ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95307 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com

SAR EVALUATION REPORT

Applicant Name: Apple, Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing: 08/16/2022 - 08/22/2022 Test Site/Location: Element, Morgan Hill, CA, USA **Document Serial No.:** 1C2205090033-17.BCG

FCC: BCG-A2725

APPLICANT: APPLE, INC.

Apparatus/Device: Watch **Application Type:** Certification FCC Rule Part(s): CFR §2.1093 Model(s): A2725, A2855 Reference FCC ID: BCG-A2726

Equipment Class			SAR		
	Band & Mode	Tx Frequency	1g Head (W/kg)	10g Extremity (W/kg)	
PCT	UMTS 850	826.4 - 846.6 MHz	< 0.1	0.31	
PCT	UMTS 1750	1712.4 - 1752.6 MHz	0.35	< 0.1	
PCT	UMTS 1900	1852.4 - 1907.6 MHz	0.28	< 0.1	
PCT	LTE Band 26 (Cell)	814.7 - 848.3 MHz	< 0.1	0.30	
PCT	LTE Band 5 (Cell)	824.7 - 848.3 MHz	< 0.1	0.34	
PCT	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.36	0.11	
PCT	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	
PCT	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.28	0.13	
PCT	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	
PCT	LTE Band 7	2502.5 - 2567.5 MHz	0.99	0.13	
PCT	LTE Band 41	2498.5 - 2687.5 MHz	0.24	< 0.1	
DTS	2.4 GHz WLAN	2412 - 2472 MHz	0.16	< 0.1	
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.12	< 0.1	
Simultaneous SAR per KDB 690783 D01v01r03: 1.15 0.5					

Note: This table above includes test data from RF Exposure technical report S/N: 1C2205090032-17.BCG per ISED Notice 2020-DRS0022 guidance for data referencing of closely related product FCC ID: BCG-A2726.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

RI Ortanez

Executive Vice President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCG-A2725		SAR EVALUATION REPORT	
Document S/N:	DUT Type:		Technical Manager
1C2205090033-17.BCG	Watch		Page 1 of 29
			REV 21.5 M

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	9
3	INTRODU	UCTION	10
4	DOSIME	TRIC ASSESSMENT	11
5	TEST CC	DNFIGURATION POSITIONS	12
6	RF EXPO	OSURE LIMITS	13
7	FCC ME	ASUREMENT PROCEDURES	14
8	SYSTEM	VERIFICATION	19
9	SAR DAT	TA SUMMARY	21
10	FCC MUI	LTI-TX AND ANTENNA SAR CONSIDERATIONS	24
11	EQUIPM	ENT LIST	25
12	MEASUR	REMENT UNCERTAINTIES	26
13	CONCLU	JSION	27
14	REFERE	NCES	28
APPEN APPEN APPEN	IDIX B:	SAR TISSUE SPECIFICATIONS DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS DROBE AND DIROLE CALIBRATION CERTIFICATES	
APPEN	וטוא ט.	PROBE AND DIPOLE CALIBRATION CERTIFICATES	

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:	
1 00 15. 500 7(2) 20		Technical Manager	
Document S/N:	DUT Type:	Page 2 of 29	
1C2205090033-17.BCG	Watch	Page 2 01 29	

1 DEVICE UNDER TEST

Device Overview 1.1

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Voice/Data	826.4 - 846.6 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 3 of 29
1C2205090033-17.BCG	Watch	Fage 3 01 29

1.2 **Data Referencing**

Mode	Reference Model -	Variant Model -	
Mode	BCG-A2726	BCG-A2725	
UMTS 850	Fully Evaluated	Referenced	
UMTS 1750	Fully Evaluated	Referenced	
UMTS 1900	Fully Evaluated	Referenced	
LTE Band 12	Fully Evaluated	Not Evaluated	
LTE Band 13	Fully Evaluated	Not Evaluated	
LTE Band 14	Fully Evaluated	Not Evaluated	
LTE Band 17	Fully Evaluated	Not Evaluated	
LTE Band 26 (Cell)	Fully Evaluated	Referenced	
LTE Band 5 (Cell)	Fully Evaluated	Referenced	
LTE Band 66 (AWS)	Fully Evaluated	Referenced	
LTE Band 25 (PCS)	Fully Evaluated	Referenced	
LTE Band 7	Fully Evaluated	Referenced	
LTE Band 41	Fully Evaluated	Referenced	
2.4 GHz WLAN	Fully Evaluated	Referenced	
Bluetooth	Fully Evaluated	Referenced	

Per manufacturer declaration, there are two watches FCC ID: BCG-A2726 and FCC ID: BCG-A2725 with high degree of similarity, reference model FCC ID: BCG-A2726 and variant model FCC ID: BCG-A2725. The reference model supports LTE B12, B13, B17 and B14 operations, however the variant model does not. Both models share the same material, form factor, circuit design, and components, including antennas and their locations. The reference and variant models use the same material, form factor, circuit design, and components, including antennas and their locations. The reference and variant models use the same power tables and have the same tune-up tolerances.

Per FCC Approved Data Reference Test Plan, testing was done fully on the reference model FCC ID: BCG-A2726, while spot-check verification has been performed on variant model FCC ID: BCG-A2725. The reference and variant model comparison data summary is included in section 9. Please see RF Exposure Technical report S/N: 1C2205090032-17.BCG for complete compliance evaluation for the reference model.

		SAR EVALUATION REPORT	
FCC ID: BCG-A2725	SAR I		
Document S/N:	DUT Type:		Page 4 of 29
1C2205090033-17.BCG	Watch		Fage 4 01 29

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Maximum Output Power – UMTS Mode 1.3.1

Mode/B	Modulated Average Output Power (in dBm)			
IVIOUE/ B	3GPP WCDMA	3GPP HSDPA	3GPP HSUPA	
	Rel 99	Rel 5	Rel 6	
UMTS Band 5 (850 MHz)	Max allowed power	25.00	25.00	24.00
Olvii 3 Balid 3 (830 Ivii 12)	Nominal	24.00	24.00	23.00
UMTS Band 4 (1750 MHz)	Max allowed power	24.00	24.00	24.00
OIVITS Ballu 4 (1730 IVITIZ)	Nominal	23.00	23.00	23.00
UMTS Band 2 (1900 MHz)	Max allowed power	24.00	24.00	24.00
OIVITS Baria 2 (1900 IVITIZ)	Nominal	23.00	23.00	23.00

1.3.2 **Maximum Output Power – LTE Mode**

Mode / Ban	Modulated Average Output Power (in dBm)	
LTE FDD Band 26	Max allowed power	25.50
ETE FDD Balld 20	Nominal	24.50
LTE FDD Band 5	Max allowed power	25.50
LTE FOO Balla 3	Nominal	24.50
LTE FDD Band 4	Max allowed power	24.50
LTE FDD Ballu 4	Nominal	23.50
LTE FDD Band 66	Max allowed power	24.50
LIE PDD Ballu 00	Nominal	23.50
LTE FDD Band 2	Max allowed power	24.50
LTE FDD Ballu 2	Nominal	23.50
LTE FDD Band 25	Max allowed power	24.50
LTE FDD Ballu 25	Nominal	23.50
LTE FDD Band 7	Max allowed power	24.00
LIE FUU Ballu /	Nominal	23.00
LTE TDD Band 41	Max allowed power	24.00
LIE IDD Ballu 41	Nominal	23.00

FCC ID: BCG-A2725		SAR EVALUATION REPORT	
Document S/N:	DUT Type:		Page 5 of 29
1C2205090033-17.BCG	Watch		rage 5 of 29
			REV 21.5 M

Maximum Output Power - WiFi Mode 1.3.3

Mode/ Band			IEEE 802.1	1b (2.4 GHz)	IEEE 802.11g (2.4 GHz)		IEEE 802.11n (2.4 GHz)	
		Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	19.00	18.00	17.00	16.00	17.00	16.00
		2	19.00	18.00	18.50	17.50	18.50	17.50
		3	19.00	18.00	18.50	17.50	18.50	17.50
	20 MHz Bandwidth	4	19.00	18.00	18.50	17.50	18.50	17.50
Modulated		5	19.00	18.00	18.50	17.50	18.50	17.50
		6	19.00	18.00	18.50	17.50	18.50	17.50
Average - Single Tx Chain		7	19.00	18.00	18.50	17.50	18.50	17.50
(dBm)		8	19.00	18.00	18.50	17.50	18.50	17.50
(UBIII)		9	19.00	18.00	18.50	17.50	18.50	17.50
		10	19.00	18.00	18.50	17.50	18.50	17.50
		11	19.00	18.00	16.50	15.50	16.50	15.50
		12	18.50	17.50	13.50	12.50	13.50	12.50
		13	18.00	17.00	6.50	5.50	6.50	5.50

1.3.4 **Maximum Output Power - Bluetooth Mode**

Mode / Band		Modulated Average - Single Tx Chain (dBm)
Bluetooth BDR/LE	Maximum	17.50
Bidetootii BDR/LE	Nominal	16.50
Bluetooth EDR	Maximum	14.00
Biuetootii EDR	Nominal	13.00
Plustaath UDP	Maximum	13.50
Bluetooth HDR	Nominal	12.50

1.4 **DUT Antenna Locations**

A diagram showing the location of the device antennas can be found in Appendix B.

1.5 **Near Field Communications (NFC) Antenna**

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix B.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 6 of 29
1C2205090033-17.BCG	Watch	rage o oi 29

1.6 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-1 Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Extremity
1	UMTS + 2.4 GHz WI-FI	Yes	Yes
2	UMTS + 2.4 GHz Bluetooth	Yes	Yes
3	LTE + 2.4 GHz WI-FI	Yes	Yes
4	LTE + 2.4 GHz Bluetooth	Yes	Yes

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. Licensed modes cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN scenario.
- 4. This device supports VOLTE.
- 5. This device supports VOWIFI.

1.7 **Miscellaneous SAR Test Considerations**

(A) WIFI/BT

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 7 of 29
1C2205090033-17.BCG	Watch	rage / 01 29
		REV 21.5 M

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device is limited to 27 RB on the uplink for 16QAM modulation. Additional measurements were evaluated to support SAR test exclusion for 16 QAM as described in Section 7.5.4.

1.8 **Guidance Applied**

- FCC KDB Publication 941225 D01v03r01, D05v02r04 (3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance, Wrist-worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- IEEE 1528-2013

1.9 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

1.10 **Bibliography**

Report Type	Report Serial Number
BCG-A2726 FCC SAR Report	1C2205090032-17.BCG

1.11 **Device Housing Types and Wrist Band Types**

Only one housing type, aluminum, is available for this model. The device can also be used with different wristband accessories. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.

FCC ID: BCG-A2725	CC ID: BCG-A2725 SAR EVALUATION REPORT	
1 00 15. 500 /12.20	•/ = //•	Technical Manager
Document S/N:	DUT Type:	Page 8 of 29
1C2205090033-17.BCG	Watch	Page 6 01 29

2 LTE INFORMATION

	Ľ	TE Information				
orm Factor			Watch			
		LTE Ba	nd 26 (Cell) (814.7 - 848	3.3 MHz)		
		LTE Ba	and 5 (Cell) (824.7 - 848	.3 MHz)		
		LTE Band	I 66 (AWS) (1710.7 - 17	79.3 MHz)		
		LTE Ban	d 4 (AWS) (1710.7 - 175	54.3 MHz)		
		LTE Band	25 (PCS) (1850.7 - 19	14.3 MHz)		
		LTE Ban	d 2 (PCS) (1850.7 - 190)9.3 MHz)		
		LTE Band 7 (2502.5 - 2567.5 MHz)				
			and 41 (2498.5 - 2687.5			
		LTE Band 26 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz				
	LTE Band 5 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz					
	LTE Band 66 (AWS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz					
	LTE Band 4 (AWS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 25 (PCS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz					
			MHz, 3 MHz, 5 MHz, 10			
	·		7: 5 MHz, 10 MHz, 15 M		-	
			1: 5 MHz, 10 MHz, 15 M			
nannel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High	
E Band 26 (Cell): 1.4 MHz	814.7 (831.5 (26865)	848.3 (
E Band 26 (Cell): 3 MHz	815.5 (831.5 (26865)	847.5 (
E Band 26 (Cell): 5 MHz	816.5 (831.5 (26865)	846.5 (
E Band 26 (Cell): 10 MHz	819 (2		831.5 (26865)	844 (2		
E Band 5 (Cell): 1.4 MHz	824.7 (· · · · · · · · · · · · · · · · · · ·	836.5 (20525)	848.3 (
E Band 5 (Cell): 3 MHz	825.5 (836.5 (20525)	847.5 (
E Band 5 (Cell): 5 MHz	826.5 (836.5 (20525)	846.5 (
E Band 5 (Cell): 10 MHz	829 (2	20450)	836.5 (20525)	844 (2	20600)	
E Band 66 (AWS): 1.4 MHz	1710.7 (131979)	1745 (132322)	1779.3 (132665)	
E Band 66 (AWS): 3 MHz	1711.5 (1745 (132322)	1778.5 (132657)	
E Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5 (132647)	
E Band 66 (AWS): 10 MHz	1715 (1	(32022)	1745 (132322)	1775 (*	132622)	
E Band 66 (AWS): 15 MHz	1717.5 (132047)	1745 (132322)		132597)	
E Band 66 (AWS): 20 MHz	1720 (1	32072)	1745 (132322)	1770 (*	132572)	
E Band 4 (AWS): 1.4 MHz	1710.7	(19957)	1732.5 (20175)	1754.3	(20393)	
E Band 4 (AWS): 3 MHz	1711.5	(19965)	1732.5 (20175)	1753.5	(20385)	
E Band 4 (AWS): 5 MHz	1712.5	(19975)	1732.5 (20175)	1752.5	(20375)	
E Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)	
E Band 4 (AWS): 15 MHz	1717.5	(20025)	1732.5 (20175)	1747.5	(20325)	
E Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)	
E Band 25 (PCS): 1.4 MHz	1850.7	(26047)	1882.5 (26365)		(26683)	
E Band 25 (PCS): 3 MHz		(26055)	1882.5 (26365)		(26675)	
E Band 25 (PCS): 5 MHz	1852.5		1882.5 (26365)		(26665)	
E Band 25 (PCS): 10 MHz	1855 (1882.5 (26365)		26640)	
E Band 25 (PCS): 15 MHz	1857.5		1882.5 (26365)		(26615)	
E Band 25 (PCS): 20 MHz	1860 (1882.5 (26365)		26590)	
E Band 2 (PCS): 1.4 MHz	1850.7		1880 (18900)		(19193)	
E Band 2 (PCS): 3 MHz	1851.5		1880 (18900)		(19185)	
E Band 2 (PCS): 5 MHz	1852.5		1880 (18900)		(19175)	
E Band 2 (PCS): 10 MHz	1855 (1880 (18900)		19150)	
E Band 2 (PCS): 15 MHz E Band 2 (PCS): 20 MHz	1857.5	(18675) 18700)	1880 (18900) 1880 (18900)		(19125) 19100)	
E Band 2 (PCS): 20 MHz E Band 7: 5 MHz				2567.5		
E Band 7: 10 MHz	2502.5 2505 (2535 (21100) 2535 (21100)	2567.5 2565 (
E Band 7: 15 MHz	2507.5		2535 (21100)	2562.5		
E Band 7: 13 MHz	2510 (2535 (21100)		21350)	
E Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)	
E Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)	
E Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)	
E Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)	
Category			1			
dulations Supported in UL			QPSK, 16QAM			
E MPR Permanently implemented per 3GPP TS						
.101 section 6.2.3~6.2.5? (manufacturer attestation	YES					
be provided)						
MPR (Additional MPR) disabled for SAR Testing?			YES			
E Additional Information	Release 8 Specification	ons. The following LTE	s on 3GPP Release 12. A Release 12 Features and loading, eMBMS, Cross-	e not supported: Carrie	r Aggregation, Rel	

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2125	SAK EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 9 of 29
1C2205090033-17.BCG	Watch	rage 9 01 29

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

= mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

			oved by:
FCC ID: BCG-A2725	SAR EVALU	ATION REPORT Techni	ical Manager
Document S/N:	DUT Type:	Page (10 of 29
1C2205090033-17.BCG	Watch	Fage	10 01 29

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

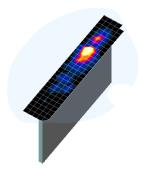


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
	t died ydiedy	1 20011 7 200117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCG-A2725		SAR EVALUATION REPORT	
Document S/N:	DUT Type:		Technical Manager Page 11 of 29
1C2205090033-17.BCG	Watch		
			REV 21.5 M

5 TEST CONFIGURATION POSITIONS

5.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

5.2 **Positioning for Head**

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

Extremity Exposure Configurations 5.3

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with head tissue-equivalent medium. The device was evaluated with Sport wristband unstrapped and touching the phantom. For Metal Loop and Metal Links wristbands, the device was evaluated with wristbands strapped and the distance between wristbands and the phantom was minimized to represent the spacing created by actual use conditions.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCG-A2723	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 12 of 29
1C2205090033-17.BCG	Watch	Fage 12 01 29

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

	MAN EXPOSURE LIMITS	e.
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Ü
1C2205090033-17.BCG	Watch	Page 13 of 29
		REV 21.5 M

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 14 of 29
1C2205090033-17.BCG	Watch	Fage 14 01 29
·		RFV 21.5 M

7.4.2 **Head SAR Measurements**

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

7.4.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2 kbps RMC.

SAR Measurements with Rel 5 HSDPA 7.4.4

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 **SAR Measurement Conditions for LTE**

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2725	SAN EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 15 of 29
1C2205090033-17.BCG	Watch	Fage 15 01 29

7.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>
- e. This device can only operate with 16QAM on the uplink with less than or equal to 27 RB. For 16QAM configurations with 10 MHz, 15 MHz and 20 MHz bandwidths, LTE powers for RB size of 15 ("50% RB") and 27 ("100% RB") with offsets to upper edge, middle, and lower edge of the channel are additionally measured for both QPSK and 16QAM modulations to support comparison and SAR test exclusion per Section 5.2.4 and 5.3.

7.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCG-A2723	OAK EVALUATION KEI OKI	Technical Manager
Document S/N:	DUT Type:	Page 16 of 29
1C2205090033-17.BCG	Watch	Fage 16 01 29

7.6 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

2.4 GHz SAR Test Requirements 7.6.2

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel: i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

OFDM Transmission Mode and SAR Test Channel Selection 7.6.3

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements. SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 17 of 29
1C2205090033-17.BCG	Watch	_

7.6.4 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 7.6.3). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

7.6.5 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCG-A2725	G-A2725 SAR EVALUATION REPORT	
1 00 lb. 200 A2723	SAR EVALSATION RELIGIO	Technical Manager
Document S/N:	DUT Type:	Page 18 of 29
1C2205090033-17.BCG	Watch	Fage 10 01 29

8.1 **Tissue Verification**

Table 8-1 **Measured Head Tissue Properties**

Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET		
Tests Performed	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε
on:	rissue Type	(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε	70 GEV 0	70 GEV E
		. ,	815	0.936	41.102	0.898	41.594	4.23%	-1.18%
			820	0.938	41.084	0.899	41.578	4.34%	-1.19%
08/21/2022	835 Head	21.6	835	0.944	41.035	0.900	41.500	4.89%	-1.12%
			850	0.949	41.006	0.916	41.500	3.60%	-1.19%
			2300	1.741	38.122	1.670	39.500	4.25%	-3.49%
			2310	1.748	38.106	1.679	39.480	4.11%	-3.48%
			2320	1.755	38.086	1.687	39.460	4.03%	-3.48%
			2400	1.815	37.965	1.756	39.289	3.36%	-3.37%
			2450	1.853	37.851	1.800	39.200	2.94%	-3.44%
			2480	1.875	37.802	1.833	39.162	2.29%	-3.47%
			2500	1.889	37.775	1.855	39.136	1.83%	-3.48%
08/16/2022	2450 Head	22.7	2510	1.896	37.760	1.866	39.123	1.61%	-3.48%
			2535	1.916	37.724	1.893	39.092	1.22%	-3.50%
			2550	1.927	37.691	1.909	39.073	0.94%	-3.54%
			2560	1.935	37.672	1.920	39.060	0.78%	-3.55%
			2600	1.966	37.604	1.964	39.009	0.10%	-3.60%
			2650	2.007	37.499	2.018	38.945	-0.55%	-3.71%
			2680	2.031	37.456	2.051	38.907	-0.98%	-3.73%
			2700	2.046	37.427	2.073	38.882	-1.30%	-3.74%
			2300	1.733	38.473	1.670	39.500	3.77%	-2.60%
			2310	1.740	38.457	1.679	39.480	3.63%	-2.59%
			2320	1.747	38.440	1.687	39.460	3.56%	-2.58%
			2400	1.806	38.332	1.756	39.289	2.85%	-2.44%
			2450	1.844	38.251	1.800	39.200	2.44%	-2.42%
			2480	1.864	38.219	1.833	39.162	1.69%	-2.41%
			2500	1.879	38.186	1.855	39.136	1.29%	-2.43%
08/18/2022	2450 Head	22.1	2510	1.887	38.166	1.866	39.123	1.13%	-2.45%
			2535	1.908	38.123	1.893	39.092	0.79%	-2.48%
			2550	1.920	38.106	1.909	39.073	0.58%	-2.47%
			2560	1.928	38.093	1,920	39.060	0.42%	-2.48%
			2600	1.958	38.023	1.964	39.009	-0.31%	-2.53%
			2650	2.001	37.928	2.018	38.945	-0.84%	-2.61%
			2680	2.024	37.873	2.051	38.907	-1.32%	-2.66%
			2700	2.040	37.831	2.073	38.882	-1.59%	-2.70%
			2300	1.727	39.043	1.670	39.500	3.41%	-1.16%
			2310	1.735	39.024	1.679	39.480	3.34%	-1.16%
			2320	1.743	39.005	1.687	39.460	3.32%	-1.15%
			2400	1.804	38.896	1.756	39.289	2.73%	-1.00%
			2450	1.846	38.827	1.800	39.200	2.56%	-0.95%
			2480	1.867	38.769	1.833	39.162	1.85%	-1.00%
			2500	1.883	38.725	1.855	39.136	1.51%	-1.05%
08/22/2022	2450 Head	19.8	2510	1.892	38.707	1.866	39.123	1.39%	-1.06%
-			2535	1.914	38.683	1.893	39.092	1.11%	-1.05%
			2550	1.926	38.664	1.909	39.073	0.89%	-1.05%
			2560	1.933	38.643	1.920	39.060	0.68%	-1.07%
			2600	1.967	38.562	1.964	39.009	0.15%	-1.15%
			2650	2.009	38.491	2.018	38.945	-0.45%	-1.17%
			2680	2.033	38.422	2.051	38.907	-0.88%	-1.25%
			2700	2.051	38.379	2.073	38.882	-1.06%	-1.29%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2725	SAK EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 19 of 29
1C2205090033-17.BCG	Watch	rage 19 01 29

Test System Verification 8.2

Prior to SAR assessment, the system is verified to ± 10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility.

Table 8-2 System Verification Result - 1g

	System Verification TARGET & MEASURED											
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g (W/kg)	1W Target SAR1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation1g (%)
AM4	2450	HEAD	08/16/2022	24.7	22.6	0.10	750	3837	5.490	52.60	54.900	4.37%
AM7	2450	HEAD	08/22/2022	20.1	19.1	0.10	750	7416	5.420	52.60	54.200	3.04%

Table 8-3 System Verification Result - 10g

	System Verification TARGET & MEASURED											
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	Measured SAR10g (W/kg)	1W Target SAR10g (W/kg)	1W Normalized SAR10g (W/kg)	Deviation10g (%)
AM5	850	HEAD	08/21/2022	20.9	20.3	0.20	1009	7490	1.270	6.31	6.350	0.63%
AM4	2450	HEAD	08/16/2022	24.7	22.6	0.10	750	3837	2.540	24.50	25.400	3.67%
AM4	2450	HEAD	08/18/2022	24.1	21.5	0.10	921	3837	2.470	25.50	24.700	-3.14%

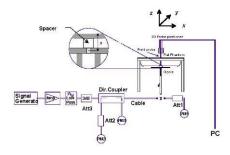


Figure 8-1 **System Verification Setup Diagram**

Figure 8-2 **System Verification Setup Photo**

		OAD FIVE MATION PERCET			
FCC ID: BCG-A2725		SAR EVALUATION REPORT	Technical Manager		
Document S/N:	DUT Type:		Page 20 of 29		
1C2205090033-17.BCG	Watch		Page 20 01 29		

Standalone Head SAR Data 9.1

Table 9-1 PCT Head Spot-check Verification for Data Referencing

	MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed		Power Drift [dB]	MPR [dB]	Housing Type	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Reported SAR for Refence Model (1g)	
MHz	С	h.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Power [dBm]	Power [dBm]	[dB]			Number				.,			(W/kg)	Factor	(W/kg)	(W/kg)
2510.00	20850	Low	LTE Band 7	20	Sport	24.00	23.14	0.13	0	Aluminum	WC94L2XDGM	QPSK	1	0	10 mm	Front	1:1	0.663	1.219	0.808	0.985
			ANSI /	IEEE C95.1 1992 -	SAFETY LIMIT				Head												
	Spatial Peak								1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population							averaged over 1 gram													

Table 9-2 **DSS/DTS Head Spot-check Verification for Data Referencing**

	MEASUREMENT RESULTS																		
FREQ	UENCY	Mode	Service	Bandwidth (MHz)	Maximum Allowed Power		Power Drift	Side	Spacing	Housing Type	Wristband Type	Device Serial			SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Reported SAR for Refence Model (1g)
MHz	Ch.				[dBm]	Power [dBm]	[dB]		Opucing			Number	(Mbps)	(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	(W/kg)
2412	1	802.11b	DSSS	22	19.00	17.73	0.15	Front	10 mm	Aluminum	Sport	K2M7137PXM	1	99.7%	0.113	1.340	1.003	0.152	0.162
2402	0	Bluetooth	FHSS	N/A	17.50	16.05	0.07	Front	10 mm	Aluminum	Sport	FRFH6QRY1H	1	100.0%	0.110	1.581	1.000	0.154	0.120
		ANS	I / IEEE C	95.1 1992 - SAFET	Y LIMIT								Hea	ıd					
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												everaged ov	er 1 gram					

9.2 **Standalone Extremity SAR Data**

Table 9-3 **PCT Extremity Spot-check Verification for Data Referencing**

	, i																					
	MEASUREMENT RESULTS																					
						Power Drift	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Reported SAR for Refence Model (10g)			
MHz		Ch.					Power [dBm]	Power (dBm)	[dB]			Number							(W/kg)	Factor	(W/kg)	(W/kg)
836.50	205	525	Mid	LTE Band 5 (Cell)	10	Metal Loop	25.5	24.20	-0.02	0	Aluminum	J5XXNC4YTD	QPSK	1	0	0 mm	Back	1:1	0.334	1.349	0.451	0.344
				ANSI /	IEEE C95.1 1992 -	SAFETY LIMIT				Extremity												
	Spatial Peak								4.0 W/kg (mW/g)													
	Uncontrolled Exposure/General Population								I					average	ed over 10	orams						

Table 9-4 **DSS/DTS Extremity Spot-check Verification for Data Referencing**

	MEASUREMENT RESULTS																		
FRE	QUENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power		Power Drift	Side	Spacing	Housing Type	Wristband Type	Device Serial	Data Rate	Duty Cycle	SAR (10g)	Scaling Factor	Scaling Factor	Reported SAR (10g)	Reported SAR for Refence Model (10g)
MHz	Ch.				[dBm]	Power [dBm]	[dB]		.,		,,,,	Number	(Mbps)	(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	(W/kg)
2412	1	802.11b	DSSS	22	19.00	17.73	0.08	Back	0 mm	Aluminum	Metal Loop	FRFH6QRY1H	1	99.7%	0.034	1.340	1.003	0.046	0.061
2402	0	Bluetooth	FHSS	N/A	17.50	16.05	-0.10	Back	0 mm	Aluminum	Sport	J5XXNC4YTD	1	100%	0.036	1.396	1.000	0.050	0.047
		ANS	I / IEEE CS	5.1 1992 - SAFET	Y LIMIT			Extremity											
	Spatial Peak							4.0 W/kg (mW/g)											
	Uncontrolled Exposure/General Population							averaged over 10 grams											

			Approved by:
FCC ID: BCG-A2725		SAR EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:		Page 21 of 29
1C2205090033-17.BCG	Watch		Fage 21 01 29

9.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg and 2.0 W/kg for 10g SAR.
- 7. This device has one housing type: Aluminum. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
- 8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore, the procedures in FCC KDB Publication 447498 D01v06 Section 6.2 have been applied for extremity and next to mouth (head) conditions.
- 9. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 10. The orange highlights throughout the report represent the highest scaled SAR per Equipment Class.

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the highest output power channel for each test configuration is \leq 0.8 W/kg for 1g evaluations and \leq 2.0 W/kg for 10g SAR then testing at the other channels is not required for such test configuration(s).

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations and > 1.5 W/kg for 10g SAR, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. This device can only operate with 16 QAM on the uplink with less than or equal to 27 RB. QPSK and 16QAM LTE powers for RB size of 15 ("50% RB") and 27 ("100% RB") were additionally measured to support comparison and SAR test exclusion per KDB 941225 D05v02r04 Section 5.2.4 and 5.3.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2725	SAR EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 22 of 29
1C2205090033-17.BCG	Watch	Fage 22 01 29

WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01y02r02 for 2.4 GHz WIFI. single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.2 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 7.6.3 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance.

Bluetooth Notes

1. To determine compliance, Bluetooth SAR was measured with the maximum power condition. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

	FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
	1 00 ID. D00 A2720	STACE STATES AND A STATE STATES AND A STATE STATES AND A STATES AND A STATE STATES AND A STATES AND A STATE STATES AND A STATES AND A STATE STATES AND A STATE STATES AND A STATE STATES AND A STATES AND A STATE STATES AND A STATES AND A STATE STATE STATES AND A STATE STATES AND A STATE STATE STATE STATES AND A STATE STATE STATE STATE STATE STATES AND A STATE STATE STATE STATE STATE STATES AND A STATE ST	Technical Manager
П	Document S/N:	DUT Type:	Page 23 of 29
1	IC2205090033-17.BCG	Watch	Fage 23 01 29

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

10.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Please see complete compliance evaluation of reference FCC ID: BCG-A2726 in RF Exposure Technical Report S/N: 1C2205090032-17.BCG for standalone reported SAR for models and bands not evaluated for variant models.

10.3 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 24 of 20
1C2205090033-17.BCG	Watch	Page 24 of 29
		REV 21.5 M

EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E5515C	Wireless Communications Test Set	5/4/2021	Biennial	5/4/2023	GB41450275
Agilent	N5182A	MXG Vector Signal Generator	1/12/2022	Annual	1/12/2023	MY47420837
Agilent	E4438C	ESG Vector Signal Generator	1/18/2022	Annual	1/18/2023	MY42081752
Agilent	E4440A	PSA Series Spectrum Analyzer	3/22/2022	Annual	3/22/2023	MY46186272
Agilent	E4438C	ESG Vector Signal Generator	3/24/2022	Annual	3/24/2023	MY45093678
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	СВТ	343971
Anritsu	MA24106A	USB Power Sensor	3/28/2022	Annual	3/28/2023	1520503
Anritsu	MA24106A	USB Power Sensor	3/28/2022	Annual	3/28/2023	1520501
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Anritsu	MT8000A	Radio Communication Test Station	4/15/2022	Annual	4/15/2023	6272337439
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/2/2022	Annual	5/2/2023	6200901190
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/11/2022	Annual	5/11/2023	6262044715
Control Company	4040	Therm./Clock/Humidity Monitor	1/21/2022	Biennial	1/21/2023	160574418
Control Company	4040	Therm./Clock/Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670633
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670623
HEWLETT PACKARD	8753E	Network Analyzer	12/30/2021	Annual	12/30/2022	US38161081
Insize	1108-150	Digital Caliper	4/5/2022	Biennial	4/5/2024	409193536
Keysight Technologies	E4438C	VECTOR SIGNAL GENERATOR	10/15/2021	Annual	10/15/2022	MY45092078
MCL	BW-N10W5+	10dB Attenuator	CBT	N/A	CBT	1611
MCL	BW-N3W5+	3dB Attenuator	CBT	N/A	CBT	1812
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1311
Mini-Circuits	NLP-1000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	NRX	Power Meter	11/22/2021	Annual	11/22/2022	102583
Rohde & Schwarz	SMB100A03	Signal Generator	10/11/2021	Annual	10/11/2022	182899
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	12/22/2021	Annual	12/22/2022	106578
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/11/2022	Annual	1/11/2023	101699
Huber + Suhner	74Z-0-0-21	Torque Wrench	4/6/2022	Biennial	4/6/2024	83881
SPEAG	DAKS-3.5	Portable DAK	10/7/2021	Annual	10/7/2022	1045
SPEAG	MAIA	Modulation and Audio Interference Analyzer	CBT	N/A	CBT	1237
SPEAG	MAIA	Modulation and Audio Interference Analyzer	CBT	N/A	СВТ	1324
SPEAG	MAIA	Modulation and Audio Interference Analyzer	CBT	N/A	СВТ	1243
SPEAG	D850V2	850 MHz SAR Dipole	12/7/2021	Annual	12/7/2022	1009
SPEAG	D2450V2	2450 MHz SAR Dipole	5/11/2022	Annual	5/11/2023	750
SPEAG	D2450V2	2450 MHz SAR Dipole	11/9/2021	Annual	11/9/2022	921
SPEAG	EX3DV4	SAR Probe	1/19/2022	Annual	1/19/2023	3837
SPEAG	EX3DV4	SAR Probe	12/10/2021	Annual	12/10/2022	7490
SPEAG	EX3DV4	SAR Probe	5/18/2022	Annual	5/18/2023	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/16/2022	Annual	5/16/2023	701
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/20/2021	Annual	10/20/2022	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2022	Annual	1/13/2023	793

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each equipment item was used solely within its respective calibration period.

			Approved by:				
FCC ID: BCG-A2725	SAR E	SAR EVALUATION REPORT					
Document S/N:	DUT Type:		Page 25 of 29				
1C2205090033-17.BCG	Watch		F age 25 01 29				

MEASUREMENT UNCERTAINTIES

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.	(, ,	Ci	Ci	1gm	10gms	
Uncertainty Component	1528	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
	Sec.	(± /0)	Dist.	DIV.	igiii	10 giris	(± %)	(± %)	V ₁
Measurement System	1						(= 10)	(= 13)	,
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	8
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	8
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	8
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)			RSS			•	12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

ECC ID: B	CG-A2725	SAR EVALUATION REPORT	Approved by:
FCC ID. B	CG-A2123	SAK EVALUATION REPORT	Technical Manager
Document	: S/N:	DUT Type:	Page 26 of 29
1C2205090	0033-17.BCG	Watch	Fage 20 01 29

REV 21.5 M

CONCLUSION

Measurement Conclusion 13.1

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

		Approved by:
FCC ID: BCG-A2725	SAR EVALUAT	ON REPORT Technical Manager
Document S/N:	DUT Type:	Page 27 of 29
1C2205090033-17.BCG	Watch	Page 27 01 29

REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCG-A2725		SAR EVALUATION REPORT	Approved by:
		Technical Manager	
Document S/N:	DUT Type:		Page 28 of 29
1C2205090033-17.BCG	Watch		Fage 20 01 29
			REV 21.5 M

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCG-A2725	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 29 of 29
1C2205090033-17.BCG	Watch	1 aye 23 01 29