.77% | -4.49% |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5745      | 5.177         | 33.741      | 5.214         | 35.363      | -0.71%  | -4.59%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5750      | 5.182         | 33.731      | 5.219         | 35.357      | -0.71%  | -4.60%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5755      | 5.186         | 33.721      | 5.224         | 35.351      | -0.73%  | -4.61%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5765      | 5.197         | 33.702      | 5.234         | 35.340      | -0.71%  | -4.63%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5775      | 5.209         | 33.691      | 5.245         | 35.329      | -0.69%  | -4.64%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             | -             |             |         |         | -      |        |        | 5785   | 5.223  | 33.683 | 5.255  | 35.317 | -0.61% | -4.63% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5795      | 5.235         | 33.674      | 5.265         | 35.305      | -0.57%  | -4.62%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         | 5800    | 5.240  | 33.665 | 5.270  | 35.300 | -0.57% | -4.63% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        | -      |        |        | -      |        |        |        |        | -      |        |        | 5805   | 5.245  | 33.657 | 5.275  | 35.294 | -0.57% | -4.64% |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        | 5825   | 5.267  | 33.615 | 5.296  | 35.271 | -0.55% | -4.70% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               |             |               |             |         |         |        |        |        |        |        |        |        | _      | 5835   | 5.282  | 33.595 | 5.305  | 35.230 | -0.43% | -4.64% |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5845      | 5.292         | 33.578      | 5.315         | 35.210      | -0.43%  | -4.64%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5850      | 5.296         | 33.568      | 5.320         | 35.200      | -0.45%  | -4.64%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    |           |               | 5855        | 5.300         | 33.554      | 5.325   | 35.197  | -0.47% | -4.67% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5865      | 5.308         | 33.528      | 5.336         | 35.190      | -0.52%  | -4.72%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5875      | 5.317         | 33.502      | 5.347         | 35.183      | -0.56%  | -4.78%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5885      | 5.329         | 33.481      | 5.357         | 35.177      | -0.52%  | -4.76%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|                 |                |                    | 5905      | 5.359         | 33.461      | 5.379         | 35.163      | -0.37%  | -4.84%  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dogo 22 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 23 of 42     |

| Calibrated for<br>Tests Performed<br>on: | Tissue Type | Tissue Temp<br>During Calibration<br>(°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET<br>Dielectric<br>Constant, ε | % dev σ | % dev ε |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|------------------------------------------|-------------|-------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|---------|---------|--------|--------|--------|--------|--------|-------|--|------|-------|--------|--------|--------|--------|--------|-------|
|                                          |             |                                           | 5935                           | 5.281                                | 36.388                                | 5.411                              | 35.143                              | -2.40%  | 3.54%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      |                                       |                                    |                                     | 5970    | 5.334   | 36.326 | 5.448  | 35.120 | -2.09% | 3.43%  |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                | 5985                                 | 5.357                                 | 36.312                             | 5.464                               | 35.110  | -1.96%  | 3.42%  |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      | 6000                                  | 5.377                              | 36.300                              | 5.480   | 35.100  | -1.88% | 3.42%  |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      | 6025                                  | 5.403                              | 36.263                              | 5.510   | 35.070  | -1.94% | 3.40%  |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6065                           | 5.457                                | 36.155                                | 5.557                              | 35.022                              | -1.80%  | 3.24%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6075                           | 5.477                                | 36.138                                | 5.569                              | 35.010                              | -1.65%  | 3.22%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6085                           | 5.496                                | 36.127                                | 5.580                              | 34.998                              | -1.51%  | 3.23%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6185                           | 5.626                                | 35.964                                | 5.698                              | 34.878                              | -1.26%  | 3.11%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6275                           | 5.740                                | 35.771                                | 5.805                              | 34.770                              | -1.12%  | 2.88%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6285                           | 5.752                                | 35.749                                | 5.816                              | 34.758                              | -1.10%  | 2.85%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             | 19.0                                      | 6305                           | 5.776                                | 35.702                                | 5.840                              | 34.734                              | -1.10%  | 2.79%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 19.0                           | 19.0                                 |                                       |                                    |                                     | 6345    | 5.815   | 35.646 | 5.887  | 34.686 | -1.22% | 2.77%  |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      |                                       | 6475                               | 5.970                               | 35.438  | 6.041   | 34.530 | -1.18% | 2.63%  |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          | 6000 Head   |                                           |                                |                                      | 6485                                  | 5.978                              | 35.429                              | 6.052   | 34.518  | -1.22% | 2.64%  |        |        |        |       |  |      |       |        |        |        |        |        |       |
| 07/04/0004                               |             |                                           |                                |                                      | 6500                                  | 5.986                              | 35.404                              | 6.070   | 34.500  | -1.38% | 2.62%  |        |        |        |       |  |      |       |        |        |        |        |        |       |
| 07/01/2024                               |             |                                           |                                |                                      | 19.0                                  | 6505                               | 5.989                               | 35.392  | 6.076   | 34.494 | -1.43% | 2.60%  |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      |                                       |                                    |                                     |         | 6545    | 6.044  | 35.280 | 6.122  | 34.446 | -1.27% | 2.42% |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      |                                       |                                    | 6665                                | 6.248   | 35.069  | 6.265  | 34.302 | -0.27% | 2.24%  |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6675                           | 6.261                                | 35.057                                | 6.273                              | 34.290                              | -0.19%  | 2.24%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           |                                |                                      |                                       |                                    |                                     |         |         |        |        |        |        |        |       |  |      | 6685  | 6.272  | 35.049 | 6.285  | 34.278 | -0.21% | 2.25% |
|                                          |             |                                           |                                |                                      |                                       |                                    |                                     |         |         |        |        |        |        |        |       |  | 6715 | 6.299 | 35.008 | 6.319  | 34.242 | -0.32% | 2.24%  |       |
|                                          |             |                                           |                                |                                      |                                       |                                    |                                     |         |         |        |        |        |        |        |       |  | 6785 | 6.386 | 34.867 | 6.400  | 34.158 | -0.22% | 2.08%  |       |
|                                          |             |                                           |                                |                                      |                                       |                                    |                                     |         |         |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6985                           | 6.551                                | 34.497                                | 6.633                              | 33.918                              | -1.24%  | 1.71%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 6995                           | 6.562                                | 34.479                                | 6.644                              | 33.906                              | -1.23%  | 1.69%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 7000                           | 6.569                                | 34.468                                | 6.650                              | 33.900                              | -1.22%  | 1.68%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 7005                           | 6.576                                | 34.455                                | 6.656                              | 33.894                              | -1.20%  | 1.66%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 7025                           | 6.615                                | 34.402                                | 6.680                              | 33.870                              | -0.97%  | 1.57%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 7500                           | 7.223                                | 33.534                                | 7.240                              | 33.300                              | -0.23%  | 0.70%   |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 7980                           | 7.766                                | 32.710                                | 7.816                              | 32.724                              | -0.64%  | -0.04%  |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |
|                                          |             |                                           | 8000                           | 7.804                                | 32.665                                | 7.840                              | 32.700                              | -0.46%  | -0.11%  |        |        |        |        |        |       |  |      |       |        |        |        |        |        |       |

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests.

Note: All frequencies were measured to be within 5% of targets listed in IEC/IEEE 62209-1528:2020 (Head). Per IEC/IEEE 62209-1528:2020, since the dielectric properties of the tissue simulating are all equal or less than 5% of the target values, SAR was not scaled. The measurement uncertainty of 5% for deviation of conductivity and liquid permittivity from the target was added to the uncertainty budget in Section 16.

|                             |                       | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dags 24 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 24 of 42     |

#### **Test System Verification** 8.2

HEAD

AM1

5850

07/10/2024

20.9

0.05

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in the SAR System Validation Appendix.

> Table 8-2 System Verification Results - 1g

|               | System Verification TARGET & MEASURED |                |            |                      |                        |                       |              |          |      |                           |                            |                                |                     |  |  |
|---------------|---------------------------------------|----------------|------------|----------------------|------------------------|-----------------------|--------------|----------|------|---------------------------|----------------------------|--------------------------------|---------------------|--|--|
| SAR<br>System | Tissue<br>Frequency<br>(MHz)          | Tissue<br>Type | Date       | Amb.<br>Temp.<br>(C) | Liquid<br>Temp.<br>(C) | Input<br>Power<br>(W) | Source<br>SN | Probe SN | DAE  | Measured SAR<br>1g (W/kg) | 1W Target SAR<br>1g (W/kg) | 1W Normalized<br>SAR 1g (W/kg) | Deviation 1g<br>(%) |  |  |
| AM13          | 2450                                  | HEAD           | 07/08/2024 | 21.4                 | 20.4                   | 0.10                  | 921          | 7682     | 1683 | 5.260                     | 54.200                     | 52.600                         | -2.95%              |  |  |
| AM8           | 5250                                  | HEAD           | 06/12/2024 | 20.6                 | 21.0                   | 0.05                  | 1066         | 7427     | 467  | 3.770                     | 80.300                     | 75.400                         | -6.10%              |  |  |
| AM1           | 5250                                  | HEAD           | 07/10/2024 | 21.6                 | 20.9                   | 0.05                  | 1123         | 3949     | 1684 | 3.960                     | 79.400                     | 79.200                         | -0.25%              |  |  |
| AM8           | 5600                                  | HEAD           | 06/12/2024 | 20.6                 | 21.0                   | 0.05                  | 1066         | 7427     | 467  | 4.130                     | 83.900                     | 82.600                         | -1.55%              |  |  |
| AM1           | 5600                                  | HEAD           | 07/10/2024 | 21.6                 | 20.9                   | 0.05                  | 1123         | 3949     | 1684 | 4.050                     | 82.500                     | 81.000                         | -1.82%              |  |  |
| AM8           | 5750                                  | HEAD           | 06/12/2024 | 20.6                 | 21.0                   | 0.05                  | 1066         | 7427     | 467  | 4.070                     | 79.500                     | 81.400                         | 2.39%               |  |  |
| AM1           | 5750                                  | HEAD           | 07/10/2024 | 21.6                 | 20.9                   | 0.05                  | 1123         | 3949     | 1684 | 3.880                     | 79.400                     | 77.600                         | -2.27%              |  |  |
| AM8           | 5850                                  | HEAD           | 06/12/2024 | 20.6                 | 21.0                   | 0.05                  | 1066         | 7427     | 467  | 4 070                     | 82 200                     | 81 400                         | -0 97%              |  |  |

Table 8-3 System Verification Results - 10g

3949

1684

|               | System Vermication Results – Tog      |                |            |                      |                        |                       |              |          |      |                            |                             |                                 |        |                                                      |                                                       |                                                              |                                       |
|---------------|---------------------------------------|----------------|------------|----------------------|------------------------|-----------------------|--------------|----------|------|----------------------------|-----------------------------|---------------------------------|--------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|
|               | System Verification TARGET & MEASURED |                |            |                      |                        |                       |              |          |      |                            |                             |                                 |        |                                                      |                                                       |                                                              |                                       |
| SAR<br>System | Tissue<br>Frequency<br>(MHz)          | Tissue<br>Type | Date       | Amb.<br>Temp.<br>(C) | Liquid<br>Temp.<br>(C) | Input<br>Power<br>(W) | Source<br>SN | Probe SN | DAE  | Measured SAR<br>10g (W/kg) | 1W Target SAR<br>10g (W/kg) | 1W Normalized<br>SAR 10g (W/kg) |        | Measured 4cm <sup>2</sup><br>APD (W/m <sup>2</sup> ) | 1W Target 4cm <sup>2</sup><br>APD (W/m <sup>2</sup> ) | 1W Normalized<br>4cm <sup>2</sup> APD<br>(W/m <sup>2</sup> ) | Deviation 4cm <sup>2</sup><br>APD (%) |
| AM14          | 13                                    | HEAD           | 07/09/2024 | 22.0                 | 22.5                   | 1.00                  | 1004         | 3746     | 1237 | 0.368                      | 0.356                       | 0.368                           | 3.37%  |                                                      |                                                       |                                                              |                                       |
| AM13          | 2450                                  | HEAD           | 07/08/2024 | 21.4                 | 20.4                   | 0.10                  | 921          | 7682     | 1683 | 2.520                      | 25.500                      | 25.200                          | -1.18% |                                                      |                                                       |                                                              |                                       |
| AM8           | 5250                                  | HEAD           | 06/22/2024 | 21.5                 | 19.6                   | 0.05                  | 1066         | 7427     | 467  | 1.080                      | 23.100                      | 21.600                          | -6.49% |                                                      |                                                       |                                                              |                                       |
| AM8           | 5600                                  | HEAD           | 06/22/2024 | 21.5                 | 19.6                   | 0.05                  | 1066         | 7427     | 467  | 1.180                      | 24.100                      | 23.600                          | -2.07% |                                                      |                                                       |                                                              |                                       |
| AM8           | 5750                                  | HEAD           | 06/22/2024 | 21.5                 | 19.6                   | 0.05                  | 1066         | 7427     | 467  | 1.130                      | 22.600                      | 22.600                          | 0.00%  |                                                      |                                                       |                                                              |                                       |
| AM8           | 5850                                  | HEAD           | 06/22/2024 | 21.5                 | 19.6                   | 0.05                  | 1066         | 7427     | 467  | 1.170                      | 23.400                      | 23.400                          | 0.00%  |                                                      |                                                       |                                                              |                                       |
| AM7           | 6500                                  | HEAD           | 07/01/2024 | 20.3                 | 20.1                   | 0.025                 | 1019         | 7421     | 604  | 1.270                      | 54.100                      | 50.800                          | -6.10% | 31.1                                                 | 1320                                                  | 1244                                                         | -5.76%                                |
| AM7           | 8000                                  | HEAD           | 07/01/2024 | 20.3                 | 20.1                   | 0.025                 | 1006         | 7421     | 604  | 1.070                      | 45.400                      | 42.800                          | -5.73% | 26.1                                                 | 1110                                                  | 1044                                                         | -5.95%                                |

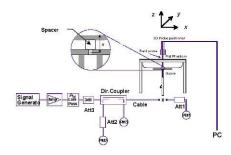



Figure 8-1 **System Verification Setup Diagram** 



3.970

80.100

79.400

-0.87%

Figure 8-2 **System Verification Setup Photo** 

| ECC ID: BCC A2007           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Dags 25 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 25 of 42     |

## 8.3 Power Density Test System Verification

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

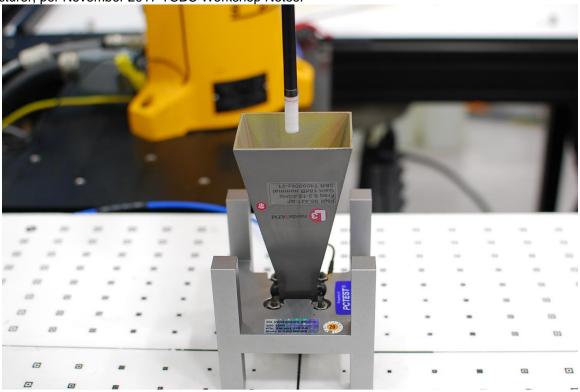



Figure 8-3
System Verification Setup Photo

# Table 8-4 10 GHz Verification Results

|               |           |            |        |       |          |      | System Verifica | ation           |                |               |                  |                |
|---------------|-----------|------------|--------|-------|----------|------|-----------------|-----------------|----------------|---------------|------------------|----------------|
| System        | Frequency | Date       | Source | Probe | DAE S/N  | Prad | Normal psPD (W  | /m² over 4 cm²) | Deviation (dB) | Total psPD (W | //m² over 4 cm²) | Deviation (dB) |
| <b>5</b> ,5tc | (GHz)     | Date       | S/N    | S/N   | 27120711 | (mW) | Measured        | Target          | Deviation (ub) | Measured      | Target           | Deviation (ub) |
| AM5           | 10        | 07/01/2024 | 1006   | 9407  | 793      | 93.3 | 59.40           | 58.50           | 0.07           | 59.50         | 58.90            | 0.04           |

Note: A 10 mm distance spacing was used from the reference horn antenna aperture to the probe element.

| SAR EVALUATION REPORT | Approved by: Technical Manager |
|-----------------------|--------------------------------|
| DUT Type: Watch       | Page 26 of 42                  |
|                       |                                |

## 9 SAR DATA SUMMARY

### 9.1 2.4 GHz WIFI SISO Standalone Head SAR

#### Table 9-1

| Band / Mode                | Bandwidth<br>[MHz]                                                                                               | Service /<br>Modulation                                                                                                                       | Housing Type                                                                                                                                                                                            | Wristband<br>Type | Serial Number            | Duty Cycle<br>[%] | Power Drift<br>[dB]    | Frequency<br>[MHz]             | Channel #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Position                                                                                                       | Spacing [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measured 1g<br>SAR [W/kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power Scaling<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Duty Cycle<br>Scaling Factor | Reported 1g<br>SAR [W/kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plot#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|-------------------|------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4 GHz WIFI/ IEEE 802.11b | 22                                                                                                               | DSSS                                                                                                                                          | Aluminum                                                                                                                                                                                                | Sport             | FV0TK                    | 99.76             | -0.09                  | 2412                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Front                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.002                        | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.4 GHz WIFI/ IEEE 802.11b | 22                                                                                                               | DSSS                                                                                                                                          | Aluminum                                                                                                                                                                                                | Sport             | FV0TK                    | 99.76             | 0.01                   | 2437                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Front                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.002                        | 0.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.4 GHz WIFI/ IEEE 802.11b | 22                                                                                                               | DSSS                                                                                                                                          | Aluminum                                                                                                                                                                                                | Sport             | FV0TK                    | 99.76             | -0.03                  | 2462                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Front                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.002                        | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.4 GHz WIFI/ IEEE 802.11b | 22                                                                                                               | DSSS                                                                                                                                          | Aluminum                                                                                                                                                                                                | Metal Loop        | FV0TK                    | 99.76             | 0.03                   | 2412                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Front                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.002                        | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.4 GHz WIFI/ IEEE 802.11b | 22                                                                                                               | DSSS                                                                                                                                          | Aluminum                                                                                                                                                                                                | Metal Links       | FV0TK                    | 99.76             | 0.01                   | 2412                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Front                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.002                        | 0.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            |                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                                         | Spatial I         | Peak                     |                   |                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                          | .4 GHz WIFI/ IEEE 802.11b<br>.4 GHz WIFI/ IEEE 802.11b<br>.4 GHz WIFI/ IEEE 802.11b<br>.4 GHz WIFI/ IEEE 802.11b | Band / Mode [MHz]  .4 GHz WiFl / IEEE 802.11b 22  .4 GHz WiFl / IEEE 802.11b 22  .4 GHz WiFl / IEEE 802.11b 22  .4 GHz WiFl / IEEE 802.11b 22 | Band / Mode [MNi] Modulation  A GHz WIFI / IEEE 802.11b 22 DSSS | Mode              | Mrez   Modulation   Type | Modulation   Type | Modulation   Type   P6 | Modulation   Type   [5]   [68] | Mrte2   Modulation   Type   Ps   Gibl   (Mrte2   Modulation   Type   Ps   Gibl   (Mrte2   Mrte2   Mr | Mode | Mines   Modulation   Type   Pol   Gall   Mines   Modulation   Mines   Modulation   Mines   M | A GHz WIFI / IEEE 802.11b 22 DSSS Aluminum Sport FVOTK 99.76 0.09 2412 1 1 20.00 A GHz WIFI / IEEE 802.11b 22 DSSS Aluminum Sport FVOTK 99.76 0.01 2437 6 1 20.00 A GHz WIFI / IEEE 802.11b 22 DSSS Aluminum Sport FVOTK 99.76 0.01 2437 6 1 20.00 A GHz WIFI / IEEE 802.11b 22 DSSS Aluminum Metal Loop FVOTK 99.76 0.03 2421 1 1 20.00 A GHz WIFI / IEEE 802.11b 22 DSSS Aluminum Metal Loop FVOTK 99.76 0.03 2412 1 1 20.00 A GHz WIFI / IEEE 802.11b 22 DSSS Aluminum Metal Loop FVOTK 99.76 0.03 2412 1 1 20.00 A GHZ WIFI / IEEE 802.11b 22 DSSS Aluminum Metal Loop FVOTK 99.76 0.03 2412 1 1 20.00 ANSI/IEEE (SS.1192SAEFTY LIMIT Sport PVOTK 99.76 0.01 2412 1 1 20.00 | A GHZ WIFF/ (EEE 802.11b   22   DSSS   Aluminum   Metal Loop   FVOTK   99.76   -0.09   2412   1   1   20.00   19.42 | Minter   Mediuation   Type   [9]   [86]   [Minter   [Minter   Minter   Mi | Mines   Modulation   Type   Politic   Modulation   Mines   M | Miles   Modulation   Type   Pol   Gal   Miles   Modulation   Type   Pol   Gal   Miles   Mile | Model   Modulation   Type    | Mit-2    Modulation   Type   PS    GB    Mit-2    Modulation   Type   PS    GB    Mit-2    Mit-2 | Mitz   Modulation   Type   Pol   GBI   Moti   Mogul   Power (BBIN)   Power (BBI |

## 9.2 5 GHz WIFI SISO Standalone Head SAR

### Table 9-2

| Exposure | Band / Mode              | Bandwidth<br>[MHz]                                                                                    | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number | [%]   | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # | U-NII band |     | Max Allowed<br>Power [dBm] |       | Test Position | Spacing [mm] | SAR [W/kg] |                                        | Duty Cycle<br>Scaling Factor | Reported 1g<br>SAR [W/kg] | Plot# |
|----------|--------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|--------------|-------------------|---------------|-------|---------------------|--------------------|-----------|------------|-----|----------------------------|-------|---------------|--------------|------------|----------------------------------------|------------------------------|---------------------------|-------|
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Sport             | T4N59         | 98.78 | 0.02                | 5300               | 60        | U-NII-2A   | 6.5 | 17.00                      | 16.58 | Front         | 10           | 0.095      | 1.102                                  | 1.012                        | 0.106                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Loop        | T4N59         | 98.78 | 0.06                | 5300               | 60        | U-NII-2A   | 6.5 | 17.00                      | 16.58 | Front         | 10           | 0.099      | 1.102                                  | 1.012                        | 0.110                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Links       | T4N59         | 98.78 | 0.04                | 5300               | 60        | U-NII-2A   | 6.5 | 17.00                      | 16.58 | Front         | 10           | 0.098      | 1.102                                  | 1.012                        | 0.109                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Sport             | T4N59         | 98.78 | 0.04                | 5720               | 144       | U-NII-2C   | 6.5 | 17.00                      | 16.64 | Front         | 10           | 0.157      | 1.086                                  | 1.012                        | 0.173                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Loop        | T4N59         | 98.78 | -0.08               | 5500               | 100       | U-NII-2C   | 6.5 | 17.00                      | 16.38 | Front         | 10           | 0.133      | 1.153                                  | 1.012                        | 0.155                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Loop        | T4N59         | 98.78 | -0.01               | 5600               | 120       | U-NII-2C   | 6.5 | 17.00                      | 16.48 | Front         | 10           | 0.153      | 1.127                                  | 1.012                        | 0.175                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Loop        | T4N59         | 98.78 | 0.05                | 5620               | 124       | U-NII-2C   | 6.5 | 17.00                      | 16.40 | Front         | 10           | 0.174      | 1.148                                  | 1.012                        | 0.202                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Loop        | T4N59         | 98.78 | 0.07                | 5720               | 144       | U-NII-2C   | 6.5 | 17.00                      | 16.64 | Front         | 10           | 0.235      | 1.086                                  | 1.012                        | 0.258                     | A2    |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Links       | T4N59         | 98.78 | 0.19                | 5720               | 144       | U-NII-2C   | 6.5 | 17.00                      | 16.64 | Front         | 10           | 0.198      | 1.086                                  | 1.012                        | 0.218                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Sport             | T4N59         | 98.78 | 0.03                | 5745               | 149       | U-NII-3    | 6.5 | 17.00                      | 16.65 | Front         | 10           | 0.169      | 1.084                                  | 1.012                        | 0.185                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Loop        | T4N59         | 98.78 | 0.15                | 5745               | 149       | U-NII-3    | 6.5 | 17.00                      | 16.65 | Front         | 10           | 0.145      | 1.084                                  | 1.012                        | 0.159                     |       |
| Head     | 5 GHz WIFI/ IEEE 802.11a | 20                                                                                                    | OFDM                    | Aluminum     | Metal Links       | T4N59         | 98.78 | 0.05                | 5745               | 149       | U-NII-3    | 6.5 | 17.00                      | 16.65 | Front         | 10           | 0.179      | 1.084                                  | 1.012                        | 0.196                     |       |
|          |                          | 5 GHz WIFI/ IEEE 802.11a 20 OFDM Aluminum Metal Loop T4N59 98.78 0.15 5745 149 U-NII-3 6.5 17.00 16.6 |                         |              |                   |               |       |                     |                    |           |            |     |                            |       |               |              |            | Head<br>W/kg (mW/g)<br>ged over 1 gram |                              |                           |       |

### 9.3 2.4 GHz Bluetooth SISO Standalone Head SAR

### Table 9-3

| Exposure | Band / Mode       | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number     | Duty Cycle<br>[%] | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # |   | Max Allowed<br>Power [dBm] |       | Test Position | Spacing [mm] | Measured 1g<br>SAR [W/kg] | Power Scaling<br>Factor | Duty Cycle<br>Scaling Factor | Reported 1g<br>SAR [W/kg] | Plot # |
|----------|-------------------|-------------------------|--------------|-------------------|-------------------|-------------------|---------------------|--------------------|-----------|---|----------------------------|-------|---------------|--------------|---------------------------|-------------------------|------------------------------|---------------------------|--------|
| Head     | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Sport             | YYWC9             | 100.00            | -0.01               | 2402               | 0         | 1 | 19.00                      | 17.90 | Front         | 10           | 0.318                     | 1.288                   | 1.000                        | 0.410                     | A3     |
| Head     | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Sport             | YYWC9             | 100.00            | 0.00                | 2441               | 39        | 1 | 19.00                      | 17.94 | Front         | 10           | 0.308                     | 1.276                   | 1.000                        | 0.393                     |        |
| Head     | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Sport             | YYWC9             | 100.00            | -0.01               | 2480               | 78        | 1 | 19.00                      | 17.87 | Front         | 10           | 0.306                     | 1.297                   | 1.000                        | 0.397                     |        |
| Head     | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Metal Loop        | YYWC9             | 100.00            | 0.09                | 2441               | 39        | 1 | 19.00                      | 17.94 | Front         | 10           | 0.192                     | 1.276                   | 1.000                        | 0.245                     |        |
| Head     | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Metal Links       | YYWC9             | 100.00            | 0.00                | 2441               | 39        | 1 | 19.00                      | 17.94 | Front         | 10           | 0.176                     | 1.276                   | 1.000                        | 0.225                     |        |
|          |                   |                         |              | ANSI/IEEE         | C95.1 1992 - SAFE | TYLIMIT           |                     |                    |           |   |                            |       |               |              |                           | Head                    |                              |                           |        |
|          |                   |                         |              |                   | Spatial Peak      |                   |                     |                    |           |   |                            |       |               |              |                           | W/kg (mW/g)             |                              |                           |        |
|          |                   |                         |              | Uncontrolled I    | Exposure/Genera   | l Population      |                     |                    |           |   |                            |       |               |              | avera                     | ged over 1 gram         |                              |                           |        |

### 9.4 5 GHz 802.15.4 ab-NB SISO Standalone Head SAR

### Table 9-4

| Exposure | Band / Mode    | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number                  | Duty Cycle<br>[%] | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # |   | Max Allowed<br>Power [dBm] |       | Test Position | Spacing [mm] | Measured 1g<br>SAR [W/kg] | Power Scaling<br>Factor       | Duty Cycle<br>Scaling Factor | Reported 1g<br>SAR [W/kg] | Plot# |
|----------|----------------|-------------------------|--------------|-------------------|--------------------------------|-------------------|---------------------|--------------------|-----------|---|----------------------------|-------|---------------|--------------|---------------------------|-------------------------------|------------------------------|---------------------------|-------|
| Head     | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Sport             | T4N59                          | 8.70              | 0.06                | 5728.75            | Low       | 1 | 16.00                      | 15.15 | Front         | 10           | 0.010                     | 1.216                         | 1.023                        | 0.012                     |       |
| Head     | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Loops       | T4N59                          | 8.70              | 0.01                | 5846.25            | High      | 1 | 16.00                      | 14.96 | Front         | 10           | 0.015                     | 1.271                         | 1.023                        | 0.020                     | A4    |
| Head     | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Loops       | T4N59                          | 8.70              | 0.09                | 5728.75            | Low       | 1 | 16.00                      | 15.15 | Front         | 10           | 0.011                     | 1.216                         | 1.023                        | 0.014                     |       |
| Head     | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Loops       | T4N59                          | 8.70              | 0.03                | 5786.25            | Mid       | 1 | 16.00                      | 15.04 | Front         | 10           | 0.012                     | 1.247                         | 1.023                        | 0.015                     |       |
| Head     | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Links       | T4N59                          | 8.70              | 0.01                | 5728.75            | Low       | 1 | 16.00                      | 15.15 | Front         | 10           | 0.009                     | 1.216                         | 1.023                        | 0.011                     |       |
|          |                |                         |              | ANSI/IEEE C       | 95.1 1992 - SAFE               | TY LIMIT          |                     |                    |           |   |                            |       |               |              |                           | Head                          |                              |                           |       |
|          |                |                         |              |                   | Spatial Peak<br>xposure/Genera | l Population      |                     |                    |           |   |                            |       |               |              |                           | V/kg (mW/g)<br>ed over 1 gram |                              |                           |       |

Note: The reported SAR was scaled to the 8.9% transmission duty factor.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |
|-----------------------------|------------------------|-------------------|
| 1 CC ID. BCC-A2991          | OAK EVALUATION KEI OKT | Technical Manager |
| Document S/N:               | DUT Type:              | Page 27 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 27 01 42     |

### 9.5 2.4 GHz WIFI SISO Standalone Extremity SAR

#### Table 9-5

|           |                            |                    |                         |              |                   |                                             |                   |                     | 40.0               | -         |   |                            |                          |               |              |                            |                                              |                              |                            |        |
|-----------|----------------------------|--------------------|-------------------------|--------------|-------------------|---------------------------------------------|-------------------|---------------------|--------------------|-----------|---|----------------------------|--------------------------|---------------|--------------|----------------------------|----------------------------------------------|------------------------------|----------------------------|--------|
| Exposure  | Band / Mode                | Bandwidth<br>[MHz] | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number                               | Duty Cycle<br>[%] | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # |   | Max Allowed<br>Power [dBm] | Conducted<br>Power [dBm] | Test Position | Spacing [mm] | Measured 10g<br>SAR [W/kg] | Power Scaling<br>Factor                      | Duty Cycle<br>Scaling Factor | Reported 10g<br>SAR [W/kg] | Plot # |
| Extremity | 2.4 GHz WIFI/ IEEE 802.11b | 22                 | DSSS                    | Aluminum     | Sport             | T4N59                                       | 99.76             | 0.05                | 2412               | 1         | 1 | 20.00                      | 19.42                    | Back          | 0            | 0.022                      | 1.143                                        | 1.002                        | 0.025                      |        |
| Extremity |                            |                    |                         |              |                   |                                             |                   |                     |                    |           |   |                            | 19.42                    | Back          | 0            | 0.019                      | 1.143                                        | 1.002                        | 0.022                      |        |
| Extremity | 2.4 GHz WIFI/ IEEE 802.11b | 22                 | DSSS                    | Aluminum     | Metal Links       | T4N59                                       | 99.76             | 0.02                | 2412               | 1         | 1 | 20.00                      | 19.42                    | Back          | 0            | 0.035                      | 1.143                                        | 1.002                        | 0.040                      | A5     |
| Extremity | 2.4 GHz WIFI/ IEEE 802.11b | 22                 | DSSS                    | Aluminum     | Metal Links       | T4N59                                       | 99.76             | -0.15               | 2437               | 6         | 1 | 20.00                      | 19.36                    | Back          | 0            | 0.025                      | 1.159                                        | 1.002                        | 0.029                      |        |
| Extremity | 2.4 GHz WIFI/ IEEE 802.11b | 22                 | DSSS                    | Aluminum     | Metal Links       | T4N59                                       | 99.76             | -0.05               | 2462               | 11        | 1 | 20.00                      | 19.21                    | Back          | 0            | 0.024                      | 1.199                                        | 1.002                        | 0.029                      |        |
|           |                            |                    |                         |              | Spatial           | 92 - SAFETY LIMI<br>Peak<br>/General Popula |                   |                     |                    |           |   |                            |                          |               |              | 4.0                        | Extremity<br>W/kg (mW/g)<br>ed over 10 gram: |                              |                            |        |

### 9.6 5 GHz WIFI SISO Standalone Extremity SAR

#### Table 9-6

| Exposure  | Band / Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bandwidth<br>[MHz] | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number | Duty Cycle<br>[%] | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # | U-NII band |     | Max Allowed<br>Power [dBm] |       | Test Position | Spacing [mm] | Measured 10g<br>SAR [W/kg] | Power Scaling<br>Factor                      | Duty Cycle<br>Scaling Factor | Reported 10g<br>SAR [W/kg] | Plot# |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|--------------|-------------------|---------------|-------------------|---------------------|--------------------|-----------|------------|-----|----------------------------|-------|---------------|--------------|----------------------------|----------------------------------------------|------------------------------|----------------------------|-------|
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Sport             | 3XW6L         | 98.78             | 0.07                | 5300               | 60        | U-NII-2A   | 6.5 | 17.00                      | 16.58 | Back          | 0            | 0.004                      | 1.102                                        | 1.012                        | 0.004                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Loop        | 3XW6L         | 98.78             | 0.02                | 5300               | 60        | U-NII-2A   | 6.5 | 17.00                      | 16.58 | Back          | 0            | 0.009                      | 1.102                                        | 1.012                        | 0.010                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Links       | 3XW6L         | 98.78             | 0.08                | 5300               | 60        | U-NII-2A   | 6.5 | 17.00                      | 16.58 | Back          | 0            | 0.002                      | 1.102                                        | 1.012                        | 0.002                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Sport             | 3XW6L         | 98.78             | 0.03                | 5720               | 144       | U-NII-2C   | 6.5 | 17.00                      | 16.64 | Back          | 0            | 0.013                      | 1.086                                        | 1.012                        | 0.014                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Loop        | 3XW6L         | 98.78             | 0.08                | 5720               | 144       | U-NII-2C   | 6.5 | 17.00                      | 16.64 | Back          | 0            | 0.016                      | 1.086                                        | 1.012                        | 0.018                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Links       | 3XW6L         | 98.78             | 0.08                | 5720               | 144       | U-NII-2C   | 6.5 | 17.00                      | 16.64 | Back          | 0            | 0.016                      | 1.086                                        | 1.012                        | 0.018                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Sport             | 3XW6L         | 98.78             | 0.05                | 5745               | 149       | U-NII-3    | 6.5 | 17.00                      | 16.65 | Back          | 0            | 0.015                      | 1.084                                        | 1.012                        | 0.016                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Loop        | 3XW6L         | 98.78             | -0.06               | 5745               | 149       | U-NII-3    | 6.5 | 17.00                      | 16.65 | Back          | 0            | 0.026                      | 1.084                                        | 1.012                        | 0.029                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Loop        | 3XW6L         | 98.78             | -0.20               | 5785               | 157       | U-NII-3    | 6.5 | 17.00                      | 16.61 | Back          | 0            | 0.021                      | 1.094                                        | 1.012                        | 0.023                      |       |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Loop        | 3XW6L         | 98.78             | 0.03                | 5825               | 165       | U-NII-3    | 6.5 | 17.00                      | 16.64 | Back          | 0            | 0.027                      | 1.086                                        | 1.012                        | 0.030                      | A6    |
| Extremity | 5 GHz WIFI/ IEEE 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                 | OFDM                    | Aluminum     | Metal Links       | 3XW6L         | 98.78             | 0.06                | 5745               | 149       | U-NII-3    | 6.5 | 17.00                      | 16.65 | Back          | 0            | 0.016                      | 1.084                                        | 1.012                        | 0.018                      |       |
|           | 5 GHz WiR/I (IEE 802.11a         20         OFDM         Aluminum         Metal Loop         3XW6L         98.78         -0.20         5785         157         U-NII-3         6.5         17.00         16.           5 GHz WiR/I (IEE 802.11a         20         OFDM         Aluminum         Metal Loop         3XW6L         98.78         0.03         5825         165         U-NII-3         6.5         17.00         16.           1.6         1.6         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 |                    |                         |              |                   |               |                   |                     |                    |           |            |     |                            |       |               |              | 4.01                       | Extremity<br>W/kg (mW/g)<br>ed over 10 grams |                              |                            |       |

### 9.7 2.4 GHz Bluetooth SISO Standalone Extremity SAR

### Table 9-7

| Exposure  | Band / Mode       | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number    | Duty Cycle<br>[%] | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # |   | Max Allowed<br>Power [dBm] |       | Test Position | Spacing [mm] | Measured 10g<br>SAR [W/kg] | Power Scaling<br>Factor | Duty Cycle<br>Scaling Factor | Reported 10g<br>SAR [W/kg] | Plot# |
|-----------|-------------------|-------------------------|--------------|-------------------|------------------|-------------------|---------------------|--------------------|-----------|---|----------------------------|-------|---------------|--------------|----------------------------|-------------------------|------------------------------|----------------------------|-------|
| Extremity | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Sport             | FV0TK            | 100.00            | 0.07                | 2441               | 39        | 1 | 19.00                      | 17.94 | Back          | 0            | 0.014                      | 1.276                   | 1.000                        | 0.018                      |       |
| Extremity |                   |                         |              |                   |                  |                   |                     |                    |           |   |                            |       | Back          | 0            | 0.013                      | 1.276                   | 1.000                        | 0.017                      |       |
| Extremity | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Metal Links       | FVOTK            | 100.00            | 0.03                | 2402               | 0         | 1 | 19.00                      | 17.90 | Back          | 0            | 0.020                      | 1.288                   | 1.000                        | 0.026                      | A7    |
| Extremity | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Metal Links       | FV0TK            | 100.00            | 0.04                | 2441               | 39        | 1 | 19.00                      | 17.94 | Back          | 0            | 0.016                      | 1.276                   | 1.000                        | 0.020                      |       |
| Extremity | 2.4 GHz Bluetooth | FHSS                    | Aluminum     | Metal Links       | FV0TK            | 100.00            | 0.21                | 2480               | 78        | 1 | 19.00                      | 17.87 | Back          | 0            | 0.017                      | 1.297                   | 1.000                        | 0.022                      |       |
|           |                   |                         |              | ANSI/IEEE         | 95.1 1992 - SAFE | TYLIMIT           |                     |                    |           |   |                            |       |               |              |                            | Extremity               |                              |                            |       |
|           |                   |                         |              |                   | Spatial Peak     |                   |                     |                    |           |   |                            |       |               |              | 4.01                       | W/kg (mW/g)             |                              |                            |       |
|           |                   |                         |              | Uncontrolled E    | xposure/Genera   | l Population      |                     |                    |           |   |                            |       |               |              | average                    | ed over 10 grams        |                              |                            |       |

## 9.8 5 GHz 802.15.4 ab-NB SISO Standalone Extremity SAR

#### Table 9-8

|           |                |                         |              |                   |                  |                   |                     |                    | ~ ~ ~    |   |                            |       |      |              |                            |                 |                              |                            |       |
|-----------|----------------|-------------------------|--------------|-------------------|------------------|-------------------|---------------------|--------------------|----------|---|----------------------------|-------|------|--------------|----------------------------|-----------------|------------------------------|----------------------------|-------|
| Exposure  | Band / Mode    | Service /<br>Modulation | Housing Type | Wristband<br>Type | Serial Number    | Duty Cycle<br>[%] | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel# |   | Max Allowed<br>Power [dBm] |       |      | Spacing [mm] | Measured 10g<br>SAR [W/kg] |                 | Duty Cycle<br>Scaling Factor | Reported 10g<br>SAR [W/kg] | Plot# |
| Extremity | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Sport             | T4N59            | 8.70              | 0.01                | 5728.75            | Low      | 1 | 16.00                      | 15.15 | Back | 0            | 0.000                      | 1.216           | 1.023                        | 0.000                      |       |
| Extremity | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Loops       | T4N59            | 8.70              | 0.07                | 5846.25            | High     | 1 | 16.00                      | 14.96 | Back | 0            | 0.000                      | 1.271           | 1.023                        | 0.000                      |       |
| Extremity | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Loops       | T4N59            | 8.70              | 0.05                | 5728.75            | Low      | 1 | 16.00                      | 15.15 | Back | 0            | 0.000                      | 1.216           | 1.023                        | 0.000                      | A8    |
| Extremity | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Loops       | T4N59            | 8.70              | 0.04                | 5786.25            | Mid      | 1 | 16.00                      | 15.04 | Back | 0            | 0.000                      | 1.247           | 1.023                        | 0.000                      |       |
| Extremity | 802.15.4 ab-NB | O-QPSK                  | Aluminum     | Metal Links       | T4N59            | 8.70              | 0.08                | 5728.75            | Low      | 1 | 16.00                      | 15.15 | Back | 0            | 0.000                      | 1.216           | 1.023                        | 0.000                      |       |
|           |                |                         |              | ANSI/IEEE C       | 95.1 1992 - SAFE | TY LIMIT          |                     |                    |          |   |                            |       |      |              |                            | xtremity        |                              |                            |       |
|           |                |                         |              |                   | Spatial Peak     |                   |                     |                    |          |   |                            |       |      |              | 4.0 W                      | /kg (mW/g)      |                              |                            |       |
|           |                |                         |              | Uncontrolled E    | xposure/Genera   | l Population      |                     |                    |          |   |                            |       |      |              | average                    | d over 10 grams |                              |                            |       |

Note: The reported SAR was scaled to the 8.9% transmission duty factor.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |  |
|-----------------------------|------------------------|-------------------|--|
| 1 GG ID. BGG-A2991          | SAK EVALUATION KEI OKT | Technical Manager |  |
| Document S/N:               | DUT Type:              | Page 28 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Page 20 01 42     |  |

#### **UWB Standalone Extremity SAR and Absorbed Power Density** 9.9

|           |             |                         |                                                  |                   | Iable         | <b>3-3</b> |                     |                    |           |               |                                  |                            |        |
|-----------|-------------|-------------------------|--------------------------------------------------|-------------------|---------------|------------|---------------------|--------------------|-----------|---------------|----------------------------------|----------------------------|--------|
| Exposure  | Band / Mode | Service /<br>Modulation | Housing Type                                     | Wristband<br>Type | Serial Number | Duty Cycle | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # | Test Position | Spacing [mm]                     | Measured 10g<br>SAR [W/kg] | Plot#  |
| Extremity | UWB         | CW                      | Aluminum                                         | Sport             | 03V9M         | 1:1        | 0.01                | 6489.60            | 5         | Back          | 0                                | 0.002                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Sport             | 03V9M         | 1:1        | 0.01                | 7987.20            | 9         | Back          | 0                                | 0.000                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Loop        | 03V9M         | 1:1        | 0.08                | 6489.60            | 5         | Back          | 0                                | 0.001                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Loop        | 03V9M         | 1:1        | 0.03                | 7987.20            | 9         | Back          | 0                                | 0.003                      | A9     |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Links       | 03V9M         | 1:1        | 0.06                | 6489.60            | 5         | Back          | 0                                | 0.002                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Links       | 03V9M         | 1:1        | 0.01                | 7987.20            | 9         | Back          | 0                                | 0.001                      |        |
|           |             |                         | NSI/IEEE C95.1 19<br>Spatia<br>Introlled Exposur | l Peak            |               |            |                     |                    |           |               | 4.0 W/kg (m)<br>averaged over 10 | N/g)                       |        |
| Exposure  | Band/ Mode  | Service/<br>Modulation  | Housing Type                                     | Wristband<br>Type | Serial Number | Duty Cycle | Power Drift<br>[dB] | Frequency<br>[MHz] | Channel # | Test Position | n Spacing [mm]                   | Measured API               | Plot # |
| Extremity | UWB         | CW                      | Aluminum                                         | Sport             | 03V9M         | 1:1        | 0.01                | 6489.60            | 5         | Back          | 0                                | 0.043                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Sport             | 03V9M         | 1:1        | 0.01                | 7987.20            | 9         | Back          | 0                                | 0.025                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Loop        | 03V9M         | 1:1        | 0.08                | 6489.60            | 5         | Back          | 0                                | 0.029                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Loop        | 03V9M         | 1:1        | 0.03                | 7987.20            | 9         | Back          | 0                                | 0.077                      | A9     |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Links       | 03V9M         | 1:1        | 0.06                | 6489.60            | 5         | Back          | 0                                | 0.051                      |        |
| Extremity | UWB         | CW                      | Aluminum                                         | Metal Links       | 03V9M         | 1:1        | 0.01                | 7987.20            | 9         | Back          | 0                                | 0.028                      |        |

## 9.10 NFC Standalone Extremity SAR

### **Table 9-10**

| Exposure  | Band / Mode                                                                               | Signal Type      | Housing Type     | Wristband<br>Type | Serial Number | Power Drift<br>[dB] | Frequency<br>[MHz] | Test Position | Spacing [mm]                               | Measured 10g<br>SAR [W/kg] | Plot# |
|-----------|-------------------------------------------------------------------------------------------|------------------|------------------|-------------------|---------------|---------------------|--------------------|---------------|--------------------------------------------|----------------------------|-------|
| Extremity | NFC                                                                                       | Α                | Aluminum         | Sport             | T4N59         | 0.02                | 13.56              | Back          | 0                                          | 0.000                      |       |
| Extremity | NFC                                                                                       | Α                | Aluminum         | Metal Loop        | T4N59         | 0.01                | 13.56              | Back          | 0                                          | 0.000                      |       |
| Extremity | NFC                                                                                       | Α                | Aluminum         | Metal Links       | T4N59         | 0.01                | 13.56              | Back          | 0                                          | 0.000                      | A10   |
|           | ANSI/IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population |                  |                  |                   |               |                     |                    |               | Extremit<br>4.0 W/kg (m<br>averaged over 1 | W/g)                       |       |
|           | Un                                                                                        | controlled Expos | ure/ General Pop | นเสนบท            |               |                     |                    |               | averaged over                              | LU BIAIIIS                 |       |

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
| FCC ID. BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |
| Document S/N:               | DUT Type:             | Page 29 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | raye 29 01 42     |

### 9.11 SAR Test Notes

#### General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D04v01.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg and 2.0 W/kg for 10g SAR.
- 7. This device has one housing type: Aluminum. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
- 8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore, the procedures in FCC KDB Publication 447498 D04v01 Section 6.2 have been applied for extremity and next to mouth (head) conditions.
- 9. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

#### WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
  single transmission chain operations, the highest measured maximum output power channel for DSSS
  was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to
  the maximum allowed powers and the highest reported DSSS SAR. See Section 6.2.4 for more
  information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 6.2.5 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance.

#### **Bluetooth Notes**

1. To determine compliance, Bluetooth SAR was measured with the maximum power condition. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

#### 802.15.4 ab-NB Notes

1. 802.15.4 ab-NB SAR was scaled to the 8.9% transmission duty factor to determine compliance since the duty factor of the device is limited to 8.9% per manufacturer. See Section 7.4 for the 802.15.4 ab-NB time domain plot and calculation for the duty factor of the device.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |  |  |
|-----------------------------|------------------------|-------------------|--|--|
| 1 00 IB. BOO 1/2001         | OAK EVALOATION KEI OKT | Technical Manager |  |  |
| Document S/N:               | DUT Type:              | Page 30 of 42     |  |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | raye 30 01 42     |  |  |

### 9.12 Power Density Data

#### **Table 9-11**

|                    | Measurement Results                                                                            |      |         |                |                     |                 |                    |                 |                      |      |                  |                                   |                                                                   |                       |                                 |                      |                                |        |
|--------------------|------------------------------------------------------------------------------------------------|------|---------|----------------|---------------------|-----------------|--------------------|-----------------|----------------------|------|------------------|-----------------------------------|-------------------------------------------------------------------|-----------------------|---------------------------------|----------------------|--------------------------------|--------|
| Frequency<br>(MHz) | Channel                                                                                        | Mode | Service | Wristband Type | Power Drift<br>(dB) | Spacing<br>(mm) | Antenna<br>Config. | Housing<br>Type | DUT Serial<br>Number | Side | Grid Step<br>(λ) | iPD<br>(W/m²)                     | Scaling Factor for<br>Measurement<br>Uncertainty per<br>IEC 62479 | Normal psPD<br>(W/m²) | Scaled Normal<br>psPD<br>(W/m²) | Total psPD<br>(W/m²) | Scaled Total<br>psPD<br>(W/m²) | Plot # |
| 6489.60            | 5                                                                                              | UWB  | cw      | Sport          | 0.04                | 2               | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 2.480                             | 1.554                                                             | 0.363                 | 0.564                           | 0.384                | 0.597                          | A11    |
| 6489.60            | 5                                                                                              | UWB  | cw      | Sport          | 0.00                | 9.24            | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 0.930                             | 1.554                                                             | 0.234                 | 0.364                           | 0.235                | 0.365                          |        |
| 7987.20            | 9                                                                                              | UWB  | cw      | Sport          | 0.04                | 2               | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 0.324                             | 1.554                                                             | 0.069                 | 0.107                           | 0.073                | 0.113                          |        |
| 6489.60            | 5                                                                                              | UWB  | cw      | Metal Loop     | -0.06               | 2               | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 0.687                             | 1.554                                                             | 0.144                 | 0.224                           | 0.150                | 0.233                          |        |
| 7987.20            | 9                                                                                              | UWB  | cw      | Metal Loop     | 0.00                | 2               | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 0.040                             | 1.554                                                             | 0.026                 | 0.040                           | 0.028                | 0.044                          |        |
| 6489.60            | 5                                                                                              | UWB  | CW      | Metal Links    | -0.05               | 2               | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 1.120                             | 1.554                                                             | 0.166                 | 0.258                           | 0.184                | 0.286                          |        |
| 7987.20            | 9                                                                                              | UWB  | cw      | Metal Links    | 0.00                | 2               | FCM                | Aluminum        | 60H3K                | Back | 0.25             | 0.260                             | 1.554                                                             | 0.099                 | 0.154                           | 0.106                | 0.165                          |        |
|                    | 47 CFR §1.1310 - SAFETY LIMIT<br>Spatial Average<br>Uncontrolled Exposure / General Population |      |         |                |                     |                 |                    |                 |                      |      | 10               | r Density<br>W/m²<br>d over 4 cm² |                                                                   |                       |                                 |                      |                                |        |

### 9.13 Power Density Notes

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements. The DUT was connected to a wall charger for some measurements due to the test duration. It was confirmed that the charger plugged into this DUT did not impact the near-field PD test results.
- 3. Power density was calculated by repeated E-field measurements on two measurement planes separated by  $\lambda/4$ .
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 5. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 6. Per equipment manufacturer guidance, power density was measured at d=2mm and d=λ/5mm using the same grid size and grid step size for some frequencies and surfaces. The integrated Power Density (iPD) was calculated based on these measurements. Since iPD ratio between the two distances is ≥ -1dB, the grid step was sufficient for determining compliance at d=2mm.
- 7. PD results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 8. PTP-PR algorithm was used during psPD measurement and calculations.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |  |  |
|-----------------------------|------------------------|-------------------|--|--|
| 1 CC ID. BCC-A2991          | SAK EVALUATION KEI OKT | Technical Manager |  |  |
| Document S/N:               | DUT Type:              | Page 31 of 42     |  |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 31 01 42     |  |  |

### FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

#### 10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D04v01 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit together.

#### Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is  $\leq$ 1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Note: In cases where simultaneous transmission scenarios overlap with the same power level (for example, cellular band + 2.4 GHz WIFI and cellular band + 2.4 GHz WIFI + 802.15.4 ab-NB), the most conservative SAR summation scenario was evaluated.

### **Head SAR Simultaneous Transmission Analysis**

For SAR summation, the highest reported SAR across all housing and wristband types was used as a conservative evaluation for simultaneous transmission analysis.

**Table 10-1** Simultaneous Transmission Scenario with 2.4 GHz WLAN and 802.15.4 ab-NB (Head at 1.0 cm)

| Exposure Condition | 2.4 GHz WIFI SAR<br>(W/kg) | 802.15.4 ab-NB<br>SAR (W/kg) | ∑ SAR (W/kg) |
|--------------------|----------------------------|------------------------------|--------------|
|                    | 1                          | 2                            | 1+2          |
| Head SAR           | 0.561                      | 0.020                        | 0.581        |

**Table 10-2** Simultaneous Transmission Scenarios with 2.4 GHz Bluetooth and 5 GHz WLAN (Head at 1.0 cm)

| Exposure Condition | 2.4 GHz Bluetooth<br>SAR (W/kg) | 5 GHz WIFI SAR<br>(W/kg) | ∑ SAR (W/kg) |
|--------------------|---------------------------------|--------------------------|--------------|
|                    | 1                               | 2                        | 1+2          |
| Head SAR           | 0.410                           | 0.258                    | 0.668        |

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:                    |
|-----------------------------|------------------------|---------------------------------|
| PCC ID. BCG-A2991           | SAK EVALUATION KEI OKT | Technical Manager Page 32 of 42 |
| Document S/N:               | DUT Type:              | Dogo 22 of 42                   |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 32 01 42                   |

Table 10-3
Simultaneous Transmission Scenarios with 2.4 GHz Bluetooth and 802.15.4 ab-NB (Head at 1.0 cm)

| Exposure Condition | 2.4 GHz Bluetooth<br>SAR (W/kg) | 802.15.4 ab-NB<br>SAR (W/kg) | ∑ SAR (W/kg) |
|--------------------|---------------------------------|------------------------------|--------------|
|                    | 1                               | 2                            | 1+2          |
| Head SAR           | 0.410                           | 0.020                        | 0.430        |

### 10.4 Extremity SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wristband types was used as a conservative evaluation for simultaneous transmission analysis.

Table 10-4
Simultaneous Transmission Scenarios with 2.4 GHz WLAN, 802.15.4 ab-NB, and NFC (Extremity at 0.0 cm)

| Simultaneous Transmission Scenarios with 2.4 GHz WEAN, 602.15.4 ab-NB, and NI C (Extremity at 6.0 Cm) |                            |                              |                |              |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|----------------|--------------|--|--|--|
| Exposure Condition                                                                                    | 2.4 GHz WIFI SAR<br>(W/kg) | 802.15.4 ab-NB<br>SAR (W/kg) | NFC SAR (W/kg) | ∑ SAR (W/kg) |  |  |  |
|                                                                                                       | 1                          | 2                            | 3              | 1+2+3        |  |  |  |
| Extremity SAR                                                                                         | 0.040                      | 0.000                        | 0.000          | 0.040        |  |  |  |

Table 10-5
Simultaneous Transmission Scenarios with 2.4 GHz WLAN, UWB, and NFC (Extremity at 0.0 cm)

| Exposure Condition | 2.4 GHz WIFI SAR<br>(W/kg) | UWB SAR (W/kg) | NFC SAR (W/kg) | ∑ SAR (W/kg) |  |
|--------------------|----------------------------|----------------|----------------|--------------|--|
|                    | 1                          | 2              | 3              | 1+2+3        |  |
| Extremity SAR      | 0.040                      | 0.003          | 0.000          | 0.043        |  |

**Table 10-6** 

Simultaneous Transmission Scenarios with 2.4 GHz Bluetooth, 5 GHz WLAN, and NFC (Extremity at 0.0 cm)

| Exposure Condition | 2.4 GHz Bluetooth<br>SAR (W/kg) | 5 GHz WIFI SAR<br>(W/kg) | NFC SAR (W/kg) | ∑ SAR (W/kg) |
|--------------------|---------------------------------|--------------------------|----------------|--------------|
|                    | 1                               | 2                        | 3              | 1+2+3        |
| Extremity SAR      | 0.026                           | 0.030                    | 0.000          | 0.056        |

Table 10-7

Simultaneous Transmission Scenarios with 2.4 GHz Bluetooth, 802.15.4 ab-NB, and NFC (Extremity at 0.0 cm)

| Exposure Condition | 2.4 GHz Bluetooth<br>SAR (W/kg) | 802.15.4 ab-NB<br>SAR (W/kg) | NFC SAR (W/kg) | ∑ SAR (W/kg) |
|--------------------|---------------------------------|------------------------------|----------------|--------------|
|                    | 1                               | 2                            | 3              | 1+2+3        |
| Extremity SAR      | 0.026                           | 0.000                        | 0.000          | 0.026        |

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |  |
|-----------------------------|------------------------|-------------------|--|
| 1 00 IB. BOO 1/2001         | OAK EVALOATION KEI OKT | Technical Manager |  |
| Document S/N:               | DUT Type:              | Page 33 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 33 01 42     |  |

Table 10-8
Simultaneous Transmission Scenarios with 2.4 GHz Bluetooth, UWB, and NFC (Extremity at 0.0 cm)

| Exposure Condition | 2.4 GHz Bluetooth<br>SAR (W/kg) | UWB SAR (W/kg) | NFC SAR (W/kg) | ∑ SAR (W/kg) |  |  |  |  |
|--------------------|---------------------------------|----------------|----------------|--------------|--|--|--|--|
|                    | 1                               | 2              | 3              | 1+2+3        |  |  |  |  |
| Extremity SAR      | 0.026                           | 0.003          | 0.000          | 0.029        |  |  |  |  |

### 10.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D04v01.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT  | Approved by:      |  |
|-----------------------------|------------------------|-------------------|--|
| 1 00 IB. BOO 1/2001         | OAK EVALOATION KEI OKT | Technical Manager |  |
| Document S/N:               | DUT Type:              | Page 34 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                  | Fage 34 01 42     |  |

## 11 SAR MEASUREMENT VARIABILITY

### 11.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.

### 11.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis was not required.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |  |
|-----------------------------|-----------------------|-------------------|--|
|                             |                       | Technical Manager |  |
| Document S/N:               | DUT Type:             | Page 35 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Fage 33 01 42     |  |

## 12 EQUIPMENT LIST

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler, or filter were connected to a calibrated source (i.e., a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each equipment item was used solely within its respective calibration period.

| Manufacturer          | Model                | Description                                                          | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|----------------------|----------------------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | E4404B               | Spectrum Analyzer                                                    | N/A        | N/A          | N/A        | MY45113242    |
| Agilent               | E4438C               | ESG Vector Signal Generator                                          | 11/14/2023 | Annual       | 11/14/2024 | MY45093852    |
| Agilent               | E4438C               | ESG Vector Signal Generator                                          | 11/15/2023 | Annual       | 11/15/2024 | MY45092078    |
| Agilent               | N5182A               | MXG Vector Signal Generator                                          | 10/12/2023 | Annual       | 10/12/2024 | MY47400015    |
| Agilent               | N5182A               | MXG Vector Signal Generator                                          | 3/7/2024   | Annual       | 3/7/2025   | MY47420603    |
| Agilent               | 8753ES               | S-Parameter Vector Network Analyzer                                  | 1/10/2024  | Annual       | 1/10/2025  | MY40001472    |
| Agilent               | 8753ES               | S-Parameter Vector Network Analyzer                                  | 7/21/2023  | Annual       | 7/21/2024  | US39170118    |
| Agilent               | N4010A               | Wireless Connectivity Test Set                                       | N/A        | N/A          | N/A        | GB46170464    |
| Amplifier Research    | 15S1G6               | Amplifier                                                            | CBT        | N/A          | CBT        | 433973        |
| Amplifier Research    | 15S1G6               | Amplifier                                                            | CBT        | N/A          | CBT        | 433974        |
| Amplifier Research    | 150A100C             | Amplifier                                                            | CBT        | N/A          | CBT        | 350132        |
| Anritsu               | MN8110B              | I/O Adaptor                                                          | CBT        | N/A          | CBT        | 6261747881    |
| Anritsu               | MA24106A             | USB Power Sensor                                                     | 12/4/2023  | Annual       | 12/4/2024  | 1520501       |
| Anritsu               | MA24106A             | USB Power Sensor                                                     | 4/15/2024  | Annual       | 4/15/2025  | 1827528       |
| Anritsu               | MA2411B              | Pulse Power Sensor                                                   | 8/22/2023  | Annual       | 8/22/2024  | 1726262       |
| Anritsu               | MA2411B              | Pulse Power Sensor                                                   | 11/8/2023  | Annual       | 11/8/2024  | 1027293       |
| Anritsu               | MA24116<br>MA24106A  | USB Power Sensor                                                     | 12/4/2023  | Annual       | 12/4/2024  | 1520501       |
| Anritsu               | MA24106A<br>MA24106A | USB Power Sensor                                                     | 4/15/2024  | Annual       | 4/15/2025  | 1827528       |
|                       |                      |                                                                      |            |              |            |               |
| Control Company       | 4052                 | Long Stem Thermometer                                                | 2/27/2024  | Biennial     | 2/27/2026  | 240174346     |
| Control Company       | 4052                 | Long Stem Thermometer                                                | 2/27/2024  | Biennial     | 2/27/2026  | 240171096     |
| Control Company       | 4052                 | Long Stem Thermometer                                                | 2/27/2024  | Biennial     | 2/27/2026  | 240171059     |
| Control Company       | 4040                 | Therm./ Clock/ Humidity Monitor                                      | 4/15/2024  | Biennial     | 4/15/2026  | 240310280     |
| Control Company       | 4040                 | Therm./ Clock/ Humidity Monitor                                      | 4/15/2024  | Biennial     | 4/15/2026  | 240310282     |
| Control Company       | S66279               | Therm./ Clock/ Humidity Monitor                                      | 2/16/2024  | Biennial     | 2/16/2026  | 240140051     |
| Mitutoyo              | 500-196-30           | CD-6"ASX 6Inch Digital Caliper                                       | 2/16/2022  | Triennial    | 2/16/2025  | A20238413     |
| Keysight Technologies | N9020A               | MXA Signal Analyzer                                                  | 4/11/2024  | Annual       | 4/11/2025  | MY54500644    |
| MCL                   | BW-N6W5+             | 6dB Attenuator                                                       | CBT        | N/A          | CBT        | 1139          |
| Mini-Circuits         | VLF-6000+            | Low Pass Filter DC to 6000 MHz                                       | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+            | DC to 18 GHz Precision Fixed 20 dB Attenuator                        | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | NLP-1200+            | Low Pass Filter DC to 1000 MHz                                       | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | NLP-2950+            | Low Pass Filter DC to 2700 MHz                                       | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5             | Power Attenuator                                                     | CBT        | N/A          | CBT        | 1226          |
| Mini-Circuits         | ZUDC10-83-S+         | Directional Coupler                                                  | CBT        | N/A          | CBT        | 2050          |
| Narda                 | 4772-3               | Attenuator (3dB)                                                     | CBT        | N/A          | CBT        | 9406          |
| Narda                 | BW-S3W2              | Attenuator (3dB)                                                     | CBT        | N/A          | CBT        | 120           |
| Seekonk               | NC-100               | Torque Wrench                                                        | 4/2/2024   | Biennial     | 4/2/2026   | 1262          |
| SPEAG                 | DAK-3.5              | Dielectric Assessment Kit                                            | 11/13/2023 | Annual       | 11/13/2024 | 1277          |
| SPEAG                 | DAKS-3.5             | Portable Dielectric Assessment Kit                                   | 8/14/2023  | Annual       | 8/14/2024  | 1041          |
| SPEAG                 | MAIA                 | Modulation and Audio Interference Analyzer                           | N/A        | N/A          | N/A        | 1237          |
| SPEAG                 | MAIA                 | Modulation and Audio Interference Analyzer                           | N/A        | N/A          | N/A        | 1331          |
| SPEAG                 | MAIA                 | Modulation and Audio Interference Analyzer                           | N/A        | N/A          | N/A        | 1390          |
| SPEAG                 | DAK-12               | Dielectric Assessment Kit (4MHz - 3GHz)                              | 3/11/2024  | Annual       | 3/11/2025  | 1102          |
| SPEAG                 | CLA-13               | Confined Loop Antenna                                                | 11/9/2023  | Annual       | 11/9/2024  | 1004          |
| SPEAG                 | D2450V2              | 2450 MHz SAR Dipole                                                  | 11/9/2021  | Triennial    | 11/9/2024  | 921           |
| SPEAG                 | D5GHzV2              | 5 GHz SAR Dipole                                                     | 11/17/2022 | Biennial     | 11/17/2024 | 1066          |
| SPEAG                 | D5GHzV2              | 5 GHz SAR Dipole                                                     | 3/12/2024  | Annual       | 3/12/2025  | 1123          |
| SPEAG                 | D6.5GHzV2            | 6.5 GHz SAR Dipole                                                   | 10/11/2023 | Annual       | 10/11/2024 | 1019          |
| SPEAG                 | D8GHzV2              | 8 GHz SAR Dipole                                                     | 5/8/2024   | Annual       | 5/8/2025   | 1006          |
| SPEAG                 | 5G Ver. Source 10GHz | 10GHz System Verification Antenna                                    | 10/13/2023 | Annual       | 10/13/2024 | 1006          |
| SPEAG                 | DAE4                 | Dasy Data Acquisition Electronics                                    | 10/13/2023 | Annual       | 10/18/2024 | 1237          |
| SPEAG                 | DAE4                 | Dasy Data Acquisition Electronics  Dasy Data Acquisition Electronics | 10/18/2023 | Annual       | 10/18/2024 | 793           |
| SPEAG                 | DAE4                 | Dasy Data Acquisition Electronics  Dasy Data Acquisition Electronics | 5/8/2024   | Annual       | 5/8/2025   | 1683          |
| SPEAG                 | DAE4                 | Dasy Data Acquisition Electronics  Dasy Data Acquisition Electronics | 3/6/2024   | Annual       | 3/6/2025   | 604           |
|                       |                      |                                                                      |            |              |            |               |
| SPEAG                 | DAE4                 | Dasy Data Acquisition Electronics                                    | 2/9/2024   | Annual       | 2/9/2025   | 467           |
| SPEAG                 | DAE4                 | Dasy Data Acquisition Electronics                                    | 9/12/2023  | Annual       | 9/12/2024  | 1684          |
| SPEAG                 | EX3DV4               | SAR Probe                                                            | 5/13/2024  | Annual       | 5/13/2025  | 7682          |
| SPEAG                 | EX3DV4               | SAR Probe                                                            | 2/9/2024   | Annual       | 2/9/2025   | 7427          |
| SPEAG                 | EX3DV4               | SAR Probe                                                            | 10/16/2023 | Annual       | 10/16/2024 | 3746          |
| SPEAG                 | EX3DV4               | SAR Probe                                                            | 3/11/2024  | Annual       | 3/11/2025  | 7421          |
| SPEAG                 | EX3DV4               | SAR Probe                                                            | 10/2/2023  | Annual       | 10/2/2024  | 3949          |
| SPEAG                 | EUmmWV3              | mmwave Probe                                                         | 10/9/2023  | Annual       | 10/9/2024  | 9407          |

| FOC ID: DCC A2007           | SAR EVALUATION REPORT |                   |  |  |
|-----------------------------|-----------------------|-------------------|--|--|
| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Technical Manager |  |  |
| Document S/N:               | DUT Type:             | Dogo 26 of 42     |  |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 36 of 42     |  |  |

## 13 MEASUREMENT UNCERTAINTIES

Applicable for SAR measurements < 6 GHz:

| or SAR measurements < 6 GHZ:                                                  |              |       |       |        |                |                |                |                |                |
|-------------------------------------------------------------------------------|--------------|-------|-------|--------|----------------|----------------|----------------|----------------|----------------|
| а                                                                             | b            | С     | d     | e=     | f              | g              | h =            | i =            | k              |
|                                                                               |              |       |       | f(d,k) |                |                | c x f/e        | c x g/e        |                |
|                                                                               | IEEE         | Tol.  | Prob. |        | C <sub>i</sub> | C <sub>i</sub> | 1gm            | 10gms          |                |
| Uncertainty Component                                                         | 1528<br>Sec. | (± %) | Dist. | Div.   | 1gm            | 10 gms         | u <sub>i</sub> | u <sub>i</sub> | V <sub>i</sub> |
|                                                                               | Sec.         | (,    |       |        | 3              |                | (± %)          | (± %)          | '              |
| Measurement System                                                            |              |       |       |        |                |                |                |                |                |
| Probe Calibration                                                             | E.2.1        | 7     | N     | 1      | 1              | 1              | 7.0            | 7.0            | ∞              |
| Axial Isotropy                                                                | E.2.2        | 0.25  | N     | 1      | 0.7            | 0.7            | 0.2            | 0.2            | ∞              |
| Hemishperical Isotropy                                                        | E.2.2        | 1.3   | N     | 1      | 0.7            | 0.7            | 0.9            | 0.9            | ∞              |
| Boundary Effect                                                               | E.2.3        | 2     | R     | 1.732  | 1              | 1              | 1.2            | 1.2            | ∞              |
| Linearity                                                                     | E.2.4        | 0.3   | N     | 1      | 1              | 1              | 0.3            | 0.3            | ∞              |
| System Detection Limits                                                       | E.2.4        | 0.25  | R     | 1.732  | 1              | 1              | 0.1            | 0.1            | 8              |
| Modulation Response                                                           | E.2.5        | 4.8   | R     | 1.732  | 1              | 1              | 2.8            | 2.8            | 8              |
| Readout Electronics                                                           | E.2.6        | 0.3   | N     | 1      | 1              | 1              | 0.3            | 0.3            | ∞              |
| Response Time                                                                 | E.2.7        | 8.0   | R     | 1.732  | 1              | 1              | 0.5            | 0.5            | ∞              |
| Integration Time                                                              | E.2.8        | 2.6   | R     | 1.732  | 1              | 1              | 1.5            | 1.5            | ∞              |
| RF Ambient Conditions - Noise                                                 | E.6.1        | 3     | R     | 1.732  | 1              | 1              | 1.7            | 1.7            | ∞              |
| RF Ambient Conditions - Reflections                                           | E6.1         | 3     | R     | 1.732  | 1              | 1              | 1.7            | 1.7            | ∞              |
| Probe Positioner Mechanical Tolerance                                         | E.6.2        | 8.0   | R     | 1.732  | 1              | 1              | 0.5            | 0.5            | ∞              |
| Probe Positioning w/ respect to Phantom                                       | E.6.3        | 6.7   | R     | 1.732  | 1              | 1              | 3.9            | 3.9            | ∞              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E5           | 4     | R     | 1.732  | 1              | 1              | 2.3            | 2.3            | ∞              |
| Test Sample Related                                                           |              |       |       |        |                |                |                |                |                |
| Test Sample Positioning                                                       | E.4.2        | 3.12  | N     | 1      | 1              | 1              | 3.1            | 3.1            | 35             |
| Device Holder Uncertainty                                                     | E4.1         | 1.67  | N     | 1      | 1              | 1              | 1.7            | 1.7            | 5              |
| Output Power Variation - SAR drift measurement                                | E.2.9        | 5     | R     | 1.732  | 1              | 1              | 2.9            | 2.9            | ∞              |
| SAR Scaling                                                                   | E.6.5        | 0     | R     | 1.732  | 1              | 1              | 0.0            | 0.0            | ∞              |
| Phantom & Tissue Parameters                                                   |              |       |       |        |                |                |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E3.1         | 7.6   | R     | 1.73   | 1.0            | 1.0            | 4.4            | 4.4            | ∞              |
| Liquid Conductivity - measurement uncertainty                                 | E3.3         | 4.3   | N     | 1      | 0.78           | 0.71           | 3.3            | 3.0            | 76             |
| Liquid Permittivity - measurement uncertainty                                 | E3.3         | 4.2   | N     | 1      | 0.23           | 0.26           | 1.0            | 1.1            | 75             |
| Liquid Conductivity - Temperature Uncertainty                                 | E.3.4        | 3.4   | R     | 1.732  | 0.78           | 0.71           | 1.5            | 1.4            | ∞              |
| Liquid Permittivity - Temperature Unceritainty                                | E3.4         | 0.6   | R     | 1.732  | 0.23           | 0.26           | 0.1            | 0.1            | ∞              |
| Liquid Conductivity - deviation from target values                            | E3.2         | 5.0   | R     | 1.73   | 0.64           | 0.43           | 1.8            | 1.2            | ∞              |
| Liquid Permittivity - deviation from target values                            | E.3.2        | 5.0   | R     | 1.73   | 0.60           | 0.49           | 1.7            | 1.4            | ∞              |
| Combined Standard Uncertainty (k=1)                                           |              |       | RSS   | 1      |                | 1              | 12.2           | 12.0           | 191            |
| Expanded Uncertainty                                                          |              |       | k=2   |        |                |                | 24.4           | 24.0           |                |
| (95% CONFIDENCE LEVEL)                                                        |              |       |       |        |                |                |                |                |                |

The above measurement uncertainties are according to IEEE Std. 1528-2013

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
|                             |                       | Technical Manager |
| Document S/N:               | DUT Type:             | Page 37 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 37 01 42     |

Applicable for SAR measurements > 6 GHz:

| le for SAR measurements > 6 GHz:                                              |              |        |       |        |                |                |                |                |                |
|-------------------------------------------------------------------------------|--------------|--------|-------|--------|----------------|----------------|----------------|----------------|----------------|
| а                                                                             | b            | С      | d     | e=     | f              | g              | h =            | i =            | k              |
|                                                                               |              |        |       | f(d,k) |                |                | c x f/e        | c x g/e        |                |
|                                                                               | IEEE         | Tol.   | Prob. |        | C <sub>i</sub> | C <sub>i</sub> | 1gm            | 10gms          |                |
| Uncertainty Component                                                         | 1528<br>Sec. | (± %)  | Dist. | Div.   | 1gm            | 10 gms         | u <sub>i</sub> | u <sub>i</sub> | V <sub>i</sub> |
|                                                                               | Sec.         | (= /-/ |       |        | . 3            |                | (± %)          | (± %)          | -1             |
| Measurement System                                                            |              |        | •     |        |                |                | ` '            | , , ,          |                |
| Probe Calibration                                                             | E.2.1        | 9.3    | N     | 1      | 1              | 1              | 9.3            | 9.3            | ∞              |
| Axial Isotropy                                                                | E.2.2        | 0.25   | N     | 1      | 0.7            | 0.7            | 0.2            | 0.2            | ∞              |
| Hemishperical Isotropy                                                        | E.2.2        | 1.3    | N     | 1      | 0.7            | 0.7            | 0.9            | 0.9            | ∞              |
| Boundary Effect                                                               | E2.3         | 2      | R     | 1.732  | 1              | 1              | 1.2            | 1.2            | ∞              |
| Linearity                                                                     | E.2.4        | 0.3    | N     | 1      | 1              | 1              | 0.3            | 0.3            | ∞              |
| System Detection Limits                                                       | E.2.4        | 0.25   | R     | 1.732  | 1              | 1              | 0.1            | 0.1            | ∞              |
| Modulation Response                                                           | E.2.5        | 4.8    | R     | 1.732  | 1              | 1              | 2.8            | 2.8            | ∞              |
| Readout Electronics                                                           | E.2.6        | 0.3    | N     | 1      | 1              | 1              | 0.3            | 0.3            | ∞              |
| Response Time                                                                 | E.2.7        | 0.8    | R     | 1.732  | 1              | 1              | 0.5            | 0.5            | 8              |
| Integration Time                                                              | E.2.8        | 2.6    | R     | 1.732  | 1              | 1              | 1.5            | 1.5            | 8              |
| RF Ambient Conditions - Noise                                                 | E.6.1        | 3      | R     | 1.732  | 1              | 1              | 1.7            | 1.7            | ∞              |
| RF Ambient Conditions - Reflections                                           | E.6.1        | 3      | R     | 1.732  | 1              | 1              | 1.7            | 1.7            | ∞              |
| Probe Positioner Mechanical Tolerance                                         | E.6.2        | 0.8    | R     | 1.732  | 1              | 1              | 0.5            | 0.5            | ∞              |
| Probe Positioning w/ respect to Phantom                                       | E6.3         | 6.7    | R     | 1.732  | 1              | 1              | 3.9            | 3.9            | ∞              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E5           | 4      | R     | 1.732  | 1              | 1              | 2.3            | 2.3            | ∞              |
| Test Sample Related                                                           |              |        |       |        |                |                |                |                |                |
| Test Sample Positioning                                                       | E.4.2        | 3.12   | N     | 1      | 1              | 1              | 3.1            | 3.1            | 35             |
| Device Holder Uncertainty                                                     | E.4.1        | 1.67   | N     | 1      | 1              | 1              | 1.7            | 1.7            | 5              |
| Output Power Variation - SAR drift measurement                                | E.2.9        | 5      | R     | 1.732  | 1              | 1              | 2.9            | 2.9            | ∞              |
| SAR Scaling                                                                   | E.6.5        | 0      | R     | 1.732  | 1              | 1              | 0.0            | 0.0            | ∞              |
| Phantom & Tissue Parameters                                                   |              |        |       |        |                |                |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E3.1         | 7.6    | R     | 1.73   | 1.0            | 1.0            | 4.4            | 4.4            | ∞              |
| Liquid Conductivity - measurement uncertainty                                 | E.3.3        | 4.3    | N     | 1      | 0.78           | 0.71           | 3.3            | 3.0            | 76             |
| Liquid Permittivity - measurement uncertainty                                 | E.3.3        | 4.2    | N     | 1      | 0.23           | 0.26           | 1.0            | 1.1            | 75             |
| Liquid Conductivity - Temperature Uncertainty                                 | E3.4         | 3.4    | R     | 1.732  | 0.78           | 0.71           | 1.5            | 1.4            | ∞              |
| Liquid Permittivity - Temperature Unceritainty                                | E3.4         | 0.6    | R     | 1.732  | 0.23           | 0.26           | 0.1            | 0.1            | ∞              |
| Liquid Conductivity - deviation from target values                            | E.3.2        | 5.0    | R     | 1.73   | 0.64           | 0.43           | 1.8            | 1.2            | ∞              |
| Liquid Permittivity - deviation from target values                            | E.3.2        | 5.0    | R     | 1.73   | 0.60           | 0.49           | 1.7            | 1.4            | ∞              |
| Combined Standard Uncertainty (k=1)                                           |              |        | RSS   |        |                | 1              | 13.8           | 13.6           | 191            |
| Expanded Uncertainty                                                          |              |        |       |        |                |                |                |                |                |
|                                                                               |              |        | k=2   |        |                |                | 27.6           | 27.1           |                |

The above measurement uncertainties are according to IEEE 3td. 1528-2013

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by: Technical Manager |  |
|-----------------------------|-----------------------|--------------------------------|--|
| Document S/N:               | DUT Type:             | Dogg 20 of 42                  |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 38 of 42                  |  |

Applicable for Power Density measurements:

| wer Density measurements:               |         |       |      |                |                |                |
|-----------------------------------------|---------|-------|------|----------------|----------------|----------------|
| a                                       | b       | С     | d    | е              | f =            | g              |
|                                         |         |       |      |                | c x f/e        |                |
|                                         | Unc.    | Prob. |      |                | u <sub>i</sub> |                |
| Uncertainty Component                   | (± dB)  | Dist. | Div. | C <sub>i</sub> | (± dB)         | v <sub>i</sub> |
|                                         | (= 3.2) | 2.00  | 2    | 91             | (= 0.2)        | -1             |
| Measurement System                      |         |       |      |                |                | •              |
| Calibration                             | 0.49    | N     | 1    | 1              | 0.49           | ∞              |
| Probe Correction                        | 0.00    | R     | 1.73 | 1              | 0.00           | 8              |
| Frequency Response                      | 0.20    | R     | 1.73 | 1              | 0.12           | 8              |
| Sensor Cross Coupling                   | 0.00    | R     | 1.73 | 1              | 0.00           | 8              |
| Isotropy                                | 0.50    | R     | 1.73 | 1              | 0.29           | 8              |
| Linearity                               | 0.20    | R     | 1.73 | 1              | 0.12           | ∞              |
| Probe Scattering                        | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Probe Positioning offset                | 0.30    | R     | 1.73 | 1              | 0.17           | ∞              |
| Probe Positioning Repeatability         | 0.04    | R     | 1.73 | 1              | 0.02           | ∞              |
| Sensor Mechanical Offset                | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Probe Spatial Resolution                | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Field Impedence Dependance              | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Amplitude and Phase Drift               | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Amplitude and Phase Noise               | 0.04    | R     | 1.73 | 1              | 0.02           | ∞              |
| Measurement Area Truncation             | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Data Acquisition                        | 0.03    | N     | 1    | 1              | 0.03           | ∞              |
| Sampling                                | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Field Reconstruction                    | 2.00    | R     | 1.73 | 1              | 1.15           | ∞              |
| Forward Transformation                  | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Power Density Scaling                   | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Spatial Averaging                       | 0.10    | R     | 1.73 | 1              | 0.06           | ∞              |
| System Detection Limit                  | 0.04    | R     | 1.73 | 1              | 0.02           | ∞              |
| Test Sample Related                     |         |       |      |                |                |                |
| Probe Coupling with DUT                 | 0.00    | R     | 1.73 | 1              | 0.00           | 8              |
| Modulation Response                     | 0.40    | R     | 1.73 | 1              | 0.23           | ∞              |
| Integration Time                        | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Response Time                           | 0.00    | R     | 1.73 | 1              | 0.00           | 8              |
| Device Holder Influence                 | 0.10    | R     | 1.73 | 1              | 0.06           | ∞              |
| DUT alignment                           | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| RF Ambient Conditions                   | 0.04    | R     | 1.73 | 1              | 0.02           | 8              |
| Ambient Reflections                     | 0.04    | R     | 1.73 | 1              | 0.02           | 8              |
| Immunity/Secondary Reception            | 0.00    | R     | 1.73 | 1              | 0.00           | ∞              |
| Drift of DUT                            | 0.21    | R     | 1.73 | 1              | 0.12           | ∞              |
| Combined Standard Uncertainty (k=1) RSS |         |       |      | 1.34           | ∞              |                |
| Expanded Uncertainty k=2                |         |       |      | 2.68           |                |                |
| (95% CONFIDENCE LEVEL)                  |         |       |      |                |                |                |

|                             | SAR EVALUATION REPORT | Approved by:      |  |
|-----------------------------|-----------------------|-------------------|--|
| FCC ID: BCG-A2997           |                       | Technical Manager |  |
| Document S/N:               | DUT Type:             | Dags 20 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Page 39 of 42     |  |

### 14 CONCLUSION

#### 14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g., ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g., age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
|                             |                       | Technical Manager |
| Document S/N:               | DUT Type:             | Page 40 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Fage 40 01 42     |

## 15 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada; 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |  |
|-----------------------------|-----------------------|-------------------|--|
|                             |                       | Technical Manager |  |
| Document S/N:               | DUT Type:             | Page 41 of 42     |  |
| 1C2405230019-01.BCG (Rev 1) | Watch                 |                   |  |

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

| FCC ID: BCG-A2997           | SAR EVALUATION REPORT | Approved by:      |
|-----------------------------|-----------------------|-------------------|
|                             |                       | Technical Manager |
| Document S/N:               | DUT Type:             | Page 42 of 42     |
| 1C2405230019-01.BCG (Rev 1) | Watch                 | Fage 42 01 42     |