

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

Apple, Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing: 06/29/2020 – 08/26/2020 Test Site/Location: PCTEST Lab, Morgan Hill, CA, USA Document Serial No.: 1C2004270023-01-R1.BCG

FCC ID: BCG-A2353

APPLICANT: APPLE, INC.

DUT Type: Watch
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: A2353

Equipment	Band & Mode	Tx Frequency		SAR	
Class	Baild a lillodo	1 X 1 Ioquonoy	1g Head (W/kg)	10g Extremity (W/kg)	
PCT	UMTS 850	826.40 - 846.60 MHz	< 0.1	0.21	
PCT	UMTS 1750	1712.4 - 1752.6 MHz	0.34	<0.1	
PCT	UMTS 1900	1852.4 - 1907.6 MHz	0.38	0.12	
PCT	LTE Band 12	699.7 - 715.3 MHz	< 0.1	0.27	
PCT	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A	
PCT	LTE Band 13	779.5 - 784.5 MHz	< 0.1 0.28		
PCT	LTE Band 26 (Cell)	814.7 - 848.3 MHz	< 0.1 0.20		
PCT	LTE Band 5 (Cell)	824.7 - 848.3 MHz	< 0.1	0.23	
PCT	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.42	<0.1	
PCT	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	
PCT	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.35	0.10	
PCT	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	
PCT	LTE Band 7	2502.5 - 2567.5 MHz	0.38 <0.1		
PCT	LTE Band 41	2498.5 - 2687.5 MHz	0.27 0.10		
DTS	2.4 GHz WLAN	2412 - 2472 MHz	0.28	<0.1	
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.18 <0.1		
Simultaneous SAR per KDB 690783 D01v01r03:			0.70	0.33	

Note: This revised Test Report (S/N: 1C2004270023-01-R1.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCG-A2353	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 1 of 58
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	rage 1 01 56

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	8
3	INTRODU	JCTION	9
4	DOSIME	TRIC ASSESSMENT	10
5	TEST CC	NFIGURATION POSITIONS	11
6	RF EXPO	OSURE LIMITS	12
7	FCC ME	ASUREMENT PROCEDURES	13
8	RF CON	DUCTED POWERS	17
9	SYSTEM	VERIFICATION	39
10	SAR DAT	A SUMMARY	42
11	FCC MUI	_TI-TX AND ANTENNA SAR CONSIDERATIONS	50
12	SAR ME	ASUREMENT VARIABILITY	53
13	EQUIPM	ENT LIST	54
14	MEASUR	EMENT UNCERTAINTIES	55
15	CONCLU	SION	56
16	REFERE	NCES	57
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX D:	SAR SYSTEM VALIDATION	
APPEN	IDIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
ΔΡΡΕΝ	IDIX E·	PROBE AND DIPOLE CALIBRATION CERTIFICATES	

FCC ID: BCG-A2353	Post to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 2 of 59
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 2 of 58

DEVICE UNDER TEST

1.1 **Device Overview**

	T	
Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 **Power Reduction for SAR**

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

FCC ID: BCG-A2353	Proof to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 2 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 3 of 58

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Summary Maximum and Nominal Conducted Powers – UMTS Mode

Mode	Modulated Average Output Power (in dBm)			
Wiode	y Bariu	3GPP WCDMA	3GPP HSDPA	3GPP HSUPA
		Rel 99	Rel 5	Rel 6
UMTS B5 (850 MHz)	Max allowed power	25.0	25.0	24.0
01V113 B3 (830 IVIHZ)	Nominal	24.0	24.0	23.0
UMTS B4 (1750 MHz)	Max allowed power	24.0	24.0	23.0
01V113 B4 (1730 IVI112)	Nominal	23.0	23.0	22.0
UMTS B2 (1900 MHz)	Max allowed power	24.0	24.0	23.0
0 IVI 3 BZ (1900 IVIHZ)	Nominal	23.0	23.0	22.0

1.3.2 Summary Maximum and Nominal Conducted Powers – LTE Mode

Mode / B	Modulated Average Output Power (in dBm)	
LTE FDD Band 12	Max allowed power	25.0
ETET DO Bana 12	Nominal	24.0
LTE FDD Band 17	Max allowed power	25.0
ETE TOO BUILD 17	Nominal	24.0
LTE FDD Band 13	Max allowed power	25.0
ETET DD Band 13	Nominal	24.0
LTE FDD Band 26 (Cell)	Max allowed power	25.0
ETE TOO Band 20 (Cell)	Nominal	24.0
LTE EDD Dand E (Call)	Max allowed power	25.0
LTE FDD Band 5 (Cell)	Nominal	24.0
LTE CDD Band 66 (A)M(C)	Max allowed power	24.0
LTE FDD Band 66 (AWS)	Nominal	23.0
LTE CDD Band 4 (AMC)	Max allowed power	24.0
LTE FDD Band 4 (AWS)	Nominal	23.0
LTE EDD Dowd 3E (DCC)	Max allowed power	24.0
LTE FDD Band 25 (PCS)	Nominal	23.0
LTE FDD Band 3 /PCC)	Max allowed power	24.0
LTE FDD Band 2 (PCS)	Nominal	23.0
LTE EDD Dond 7	Max allowed power	23.5
LTE FDD Band 7	Nominal	22.5
LTE TOO David 44	Max allowed power	23.5
LTE TDD Band 41	Nominal	22.5

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 4 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 4 of 58

1.3.3 Summary Maximum and Nominal Conducted Powers - WiFi Mode

			IEEE 802.1	1b (2.4 GHz)	IEEE 802.11g (2.4 GHz)		IEEE 802.11	n (2.4 GHz)
Mode/	Band	Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	19.00	18.00	17.50	16.50	17.50	16.50
		2	19.00	18.00	18.50	17.50	18.50	17.50
		3	19.00	18.00	18.50	17.50	18.50	17.50
		4	19.00	18.00	18.50	17.50	18.50	17.50
		5	19.00	18.00	18.50	17.50	18.50	17.50
Modulated	20 MHz	6	19.00	18.00	18.50	17.50	18.50	17.50
Average - Single	Bandwidth	7	19.00	18.00	18.50	17.50	18.50	17.50
Tx Chain (dBm)	Bandwidth	8	19.00	18.00	18.50	17.50	18.50	17.50
		9	19.00	18.00	18.50	17.50	18.50	17.50
		10	19.00	18.00	18.50	17.50	18.50	17.50
		11	19.00	18.00	16.50	15.50	16.50	15.50
		12	19.00	18.00	15.00	14.00	15.00	14.00
		13	18.00	17.00	6.50	5.50	6.50	5.50

1.3.4 Summary Maximum and Nominal Conducted Powers – Bluetooth Mode

Mode / Band	Modulated Average - Single Tx Chain (dBm)	
Bluetooth BDR/LE	Maximum	17.50
Bidetootii BDR/LE	Nominal	16.50
Dhustaath EDD	Maximum	14.00
Bluetooth EDR	Nominal	13.00
Bluetooth HDR4/HDR8	Maximum	13.50
Biuetootii nDR4/nDR8	Nominal	12.50

1.4 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in Appendix E.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix E.

	FCC ID: BCG-A2353	Post to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo F of FO
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 5 of 58
© 202	0 PCTEST			REV 21.4 M

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-1
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Extremity
1	UMTS + 2.4 GHz WI-FI	Yes	Yes
2	UMTS + 2.4 GHz Bluetooth	Yes	Yes
3	LTE + 2.4 GHz WI-FI	Yes	Yes
4	LTE + 2.4 GHz Bluetooth	Yes	Yes

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth cannot transmit simultaneously.
- 2. All licensed modes cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN scenario.
- 4. This device supports VOLTE.
- 5. This device supports VOWIFI.

1.7 Miscellaneous SAR Test Considerations

(A) WIFI

This device supports channel 1-13 for 2.4 GHz WLAN. However, since channel 12/13 targets are not higher than that of channels 1-11, channels 1,6 and 11 were considered for SAR testing per KDB 248227 D01V02R02.

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04. This device is limited to 27 RB on the uplink for 16QAM modulation. Additional measurements were evaluated to support SAR test exclusion for 16 QAM as described in Section 7.5.4.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

	FCC ID: BCG-A2353	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 6 of 58
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	rage 6 01 56
© 202	0 PCTEST			REV 21.4 M

REV 21.4 M 09/11/2019

1.8 Guidance Applied

- FCC KDB Publication 941225 D01v03r01, D05v02r04 (3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance, Wrist-worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10.

1.10 Device Housing Types and wristband Types

Only one housing type, aluminum, is available for this model. The device can also be used with different wristband accessories. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 7 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 7 of 58

	Lī	E Information			
Form Factor			Watch		
requency Range of each LTE transmission band		LTE	Band 12 (699.7 - 715.3	MHz)	
	LTE Band 17 (706.5 - 713.5 MHz)				
	LTE Band 13 (779.5 - 784.5 MHz)				
			nd 26 (Cell) (814.7 - 848		
		LTE Ba	nd 5 (Cell) (824.7 - 848	.3 MHz)	
		LTE Band	66 (AWS) (1710.7 - 17	79.3 MHz)	
		LTE Band	I 4 (AWS) (1710.7 - 175	54.3 MHz)	
			25 (PCS) (1850.7 - 19		
		LTE Ban	12 (PCS) (1850.7 - 190	9.3 MHz)	
			Band 7 (2502.5 - 2567.5		
		LTE B	and 41 (2498.5 - 2687.5	5 MHz)	
hannel Bandwidths			2: 1.4 MHz, 3 MHz, 5 M		
		LTI	E Band 17: 5 MHz, 10 N	ИHz	
			E Band 13: 5 MHz, 10 N		
			Cell): 1.4 MHz, 3 MHz,		
			Cell): 1.4 MHz, 3 MHz, 5		
			4 MHz, 3 MHz, 5 MHz, 1		
			MHz, 3 MHz, 5 MHz, 1		
			1 MHz, 3 MHz, 5 MHz, 1		
	L		MHz, 3 MHz, 5 MHz, 10		!
			7: 5 MHz, 10 MHz, 15 M		
hannel Niverbook and Francisco (A.C.)	1		1: 5 MHz, 10 MHz, 15 N		17.1
hannel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High
TE Band 12: 1.4 MHz	699.7 (2		707.5 (23095)	715.3 (
E Band 12: 3 MHz	700.5 (2		707.5 (23095)	714.5 (
TE Band 12: 5 MHz	701.5 (2		707.5 (23095)	713.5 (
TE Band 12: 10 MHz	704 (2		707.5 (23095)	711 (2	
TE Band 17: 5 MHz	706.5 (2	23755)	710 (23790)	713.5 (23825)
TE Band 17: 10 MHz	709 (2	3780)	710 (23790)	711 (2	
TE Band 13: 5 MHz	779.5 (2	23205)	782 (23230)	784.5 (23255)
TE Band 13: 10 MHz	N/.	A	782 (23230)	N	'A
TE Band 26 (Cell): 1.4 MHz	814.7 (2	26697)	831.5 (26865)	848.3 (27033)
TE Band 26 (Cell): 3 MHz	815.5 (2		831.5 (26865)	847.5 (
TE Band 26 (Cell): 5 MHz	816.5 (2		831.5 (26865)	846.5 (
E Band 26 (Cell): 10 MHz	819 (2		831.5 (26865)	844 (2	
E Band 5 (Cell): 1.4 MHz	824.7 (2		836.5 (20525)	848.3 (
TE Band 5 (Cell): 3 MHz	825.5 (2		836.5 (20525)	847.5 (
TE Band 5 (Cell): 5 MHz	826.5 (2		836.5 (20525)	846.5 (
TE Band 5 (Cell): 10 MHz	829 (2			844 (2	
			836.5 (20525)		
TE Band 66 (AWS): 1.4 MHz	1710.7 (*		1745 (132322)	1779.3 (
TE Band 66 (AWS): 3 MHz	1711.5 (1745 (132322)	1778.5 (
TE Band 66 (AWS): 5 MHz	1712.5 (1745 (132322)	1777.5 (
TE Band 66 (AWS): 10 MHz	1715 (1		1745 (132322)	1775 (1	
TE Band 66 (AWS): 15 MHz	1717.5 (*		1745 (132322)	1772.5 (
TE Band 66 (AWS): 20 MHz	1720 (1		1745 (132322)	1770 (1	
TE Band 4 (AWS): 1.4 MHz	1710.7 (1732.5 (20175)	1754.3	
TE Band 4 (AWS): 3 MHz	1711.5 (1732.5 (20175)	1753.5	
TE Band 4 (AWS): 5 MHz	1712.5 (1732.5 (20175)	1752.5	
TE Band 4 (AWS): 10 MHz	1715 (2		1732.5 (20175)	1750 (
TE Band 4 (AWS): 15 MHz	1717.5 (1732.5 (20175)	1747.5	
E Band 4 (AWS): 20 MHz	1720 (2		1732.5 (20175)	1745 (
TE Band 25 (PCS): 1.4 MHz	1850.7 (26047)	1882.5 (26365)	1914.3	(26683)
TE Band 25 (PCS): 3 MHz	1851.5 (26055)	1882.5 (26365)	1913.5	(26675)
TE Band 25 (PCS): 5 MHz	1852.5 (1882.5 (26365)	1912.5	
E Band 25 (PCS): 10 MHz	1855 (2		1882.5 (26365)	1910 (:	
TE Band 25 (PCS): 15 MHz	1857.5 (1882.5 (26365)	1907.5	
E Band 25 (PCS): 20 MHz	1860 (2		1882.5 (26365)	1905 (
E Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3	
E Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5	
E Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5	
TE Band 2 (PCS): 10 MHz	1855 (1		1880 (18900)	1905 (19150)
TE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5	
E Band 2 (PCS): 20 MHz	1860 (1	8700)	1880 (18900)	1900 (19100)
E Band 7: 5 MHz	2502.5 (2535 (21100)	2567.5	
E Band 7: 10 MHz	2505 (2		2535 (21100)	2565 (
E Band 7: 15 MHz	2507.5 (2535 (21100)	2562.5	
E Band 7: 20 MHz	2510 (2		2535 (21100)	2560 (
E Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
E Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
E Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
E Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
Category			1		
odulations Supported in UL			QPSK, 16QAM		
E MPR Permanently implemented per 3GPP TS					
.101 section 6.2.3~6.2.5? (manufacturer attestation			YES		
be provided)					
MPR (Additional MPR) disabled for SAR Testing?			YES		
TE Additional Information			on 3GPP Release 12.	All uplink communicatio e not supported: Carrie	

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 0 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 8 of 58

© 2020 PCTEST

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BCG-A2353	Protect to be part of @element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 58
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Fage 9 01 58

© 2020 PCTEST REV 21.4

DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

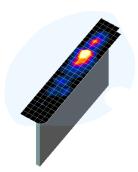


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)		Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Gı	raded Grid	Volume (mm) (x,y,z)
	died- ydiedy	1 200117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

	FCC ID: BCG-A2353	Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 10 of 50
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 10 of 58
© 202	0 PCTEST			REV 21.4 M

09/11/2019

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

5 TEST CONFIGURATION POSITIONS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

5.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

5.3 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions, i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with body tissue-equivalent medium. The device was evaluated with Sport wristband unstrapped and touching the phantom. For Metal Loop and Metal Links wristbands, the device was evaluated with wristbands strapped and the distance between wristbands and the phantom was minimized to represent the spacing created by actual use conditions.

FCC ID: BCG-A2353	Proad to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 11 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 11 of 58

© 2020 PCTEST REV 21.4 09/11/20

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCG-A2353	Production be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 12 of 58
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 12 01 56

TEST REV 21.4 I 09/11/201

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: BCG-A2353	Proud to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 13 of 58
20 PCTEST	<u> </u>		REV 21 4 M

REV 21.4 M 09/11/2019

7.4.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

7.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

7.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: BCG-A2353	Pood to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 14 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 14 of 58

REV 21.4 09/11/20

7.5.2 **MPR**

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - When the reported SAR is ≤ 0.8 W/kg for 1g SAR and ≤2.0 W/kg for 10g SAR, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg for 1g SAR and >3.625 W/kg for 10g SAR, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg for 1g SAR and < 3.625 W/kg for 10g SAR.
- This device can only operate with 16QAM on the uplink with less than or equal to 27 RB. For 16QAM configurations with 10 MHz, 15 MHz and 20 MHz bandwidths, LTE powers for RB size of 15 ("50% RB") and 27 ("100% RB") with offsets to upper edge, middle, and lower edge of the channel are additionally measured for both QPSK and 16QAM modulations to support comparison and SAR test exclusion per Section 5.2.4 and 5.3.

7.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

7.6 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations

FCC ID: BCG-A2353	Protect to be part of @element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 45 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 15 of 58

in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.6.2 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 16 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 16 of 58

UMTS Conducted Powers 8.1

Table 8-1 **Maximum Conducted Power**

3GPP Release	Mode	Mode 3GPP 34.121 Subtest		Cellular Band [dBm]		AWS Band [dBm]		PCS Band [dBm]			3GPP MPR	
Version		Sublest	4132	4183	4233	1312	1412	1513	9262	9400	9538	[dB]
99	WCDMA	12.2 kbps RMC	23.97	24.00	23.81	22.91	22.96	22.45	22.73	22.97	22.72	-
99	VVCDIVIA	12.2 kbps AMR	23.91	23.97	23.89	22.80	22.94	22.76	22.57	22.78	22.77	-
6		Subtest 1	23.94	23.91	23.92	22.83	22.97	22.64	22.61	22.94	22.87	0
6	HSDPA	Subtest 2	23.20	23.45	23.64	22.51	22.34	22.11	22.21	22.01	22.08	0
6	TIODEA	Subtest 3	22.80	22.63	22.65	21.66	21.57	21.56	22.11	21.57	22.06	0.5
6		Subtest 4	22.75	22.76	22.82	21.50	21.51	21.53	21.61	21.51	21.60	0.5
6		Subtest 1	23.48	23.61	23.47	22.15	22.31	22.01	22.96	22.29	22.24	0
6		Subtest 2	21.30	21.43	21.18	19.87	20.06	19.78	19.79	20.10	19.97	2
6	HSUPA	Subtest 3	22.31	22.41	22.20	20.62	20.87	20.55	20.51	20.81	20.73	1
6		Subtest 4	21.59	21.65	21.46	20.03	20.35	20.07	20.02	20.32	20.26	2
6		Subtest 5	23.57	23.66	23.45	22.12	22.30	22.02	22.02	22.34	22.21	0

This device does not support DC-HSDPA.

Figure 8-1 **Power Measurement Setup**

FCC ID: BCG-A2353	Poud to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 17 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 17 of 58

8.2 LTE Conducted Powers

8.2.1 LTE Band 12

Table 8-2
LTE Band 12 Conducted Powers – 10 MHz Bandwidth

LTE Band 12 LTE Band 12 10 MHz Bandwidth						
Modulation	RB Size	RB Offset	Mid Channel 23095 (707.5 MHz) Conducted Power [dBm]	Design MPR [dB]		
	1	0	23.82	0		
	1	25	23.85	0		
	1	49	23.76	0		
	25	0	22.93	1		
	25	12	23.00	1		
	25	25	22.93	1		
QPSK	50	0	22.99	1		
	15	0	22.87	1		
	15	17	22.92	1		
	15	35	22.84	1		
	27	0	22.91	1		
	27	12	22.92	1		
	27	23	22.93	1		
	1	0	22.72	1		
	1	25	22.70	1		
	1	49	22.69	1		
	25	0	21.43	2		
	25	12	21.42	2		
400014	25	25	21.41	2		
16QAM	15	0	21.38	2		
	15	17	21.40	2		
	15	35	21.38	2		
	27	0	21.41	2		
	27	12	21.42	2		
	27	23	21.40	2		

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: BCG-A2353	Proceed to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 18 of 58

PCTEST REV 21.4 M 09/11/2019

Table 8-3 LTE Rand 12 Conducted Powers - 5 MHz Randwidth

	LIE Band 12 Conducted Powers – 5 MHz Bandwidth								
	LTE Band 12								
	5 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel	_			
Modulation	RB Size	RB Offset	23035	23095	23155	Design MPR [dB]			
	112 0.20	1.2 5501	(701.5 MHz)	(707.5 MHz)	(713.5 MHz)				
				Conducted Power [dBm]				
	1	0	24.00	23.97	23.73	0			
	1	12	24.00	23.89	23.78	0			
	1	24	24.00	23.89	23.67	0			
QPSK	12	0	22.69	22.90	22.79	1			
	12	6	22.80	22.85	22.79	1			
	12	13	22.88	22.76	22.85	1			
	25	0	22.82	22.90	22.85	1			
	1	0	22.93	22.65	22.51	1			
	1	12	22.87	22.83	22.66	1			
	1	24	22.96	22.74	22.61	1			
16QAM	12	0	21.36	21.45	21.34	2			
	12	6	21.42	21.46	21.37	2			
	12	13	21.37	21.43	21.35	2			
	25	0	21.30	21.36	21.28	2			

Table 8-4 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

		LIL Da		Band 12	anawiath	
				Bandwidth		
			Low Channel	Mid Channel	High Channel	
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	Design MPR [dB]
			(Conducted Power [dBm]	
	1	0	23.71	23.79	23.72	0
	1	7	23.73	23.77	23.84	0
QPSK	1	14	23.79	23.63	23.66	0
	8	0	22.73	22.88	22.87	1
	8	4	22.72	22.85	22.93	1
	8	7	22.79	22.77	22.86	1
	15	0	22.74	22.89	22.94	1
	1	0	22.92	22.73	22.75	1
	1	7	22.86	22.66	22.82	1
	1	14	22.64	22.33	22.54	1
16QAM	8	0	21.36	21.51	21.56	2
	8	4	21.38	21.43	21.42	2
	8	7	21.35	21.40	21.45	2
	15	0	21.29	21.41	21.43	2

FCC ID: BCG-A2353	Proof to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 19 of 58

Table 8-5 4.4 MHz Danalistalia LTE Band 40 C

				Powers – 1.4 MHz I Band 12				
1.4 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	Design MPR [dB]		
			` ,	Conducted Power [dBm	, ,	-		
	1	0	23.78	23.77	23.98	0		
	1	2	23.73	23.74	23.92	0		
	1	5	23.78	23.74	23.84	0		
QPSK	3	0	23.79	23.87	23.88	0		
	3	2	23.74	23.85	23.80	0		
	3	3	23.76	23.84	23.78	0		
	6	0	22.74	22.85	22.82	1		
	1	0	22.91	22.76	22.63	1		
	1	2	22.73	22.66	22.75	1		
	1	5	22.79	22.64	22.59	1		
16QAM	3	0	22.45	22.75	22.65	1		
	3	2	22.42	22.65	22.67	1		
	3	3	22.46	22.68	22.61	1		
	6	0	21.37	21.60	21.52	2		

FCC ID: BCG-A2353	Proad to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 20 of 58

8.2.2 LTE Band 13

Table 8-6 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

	LTE Band 13						
		10 MHz	Bandwidth				
			Mid Channel				
No. destantes	DD 0'	DD 0%	23230	Darden MDD CIDI			
Modulation	RB Size	RB Offset	(782.0 MHz)	Design MPR [dB]			
			Conducted Power [dBm]				
	1	0	23.97	0			
	1	25	24.37	0			
	1	49	23.80	0			
	25	0	22.99	1			
		-					
	25	12	23.00	1			
0001	25	25	22.94	1			
QPSK	50	0	22.99	1			
	15	0	23.00	1			
	15	17	22.94	1			
	15	35	23.00	1			
	27	0	23.00	1			
	27	12	22.98	1			
	27	23	23.00	1			
	1	0	22.74	1			
	1	25	22.67	1			
	1	49	22.98	1			
	25	0	21.55	2			
	25	12	21.50	2			
40044	25	25	21.61	2			
16QAM	15	0	21.59	2			
	15	17	21.45	2			
	15	35	21.61	2			
	27	0	21.53	2			
	27	12	21.48	2			
	27	23	21.64	2			

Table 8-7 LTE Band 13 Conducted Powers - 5 MHz Bandwidth

LTE Band 13 5 MHz Bandwidth					
			Mid Channel		
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	Design MPR [dB]	
			Conducted Power		
			[dBm]		
	1	0	23.98	0	
	1	12	23.77	0	
	1	24	23.93	0	
QPSK	12	0	22.94	1	
	12	6	22.90	1	
	12	13	22.98	1	
	25	0	22.96	1	
	1	0	23.00	1	
	1	12	23.00	1	
	1	24	23.00	1	
16QAM	12	0	21.97	2	
	12	6	21.95	2	
	12	13	21.93	2	
	25	0	21.94	2	

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: BCG-A2353	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Danie 04 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 21 of 58

LTE Band 26 8.2.3

Table 8-8 LTE Band 26 Conducted Powers - 10 MHz Bandwidth

	LTE Band 26 Conducted Powers – 10 MHz Bandwidtn LTE Band 26 (Cell)							
	10 MHz Bandwidth							
Modulation	RB Size	RB Offset	Low Channel 26740 (819.0 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 26990 (844.0 MHz)	Design MPR [dB]		
			(Conducted Power [dBm]			
	1	0	23.52	23.55	23.77	0		
	1	25	23.76	23.66	23.63	0		
	1	49	23.78	23.83	23.75	0		
	25	0	22.83	22.69	22.79	1		
	25	12	22.85	22.76	22.70	1		
	25	25	22.87	22.82	22.66	1		
QPSK	50	0	22.86	22.82	22.81	1		
	15	0	22.71	22.67	22.80	1		
	15	17	22.86	22.75	22.68	1		
	15	35	22.89	22.84	22.72	1		
	27	0	22.84	22.68	22.77	1		
	27	12	22.86	22.77	22.68	1		
	27	23	22.89	22.82	22.67	1		
	1	0	22.83	22.89	23.00	1		
	1	25	23.00	22.96	22.97	1		
	1	49	23.00	23.00	22.99	1		
	25	0	21.88	21.70	21.79	2		
	25	12	21.86	21.76	21.68	2		
16QAM	25	25	21.88	21.85	21.64	2		
IOGAIVI	15	0	21.72	21.68	21.80	2		
	15	17	21.87	21.79	21.69	2		
	15	35	21.91	21.86	21.70	2		
	27	0	21.84	21.73	21.83	2		
	27	12	21.87	21.74	21.70	2		
	27	23	21.88	21.84	21.67	2		

Table 8-9 LTE Band 26 Conducted Powers - 5 MHz Bandwidth

LTE Band 26 (Cell)									
	5 MHz Bandwith								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	Design MPR [dB]			
			(Conducted Power [dBm]				
	1	0	23.96	23.75	23.98	0			
	1	12	24.00	23.79	24.00	0			
	1	24	24.00	23.88	24.00	0			
QPSK	12	0	22.86	22.79	22.85	1			
	12	6	22.90	22.83	22.82	1			
	12	13	22.92	22.84	22.81	1			
	25	0	22.93	22.84	22.86	1			
	1	0	23.00	22.71	23.00	1			
	1	12	23.00	22.90	23.00	1			
	1	24	22.96	22.91	23.00	1			
16QAM	12	0	21.79	21.59	21.65	2			
	12	6	21.76	21.62	21.67	2			
	12	13	21.78	21.60	21.62	2			
	25	0	21.68	21.58	21.58	2			

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 22 of 58

Table 8-10 LTE Rand 26 Conducted Powers - 3 MHz Randwidth

		LIE Dano	26 Conducted	Powers - 3 MHz	Danawiath	
				nd 26 (Cell) Bandwidth		
			Low Channel	Mid Channel	High Channel	
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	Design MPR [dB]
			(Conducted Power [dBm]	
	1	0	23.78	23.69	23.76	0
	1	7	23.86	23.82	23.81	0
	1	14	23.87	23.81	23.73	0
QPSK	8	0	22.82	22.76	22.83	1
	8	4	22.82	22.81	22.85	1
	8	7	22.91	22.82	22.83	1
	15	0	22.84	22.84	22.85	1
	1	0	22.91	22.87	23.00	1
	1	7	23.00	22.76	23.00	1
	1	14	23.00	22.82	23.00	1
16QAM	8	0	21.72	21.56	21.65	2
	8	4	21.71	21.57	21.63	2
	8	7	21.64	21.52	21.64	2
	15	0	21.65	21.52	21.56	2

Table 8-11 LTE Band 26 Conducted Powers - 1.4 MHz Bandwidth

	LTE Band 26 (Cell) 1.4 MHz Bandwidth							
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	26697 (814.7 MHz)	26865 (831.5 MHz)	27033 (848.3 MHz)	Design MPR [dB]		
			O	Conducted Power [dBm]			
	1	0	23.83	23.80	23.99	0		
	1	2	23.84	23.81	23.97	0		
	1	5	23.88	23.82	23.97	0		
QPSK	3	0	23.87	23.84	23.83	0		
	3	2	23.90	23.86	23.85	0		
	3	3	23.91	23.85	23.85	0		
	6	0	22.86	22.83	22.83	1		
	1	0	23.00	22.84	22.73	1		
	1	2	23.00	22.74	22.88	1		
	1	5	23.00	22.87	22.65	1		
16QAM	3	0	22.68	22.85	22.76	1		
	3	2	22.65	22.83	22.73	1		
	3	3	22.67	22.79	22.80	1		
	6	0	21.66	21.80	21.62	2		

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 22 of 50
1C2004270023-01-R1.BCG	06/29/2020 — 08/26/2020	Watch	Page 23 of 58

8.2.4 LTE Band 5 (Cell)

Table 8-12 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

	LTE Band 5 (Cell)							
	10 MHz Bandwidth							
			Mid Channel					
			20525					
Modulation	RB Size	RB Offset	(836.5 MHz)	Design MPR [dB]				
			Conducted Power					
			[dBm]					
	1	0	23.73	0				
	1	25	23.81	0				
	1	49	23.71	0				
	25	0	22.87	1				
	25	12	22.91	1				
	25	25	22.89	1				
QPSK	50	0	22.90	1				
	15	0	22.83	1				
	15	17	22.92	1				
	15	35	22.86	1				
	27	0	22.86	1				
	27	12	22.91	1				
	27	23	22.87	1				
	1	0	22.90	1				
	1	25	22.96	1				
	1	49	22.85	1				
	25	0	21.63	2				
	25	12	21.65	2				
16QAM	25	25	21.64	2				
TOWAIVI	15	0	21.62	2				
	15	17	21.67	2				
	15	35	21.66	2				
	27	0	21.62	2				
	27	12	21.67	2				
(O - II) - (4 O	27	23	21.66	2				

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: BCG-A2353	Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 24 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 24 of 58

Table 8-13 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

	LTE Band 5 (Cell) Conducted Powers - 5 Minz Bandwidth LTE Band 5 (Cell)								
	5 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	20425	20525	20625	Design MPR [dB]			
			(826.5 MHz)	(836.5 MHz)	(846.5 MHz)				
			(Conducted Power [dBm]				
	1	0	24.00	24.00	23.88	0			
	1	12	24.00	23.99	23.93	0			
	1	24	24.00	24.00	23.94	0			
QPSK	12	0	23.00	23.00	22.98	1			
	12	6	22.97	23.00	22.96	1			
	12	13	22.94	22.98	22.98	1			
	25	0	22.97	22.99	23.00	1			
	1	0	23.00	22.99	22.88	1			
	1	12	22.76	22.90	22.99	1			
	1	24	22.97	22.99	23.00	1			
16QAM	12	0	21.58	21.71	21.53	2			
	12	6	21.51	21.69	21.54	2			
	12	13	21.57	21.68	21.50	2			
	25	0	21.52	21.65	21.49	2			

Table 8-14 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

LTE Band 5 (Cell) 3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	Design MPR [dB]				
			(Conducted Power [dBm]					
	1	0	23.98	24.00	23.87	0				
	1	7	24.00	24.00	23.96	0				
	1	14	23.92	23.99	23.89	0				
QPSK	8	0	23.00	23.00	22.97	1				
	8	4	22.99	23.00	22.98	1				
	8	7	22.99	22.98	22.99	1				
	15	0	23.00	23.00	22.98	1				
	1	0	22.94	22.87	22.92	1				
	1	7	22.96	22.83	23.00	1				
	1	14	22.79	22.90	22.85	1				
16QAM	8	0	21.63	21.67	21.56	2				
	8	4	21.65	21.65	21.52	2				
	8	7	21.63	21.65	21.53	2				
	15	0	21.59	21.61	21.52	2				

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 05 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 25 of 58

Table 8-15 LTE Band 5 (Cell) Conducted Powers - 1.4 MHz Bandwidth

LTE Band 5 (Cell) Conducted Powers – 1.4 MHz Bandwidth											
	LTE Band 5 (Cell)										
1.4 MHz Bandwidth											
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	Design MPR [dB]					
			(Conducted Power [dBm]						
	1	0	23.99	24.00	24.00	0					
	1	2	23.97	24.00	24.00	0					
	1	5	24.00	23.98	24.00	0					
QPSK	3	0	24.00	23.97	23.97	0					
	3	2	24.00	23.94	23.98	0					
	3	3	23.98	24.00	23.99	0					
	6	0	23.00	23.00	22.98	1					
	1	0	23.00	22.96	22.69	1					
	1	2	22.93	22.81	22.72	1					
	1	5	23.00	22.96	22.91	1					
16QAM	3	0	22.67	22.87	22.84	1					
	3	2	22.94	22.84	22.77	1					
	3	3	22.86	22.90	22.86	1					
	6	0	21.62	21.89	21.59	2					

8.2.5 LTE Band 66 (AWS)

Table 8-16 LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

	LTE Band 66 (AWS) 20 MHz Bandwidth								
Modulation	RB Size	RB Offset	Low Channel 132072 (1720.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132572 (1770.0 MHz)	Design MPR [dB]			
				Conducted Power [dBm]				
	1	0	22.66	22.76	22.70	0			
	1	50	22.72	22.60	22.48	0			
	1	99	22.75	22.60	22.53	0			
	50	0	21.94	21.87	21.71	1			
	50	25	21.98	21.84	21.67	1			
	50	50	21.96	21.79	21.65	1			
QPSK	100	0	21.95	21.96	21.93	1			
	15	0	22.62	22.76	22.38	0			
	15	42	22.77	22.60	22.32	0			
	15	85	22.86	22.48	22.35	0			
	27	0	21.90	21.96	21.65	1			
	27	37	21.94	21.82	21.62	1			
	27	73	21.93	21.70	21.56	1			
	1	0	21.48	21.95	21.56	1			
	1	50	21.68	21.68	21.67	1			
	1	99	21.65	21.61	21.65	1			
	15	0	21.38	21.41	21.37	1			
16QAM	15	42	21.41	21.32	21.42	1			
	15	85	21.46	21.09	21.45	1			
	27	0	20.40	20.38	20.39	2			
	27	37	20.51	20.31	20.51	2			
	27	73	20.47	20.08	20.46	2			

FCC ID: BCG-A2353	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 26 of 58

Table 8-17 LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

	LTE Baria 66 (AWS) LTE Band 66 (AWS) 15 MHz Bandwidth								
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132597 (1772.5 MHz)	Design MPR [dB]			
			(Conducted Power [dBm]				
	1	0	22.43	22.67	22.28	0			
	1	36	22.56	22.62	22.26	0			
	1	74	22.66	22.38	22.13	0			
	36	0	21.87	21.75	21.48	1			
	36	18	21.88	21.79	21.47	1			
	36	37	21.93	21.71	21.37	1			
QPSK	75	0	22.00	21.85	21.65	1			
	15	0	22.65	22.58	22.29	0			
	15	30	22.71	22.60	22.28	0			
	15	60	22.75	22.38	22.15	0			
	27	0	21.83	21.81	21.47	1			
	27	24	21.86	21.85	21.46	1			
	27	48	21.88	21.65	21.36	1			
	1	0	21.56	21.57	21.21	1			
	1	36	21.49	21.78	21.20	1			
	1	74	21.86	21.44	21.24	1			
	15	0	21.36	21.28	21.06	1			
16QAM	15	30	21.43	21.35	21.30	1			
	15	60	21.51	21.07	21.30	1			
	27	0	20.33	20.28	20.05	2			
	27	24	20.35	20.27	21.00	2			
	27	48	20.43	20.15	21.05	2			

Table 8-18 LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

	LTE Band 66 (AWS) 10 MHz Bandwidth									
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132622 (1775.0 MHz)	Design MPR [dB]				
				Conducted Power [dBm]					
	1	0	22.86	22.59	22.35	0				
	1	25	22.80	22.50	22.18	0				
	1	49	22.85	22.43	22.32	0				
	25	0	21.79	21.67	21.43	1				
	25	12	21.79	21.69	21.34	1				
	25	25	21.78	21.64	21.38	1				
QPSK	50	0	21.83	21.71	21.45	1				
	15	0	21.72	21.69	21.44	1				
	15	17	21.79	21.69	21.36	1				
	15	35	21.82	21.58	21.38	1				
	27	0	21.78	21.66	21.41	1				
	27	12	21.77	21.66	21.35	1				
	27	23	21.77	21.62	21.37	1				
	1	0	21.97	21.87	21.59	1				
	1	25	21.94	21.90	21.51	1				
	1	49	21.89	21.82	21.68	1				
	25	0	20.62	20.56	20.27	2				
	25	12	20.62	20.58	20.20	2				
16QAM	25	25	20.62	20.50	20.20	2				
IOQAWI	15	0	20.58	20.64	20.29	2				
Ī	15	17	20.57	20.61	20.28	2				
	15	35	20.69	20.56	20.20	2				
	27	0	20.83	20.49	20.29	2				
[27	12	20.81	20.53	20.24	2				
	27	23	20.82	20.46	20.26	2				

FCC ID: BCG-A2353	Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 27 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 27 of 58

Table 8-19 LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth

		LIL Bana o	` '	eu Powers - 3 Minz	. Danawiath					
	LTE Band 66 (AWS) 5 MHz Bandwidth									
	Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	Design MPR [dB]				
				Conducted Power [dBm]					
	1	0	22.62	22.62	22.38	0				
	1	12	22.64	22.61	22.37	0				
	1	24	22.65	22.57	22.44	0				
QPSK	12	0	21.73	21.69	21.31	1				
	12	6	21.80	21.65	21.35	1				
	12	13	21.80	21.62	21.37	1				
	25	0	21.79	21.68	21.35	1				
	1	0	21.70	21.70	21.45	1				
	1	12	21.86	21.83	21.46	1				
	1	24	21.72	21.83	21.46	1				
16QAM	12	0	20.52	20.53	20.23	2				
	12	6	20.58	20.54	20.24	2				
	12	13	20.59	20.50	20.27	2				
	25	0	20.64	20.51	20.17	2				

Table 8-20 LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

	LTE Band 66 (AWS)								
3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	131987	132322	132657	Design MPR [dB]			
Modulation	ND OIZE	IND Offset	(1711.5 MHz)	(1745.0 MHz)	(1778.5 MHz)	Design in it [ub]			
				Conducted Power [dBm]				
	1	0	22.93	22.98	22.45	0			
	1	7	22.97	22.74	22.57	0			
	1	14	23.00	22.92	22.43	0			
QPSK	8	0	22.00	22.00	21.56	1			
	8	4	21.89	21.99	21.57	1			
	8	7	21.87	21.98	21.60	1			
	15	0	21.90	21.98	21.54	1			
	1	0	21.47	21.48	21.28	1			
	1	7	21.35	21.59	21.23	1			
	1	14	21.53	21.48	21.24	1			
16QAM	8	0	20.68	20.62	20.30	2			
	8	4	20.64	20.59	20.29	2			
	8	7	20.71	20.53	20.31	2			
	15	0	20.29	20.29	20.01	2			

FCC ID: BCG-A2353	Poud to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 28 of 58

Table 8-21 LTE Band 66 (AWS) Conducted Powers - 1.4 MHz Bandwidth

			<u> </u>	1 66 (AWS)						
1.4 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	131979	132322	132665	Design MPR [dB]				
Wodulation	ND OIZE	IND Offset	(1710.7 MHz)	(1745.0 MHz)	(1779.3 MHz)	Design will it [ub]				
				Conducted Power [dBm]					
	1	0	22.84	22.97	22.81	0				
	1	2	22.84	22.94	22.91	0				
	1	5	22.89	22.96	22.97	0				
QPSK	3	0	22.93	22.89	22.77	0				
	3	2	22.86	22.88	22.79	0				
	3	3	22.87	22.88	22.75	0				
	6	0	21.99	22.00	21.83	1				
	1	0	21.57	21.90	21.38	1				
	1	2	21.47	21.67	21.53	1				
	1	5	21.57	21.85	21.40	1				
16QAM	3	0	21.56	21.61	21.43	1				
	3	2	21.62	21.65	21.45	1				
	3	3	21.67	21.64	21.39	1				
	6	0	20.63	20.61	20.28	2				

LTE Band 25 (PCS) 8.2.6

Table 8-22 LTE Band 25 (PCS) Conducted Powers - 20 MHz Bandwidth

				nd 25 (PCS) Bandwidth		
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26590 (1905.0 MHz)	Design MPR [dB]
				Conducted Power [dBm]	
	1	0	22.43	22.50	22.82	0
	1	50	22.65	22.66	22.70	0
	1	99	22.72	22.62	22.56	0
	50	0	21.52	21.73	21.92	1
	50	25	21.64	21.86	21.81	1
	50	50	21.80	21.93	21.77	1
QPSK	100	0	21.79	21.90	21.92	1
	15	0	22.42	22.69	22.80	0
	15	42	22.64	22.79	22.71	0
	15	85	22.73	22.77	22.53	0
	27	0	21.41	21.69	21.77	1
	27	37	21.62	21.84	21.65	1
	27	73	21.68	21.81	21.54	1
	1	0	21.54	21.76	21.95	1
	1	50	21.57	21.79	21.96	1
	1	99	21.69	21.83	21.69	1
	15	0	21.43	21.67	21.63	1
16QAM	15	42	21.46	21.71	21.54	1
	15	85	21.52	21.53	21.31	1
	27	0	20.35	20.65	20.58	2
	27	37	20.42	20.64	20.51	2
	27	73	20.48	20.56	20.24	2

	FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	D 00 -f 50	
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 29 of 58	
© 202	0 PCTEST			REV 21.4 M	

Table 8-23 LTE Band 25 (PCS) Conducted Powers - 15 MHz Bandwidth

	<u> </u>	. Danu 23	<u>, , , , , , , , , , , , , , , , , , , </u>	der (DCS)	vii iz Dailuwiutii	<u> </u>
				id 25 (PCS) Bandwidth		
			Low Channel	Mid Channel	High Channel	_
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	Design MPR [dB]
			(Conducted Power [dBm]	
	1	0	22.33	22.66	22.80	0
	1	36	22.53	22.83	22.71	0
	1	74	22.61	22.78	22.58	0
	36	0	21.46	21.76	21.78	1
	36	18	21.63	21.86	21.76	1
	36	37	21.62	21.88	21.69	1
QPSK	75	0	21.71	21.95	21.79	1
	15	0	22.42	22.76	22.80	0
	15	30	22.63	22.90	22.75	0
	15	60	22.63	22.85	22.60	0
	27	0	21.44	21.76	21.76	1
	27	24	21.62	21.89	21.73	1
	27	48	21.62	21.86	21.61	1
	1	0	21.39	21.82	21.81	1
	1	36	21.63	21.83	21.91	1
	1	74	21.73	21.93	21.64	1
	15	0	21.30	21.57	21.58	1
16QAM	15	30	21.51	21.69	21.58	1
	15	60	21.48	21.65	21.35	1
	27	0	20.32	20.57	20.57	2
	27	24	20.45	20.67	20.48	2
	27	48	20.44	20.68	20.42	2

Table 8-24 LTE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth

		24114 20			LTE Band 25 (PCS)							
			10 MHz	Bandwidth								
			Low Channel	Mid Channel	High Channel							
Modulation	RB Size	RB Offset	26090	26365	26640	Design MPR [dR]						
Woodlation	IND OIZE	IND Office	(1855.0 MHz)	(1882.5 MHz)	(1910.0 MHz)	Design in it [ab]						
			(Conducted Power [dBm]	Design MPR [dB] 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2						
	1	0	22.40	22.86	22.60	0						
	1	25	22.45	22.91	22.46	0						
	1	49	22.55	22.99	22.48	0						
	25	0	21.43	21.82	21.65	1						
	25	12	21.47	21.82	21.60	1						
	25	25	21.54	21.81	21.61	1						
QPSK	50	0	21.50	21.85	21.74	1						
	15	0	21.44	21.75	21.62	1						
	15	17	21.49	21.83	21.56	1						
	15	35	21.55	21.87	21.54	1						
	27	0	21.42	21.82	21.62	1						
	27	12	21.45	21.81	21.58	1						
	27	23	21.57	21.80	21.58	1						
	1	0	21.46	21.86	21.67	1						
	1	25	21.46	21.87	21.41	1						
	1	49	21.56	21.98	21.60	1						
	25	0	20.27	20.67	20.40	2						
	25	12	20.30	20.65	20.36	2						
16QAM	25	25	20.35	20.62	20.39	2						
IOQAIVI	15	0	20.28	20.62	20.46	2						
	15	17	20.21	20.59	20.44	2						
	15	35	20.32	20.66	20.38	2						
	27	0	20.35	20.67	20.38	2						
	27	12	20.24	20.62	20.43	2						
	27	23	20.24	20.60	20.33	2						

FCC II	D: BCG-A2353		<u>@</u> PCTEST		SA	SAR EVALUATION REPORT			Approved	by:
FCC ID. BCG-A2333		Proud to b	se part of 📵 element	•				Quality Manager		
Docun	nent S/N:		Test Dates:		DUT Type	e:			Page 30 of	£ E0
1C2004	4270023-01-R1	.BCG	06/29/2020 - 0	08/26/2020	Watch				rage 30 0i	36

© 2020 PCTEST

Table 8-25 LTE Band 25 (PCS) Conducted Powers - 5 MHz Bandwidth

			LTE Bar	nd 25 (PCS) Bandwidth		
			Low Channel	Mid Channel	High Channel	
Modulation	RB Size	RB Offset	26065 (1852.5 MHz)	26365 (1882.5 MHz)	26665 (1912.5 MHz)	Design MPR [dB]
			(Conducted Power [dBm]	
	1	0	22.40	22.92	22.74	0
	1	12	22.38	22.91	22.73	0
	1	24	22.42	22.85	22.63	0
QPSK	12	0	21.43	21.81	21.56	1
	12	6	21.42	21.81	21.56	1
	12	13	21.43	21.81	21.51	1
	25	0	21.43	21.83	21.55	1
	1	0	21.50	21.87	21.52	1
	1	12	21.64	21.98	21.77	1
	1	24	21.63	21.95	21.51	1
16QAM	12	0	20.20	20.59	20.33	2
	12	6	20.29	20.60	20.41	2
	12	13	20.27	20.66	20.38	2
	25	0	20.28	20.64	20.37	2

Table 8-26 LTE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth

				nd 25 (PCS)		
		,		Bandwidth		
			Low Channel	Mid Channel	High Channel	
Modulation	RB Size	RB Offset	26055	26365	26675	Design MPR [dB]
Modulation	NB OILC	IND Office	(1851.5 MHz)	(1882.5 MHz)	(1913.5 MHz)	Design in it [ab]
				Conducted Power [dBm]	
	1	0	22.34	22.89	22.51	0
	1	7	22.39	22.94	22.53	0
	1	14	22.35	22.88	22.36	0
QPSK	8	0	21.43	21.84	21.57	1
	8	4	21.42	21.82	21.54	1
	8	7	21.43	21.82	21.51	1
	15	0	21.42	21.81	21.52	1
	1	0	21.32	21.84	21.56	1
	1	7	21.50	21.75	21.62	1
	1	14	21.37	21.79	21.46	1
16QAM	8	0	20.19	20.56	20.29	2
	8	4	20.24	20.63	20.44	2
	8	7	20.27	20.65	20.40	2
	15	0	20.21	20.59	20.37	2

	FCC ID: BCG-A2353	Proud to be part of selement	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 04 -4 50
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 31 of 58
© 202	0 PCTEST			REV 21.4 M

Table 8-27 LTE Band 25 (PCS) Conducted Powers - 1.4 MHz Bandwidth

			LTE Ban	d 25 (PCS)		
		1		Bandwidth	High Observal	1
			Low Channel 26047	Mid Channel 26365	High Channel 26683	-
Modulation	RB Size	RB Offset	(1850.7 MHz)	(1882.5 MHz)	(1914.3 MHz)	Design MPR [dB]
			(Conducted Power [dBm]	
	1	0	22.56	22.76	22.60	0
	1	2	22.55	22.74	22.56	0
	1	5	22.60	22.77	22.60	0
QPSK	3	0	22.51	22.84	22.37	0
	3	2	22.52	22.80	22.39	0
	3	3	22.51	22.80	22.39	0
	6	0	21.49	21.78	21.37	1
	1	0	21.57	21.84	21.44	1
	1	2	21.49	21.64	21.59	1
	1	5	21.62	21.85	21.56	1
16QAM	3	0	21.39	21.72	21.42	1
	3	2	21.41	21.74	21.38	1
	3	3	21.37	21.76	21.46	1
	6	0	20.33	20.72	20.28	2

8.2.7 LTE Band 7

Table 8-28 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

			LTE	Band 7 Bandwidth		
Modulation	RB Size	RB Offset	Low Channel 20850 (2510.0 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21350 (2560.0 MHz)	Design MPR [dB]
	1	0	22.19	Conducted Power [dBm 22.99	22.09	0
	1	50	22.18	22.57	22.16	0
	1	99	22.10	22.41	22.20	0
	50	0	21.39	21.26	21.09	1
	50	25	21.19	21.00	21.16	1
	50	50	21.17	21.13	21.18	1
QPSK	100	0	21.30	21.17	21.32	1
	15	0	22.27	22.11	22.04	0
	15	42	22.24	22.13	22.13	0
	15	85	22.21	22.13	22.09	0
	27	0	21.21	21.07	21.02	1
	27	37	21.18	21.05	21.11	1
	27	73	21.12	21.13	21.09	1
	1	0	21.42	21.50	21.31	1
	1	50	21.49	21.47	21.40	1
	1	99	21.46	21.40	21.36	1
	15	0	21.29	21.18	21.08	1
16QAM	15	42	21.26	21.08	21.21	1
	15	85	21.25	21.03	21.18	1
	27	0	20.26	20.13	20.02	2
	27	37	20.28	20.08	20.13	2
	27	73	20.23	20.10	20.11	2

FCC ID: BCG-A2353	Protect to be part of @element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 32 of 58
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 32 01 36

© 2020 PCTEST

Table 8-29 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

		L Dana 1		Devel 3 - 13 IVIII	Z Danawiatii	
				Band 7 Bandwidth		
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21375 (2562.5 MHz)	Design MPR [dB]
			, (Conducted Power [dBm	1	
	1	0	22.07	22.18	21.83	0
	1	36	22.27	22.02	21.95	0
	1	74	22.29	21.75	22.18	0
	36	0	21.20	21.09	20.86	1
	36	18	21.27	21.01	20.93	1
	36	37	21.24	20.89	21.07	1
QPSK	75	0	21.33	21.10	21.06	1
	15	0	22.17	22.13	21.77	0
	15	30	22.30	22.03	21.91	0
	15	60	22.26	21.82	22.00	0
	27	0	21.17	21.13	20.79	1
	27	24	21.27	21.03	20.92	1
	27	48	21.22	20.86	21.03	1
	1	0	21.35	21.49	21.10	1
	1	36	21.49	21.31	21.17	1
	1	74	21.00	21.18	21.26	1
	15	0	21.46	21.21	20.82	1
16QAM	15	30	21.37	21.10	20.90	1
	15	60	21.33	20.84	21.08	1
	27	0	20.22	20.14	19.81	2
	27	24	20.29	20.03	19.96	2
	27	48	20.28	19.89	20.05	2

Table 8-30 LTE Band 7 Conducted Powers - 10 MHz Bandwidth

		L Dana i		Band 7	L Danawiatii				
10 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 20800 (2505.0 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21400 (2565.0 MHz)	Design MPR [dB]			
			(Conducted Power [dBm]				
	1	0	22.26	22.31	21.82	0			
	1	25	22.23	22.13	21.98	0			
	1	49	22.36	22.04	22.14	0			
	25	0	21.24	21.11	20.88	1			
	25	12	21.18	21.03	20.98	1			
	25	25	21.21	20.97	21.01	1			
QPSK	50	0	21.22	21.04	21.04	1			
	15	0	21.20	21.13	20.85	1			
	15	17	21.19	21.03	20.98	1			
	15	35	21.23	20.93	21.04	1			
	27	0	21.23	21.08	20.89	1			
	27	12	21.18	21.00	20.98	1			
	27	23	21.20	20.95	21.00	1			
	1	0	21.49	21.45	21.14	1			
	1	25	21.48	21.25	21.37	1			
	1	49	21.47	21.28	21.48	1			
	25	0	20.20	20.12	19.91	2			
	25	12	20.27	20.04	20.00	2			
400414	25	25	20.32	19.96	20.05	2			
16QAM	15	0	20.23	20.17	19.92	2			
	15	17	20.28	20.13	19.98	2			
	15	35	20.24	20.03	20.06	2			
	27	0	20.30	19.96	20.09	2			
	27	12	20.26	20.10	19.98	2			
}	27	23	20.25	20.00	20.04	2			

FCC ID: BCG-A2353	Post to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -4 50
1C2004270023-01-R1.BCG	06/29/2020 — 08/26/2020	Watch	Page 33 of 58

Table 8-31 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

	LTE Band 7 Conducted Fowers = 3 Mile Bandwidth										
	5 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20775	21100	21425	Design MPR [dB]					
Modulation	112 0120	112 011001	(2502.5 MHz)	(2535.0 MHz)	(2567.5 MHz)	- Sooigii iiii it [us]					
			(Conducted Power [dBm							
	1	0	22.37	22.01	22.11	0					
	1	12	22.31	21.95	22.16	0					
	1	24	22.35	21.89	22.30	0					
QPSK	12	0	21.20	21.01	21.05	1					
	12	6	21.14	20.97	21.04	1					
	12	13	21.20	20.94	21.08	1					
	25	0	21.17	20.97	21.05	1					
	1	0	21.48	21.47	21.48	1					
	1	12	21.45	21.44	21.36	1					
	1	24	21.49	21.46	21.46	1					
16QAM	12	0	20.22	20.04	20.02	2					
	12	6	20.18	19.94	19.98	2					
	12	13	20.24	19.88	20.01	2					
	25	0	20.16	20.01	20.08	2					

8.2.8 LTE Band 41

Table 8-32 LTE Band 41 Conducted Powers - 20 MHz Bandwidth

	LTE Band 41 20 MHz Bandwidth								
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	Design MPR [dB]	
				Co	nducted Power [dB	Bm]			
	1	0	22.09	22.06	22.25	21.90	22.19	0	
	1	50	22.07	22.04	22.24	21.98	22.27	0	
	1	99	21.95	22.01	22.04	21.95	22.19	0	
	50	0	21.06	21.09	21.35	20.94	21.27	1	
	50	25	21.04	21.07	21.28	20.93	21.29	1	
	50	50	20.99	21.03	21.22	20.96	21.27	1	
QPSK	100	0	21.19	21.11	21.33	20.97	21.34	1	
	15	0	22.19	22.07	22.33	21.89	22.26	0	
	15	42	22.15	22.05	22.29	21.93	22.33	0	
	15	85	21.96	21.97	22.17	21.92	22.21	0	
	27	0	21.11	21.01	21.27	20.86	21.19	1	
	27	37	21.06	21.00	21.26	20.91	21.28	1	
	27	73	20.96	20.93	21.14	20.87	21.18	1	
	1	0	21.26	21.24	21.36	21.15	21.42	1	
	1	50	21.31	21.23	21.38	21.26	21.47	1	
	1	99	21.15	21.17	21.22	21.19	21.38	1	
	15	0	21.19	21.06	21.32	20.96	21.27	1	
16QAM	15	42	21.17	21.08	21.33	20.97	21.32	1	
	15	85	20.95	20.98	21.23	20.99	21.26	1	
	27	0	20.12	20.06	20.29	19.87	20.18	2	
	27	37	20.08	20.08	20.30	19.92	20.24	2	
	27	73	19.93	19.98	20.19	19.87	20.19	2	

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 04 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 34 of 58

Table 8-33 LTE Band 41 Conducted Powers - 15 MHz Bandwidth

	LIE Balla 41 Collaucteu Powers - 13 MHZ Ballawidti										
	LTE Band 41 15 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	Design MPR [dB]			
				Co	nducted Power [dB	Sm]					
	1	0	21.97	21.85	22.17	21.72	21.99	0			
	1	36	22.11	21.88	22.20	21.80	22.10	0			
	1	74	22.01	21.80	22.05	21.76	22.03	0			
	36	0	20.96	20.77	21.15	20.72	20.98	1			
	36	18	21.07	20.76	21.14	20.72	21.03	1			
	36	37	21.02	20.66	21.03	20.72	21.01	1			
QPSK	75	0	21.06	20.70	21.08	20.72	21.05	1			
	15	0	22.00	21.70	22.09	21.66	21.94	0			
	15	30	22.04	21.74	22.13	21.71	22.05	0			
	15	60	21.96	21.64	22.00	21.67	21.96	0			
	27	0	20.96	20.69	21.08	20.66	20.96	1			
	27	24	21.03	20.71	21.10	20.71	21.03	1			
	27	48	20.97	20.63	21.01	20.70	20.97	1			
	1	0	20.84	21.06	21.04	20.87	20.88	1			
	1	36	21.25	21.08	20.94	20.93	20.93	1			
	1	74	21.10	20.87	20.89	20.89	20.88	1			
	15	0	21.01	20.73	21.13	20.68	20.97	1			
16QAM	15	30	21.10	20.75	21.17	20.75	21.05	1			
	15	60	20.98	20.64	21.00	20.76	20.99	1			
	27	0	19.94	19.75	20.11	19.71	19.97	2			
	27	24	20.00	19.78	20.10	19.73	20.05	2			
	27	48	19.99	19.66	20.02	19.71	19.97	2			

Table 8-34 LTE Band 41 Conducted Powers - 10 MHz Bandwidth

	LTE Barid 41 Conducted Powers - 10 Min2 Baridwidth LTE Band 41 10 MHz Bandwidth									
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel			
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	Design MPR [dB]		
				Co	nducted Power [dE	Bm]				
	1	0	22.30	22.08	22.49	22.04	22.44	0		
	1	25	22.42	22.04	22.46	21.96	22.48	0		
	1	49	22.49	22.00	22.42	21.98	22.50	0		
	25	0	21.20	20.92	21.37	20.88	21.32	1		
	25	12	21.27	20.89	21.35	20.82	21.34	1		
	25	25	21.29	20.89	21.34	20.84	21.36	1		
QPSK	50	0	21.22	20.95	21.35	20.85	21.39	1		
	15	0	21.18	20.96	21.38	20.89	21.35	1		
	15	17	21.28	20.93	21.36	20.86	21.38	1		
	15	35	21.26	20.90	21.33	20.88	21.40	1		
	27	0	21.19	20.93	21.35	20.89	21.34	1		
	27	12	21.18	20.91	21.34	20.82	21.36	1		
	27	23	21.25	20.89	21.33	20.87	21.38	1		
	1	0	21.34	21.25	21.46	21.26	21.49	1		
	1	25	21.43	21.30	21.43	21.23	21.46	1		
	1	49	21.48	21.19	21.35	21.18	21.36	1		
	25	0	20.24	20.06	20.44	20.00	20.31	2		
	25	12	20.29	20.04	20.40	19.91	20.35	2		
16QAM	25	25	20.32	20.01	20.38	19.98	20.36	2		
IOGAIN	15	0	20.22	20.11	20.43	19.97	20.34	2		
	15	17	20.30	20.07	20.45	19.94	20.37	2		
	15	35	20.28	20.08	20.39	19.95	20.39	2		
	27	0	20.23	20.03	20.42	19.99	20.32	2		
	27	12	20.16	20.02	20.38	19.89	20.33	2		
	27	23	20.26	20.01	20.37	19.93	20.30	2		

FCC ID: BCG-A2353	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 05 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 35 of 58
20 PCTEST			REV 21.4 M

Table 8-35 LTE Band 41 Conducted Powers - 5 MHz Bandwidth

			L Bana +1 O	onducted PC		iz Banawiati	•				
				LTE Ban							
	5 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	Design MPR [dB]			
				Co	nducted Power [dB	ßm]					
	1	0	22.30	22.04	22.50	22.17	22.39	0			
	1	12	22.27	22.03	22.48	22.12	22.39	0			
	1	24	22.35	22.04	22.48	22.18	22.40	0			
QPSK	12	0	21.22	21.08	21.46	21.01	21.35	1			
	12	6	21.31	21.07	21.46	20.96	21.36	1			
	12	13	21.33	21.07	21.46	20.98	21.37	1			
	25	0	21.28	21.07	21.47	20.98	21.35	1			
	1	0	21.30	21.14	21.46	20.99	21.31	1			
	1	12	21.31	21.20	21.35	20.80	21.35	1			
	1	24	21.40	21.33	21.50	20.97	21.50	1			
16QAM	12	0	20.27	20.07	20.42	20.04	20.33	2			
	12	6	20.32	20.04	20.41	19.98	20.35	2			
	12	13	20.36	20.06	20.39	20.02	20.37	2			
	25	0	20.26	20.05	20.43	19.98	20.36	2			

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 26 of E0
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 36 of 58

8.3 WLAN Conducted Powers

Table 8-36
2.4 GHz WLAN Maximum Average RF Power

	2.4GHz C	onducted Pov	ver [dBm]	
		IEEE '	Transmission	Mode
Freq [MHz]	Channel	802.11b	802.11g	802.11n
		Average	Average	Average
2412	1	17.77	16.77	16.67
2417	2		17.61	17.59
2437	6	17.66	17.43	17.61
2457	10		17.61	17.53
2462	11	17.56	16.11	15.77

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

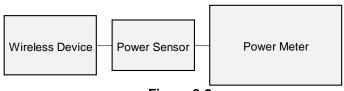


Figure 8-2
Power Measurement Setup

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 07 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 37 of 58

Bluetooth Conducted Powers 8.4

Table 8-37 Bluetooth Average RF Power

_		Data		Avg Conducted Power			
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]		
2402	GFSK	1.0	0	16.36	43.251		
2441	GFSK	1.0	39	16.37	43.351		
2480	GFSK	1.0	78	16.35	43.152		

Note 1: Bluetooth was evaluated with a test mode with 100% transmission duty factor.

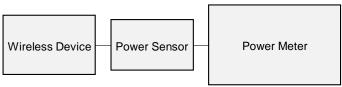


Figure 8-3 **Power Measurement Setup**

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 38 of 58

Tissue Verification 9.1

Table 9-1 **Measured Head Tissue Properties**

Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET		
Tests Performed on:	Tissue Type	During Calibration (°C)	Frequency (MHz)	Conductivity, σ (S/m)	Dielectric Constant, ε	Conductivity, σ (S/m)	Dielectric Constant, ε	% dev σ	% dev ε
			680	0.872	42.203	0.888	42.305	-1.80%	-0.24%
			695	0.876	42.167	0.889	42.227	-1.46%	-0.14%
			700	0.878	42.155	0.889	42.201	-1.24%	-0.11%
			710	0.881	42.127	0.890	42.149	-1.01%	-0.05%
			720	0.885	42.096	0.891	42.097	-0.67%	0.00%
6/29/2020	750H	21.1	725	0.887	42.083	0.891	42.071	-0.45%	0.03%
			740	0.893	42.038	0.893	41.994	0.00%	0.10%
			755	0.899	41.994	0.894	41.916	0.56%	0.19%
			770	0.903	41.953	0.895	41.838	0.89%	0.27%
			785	0.908	41.908	0.896	41.760	1.34%	0.35%
			800	0.913	41.860	0.897	41.682	1.78%	0.43%
			800	0.910	42.228	0.897	41.682	1.45%	1.31%
7/9/2020	835H	21.4	820	0.917	42.167	0.899	41.578	2.00%	1.42%
1/9/2020	2020 835H	21.4	835	0.923	42.129	0.900	41.500	2.56%	1.52%
			850	0.929	42.092	0.916	41.500	1.42%	1.43%
			820	0.933	41.003	0.899	41.578	3.78%	-1.38%
7/15/2020	835H	21.6	835	0.938	40.959	0.900	41.500	4.22%	-1.30%
			850	0.944	40.932	0.916	41.500	3.06%	-1.37%
			1710	1.334	40.526	1.348	40.142	-1.04%	0.96%
7/7/2020	1750H	22.0	1750	1.360	40.469	1.371	40.079	-0.80%	0.97%
			1790	1.383	40.413	1.394	40.016	-0.79%	0.99%
			1710	1.307	39.539	1.348	40.142	-3.04%	-1.50%
7/15/2020	1750H	21.5	1750	1.330	39.496	1.371	40.079	-2.99%	-1.45%
			1790	1.355	39.424	1.394	40.016	-2.80%	-1.48%
			1850	1.395	39.558	1.400	40.000	-0.36%	-1.11%
7/8/2020	1900H	21.7	1880	1.425	39.425	1.400	40.000	1.79%	-1.44%
			1910	1.455	39.316	1.400	40.000	3.93%	-1.71%
			2400	1.798	38.193	1.756	39.289	2.39%	-2.79%
			2450	1.827	38.144	1.800	39.200	1.50%	-2.69%
			2500	1.867	38.068	1.855	39.136	0.65%	-2.73%
7/13/2020	2450H-2600H	21.3	2550	1.898	37.995	1.909	39.073	-0.58%	-2.76%
			2600	1.939	37.922	1.964	39.009	-1.27%	-2.79%
			2650	1.973	37.833	2.018	38.945	-2.23%	-2.86%
			2700	2.013	37.757	2.073	38.882	-2.89%	-2.89%

FCC ID: BCG-A2353	Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 39 of 58

Table 9-2 **Measured Body Tissue Properties**

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration	Measured Frequency	Measured	Measured														
on:			i requericy	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε										
		(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε												
			680	0.919	53.089	0.958	55.804	-4.07%	-4.87%										
I			695	0.923	53.043	0.959	55.745	-3.75%	-4.85%										
I			700	0.924	53.049	0.959	55.726	-3.65%	-4.80%										
			710	0.927	53.006	0.960	55.687	-3.44%	-4.81%										
			720	0.930	53.015	0.961	55.648	-3.23%	-4.73%										
7/6/2020	750B	20.6	725	0.933	53.032	0.961	55.629	-2.91%	-4.67%										
I			740	0.941	52.979	0.963	55.570	-2.28%	-4.66%										
			755	0.947	52.939	0.964	55.512	-1.76%	-4.64%										
		ļ	770	0.952	52.931	0.965	55.453	-1.35%	-4.55%										
			785	0.957	52.898	0.966	55.395	-0.93%	-4.51%										
			800	0.962	52.837	0.967	55.336	-0.52%	-4.52%										
			680	0.961	53.564	0.958	55.804	0.31%	-4.01%										
			695	0.965	53.529	0.959	55.745	0.63%	-3.98%										
			700	0.967	53.514	0.959	55.726	0.83%	-3.97%										
			710	0.970	53.495	0.960	55.687	1.04%	-3.94%										
I			720	0.974	53.471	0.961	55.648	1.35%	-3.91%										
8/12/2020	750B	20.8	725	0.976	53.460	0.961	55.629	1.56%	-3.90%										
		20.0	740	0.982	53.427	0.963	55.570	1.97%	-3.86%										
			755	0.988	53.396	0.964	55.512	2.49%	-3.81%										
			770	0.994	53.362	0.965	55.453	3.01%	-3.77%										
			785	1.000	53.324	0.966	55.395	3.52%	-3.74%										
			800	1.005	53.275	0.967	55.336	3.93%	-3.72%										
			820	0.960	53.380	0.969	55.258	-0.93%	-3.40%										
7/12/2020	835B	21.6	835	0.960	53.231	0.909	55.200	0.52%	-3.57%										
1/12/2020	6335	21.0					55.154												
			850	0.990 0.943	53.085	0.988	55.336	0.20% -2.48%	-3.75%										
			800		53.210	0.967			-3.84%										
7/14/2020	835B	20.4	820	0.963	52.986	0.969	55.258	-0.62%	-4.119										
			835	0.978	52.824	0.970	55.200	0.82%	-4.30%										
			850	0.994	52.673	0.988	55.154	0.61%	-4.50%										
0/00/0000	0055	04.0	820	1.005	53.696	0.969	55.258	3.72%	-2.83%										
8/26/2020	835B	21.6	835	1.011	53.667	0.970	55.200	4.23%	-2.78%										
			850	1.016	53.635	0.988	55.154	2.83%	-2.75%										
			1710	1.438	52.504	1.463	53.537	-1.71%	-1.93%										
7/8/2020	1750B	21.3	1750	1.464	52.473	1.488	53.432	-1.61%	-1.79%										
			1790	1.493	52.434	1.514	53.326	-1.39%	-1.67%										
			1710	1.409	52.410	1.463	53.537	-3.69%	-2.11%										
7/10/2020	1750B	24.2	1750	1.444	52.325	1.488	53.432	-2.96%	-2.07%										
			1790	1.480	52.225	1.514	53.326	-2.25%	-2.06%										
			1850	1.538	52.340	1.520	53.300	1.18%	-1.80%										
7/8/2020	1900B	21.3	1880	1.559	52.292	1.520	53.300	2.57%	-1.89%										
			1910	1.581	52.252	1.520	53.300	4.01%	-1.97%										
			2400	1.961	51.920	1.902	52.767	3.10%	-1.61%										
			2450	2.023	51.697	1.950	52.700	3.74%	-1.90%										
			2500	2.089	51.520	2.021	52.636	3.36%	-2.12%										
7/6/2020	2450B-2600B	21.9	2550	2.154	51.330	2.092	52.573	2.96%	-2.36%										
			2600	2.226	51.192	2.163	52.509	2.91%	-2.51%										
			2650	2.298	50.993	2.234	52.445	2.86%	-2.77%										
			2700	2.375	50.796	2.305	52.382	3.04%	-3.03%										
			2400	1.954	52.139	1.902	52.767	2.73%	-1.19%										
			2450	2.022	51.965	1.950	52.700	3.69%	-1.39%										
			2500	2.090	51.771	2.021	52.636	3.41%	-1.64%										
7/8/2020	2450B-2600B	22.0	2550	2.161	51.599	2.092	52.573	3.30%	-1.85%										
			2600	2.233	51.401	2.163	52.509	3.24%	-2.119										
			2650	2.305	51.213	2.234	52.445	3.18%	-2.35%										
			2700	2.379	50.990	2.305	52.382	3.21%	-2.66%										
	1	1			51.925	1.902	52.767	3.63%	-1.60%										
			2400	1.971	31.923														
7/13/2020	2400B	21.8	2400 2450	1.971 2.031	51.758	1.950	52.700	4.15%	-1.79%										

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r0). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: BCG-A2353	Post to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 40 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 40 of 58

9.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 9-3
System Verification Results – 1g

	System vernication results – 19														
	System Verification TARGET & MEASURED														
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)			
AM8	750	HEAD	06/29/2020	21.2	19.4	0.200	1034	7532	1.590	8.320	7.950	-4.45%			
AM6	835	HEAD	07/09/2020	22.3	20.5	0.200	4d040	3837	2.000	9.500	10.000	5.26%			
AM2	835	HEAD	07/15/2020	22.4	22.0	0.200	4d040	7420	2.000	9.500	10.000	5.26%			
AM2	1750	HEAD	07/07/2020	22.6	22.0	0.100	1092	7420	3.400	36.100	34.000	-5.82%			
AM1	1750	HEAD	07/15/2020	22.0	22.5	0.100	1104	7427	3.520	36.400	35.200	-3.30%			
AM6	1900	HEAD	07/08/2020	23.5	21.3	0.100	5d030	3837	4.240	39.900	42.400	6.27%			
AM2	2450	HEAD	07/13/2020	22.0	21.1	0.100	750	7420	5.530	53.100	55.300	4.14%			
AM2	2600	HEAD	07/13/2020	22.0	21.1	0.100	1042	7420	5.890	57.700	58.900	2.08%			

Table 9-4
System Verification Results – 10g

				Ston	1 4 611	IIICa		1103	uits –	iug		
					1	System ARGET 8						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN		Measured SAR _{10 g} (W/kg)	1 W Target SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g} (%)
AM8	750	BODY	07/06/2020	21.2	20.3	0.200	1097	7532	1.150	5.680	5.750	1.23%
AM8	750	BODY	08/12/2020	20.5	19.6	0.200	1034	7532	1.130	5.670	5.650	-0.35%
AM4	850	BODY	07/12/2020	20.1	19.8	0.200	1010	7421	1.410	6.680	7.050	5.54%
AM4	850	BODY	07/14/2020	21.1	21.8	0.200	1010	7421	1.410	6.680	7.050	5.54%
AM4	850	BODY	08/26/2020	23.4	22.8	0.200	1010	7421	1.430	6.680	7.150	7.04%
AM8	1750	BODY	07/08/2020	22.0	20.9	0.100	1092	7532	1.990	19.400	19.900	2.58%
AM5	1750	BODY	07/10/2020	23.1	22.4	0.100	1104	7416	1.970	19.600	19.700	0.51%
AM8	1900	BODY	07/08/2020	22.0	20.9	0.100	5d180	7532	2.140	20.900	21.400	2.39%
AM3	2450	BODY	07/06/2020	21.4	21.0	0.100	750	3949	2.440	24.100	24.400	1.24%
AM5	2450	BODY	07/08/2020	21.4	20.4	0.100	921	7416	2.260	23.800	22.600	-5.04%
AM3	2450	BODY	07/13/2020	23.3	21.9	0.100	921	3949	2.550	23.800	25.500	7.14%
AM3	2600	BODY	07/06/2020	21.4	21.0	0.100	1042	3949	2.460	24.900	24.600	-1.20%
AM5	2600	BODY	07/08/2020	21.4	20.4	0.100	1069	7416	2.510	24.800	25.100	1.21%

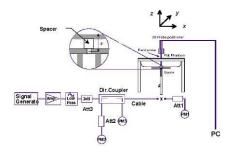


Figure 9-1 System Verification Setup Diagram

Figure 9-2
System Verification Setup Photo

FCC ID: BCG-A2353	Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 44 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 41 of 58

10.1 **Standalone Head SAR Data**

Table 10-1 UMTS 850 Head SAR

							MEAS	MEASUREMENT RESULTS								
FREQU	ENCY	Mode	Mode Service	Maximum Allowed	Conducted	Power	Test	Housing Type	Wristband Type	Device Serial	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]	Position			Number		Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	25.0	24.00	0.05	10 mm	Aluminum	Sport	DVPCR00DQ7TM	Front	1:1	0.000	1.259	0.000	A1
836.60	4183	UMTS 850	RMC	25.0	24.00	-0.10	10 mm	Aluminum	Metal Links	DVPCR00DQ7TM	Front	1:1	0.000	1.259	0.000	
836.60	4183	UMTS 850	RMC	25.0	24.00	-0.13	10 mm	Aluminum	Metal Loop	DVPCR018Q7TM	Front	1:1	0.000	1.259	0.000	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head								
	Spatial Peak							1.6 W/kg (mW/g)								
		Uncontro	olled Exposure	e/General Population	on					average	d over 1	gram				

Table 10-2 UMTS 1750 Head SAR

							MEAS	SUREMENT F	RESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Test	Housing Type	Wristband Type	Device Serial	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]	Position			Number		Cycle	(W/kg)	Factor	(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.0	22.96	-0.16	10 mm	Aluminum	Sport	DVPCR018Q7TM	Front	1:1	0.144	1.271	0.183	
1732.40	1412	UMTS 1750	RMC	24.0	22.96	0.02	10 mm	Aluminum	Metal Links	DVPCR014Q7TM	Front	1:1	0.268	1.271	0.341	A2
1732.40	1412	UMTS 1750	RMC	24.0	22.96	-0.13	10 mm	Aluminum	Metal Loop	DVPCR014Q7TM	Front	1:1	0.262	1.271	0.333	
		ANSI /	IEEE C95.1 19	92 - SAFETY LIMIT	•				•		Head					
			Spatial	Peak						1.6 W	/kg (mW	/g)				
		Uncontro	lled Exposure	e/General Population	on					average	ed over 1	gram				

Table 10-3 UMTS 1900 Head SAR

							MEAS	SUREMENT F	RESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Test	Housing Type	Wristband Type	Device Serial	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]	Position			Number		Cycle	(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.0	22.97	-0.06	10 mm	Aluminum	Sport	DVPCR00DQ7TM	Front	1:1	0.109	1.268	0.138	
1880.00	9400	UMTS 1900	RMC	24.0	22.97	-0.14	10 mm	Aluminum	Metal Links	DVPCR00DQ7TM	Front	1:1	0.188	1.268	0.238	
1880.00	9400	UMTS 1900	RMC	24.0	22.97	0.03	10 mm	Aluminum	Metal Loop	DVPCR019Q7TM	Front	1:1	0.300	1.268	0.380	A3
		ANSI / I	EEE C95.1 19	92 - SAFETY LIMIT							Head			•		
			Spatial	Peak						1.6 W	/kg (mW	(a)				
		Uncontro		e/General Population	on						d over 1					

Table 10-4 LTE B12 Head SAR

									MEA	SUREM	ENT RE	SULTS									
F	REQUENCY	Y	Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	th.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]									Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	Sport	25.0	23.85	0.00	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR015Q7TM	1:1	0.000	1.303	0.000	
707.50	23095	Mid	LTE Band 12	10	Sport	24.0	23.00	0.00	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR015Q7TM	1:1	0.000	1.259	0.000	
707.50									0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR00WQ7TM	1:1	0.001	1.303	0.001	A4
707.50	23095	Mid	LTE Band 12	10	Metal Links	24.0	23.00	0.04	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR00WQ7TM	1:1	0.001	1.259	0.001	
707.50	23095	Mid	LTE Band 12	10	Metal Loop	25.0	23.85	0.08	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR015Q7TM	1:1	0.000	1.303	0.000	
707.50	23095	Mid	LTE Band 12	10	Metal Lopp	24.0	23.00	0.20	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR015Q7TM	1:1	0.000	1.259	0.000	
			AA		95.1 1992 - SAFE	TY LIMIT									4.01	Head					
			Una		Spatial Peak	Donulation								W/kg (mW/g) sed over 1 gram							

	FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 40 -4 50
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 42 of 58
© 202	0 PCTEST			REV 21.4 M

Table 10-5 LTE B13 Head SAR

									MEA	SUREM	ENT RE	SULTS									
FR	EQUENCY	,	Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]		Power [dBm]	Power [dBm]	Dritt (dB)			.,						Cycle	(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	Sport	25.0	24.37	0.09	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR015Q7TM	1:1	0.000	1.156	0.000	A5
782.00	23230	Mid	LTE Band 13	10	Sport	24.0	23.00	-0.16	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR015Q7TM	1:1	0.000	1.259	0.000	
782.00										Front	10 mm	Aluminum	QPSK	1	25	DVPCR00WQ7TM	1:1	0.000	1.156	0.000	
782.00	23230	Mid	LTE Band 13	10	Metal Links	24.0	23.00	0.00	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR00WQ7TM	1:1	0.000	1.259	0.000	
782.00	23230	Mid	LTE Band 13	10	Metal Loop	25.0	24.37	0.00	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR019Q7TM	1:1	0.000	1.156	0.000	
782.00	23230	Mid	LTE Band 13	10	Metal Loop	24.0	23.00	0.00	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR019Q7TM	1:1	0.000	1.259	0.000	
			AA.		95.1 1992 - SAFE Spatial Peak	TY LIMIT									1.6	Head V/kg (mW/g)					
			Unce	ontrolled Ex	posure/General	Population							averad	ged over 1 gram							

Table 10-6 LTE B26 Head SAR

									MEASU	JREME	NT RES	JLTS									
F	REQUENCY		Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch	.		[MHz]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Power [dBm]	Power [dBm]	Drift [dB]	()								Cycle	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	10	Sport	25.0	23.83	0.00	0	Front	10 mm	Aluminum	QPSK	1	49	DVPCR01JQ7TM	1:1	0.000	1.309	0.000	
819.00	26740	Low	LTE Band 26 (Cell)	10	Sport	24.0	22.87	0.07	1	Front	10 mm	Aluminum	QPSK	25	25	DVPCR01JQ7TM	1:1	0.000	1.297	0.000	
831.50											10 mm	Aluminum	QPSK	1	49	DVPCR019Q7TM	1:1	0.000	1.309	0.000	A6
819.00	26740	Low	LTE Band 26 (Cell)	10	Metal Links	24.0	22.87	0.00	1	Front	10 mm	Aluminum	QPSK	25	25	DVPCR019Q7TM	1:1	0.000	1.297	0.000	
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Loop	25.0	23.83	0.08	0	Front	10 mm	Aluminum	QPSK	1	49	DVPCR018Q7TM	1:1	0.000	1.309	0.000	
819.00	26740	Low	LTE Band 26 (Cell)	10	Metal Loop	24.0	22.87	0.08	1	Front	10 mm	Aluminum	QPSK	25	25	DVPCR018Q7TM	1:1	0.000	1.297	0.000	
				Spa	1 1992 - SAFETY atial Peak sure/General Po											Head V/kg (mW/g) jed over 1 gram					

Table 10-7 LTE B5 Head SAR

									MEAS	JREME	NT RESI	JLTS									
F	REQUENCY		Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch	١.		[MHz]		Power [dBm]	Power [dBm]	Dritt (dB)									Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Sport	25.0	23.81	0.08	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR01FQ7TM	1:1	0.000	1.315	0.000	A7
836.50	20525	Mid	LTE Band 5 (Cell)	10	Sport	24.0	22.91	-0.02	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR01FQ7TM	1:1	0.000	1.285	0.000	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Links	25.0	23.81	0.05	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR018Q7TM	1:1	0.000	1.315	0.000	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Links	24.0	22.91	0.10	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR018Q7TM	1:1	0.000	1.285	0.000	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Loop	25.0	23.81	-0.12	0	Front	10 mm	Aluminum	QPSK	1	25	DVPCR01FQ7TM	1:1	0.000	1.315	0.000	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Loop	24.0	22.91	0.05	1	Front	10 mm	Aluminum	QPSK	25	12	DVPCR01FQ7TM	1:1	0.000	1.285	0.000	
			ANS		1 1992 - SAFETY	LIMIT									161	Head V/kg (mW/g)					
			Uncon		sure/General Po	pulation										ed over 1 gram					

Table 10-8 LTE B66 Head SAR

									MEAS	JREME	NT RESI	ULTS									
F	REQUENCY		Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.		mode	[MHz]	Wiladana Type	Power [dBm]	Power [dBm]	Drift [dB]	iiii it [db]	oide	opacing	nodang type	modulation	IND OILE	ND OHAC	Device Gerial Hamber	Cycle	(W/kg)	Factor	(W/kg)	1101
1745.00	132322	Mid	LTE Band 66 (AWS)	20	Sport	24.0	22.76	-0.09	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR018Q7TM	1:1	0.141	1.330	0.188	
1720.00	132072	Low	LTE Band 66 (AWS)	20	Sport	23.0	21.98	0.17	1	Front	10 mm	Aluminum	QPSK	50	25	DVPCR018Q7TM	1:1	0.108	1.265	0.137	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	Metal Links	24.0	22.76	-0.01	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR00WQ7TM	1:1	0.265	1.330	0.352	
1720.00	132072	Low	LTE Band 66 (AWS)	20	Metal Links	23.0	21.98	0.00	1	Front 10 mm Aluminum QPSK 50 25 DVPCR00WQ7TM 1:1 0.171											
1720.00	132072	Low	LTE Band 66 (AWS)	20	Metal Loop	24.0	22.75	-0.01	0	Front	10 mm	Aluminum	QPSK	1	99	DVPCR019Q7TM	1:1	0.318	1.334	0.424	A8
1745.00	132322	Mid	LTE Band 66 (AWS)	20	Metal Loop	24.0	22.76	-0.11	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR01FQ7TM	1:1	0.287	1.330	0.382	
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	22.70	0.08	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR014Q7TM	1:1	0.290	1.349	0.391	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.0	1	Front	10 mm	Aluminum	QPSK	50	25	DVPCR01FQ7TM	1:1	0.225	1.265	0.285				
			ANS		1 1992 - SAFETY atial Peak	LIMIT									1.6 \	Head W/kg (mW/g)					
			Uncon	trolled Expo	sure/General Po	pulation									averag	ged over 1 gram					

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 43 of 58

Table 10-9 LTE B25 Head SAR

									MEAS	JREME	NT RES	JLTS									
FI	REQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			[MHZ]		Power [dBm]	Power [dBm]	Dritt (dB)	. ,		.,						Cycle	(W/kg)	Factor	(W/kg)	
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	22.82	-0.07	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR014Q7TM	1:1	0.163	1.312	0.214	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	Sport	23.0	21.93	-0.09	1	Front	10 mm	Aluminum	QPSK	50	50	DVPCR014Q7TM	1:1	0.123	1.279	0.157	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	22.82	0.00	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR00DQ7TM	1:1	0.189	1.312	0.248	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	Metal Links	23.0	21.93	-0.03	1	Front	10 mm	Aluminum	QPSK	50	50	DVPCR00DQ7TM	1:1	0.146	1.279	0.187	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	22.82	0.07	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR019Q7TM	1:1	0.265	1.312	0.348	A9
1882.50	26365	Mid	LTE Band 25 (PCS)	20	Metal Loop	23.0	21.93	-0.13	1	Front	10 mm	Aluminum	QPSK	50	50	DVPCR019Q7TM	1:1	0.204	1.279	0.261	
			ANS		1 1992 - SAFETY	LIMIT		-								Head			•	•	
			Uncon		ntial Peak sure/General Po	pulation										N/kg (mW/g) jed over 1 gram					

Table 10-10 LTE B7 Head SAR

									MEASU	JREME	NT RES	JLTS									
FI	REQUENCY		Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]		Power [dBm]	Power [dBm]	Drift [dB]	()								Cycle	(W/kg)	Factor	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	Sport	23.5	22.99	-0.03	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR018Q7TM	1:1	0.335	1.125	0.377	A10
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.39	-0.09	1	Front	10 mm	Aluminum	QPSK	50	0	DVPCR015Q7TM	1:1	0.286	1.291	0.369	
2535.00											10 mm	Aluminum	QPSK	1	0	DVPCR018Q7TM	1:1	0.200	1.125	0.225	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.39	0.08	1	Front	10 mm	Aluminum	QPSK	50	0	DVPCR00DQ7TM	1:1	0.187	1.291	0.241	
2535.00	21100	Mid	LTE Band 7	20	Metal Loop	23.5	22.99	-0.05	0	Front	10 mm	Aluminum	QPSK	1	0	DVPCR01JQ7TM	1:1	0.266	1.125	0.299	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	1	Front	10 mm	Aluminum	QPSK	50	0	DVPCR015Q7TM	1:1	0.214	1.291	0.276			
			ANS		1 1992 - SAFETY	LIMIT								Head							
			Uncon		ntial Peak sure/General Po	pulation										N/kg (mW/g) jed over 1 gram					

Table 10-11 LTE B41 Head SAR

									MEAS	JREME	NT RES	ULTS									
FI	REQUENCY		Mode	Bandwidth	Wristband Type	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]		Power [dBm]	Power [dBm]	Drift [dB]	()								Cycle	(W/kg)	Factor	(W/kg)	
2680.00	41490	High	LTE Band 41	20	0.10	0	Front	10 mm	Aluminum	QPSK	1	50	DVPCR019Q7TM	1:1.58	0.191	1.327	0.253				
2593.00	40620	Mid	LTE Band 41	20	Sport	22.5	21.35	-0.01	1	Front	10 mm	Aluminum	QPSK	50	0	DVPCR00DQ7TM	1:1.58	0.123	1.303	0.160	
2680.00										Front	10 mm	Aluminum	QPSK	1	50	DVPCR015Q7TM	1:1.58	0.192	1.327	0.255	
2593.00									1	Front	10 mm	Aluminum	QPSK	50	0	DVPCR019Q7TM	1:1.58	0.084	1.303	0.109	
2680.00	41490	High	LTE Band 41	20	Metal Loop	23.5	22.27	0.04	0	Front	10 mm	Aluminum	QPSK	1	50	DVPCR01JQ7TM	1:1.58	0.205	1.327	0.272	A11
2593.00	40620	Mid	LTE Band 41	20	Metal Loop	22.5	1	Front	10 mm	Aluminum	QPSK	50	0	DVPCR0DQ7TM	1:1.58	0.087	1.303	0.113			
			ANSI		1 1992 - SAFETY	LIMIT								Head							
			Uncon		atial Peak sure/General Po	pulation										W/kg (mW/g) ged over 1 gram					

Table 10-12 2.4GHz WLAN Head SAR

								2.70	/ 12 1	V E/\	i iicau v	<i>37</i> 111							
									MEAS	UREMEN ⁻	T RESULTS								
FREQ	JENCY	Mode	Service	Bandwidth [MHz]		Conducted Power [dBm]	Power	Side	Spacing	Housing Type	Wristband Type	Device Serial Number	Data Rate (Mbps)		SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.	Power [dBm]							(MDDs)	(%)	(W/kg)	(Power)	Cycle)	(W/kg)					
2412	1	802.11b	DSSS	22	19.0	17.77	-0.17 Front 10 mm Aluminum Sport DVPCR015Q7TM 1 100.0 0.210 1.327 1.000 0.279 A12											A12	
2412	1	802.11b	DSSS	22	19.0	17.77	-0.01	Front	10 mm	Aluminum	Metal Links	DVPCR015Q7TM	1	100.0	0.124	1.327	1.000	0.165	
2412 1 802.11b DSSS 22 19.0 17.77 -0.21 Front 10 mm Aluminum								Metal Loop	DVPCR01JQ7TM	1	100.0	0.143	1.327	1.000	0.190				
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Head						
		Spatial Peak										1.6	W/kg (m	W/g)					
	Uncontrolled Exposure/General Population											avera	aged over	1 gram					

FCC ID: BCG-A2353	Poud to be part of @element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 -f 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 44 of 58

Table 10-13 Bluetooth Head SAR

								MEA	SUREMI	ENT RESULT	's							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Spacing	Housing	Wristband Type		Data Rate	Duty	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	inodo	0011100	Power [dBm]	Power [dBm]	Drift [dB]	Oluc	opasing	Type	Wiladana Type	Number		Cycle (%)	(W/kg)	Power)	Cycle)	(W/kg)	1.00.
2441.00	39	Bluetooth	FHSS	17.5	16.37	-0.10	Front	10 mm	Aluminum	Sport	DVPCR01JQ7TM	1	100	0.137	1.297	1.000	0.178	A13
2441.00	39	Bluetooth	FHSS	17.5	16.37	-0.02	Front	10 mm	Aluminum	Metal Links	DVPCR01JQ7TM	1	100	0.076	1.297	1.000	0.099	
2441.00	39	Bluetooth	FHSS	17.5	16.37	-0.07	Front	10 mm	Aluminum	Metal Loop	DVPCR01JQ7TM	1	100	0.100	1.297	1.000	0.130	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT							Head	i					
			Spatial Pe	ak							1	.6 W/kg (mW/g)					
		Uncontrolled	Exposure/G	eneral Popul	ation						ave	raged ove	r 1 gram					

10.2 Standalone Extremity SAR Data

Table 10-14 UMTS 850 Extremity SAR

						ME	ASURE	MENT R	ESULTS							
FREQUE	NCY	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power	Spacing	Housing	Wristband Type	Device Serial Number	Duty Cycle	Side	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			Power [dbm]	Power [abin]	Drift [ab]		Туре	Type		Cycle		Factor	(W/kg)	(W/kg)	ĺ
836.60	4183	UMTS 850	RMC	25.0	24.00	0.01	0 mm	Aluminum	Sport	DVPCR01FQ7TM	1:1	back	1.259	0.137	0.172	
836.60	4183	UMTS 850	RMC	25.0	24.00	0.15	0 mm	Aluminum	Metal Links	DVPCR014Q7TM	1:1	back	1.259	0.166	0.209	A14
836.60	4183	UMTS 850	RMC	25.0	24.00	0.16	0 mm	Aluminum	Metal Loop	DVPCR014Q7TM	1:1	back	1.259	0.119	0.150	
		ANSI / IEE	EE C95.1 1992 - Spatial Pea	· SAFETY LIMIT ık						4.0	Extrem W/kg (,				
		Uncontrolle	eneral Population					avera	ged over	10 gram	s					

Table 10-15 UMTS 1750 Extremity SAR

						ME	ASURE	MENT R	ESULTS							
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Housing	Wristband	Device Serial Number	Duty	Side	Scaling	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Туре	Type		Cycle		Factor	(W/kg)	(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.0	22.96	-0.10	0 mm	Aluminum	Sport	DVPCR014Q7TM	1:1	back	1.271	0.074	0.094	A15
1732.40	1412	UMTS 1750	RMC	24.0	22.96	0.03	0 mm	Aluminum	Metal Links	DVPCR01FQ7TM	1:1	back	1.271	0.038	0.048	
1732.40	1412	UMTS 1750	RMC	24.0	22.96	-0.05	0 mm	Aluminum	Metal Loop	DVPCR01FQ7TM	1:1	back	1.271	0.020	0.025	
		ANSI / IEE		- SAFETY LIMIT							Extren					
			ak					4.0) W/kg (mW/g)						
	Spatial Peak Uncontrolled Exposure/General Population									avera	ged over	10 gram	s			

Table 10-16 UMTS 1900 Extremity SAR

					U	MI 12	1900	Extre	mity a	SAK						
						ME	ASURE	MENT R	ESULTS							
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power Drift [dB]	Spacing	Housing	Wristband	Device Serial Number	Duty	Side	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	рин (ав)		Туре	Туре		Cycle		ractor	(W/kg)	(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.0	22.97	0.16	0 mm	Aluminum	Sport	DVPCR00DQ7TM	1:1	back	1.268	0.098	0.124	A16
1880.00	9400	UMTS 1900	RMC	24.0	22.97	-0.03	0 mm	Aluminum	Metal Links	DVPCR00DQ7TM	1:1	back	1.268	0.053	0.067	
1880.00	9400	UMTS 1900	RMC	24.0	22.97	0.03	0 mm	Aluminum	Metal Loop	DVPCR01JQ7TM	1:1	back	1.268	0.029	0.037	
		ANSI / IEI	EE C95.1 1992 ·	SAFETY LIMIT							Extrem	ity				
			ak					4.0) W/kg (mW/g)						
		Uncontrolle	ed Exposure/Ge	eneral Population					avera	ged over	10 gram	s				

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
ocument S/N:	Test Dates:	DUT Type:	D 45 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 45 of 58

Table 10-17 LTE B12 Extremity SAR

								N	IEASUR	EMENT R	ESULTS										
FF	REQUENCY		Mode	Bandwidth [MHz]	Wristband	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch	٢		[WITZ]	Туре	Power [dBm]	Power (abm)	Drift (db)		Type	Number							ractor	(W/kg)	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	Sport	25.0	23.85	-0.05	0	Aluminum	DVPCR014Q7TM	QPSK	1	25	0 mm	back	1:1	1.303	0.177	0.231	
707.50	23095	Mid	LTE Band 12	10	Sport	24.0	23.00	0.03	1	Aluminum	DVPCR014Q7TM	QPSK	25	12	0 mm	back	1:1	1.259	0.140	0.176	
707.50	707.50 23095 Mid LTE Band 12 10 Metal Links 25.0 23								0	Aluminum	DVPCR018Q7TM	QPSK	1	25	0 mm	back	1:1	1.303	0.169	0.220	
707.50	23095	Mid	LTE Band 12	10	Metal Links	24.0	23.00	0.01	1	Aluminum	DVPCR018Q7TM	QPSK	25	12	0 mm	back	1:1	1.259	0.153	0.193	
707.50	23095	Mid	LTE Band 12	10	Metal Loop	25.0	23.85	-0.02	0	Aluminum	DVPCR019Q7TM	QPSK	1	25	0 mm	back	1:1	1.303	0.208	0.271	A17
707.50	23095	Mid	LTE Band 12	10	Metal Loop	24.0	0.11	1	Aluminum	DVPCR018Q7TM	QPSK	25	12	0 mm	back	1:1	1.259	0.147	0.185		
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT													tremity						
		Spatial Peak												4.0 W	/kg (mW/	g)					
	Uncontrolled Exposure/General Population													averaged	over 10 g	rams					

Table 10-18 LTE B13 Extremity SAR

										EMENT R	ESULTS										
FR	EQUENCY		Mode	Bandwidth	Wristband	Maximum Allowed	Conducted	Power	MPR [dB]	Housing	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch			[MHz]	Туре	Power [dBm]	Power [dBm]	Drift [dB]	(==)	Type	Number						, -,	Factor	(W/kg)	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	Sport	25.0	24.37	-0.08	0	Aluminum	DVPCR018Q7TM	QPSK	1	25	0 mm	back	1:1	1.156	0.177	0.205	
782.00	23230	Mid	LTE Band 13	10	Sport	24.0	23.00	-0.04	1	Aluminum	DVPCR018Q7TM	QPSK	25	12	0 mm	back	1:1	1.259	0.144	0.181	
782.00	2.00 23230 Mid LTE Band 13 10 Metal Links 25.0 24.37					24.37	-0.05	0	Aluminum	DVPCR00WQ7TM	QPSK	1	25	0 mm	back	1:1	1.156	0.240	0.277	A18	
782.00	23230	Mid	LTE Band 13	10	Metal Links	24.0	23.00	-0.01	1	Aluminum	DVPCR00WQ7TM	QPSK	25	12	0 mm	back	1:1	1.259	0.167	0.210	
782.00	23230	Mid	LTE Band 13	10	Metal Loop	25.0	24.37	-0.04	0	Aluminum	DVPCR00DQ7TM	QPSK	1	25	0 mm	back	1:1	1.156	0.189	0.218	
782.00	23230 Md LTE Band 13 10 Metal Loop 24.0 23.00								1	Aluminum	DVPCR00DQ7TM	QPSK	25	12	0 mm	back	1:1	1.259	0.152	0.191	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT														tremity						
	Spatial Peak													4.0 W	kg (mW/	g)					
			Uncontroll	ed Exposur	e/General Po	pulation								averaged	over 10 g	rams					

Table 10-19 LTE B26 Extremity SAR

											······	···									
								N	IEASUR	EMENT R	ESULTS										
FR	EQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch			[MITIZ]	Type	rower [dBill]	Fower [dBill]	Driit [db]		Туре	Number							racioi	(W/kg)	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	10	Sport	25.0	23.83	0.04	0	Aluminum	DVPCR018Q7TM	QPSK	1	49	0 mm	back	1:1	1.309	0.111	0.145	
819.00	26740	Low	LTE Band 26 (Cell)	10	Sport	24.0	22.87	0.04	1	Aluminum	DVPCR018Q7TM	QPSK	25	25	0 mm	back	1:1	1.297	0.083	0.108	
831.50	50 26865 Md LTE Band 26 (Cell) 10 Metal Links 25.0 23.6							0.14	0	Aluminum	DVPCR014Q7TM	QPSK	1	49	0 mm	back	1:1	1.309	0.144	0.188	
819.00	26740	Low	LTE Band 26 (Cell)	10	Metal Links	24.0	22.87	0.10	1	Aluminum	DVPCR014Q7TM	QPSK	25	25	0 mm	back	1:1	1.297	0.105	0.136	
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Loop	25.0	23.83	-0.11	0	Aluminum	DVPCR01FQ7TM	QPSK	1	49	0 mm	back	1:1	1.309	0.149	0.195	A19
819.00	26740	Low	LTE Band 26 (Cell)	10	Metal Loop	24.0	22.87	0.11	1	Aluminum	DVPCR01FQ7TM	QPSK	25	25	0 mm	back	1:1	1.297	0.120	0.156	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Ex	tremity						
	Spatial Peak													4.0 W	/kg (mW/	g)					
			Uncontroll	ed Exposur	e/General Po	pulation								averaged	over 10 g	rams					

Table 10-20 LTE B5 Extremity SAR

								<u>–</u> .	DJ L	ALICI	IIILY OAI	•									
								N	MEASUR	EMENT R	ESULTS										
FR	REQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	CI	١.		[MITIZ]	туре	Fower [dBill]	Fower [dBill]	Driit [dB]		Туре	Number							ractor	(W/kg)	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Sport	25.0	23.81	0.02	0	Aluminum	DVPCR01FQ7TM	QPSK	1	25	0 mm	back	1:1	1.315	0.175	0.230	A20
836.50	20525	Mid	LTE Band 5 (Cell)	10	Sport	24.0	22.91	0.03	1	Aluminum	DVPCR01FQ7TM	QPSK	25	12	0 mm	back	1:1	1.285	0.116	0.149	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Links	25.0	23.81	-0.05	0	Aluminum	DVPCR014Q7TM	QPSK	1	25	0 mm	back	1:1	1.315	0.143	0.188	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Links	24.0	22.91	-0.05	1	Aluminum	DVPCR014Q7TM	QPSK	25	12	0 mm	back	1:1	1.285	0.114	0.146	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Loop	25.0	23.81	-0.01	0	Aluminum	DVPCR014Q7TM	QPSK	1	25	0 mm	back	1:1	1.315	0.107	0.141	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Metal Loop	24.0	22.91	0.18	1	Aluminum	DVPCR014Q7TM	QPSK	25	12	0 mm	back	1:1	1.285	0.083	0.107	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak														tremity /kg (mW/	g)		•			
			Uncontrol	led Exposur	e/General Po	pulation								averaged	over 10 a	rams					

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
ocument S/N:	Test Dates:	DUT Type:	D 40 -f 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 46 of 58

Table 10-21 LTE B66 Extremity SAR

	MEASUREMENT RESULTS																				
FR	EQUENCY		Mode	Bandwidth	Wristband	Maximum Allowed	Conducted	Power	MPR [dB]	Housing	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.			[MHz]	Туре	Power [dBm]	Power [dBm]	Drift [dB]		Type	Number				.,		., ., .	Factor	(W/kg)	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	Sport	24.0	22.76	0.03	0	Aluminum	DVPCR00DQ7TM	QPSK	1	0	0 mm	back	1:1	1.330	0.064	0.085	A21
1720.00	0 132072 Low LTE Band 66 (AWS) 20 Sport 23.0 21.98							0.05	1	Aluminum	DVPCR00DQ7TM	QPSK	50	25	0 mm	back	1:1	1.265	0.038	0.048	
1745.00									0	Aluminum	DVPCR01JQ7TM	QPSK	1	0	0 mm	back	1:1	1.330	0.027	0.036	
1720.00	132072	Low	LTE Band 66 (AWS)	20	Metal Links	23.0	21.98	0.03	1	Aluminum	DVPCR01JQ7TM	QPSK	50	25	0 mm	back	1:1	1.265	0.021	0.027	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	Metal Loop	24.0	22.76	-0.01	0	Aluminum	DVPCR015Q7TM	QPSK	1	0	0 mm	back	1:1	1.330	0.034	0.045	
1720.00	00 132072 Low LTE Band 66 (AWS) 20 Metal Loop 23.0 21.98 0						0.04	1	Aluminum	DVPCR015Q7TM	QPSK	50	25	0 mm	back	1:1	1.265	0.034	0.043		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													tremity							
	Spatial Peak												4.0 W	/kg (mW/	g)						
			Uncontroll	ed Exposur	e/General Po	pulation								averaged	over 10 g	rams					

Table 10-22 LTE B25 Extremity SAR

								N	MEASUR	EMENT R	ESULTS										
FR	REQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch	١.		[MIT12]	Туре	rower [dBill]	Fower [dbiii]	Driit [dB]		Туре	Number							racioi	(W/kg)	(W/kg)	
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	22.82	0.02	0	Aluminum	DVPCR01JQ7TM	QPSK	1	0	0 mm	back	1:1	1.312	0.032	0.042	
1882.50									1	Aluminum	DVPCR01JQ7TM	QPSK	50	50	0 mm	back	1:1	1.279	0.027	0.035	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	22.82	-0.02	2 0 Aluminum DVPCR00DQ7TM QPSK 1 0 0 mm back 1:1 1.312 0.075 0.098 A22								A22				
1882.50									1	Aluminum	DVPCR00DQ7TM	QPSK	50	50	0 mm	back	1:1	1.279	0.067	0.086	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	22.82	0.00	0	Aluminum	DVPCR015Q7TM	QPSK	1	0	0 mm	back	1:1	1.312	0.024	0.031	
1882.50	50 26365 Md LTE Band 25 (PCS) 20 Metal Loop 23.0 21.93							0.03	1	Aluminum	DVPCR01JQ7TM	QPSK	50	50	0 mm	back	1:1	1.279	0.019	0.024	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													ctremity							
	Spatial Peak												4.0 W	/kg (mW/	g)						
	Uncontrolled Exposure/General Population													averaged	l over 10 g	rams					

Table 10-23 LTE B7 Extremity SAR

											,	<u> </u>									
	MEASUREMENT RESULTS																				
FR	EQUENCY		Mode	Bandwidth [MHz]	Wristband	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Housing	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch	١.		(WHZ)	Туре	Power [dBm]	Power [dBm]	Driit (ab)		Type	Number							ractor	(W/kg)	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	Sport	23.5	22.99	-0.10	0	Aluminum	DVPCR019Q7TM	QPSK	1	0	0 mm	back	1:1	1.125	0.058	0.065	
2510.00									1	Aluminum	DVPCR019Q7TM	QPSK	50	0	0 mm	back	1:1	1.291	0.043	0.056	
2535.00	21100	Mid	LTE Band 7	20	Metal Links	23.5	22.99	-0.14	0.14 0 Aluminum DVPCR014Q7TM QPSK 1 0 0 mm back 1:1 1.125 0.058 0.065												
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.39	0.08	1	Aluminum	DVPCR014Q7TM	QPSK	50	0	0 mm	back	1:1	1.291	0.041	0.053	
2535.00	21100	Mid	LTE Band 7	20	Metal Loop	23.5	22.99	-0.11	0	Aluminum	DVPCR015Q7TM	QPSK	1	0	0 mm	back	1:1	1.125	0.061	0.069	A23
2510.00	00 20850 Low LTE Band 7 20 Metal Loop 22.5 21.39 0						0.03	1	Aluminum	DVPCR015Q7TM	QPSK	50	0	0 mm	back	1:1	1.291	0.050	0.065		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									-			E	tremity							
	Spatial Peak												4.0 W	/kg (mW/	g)						
		Uncontrolled Exposure/General Population												averaged	over 10 g	rams					

Table 10-24 LTE B41 Extremity SAR

	LTE B41 Extremity SAK																				
	MEASUREMENT RESULTS																				
FF	REQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	CI	h.		[MITZ]	Type	rower (ubili)	Fower [dbill]	Driit [db]		Туре	Number							ractor	(W/kg)	(W/kg)	i
2680.00	.00 41490 High LTE Band 41 20 Sport 23.5 22.27							-0.05	0	Aluminum	DVPCR015Q7TM	QPSK	1	50	0 mm	back	1:1.58	1.327	0.036	0.048	
2593.00	33.00 40620 Mid LTE Band 41 20 Sport 22.5 21.35								1	Aluminum	DVPCR015Q7TM	QPSK	50	0	0 mm	back	1:1.58	1.303	0.026	0.034	
2680.00	41490	High	LTE Band 41	20	Metal Links	23.5	22.27 -0.03 0 Aluminum DVPCR018Q7TM QPSK 1 50 0 mm back 1:1.58 1.327 0.056 0.074														
2593.00	40620	Mid	LTE Band 41	20	Metal Links	22.5	21.35	-0.18	1	Aluminum	DVPCR018Q7TM	QPSK	50	0	0 mm	back	1:1.58	1.303	0.034	0.044	
2680.00	41490	High	LTE Band 41	20	Metal Loop	23.5	22.27	-0.10	0	Aluminum	DVPCR01JQ7TM	QPSK	1	50	0 mm	back	1:1.58	1.327	0.074	0.098	A24
2593.00	00 40620 Mid LTE Band 41 20 Metal Loop 22.5 21.35 -							-0.01	1	Aluminum	DVPCR01JQ7TM	QPSK	50	0	0 mm	back	1:1.58	1.303	0.065	0.085	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak													tremity /kg (mW/	g)						
	Spatial Peak Uncontrolled Exposure/General Population													averaged	over 10 g	rams					

FCC ID: BCG-A2353	Proof to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 47 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 47 of 58

Table 10-25 2.4GHz WLAN Extremity SAR

								MEASU	IREMENT	RESULTS	3								
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power	Power Drift [dB]	Spacing	Housing	Wristband	Device Serial	Data Rate	Side	Duty Cycle	Scaling Factor	Scaling Factor (Duty	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch. [MHz] Power [dBm] [dBm]								Type	Type	Number	(Mbps)		(%)	(Power)	Cycle)	(W/kg)	(W/kg)	1
2412	1	802.11b	DSSS	22	19.0	17.77	0.13	0 mm	Aluminum	Sport	DVPCR0DQ7TM	1	back	100.0	1.327	1.000	0.037	0.049	A25
2412	12 1 802.11b DSSS 22 19.0 17.77							0 mm	Aluminum	Metal Links	DVPCR019Q7TM	1	back	100.0	1.327	1.000	0.023	0.031	
2412	1	802.11b	DSSS	22	19.0	-0.19	0 mm	Aluminum	Metal Loop	DVPCR00WQ7TM	1	back	100.0	1.327	1.000	0.035	0.046		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Extrer	nity					
	Spatial Peak											4.0	0 W/kg	(mW/g)					
		Un	controlle	d Exposure/	General Population							avera	ged ove	r 10 gran	ns				

Table 10-26 Bluetooth Extremity SAR

								MEASUR	EMENT RI	ESULTS								
FREQU	Mode Service Power [dBm] Power [dBm] [dB					Power Drift	Spacing	Housing	Wristband	Device Serial	Data Rate	Side	Duty	Scaling Factor (Cond	Scaling Factor (Duty	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch. Fower [ubin] Fower [ubin]					[dB]		Type	Туре	Number	(Mbps)		Cycle (%)	Power)	Cycle)	(W/kg)	(W/kg)	
2441	39	Bluetooth	FHSS	17.5	16.37	0.09	0 mm	Aluminum	Sport	DVPCR00DQ7TM	1	back	100	1.297	1.000	0.023	0.030	A26
2441	441 39 Bluetooth FHSS 17.5 16.37 (0 mm	Aluminum	Metal Links	DVPCR00DQ7TM	1	back	100	1.297	1.000	0.020	0.026	
2441	39	Bluetooth	FHSS	17.5	16.37	0.06	0 mm	Aluminum	Metal Loop	DVPCR00DQ7TM	1	back	100	1.297	1.000	0.021	0.027	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											Extre	mity					
	Spatial Peak										4.	0 W/kg	(mW/g)					
	Uncontrolled Exposure/General Population										avera	aged ove	er 10 gra	ms				

10.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg for 1g SAR and 2.0 W/kg for 1g SAR.
- 7. This device has one housing type: Aluminum. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
- 8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore, the procedures in FCC KDB Publication 447498 D01v06 Section 6.2 have been applied for extremity and next to mouth (head) conditions.
- 9. The orange highlights throughout the report represent the highest scaled SAR per Equipment Class.
- 10. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

UMTS Notes:

1. UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.

FCC ID: BCG-A2353	Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 49 of 59
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 48 of 58

2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations and >1.5 W/kg for 10g SAR, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. This device can only operate with 16 QAM on the uplink with less than or equal to 27RB. QPSK and 16QAM LTE powers for RB size of 15 ("50%RB) and 27 ("100% RB") were additionally measured to support comparison and SAR test exclusion per KDB 941225 D05v02r04 Section 5.2.4 and 5.3.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.4 for more
- 2. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8 MHz, VBW = 50 MHz, and detector = peak per guidance of Section 6.0 b) of ANSI C63. 10-2013 and KDB 558074 D01 v04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100.

Bluetooth Notes

1. To determine compliance, Bluetooth SAR was measured with external power amplifier. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

FCC ID: BCG-A2353	Proud to be part of selement	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 49 of 58

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

11.3 Head SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wristband types were used as a conservative evaluation for the simultaneous transmission analysis.

Table 11-1
Cellular Band Simultaneous Transmission Scenario with 2.4 GHz WLAN (Head at 1.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 850	0.000	0.279	0.279
	UMTS 1750	0.341	0.279	0.620
	UMTS 1900	0.380	0.279	0.659
	LTE Band 12	0.001	0.279	0.280
	LTE Band 13	0.000	0.279	0.279
Head SAR	LTE Band 26 (Cell)	0.000	0.279	0.279
	LTE Band 5 (Cell)	0.000	0.279	0.279
	LTE Band 66 (AWS)	0.424	0.279	0.703
	LTE Band 25 (PCS)	0.348	0.279	0.627
	LTE Band 7	0.377	0.279	0.656
	LTE Band 41	0.272	0.279	0.551

FCC ID: BCG-A2353	Proved to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga FO of FO
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 50 of 58

© 2020 PCTEST REV 21.4 09/11/20

Table 11-2 Cellular Band Simultaneous Transmission Scenario with Bluetooth (Head at 1.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 850	0.000	0.178	0.178
	UMTS 1750	0.341	0.178	0.519
	UMTS 1900	0.380	0.178	0.558
	LTE Band 12	0.001	0.178	0.179
	LTE Band 13	0.000	0.178	0.178
Head SAR	LTE Band 26 (Cell)	0.000	0.178	0.178
	LTE Band 5 (Cell)	0.000	0.178	0.178
	LTE Band 66 (AWS)	0.424	0.178	0.602
	LTE Band 25 (PCS)	0.348	0.178	0.526
	LTE Band 7	0.377	0.178	0.555
	LTE Band 41	0.272	0.178	0.450

11.4 Extremity SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wristband types were used as a conservative evaluation for the simultaneous transmission analysis.

Table 11-3 Cellular Band Simultaneous Transmission Scenario with 2.4 GHz WLAN (Extremity at 0.0 cm)

Exposure Condition	I IVIOGE		2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 850	0.209	0.049	0.258
	UMTS 1750	0.094	0.049	0.143
	UMTS 1900	0.124	0.049	0.173
	LTE Band 12	0.271	0.049	0.320
Extromity	LTE Band 13	0.277	0.049	0.326
Extremity SAR	LTE Band 26 (Cell)	0.195	0.049	0.244
OAIX	LTE Band 5 (Cell)	0.230	0.049	0.279
	LTE Band 66 (AWS)	0.085	0.049	0.134
	LTE Band 25 (PCS)	0.098	0.049	0.147
	LTE Band 7	0.069	0.049	0.118
	LTE Band 41	0.098	0.049	0.147

	FCC ID: BCG-A2353		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	D 54 -4 50		
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 51 of 58		
© 202	2020 PCTEST					

Table 11-4
Cellular Band Simultaneous Transmission Scenario with Bluetooth (Extremity at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 850	0.209	0.030	0.239
	UMTS 1750	0.094	0.030	0.124
	UMTS 1900	0.124	0.030	0.154
	LTE Band 12	0.271	0.030	0.301
Extramity	LTE Band 13	0.277	0.030	0.307
Extremity SAR	LTE Band 26 (Cell)	0.195	0.030	0.225
OAIX	LTE Band 5 (Cell)	0.230	0.030	0.260
	LTE Band 66 (AWS)	0.085	0.030	0.115
	LTE Band 25 (PCS)	0.098	0.030	0.128
	LTE Band 7	0.069	0.030	0.099
	LTE Band 41	0.098	0.030	0.128

11.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06.

	FCC ID: BCG-A2353	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	D 50 -4 50		
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 52 of 58		
© 202	© 2020 PCTEST					

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.80 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis was not required.

FCC ID: BCG-A2353	Proceed to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 50 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 53 of 58

© 2020 PCTEST REV 21.4 M 09/11/2019

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85033E	3.5mm Standard Calibration Kit	6/6/2020	Annual	6/6/2021	MY53402352
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	E4438C	ESG Vector Signal Generator	9/13/2019	Annual	9/13/2020	MY42081752
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1520503
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1520501
Anritsu	ML2495A	Power Meter	11/15/2019	Annual	11/15/2020	1039008
Anritsu	ML2495A	Power Meter	11/15/2019	Annual	11/15/2020	1039008
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292061
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334698
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766817
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181766801
Insize	1108-150	Digital Caliper	1/17/2020	Biennial	1/17/2022	0409193536
MCL	BW-N3W5+	3dB Attenuator	CBT	N/A	CBT	1812
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MCL	BW-N10W5+	10dB Attenuator	CBT	N/A	CBT	1611
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	5/13/2020	Annual	5/13/2021	167284
Rohde & Schwarz	CMW500	Radio Communication Tester	4/28/2020	Annual	4/28/2021	167285
Rohde & Schwarz	FSP-7	Spectrum Analyzer	1/9/2020	Annual	1/9/2022	100288
SPEAG	D750V3	750 MHz SAR Dipole	5/18/2018	Triennial	5/18/2021	1034
SPEAG	D750V3	750 MHz SAR Dipole	9/8/2017	Triennial	9/8/2020	1034
				Biennial	- ' '	4d040
SPEAG	D835V2	835 MHz SAR Dipole	6/20/2019		6/20/2021	
SPEAG	D850V2	850 MHz SAR Dipole	9/8/2017	Triennial	9/8/2020	1010
SPEAG	D1750V2	1750 MHz SAR Dipole	5/15/2018	Triennial	5/15/2021	1092
SPEAG	D1750V2	1750 MHz SAR Dipole	9/7/2017	Triennial	9/7/2020	1104
SPEAG	D1900V2	1900 MHz SAR Dipole	8/16/2017	Triennial	8/16/2020	5d180
SPEAG	D1900V2	1900 MHz SAR Dipole	6/19/2019	Biennial	6/19/2021	5d030
SPEAG	D2450V2	2450 MHz SAR Dipole	11/12/2018	Biennial	11/12/2020	921
SPEAG	D2450V2	2450 MHz SAR Dipole	6/14/2019	Biennial	6/14/2021	750
SPEAG	D2600V2	2600 MHz SAR Dipole	6/14/2019	Biennial	6/14/2021	1042
SPEAG	D2600V2	2600 MHz SAR Dipole	9/11/2017	Triennial	9/11/2020	1069
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/13/2019	Annual	11/13/2020	1213
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/15/2020	Annual	4/15/2021	501
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/11/2020	Annual	6/11/2021	701
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2020	Annual	2/13/2021	1403
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/12/2019	Annual	8/12/2020	1408
SPEAG	DAE4 DAK-3.5	Dasy Data Acquisition Electronics Dielectric Assessment Kit	5/12/2020	Annual	5/12/2020	1408
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
SPEAG	EX3DV4	SAR Probe	6/22/2020	Annual	6/22/2021	7416
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837
SPEAG	EX3DV4	SAR Probe	2/19/2020	Annual	2/19/2021	7427
SPEAG	EX3DV4	SAR Probe	8/29/2019	Annual	8/29/2020	3949
SPEAG	EX3DV4	SAR Probe	11/21/2019	Annual	11/21/2020	7420
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421
SPEAG	EX3DV4	SAR Probe	4/20/2020	Annual	4/20/2021	7532

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each Equipment item was used solely within its respective calibration period.

FCC ID: BCG-A2353	Pout to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 54 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 54 of 58

© 2020 PCTEST

14 **MEASUREMENT UNCERTAINTIES**

a	С	d	e=	f	8	h =	i =	k
			f(d,k)			cxf/e	c x g/e	
	Tol.	Prob.		C _i	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	œ
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	œ
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	œ
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Line arity	0.3	N	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	œ
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	œ
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	œ
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	œ
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	œ
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Test Sample Related		•	•					
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	œ
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	00
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	00
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	00
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	00
Combined Standard Uncertainty (k= 1)		RSS				11.5	11.3	60
Expanded Uncertainty		k= 2				23.0	22.6	
(95% CONFIDENCE LEVEL)		N- Z				23.0	22.0	
15570 CONTIDENCE LEVEL)								i

FCC ID: BCG-A2353	Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 55 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 55 of 58
20 PCTEST			REV 21.4 M

© 2020 PCTEST

15 CONCLUSION

thereof, please contact INFO@PCTEST.COM.

Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 50 -4 50
1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 56 of 58

© 2020 PCTEST © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents

16 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.

thereof, please contact INFO@PCTEST.COM.

- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: BCG-A2353		SAR EVALUATION REPORT	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:	Dogo 57 of 50			
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 57 of 58			
© 202	2020 PCTEST						

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: BCG-A2353		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Dogg 50 of 50		
	1C2004270023-01-R1.BCG	06/29/2020 - 08/26/2020	Watch	Page 58 of 58		
© 202	2020 PCTEST					

APPENDIX A: SAR TEST DATA

DUT: BCG-A2353; Type: Watch; Serial: DVPCR00DQ7TM

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 MHz Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.939 \text{ S/m}; \ \epsilon_r = 40.956; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

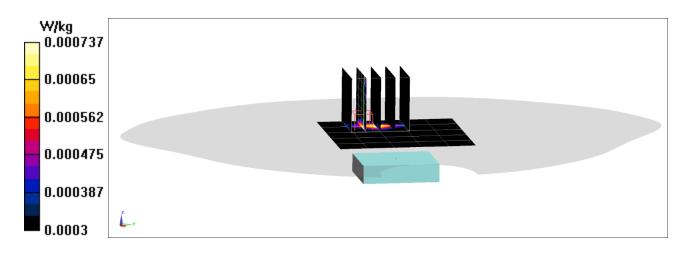
Test Date: 07-15-2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7420; ConvF(9.71, 9.71, 9.71) @ 836.6 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019 Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Head SAR, Front side, Mid.ch Aluminum, Sport Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.6780 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.00106 W/kg

SAR(1 g) = 0.000147 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 40.4%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR014Q7TM

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Head Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.349 \text{ S/m}; \ \epsilon_r = 40.494; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

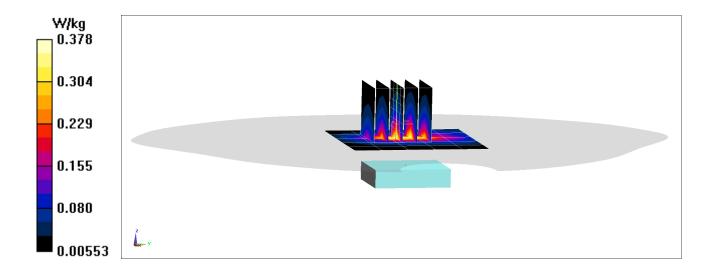
Test Date: 07-07-2020; Ambient Temp: 22.6°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7420; ConvF(8.39, 8.39, 8.39) @ 1732.4 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Head SAR, Front side, Mid.ch Aluminum, Metal Links Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan 1 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 14.82 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.454 W/kg

SAR(1 g) = 0.268 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 63%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR019Q7TM

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 MHz Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.425 \text{ S/m}; \ \epsilon_r = 39.425; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-08-2020; Ambient Temp: 23.5°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN3837; ConvF(8.28, 8.28, 8.28) @ 1880 MHz; Calibrated: 1/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/14/2020

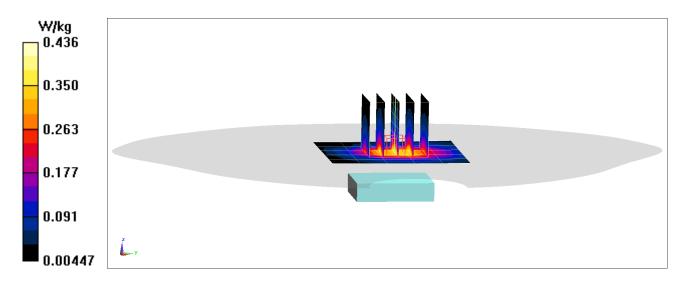
Phantom: Twin-SAM V4.0 Main; Type: QD 000 P40 CC; Serial: 1114

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Head SAR, Front side, Mid.ch Aluminum, Metal Loop Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan 1 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 14.93 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.520 W/kg

SAR(1 g) = 0.300 W/kg

Smallest distance from peaks to all points 3 dB below = 14.5 mm

smallest distance from peaks to all points 3 dB below = 14.5 mmRatio of SAR at M2 to SAR at M1 = 60%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR00WQ7TM

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.88 \text{ S/m}; \ \epsilon_r = 42.134; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-29-2020; Ambient Temp: 21.2°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7532; ConvF(10.72, 10.72, 10.72) @ 707.5 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

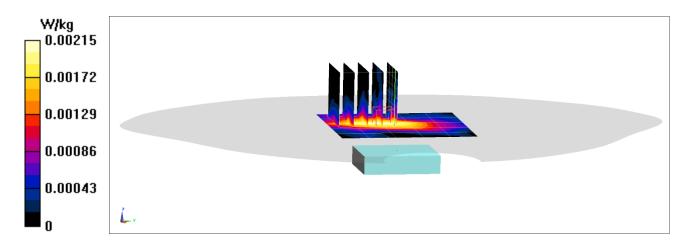
Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Head SAR, Front side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Aluminum, Metal Links Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.154 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.00271 W/kg

SAR(1 g) = 0.00134 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 42.3%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR015Q7TM

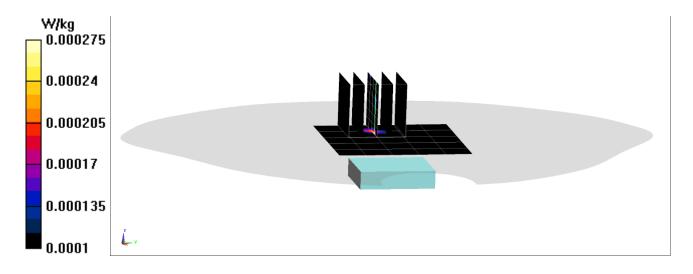
Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.907 \text{ S/m}; \ \epsilon_r = 41.917; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-29-2020; Ambient Temp: 21.2°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7532; ConvF(10.72, 10.72, 10.72) @ 782 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn501; Calibrated: 4/15/2020
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Head SAR, Front side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Aluminum, Sport Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.4770 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0 W/kg

SAR(1 g) = 0.000 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = N/A

DUT: BCG-A2353; Type: Watch; Serial: DVPCR019Q7TM

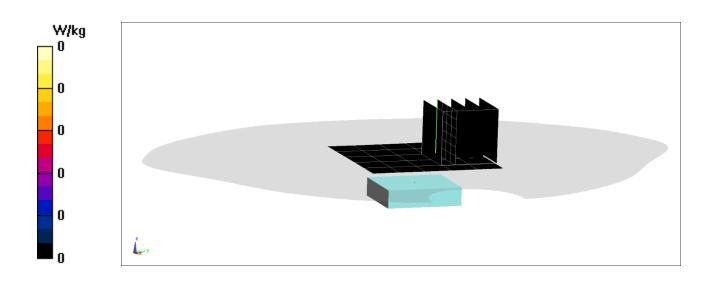
Communication System: UID 0, _LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.922 \text{ S/m}; \ \epsilon_r = 42.138; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-09-2020; Ambient Temp: 22.3°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN3837; ConvF(9.72, 9.72, 9.72) @ 831.5 MHz; Calibrated: 1/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn793; Calibrated: 1/14/2020
Phantom: Twin-SAM V4.0 Sub; Type: QD 000 P40 CC; Serial: 1357
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 26 (Cell.), Head SAR, Front side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset Aluminum, Metal Links Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0 W/kg

SAR(1 g) = 0.000 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 82.1%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR01FQ7TM

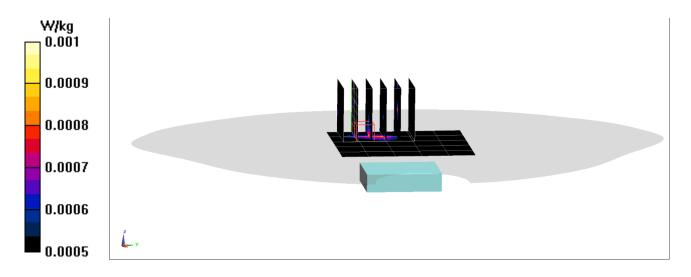
Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 MHz Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.924 \text{ S/m}; \ \epsilon_r = 42.125; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-09-2020; Ambient Temp: 22.3°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN3837; ConvF(9.72, 9.72, 9.72) @ 836.5 MHz; Calibrated: 1/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn793; Calibrated: 1/14/2020
Phantom: Twin-SAM V4.0 Sub; Type: QD 000 P40 CC; Serial: 1357
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Head SAR, Front side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Aluminum, Sport Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.8780 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.00159 W/kg

SAR(1 g) = 0.000445 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = N/A

DUT: BCG-A2353; Type: Watch; Serial: DVPCR019Q7TM

Communication System: UID 0, _LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Head Medium parameters used (interpolated): $f = 1720 \text{ MHz}; \ \sigma = 1.313 \text{ S/m}; \ \epsilon_r = 39.528; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

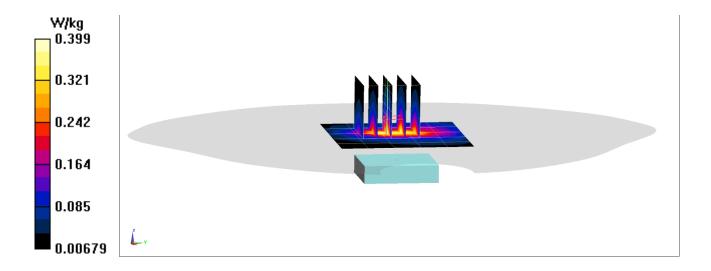
Test Date: 07-15-2020; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7427; ConvF(8.42, 8.42, 8.42) @ 1720 MHz; Calibrated: 2/19/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1403; Calibrated: 2/13/2020
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Head SAR, Front side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 15.81 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.529 W/kg

SAR(1 g) = 0.318 W/kg

Smallest distance from peaks to all points 3 dB below = 11.3 mm

Ratio of SAR at M2 to SAR at M1 = 63.3%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR019Q7TM

Communication System: UID 0, _LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 MHz Head Medium parameters used (interpolated): $f = 1905 \text{ MHz}; \ \sigma = 1.45 \text{ S/m}; \ \epsilon_r = 39.334; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

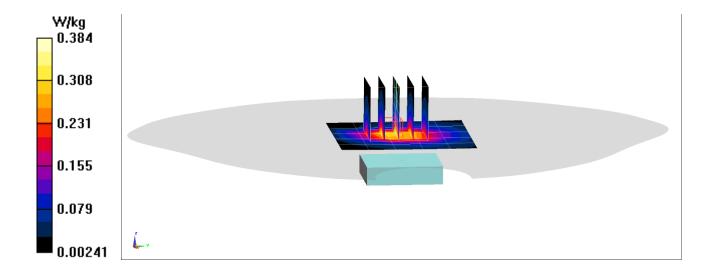
Test Date: 07-08-2020; Ambient Temp: 23.5°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN3837; ConvF(8.28, 8.28, 8.28) @ 1905 MHz; Calibrated: 1/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn793; Calibrated: 1/14/2020
Phantom: Twin-SAM V4.0 Main; Type: QD 000 P40 CC; Serial: 1114
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Head SAR, Front side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 13.76 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR(1 g) = 0.265 W/kg

Smallest distance from peaks to all points 3 dB below = 12.2 mm

Ratio of SAR at M2 to SAR at M1 = 59.9%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR018Q7TM

Communication System: UID 0, _LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Head Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 1.889 \text{ S/m}; \ \epsilon r = 38.017; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

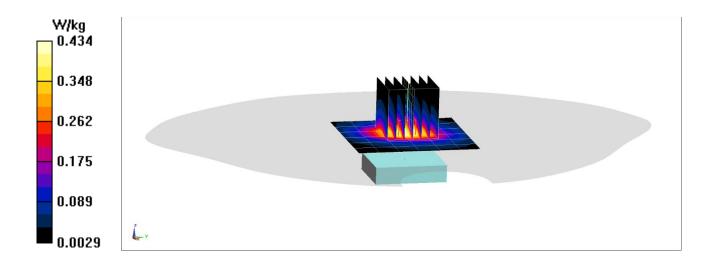
Test Date: 07-13-2020; Ambient Temp: 22.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7420; ConvF(7.28, 7.28, 7.28) @ 2535 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7, Head SAR, Front side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Aluminum, Sport Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 14.03 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.607 W/kg

SAR(1 g) = 0.335 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 54.6%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR01JQ7TM

Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2680 MHz; Duty Cycle: 1:1.58 Medium: 2450 - 2600 MHz Head Medium parameters used (interpolated): $f = 2680 \text{ MHz}; \ \sigma = 1.997 \text{ S/m}; \ \epsilon_r = 37.787; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

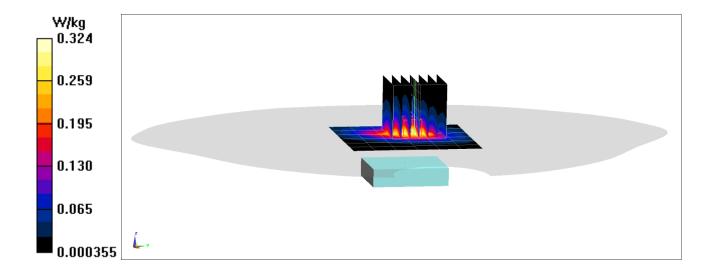
Test Date: 07-13-2020; Ambient Temp: 22.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7420; ConvF(7.28, 7.28, 7.28) @ 2680 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41, Head SAR, Front side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.69 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.400 W/kg

SAR(1 g) = 0.205 W/kg

Smallest distance from peaks to all points 3 dB below = 11.7 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR015Q7TM

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Head Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.805 \text{ S/m}; \ \epsilon_r = 38.181; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

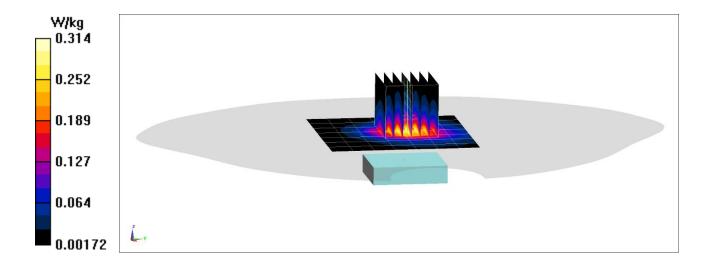
Test Date: 07-13-2020; Ambient Temp: 22.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7420; ConvF(7.47, 7.47, 7.47) @ 2412 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Head SAR, Ch 1, 1 Mbps, Front Side, Aluminum, Sport Wrist Band

Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.37 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.210 W/kg

Smallest distance from peaks to all points 3 dB below = 13.3 mm

Ratio of SAR at M2 to SAR at M1 = 55.5%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR01JQ7TM

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Head Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.822 \text{ S/m}; \ \epsilon_r = 38.153; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

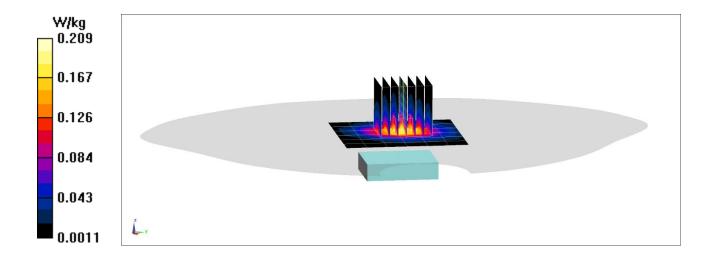
Test Date: 07-13-2020; Ambient Temp: 22.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7420; ConvF(7.47, 7.47, 7.47) @ 2441 MHz; Calibrated: 11/21/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Head SAR, Ch 39, 1 Mbps, Front Side Aluminum, Sport Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.114 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.254 W/kg

SAR(1 g) = 0.137 W/kg

Smallest distance from peaks to all points 3 dB below = 13 mm

Ratio of SAR at M2 to SAR at M1 = 54.9%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR014Q7TM

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.977 \text{ S/m}; \ \epsilon_r = 53.215; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-12-2020; Ambient Temp: 20.1°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 836.6 MHz; Calibrated: 3/20/2020

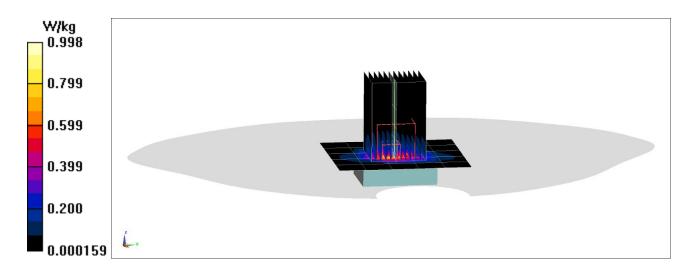
Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Extremity SAR, Back side, Mid.ch Aluminum, Metal Links Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (12x12x8)/Cube 0: Measurement grid: dx=2.8mm, dy=2.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 12.78 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 2.15 W/kg

SAR(10 g) = 0.166 W/kg

Smallest distance from peaks to all points 3 dB below = 3.5 mm Ratio of SAR at M2 to SAR at M1 = 57%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR014Q7TM

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.429 \text{ S/m}; \ \epsilon_r = 52.362; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

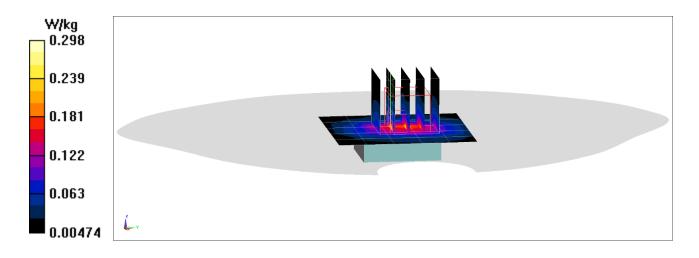
Test Date: 07-10-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7416; ConvF(7.85, 7.85, 7.85) @ 1732.4 MHz; Calibrated: 6/22/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn701; Calibrated: 6/11/2020
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Extremity SAR, Back side, Mid.ch Aluminum, Sports Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 10.28 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.401 W/kg

SAR(10 g) = 0.074 W/kg

Smallest distance from peaks to all points 3 dB below = N/A

Ratio of SAR at M2 to SAR at M1 = 31.8%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR00DQ7TM

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 MHz Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.559 \text{ S/m}; \ \epsilon_r = 52.292; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-08-2020; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1880 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

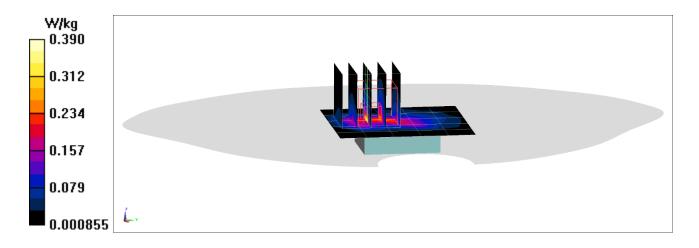
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Extremity SAR, Back side, Mid.ch Aluminum, Sport Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 12.14 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.539 W/kg

SAR(10 g) = 0.098 W/kg

Smallest distance from peaks to all points 3 dB below = N/A

Ratio of SAR at M2 to SAR at M1 = 41.9%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR019Q7TM

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 MHz Body Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.969 \text{ S/m}; \ \epsilon_r = 53.5; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-12-2020; Ambient Temp: 20.5°C; Tissue Temp: 19.6°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 707.5 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

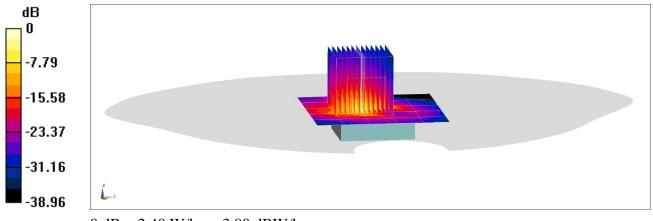
Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Extremity SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (13x13x8)/Cube 0: Measurement grid: dx=2.7mm, dy=2.7mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 16.55 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 13.3 W/kg

SAR(10 g) = 0.208 W/kg

Smallest distance from peaks to all points 3 dB below = 3.1 mmRatio of SAR at M2 to SAR at M1 = 34.7%

0 dB = 2.40 W/kg = 3.80 dBW/kg

DUT: BCG-A2353; Type: Watch; Serial: DVPCR00WQ7TM

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 MHz Body Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.956 \text{ S/m}; \ \epsilon_r = 52.905; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

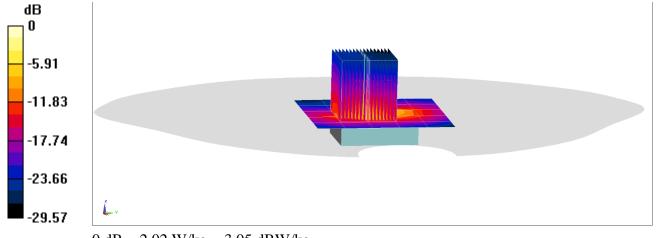
Test Date: 07-06-2020; Ambient Temp: 21.2°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 782 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn501; Calibrated: 4/15/2020
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Extremity SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Aluminum, Metal Links Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (18x17x8)/Cube 0: Measurement grid: dx=1.9mm, dy=1.9mm, dz=1.4mm; Graded Ratio: 1.4


Reference Value = 17.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 12.5 W/kg

SAR(10 g) = 0.240 W/kg

Smallest distance from peaks to all points 3 dB below = 3.1 mm

Ratio of SAR at M2 to SAR at M1 = 35.4%

0 dB = 2.02 W/kg = 3.05 dBW/kg

DUT: BCG-A2353; Type: Watch; Serial: DVPCR01FQ7TM

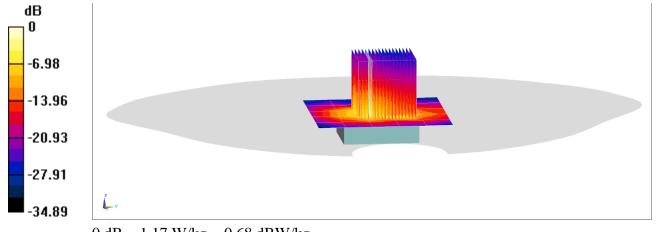
Communication System: UID 0, _LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 850 Body Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.975 \text{ S/m}; \ \epsilon_r = 52.862; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-14-2020; Ambient Temp: 21.1°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 831.5 MHz; Calibrated: 3/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/19/2020
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 26 (Cell.), Extremity SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (19x18x8)/Cube 0: Measurement grid: dx=1.9mm, dy=1.9mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 20.15 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.49 W/kg

SAR(10 g) = 0.149 W/kg

Smallest distance from peaks to all points 3 dB below = 2.7 mm Ratio of SAR at M2 to SAR at M1 = 58%

0 dB = 1.17 W/kg = 0.68 dBW/kg

DUT: BCG-A2353; Type: Watch; Serial: DVPCR01FQ7TM

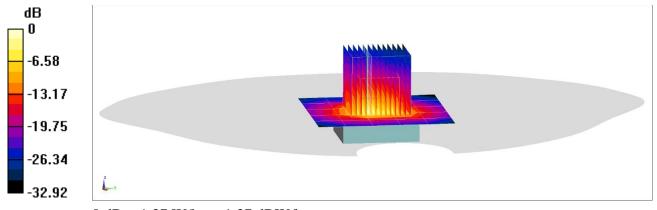
Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 1.012 \text{ S/m}; \ \epsilon_r = 53.664; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-26-2020; Ambient Temp: 23.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 836.5 MHz; Calibrated: 3/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/19/2020
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Extremity SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Aluminum, Sport Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (13x13x8)/Cube 0: Measurement grid: dx=2.7mm, dy=2.7mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 13.65 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.44 W/kg

SAR(10 g) = 0.175 W/kg

Smallest distance from peaks to all points 3 dB below = 3.2 mmRatio of SAR at M2 to SAR at M1 = 50.1%

0 dB = 1.37 W/kg = 1.37 dBW/kg

DUT: BCG-A2353; Type: Watch; Serial: DVPCR00DQ7TM

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.461 \text{ S/m}; \ \epsilon_r = 52.477; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

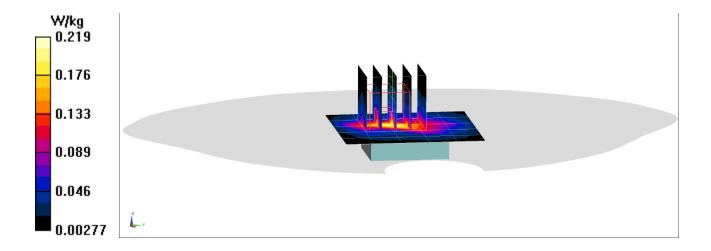
Test Date: 07-08-2020; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7532; ConvF(8.34, 8.34, 8.34) @ 1745 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn501; Calibrated: 4/15/2020
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Extremity SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Aluminum, Sport Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 9.308 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(10 g) = 0.064 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 42.5%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR00DQ7TM

Communication System: UID 0, _LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 MHz Body Medium parameters used (interpolated): $f = 1905 \text{ MHz}; \ \sigma = 1.577 \text{ S/m}; \ \epsilon_r = 52.259; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-08-2020; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1905 MHz; Calibrated: 4/20/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

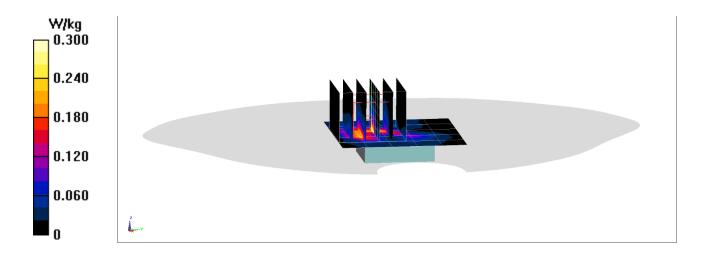
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Extremity SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Aluminum, Metal Links Wrist Band

Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 8.672 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.475 W/kg

SAR(10 g) = 0.075 W/kg

Smallest distance from peaks to all points 3 dB below = N/A

Ratio of SAR at M2 to SAR at M1 = 51.6%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR015Q7TM

Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Body Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 2.134 \text{ S/m}; \ \epsilon_r = 51.387; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

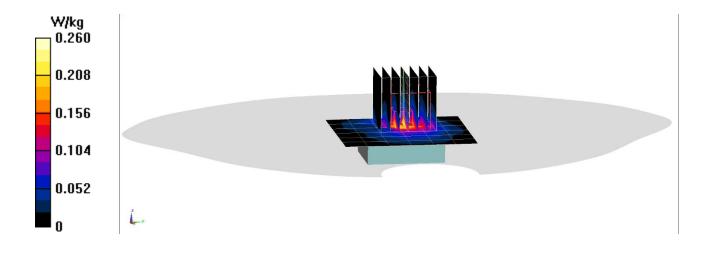
Test Date: 07-06-2020; Ambient Temp: 21.4°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN3949; ConvF(7.69, 7.69, 7.69) @ 2535 MHz; Calibrated: 8/29/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 8/12/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7, Extremity SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.702 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.335 W/kg

SAR(10 g) = 0.061 W/kg

Smallest distance from peaks to all points 3 dB below = 6.7 mm

Ratio of SAR at M2 to SAR at M1 = 50.4%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR01JQ7TM

Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2680 MHz; Duty Cycle: 1:1.58 Medium: 2450-2600 MHz Body Medium parameters used (interpolated): $f = 2680 \text{ MHz}; \ \sigma = 2.349 \text{ S/m}; \ \epsilon_r = 51.079; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

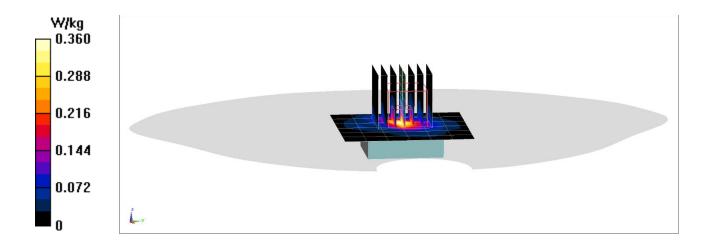
Test Date: 07-08-2020; Ambient Temp: 21.4°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7416; ConvF(7.23, 7.23, 7.23) @ 2680 MHz; Calibrated: 6/22/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn701; Calibrated: 6/11/2020
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41, Extremity SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset Aluminum, Metal Loop Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.31 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.467 W/kg

SAR(10 g) = 0.074 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 48.3%

DUT: BCG-A2353; Type: Watch; Serial: DVPCR0DQ7TM

Communication System: UID 0, _IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.985 \text{ S/m}; \ \epsilon_r = 51.885; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

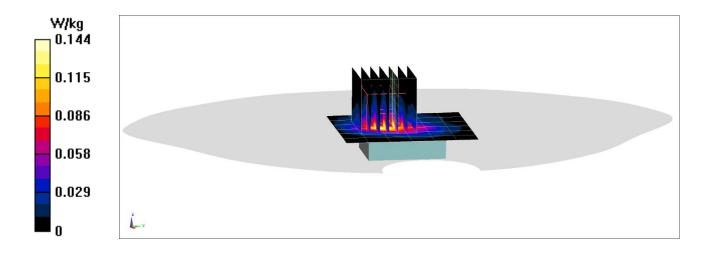
Test Date: 07-13-2020; Ambient Temp: 23.3°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2412 MHz; Calibrated: 8/29/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019 Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Extremity SAR, Ch 1, 1 Mbps, Back Side, Aluminum, Sport Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.154 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.196 W/kg

SAR(10 g) = 0.037 W/kg

Smallest distance from peaks to all points 3 dB below = 6.3 mm

Ratio of SAR at M2 to SAR at M1 = 50.6%

DUT: BCG-A2353; Type: Watch; Serial: DVPR00DQ7TM

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.02 \text{ S/m}; \ \epsilon_r = 51.788; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

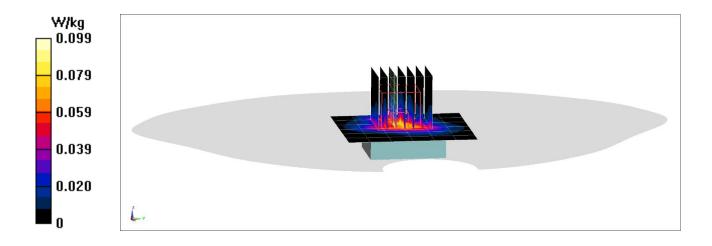
Test Date: 07-13-2020; Ambient Temp: 23.3°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2441 MHz; Calibrated: 8/29/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019 Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Extremity SAR, Ch 39, 1 Mbps, Back Side Aluminum, Sport Wrist Band

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.292 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.132 W/kg

SAR(10 g) = 0.023 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 43.3%

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1034

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.897 \text{ S/m}; \ \epsilon_r = 42.009; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

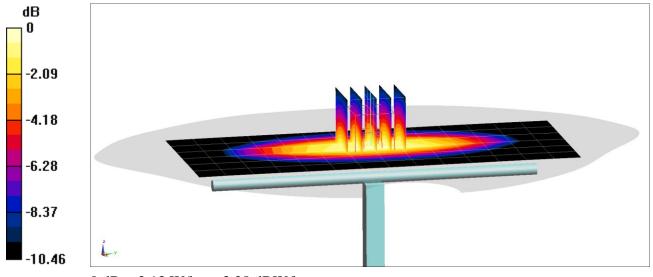
Test Date: 06-29-2020; Ambient Temp: 21.2°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7532; ConvF(10.72, 10.72, 10.72) @ 750 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.39 W/kg

SAR(1 g) = 1.59 W/kg

Deviation(1 g) = -4.45%

0 dB = 2.13 W/kg = 3.28 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d040

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 MHz Head Medium parameters used: f = 835 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 42.129$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-09-2020; Ambient Temp: 22.3°C; Tissue Temp: 20.5°C

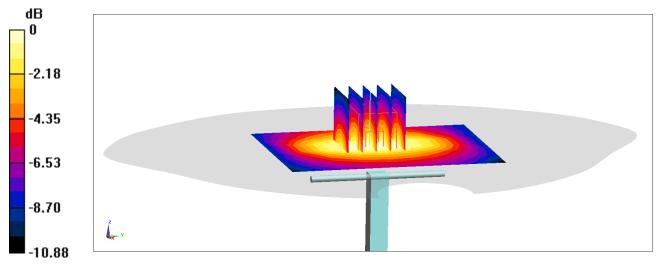
Probe: EX3DV4 - SN3837; ConvF(9.72, 9.72, 9.72) @ 835 MHz; Calibrated: 1/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn793; Calibrated: 1/14/2020

Phantom: Twin-SAM V4.0 Sub; Type: QD 000 P40 CC; Serial: 1357

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 2 W/kg

Deviation(1 g) = 5.26%

0 dB = 2.69 W/kg = 4.30 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d040

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 MHz Head Medium parameters used: f = 835 MHz; $\sigma = 0.938$ S/m; $\epsilon_r = 40.959$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-15-2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

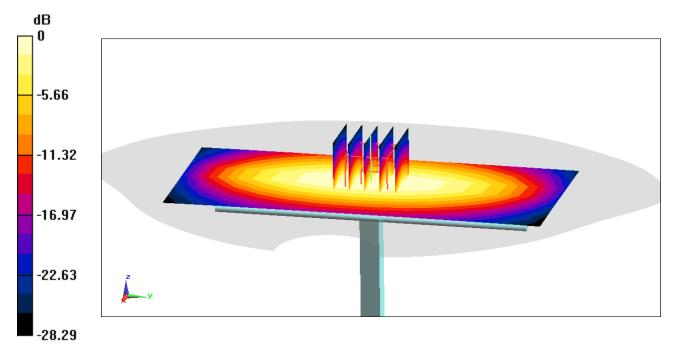
Probe: EX3DV4 - SN7420; ConvF(9.71, 9.71, 9.71) @ 835 MHz; Calibrated: 11/21/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.09 W/kg

SAR(1 g) = 2 W/kg

Deviation(1 g) = 5.26%

0 dB = 2.25 W/kg = 3.52 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1092

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.36 \text{ S/m}; \ \epsilon_r = 40.469; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-07-2020; Ambient Temp: 22.6°C; Tissue Temp: 22.0°C

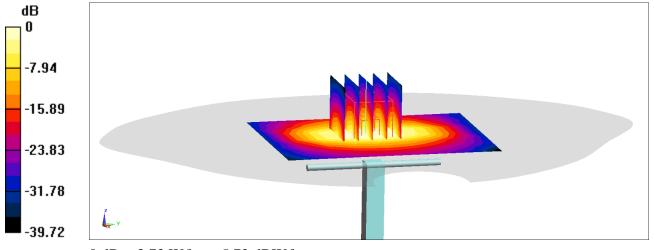
Probe: EX3DV4 - SN7420; ConvF(8.39, 8.39, 8.39) @ 1750 MHz; Calibrated: 11/21/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.27 W/kg

SAR(1 g) = 3.4 W/kg

SAR(1 g) = 3.4 W/kg Deviation(1 g) = -5.82%

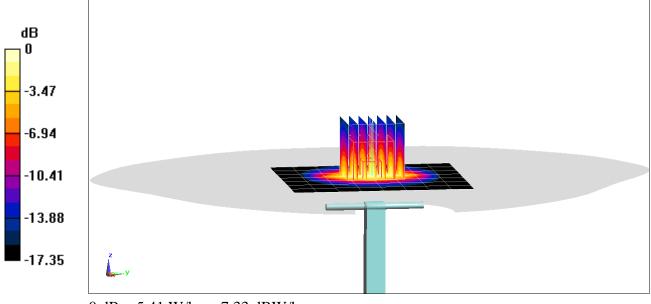
0 dB = 3.73 W/kg = 5.72 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1104

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.33 \text{ S/m}; \ \epsilon_r = 39.496; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-15-2020; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7427; ConvF(8.42, 8.42, 8.42) @ 1750 MHz; Calibrated: 2/19/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1403; Calibrated: 2/13/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

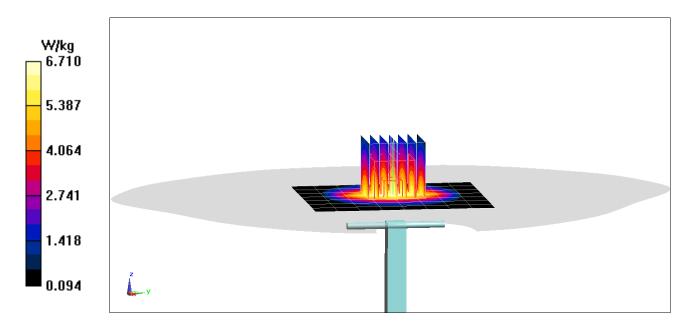
Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.43 W/kg SAR(1 g) = 3.52 W/kg Deviation(1 g) = -3.30%

0 dB = 5.41 W/kg = 7.33 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d030

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 MHz; Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \sigma = 1.445 \text{ S/m}; \ \epsilon_r = 39.352; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-08-2020; Ambient Temp: 23.5°C; Tissue Temp: 21.3°C


Probe: EX3DV4 - SN3837; ConvF(8.28, 8.28, 8.28) @ 1900 MHz; Calibrated: 1/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn793; Calibrated: 1/14/2020

Phantom: Twin-SAM V4.0 Main; Type: QD 000 P40 CC; Serial: 1114 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

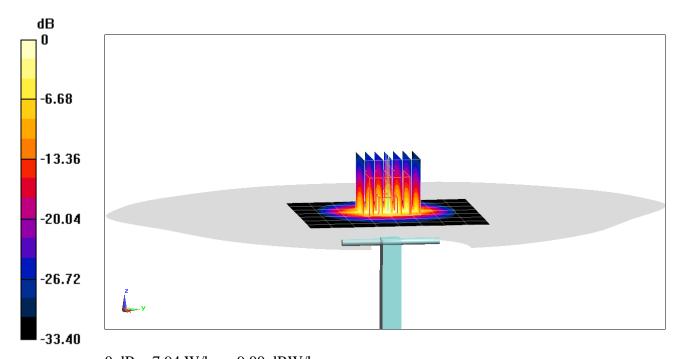
1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 8.10 W/kg SAR(1 g) = 4.24 W/kgDeviation(1 g) = 6.27%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 750

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.827 \text{ S/m}; \ \epsilon_r = 38.144; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-13-2020; Ambient Temp: 22.0°C; Tissue Temp: 21.1°C


Probe: EX3DV4 - SN7420; ConvF(7.47, 7.47, 7.47) @ 2450 MHz; Calibrated: 11/21/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1213; Calibrated: 11/13/2019
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.53 W/kg Deviation(1 g) = 4.14%

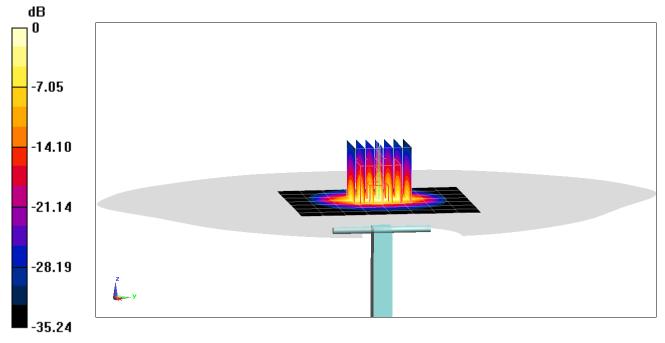
0 dB = 7.94 W/kg = 9.00 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1042

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 - 2600 MHz Head Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 1.939 \text{ S/m}; \ \epsilon_r = 37.922; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-13-2020; Ambient Temp: 22.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7420; ConvF(7.28, 7.28, 7.28) @ 2600 MHz; Calibrated: 11/21/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.7 W/kg SAR(1 g) = 5.89 W/kg Deviation(1 g) = 2.08%

0 dB = 7.98 W/kg = 9.02 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1097

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 MHz Body Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.945 \text{ S/m}; \ \epsilon_r = 52.952; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

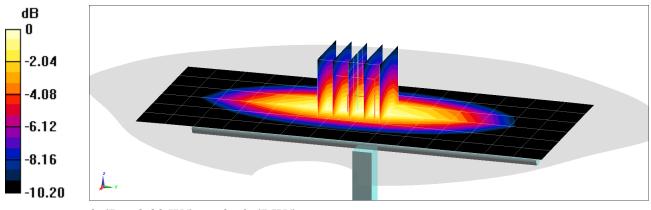
Test Date: 07-06-2020; Ambient Temp: 21.2°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 750 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.61 W/kg

SAR(10 g) = 1.15 W/kg

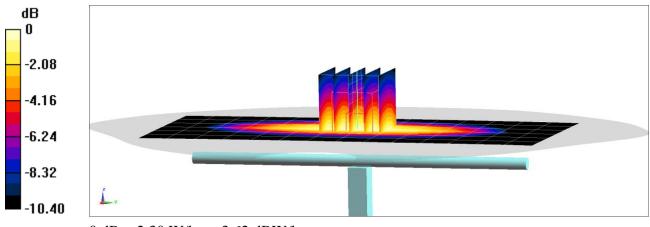
Deviation(10 g) = 1.23%

0 dB = 2.30 W/kg = 3.62 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1034

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 MHz Body Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.986 \text{ S/m}; \ \epsilon_r = 53.406; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-12-2020; Ambient Temp: 20.5°C; Tissue Temp: 19.6°C


Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 750 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.61 W/kg SAR(10 g) = 1.13 W/kgDeviation(10 g) = -0.35%

0 dB = 2.30 W/kg = 3.62 dBW/kg

DUT: Dipole 850 MHz; Type: D850V2; Serial: 1010

Communication System: UID 0, CW; Frequency: 850 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used: $f = 850 \text{ MHz}; \ \sigma = 0.99 \text{ S/m}; \ \epsilon_r = 53.085; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-12-2020; Ambient Temp: 20.1°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 850 MHz; Calibrated: 3/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

850 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.16 W/kg

SAR(10 g) = 1.41 W/kg

Deviation(10 g) = 5.54%

0 dB = 2.84 W/kg = 4.53 dBW/kg

DUT: Dipole 850 MHz; Type: D850V2; Serial: 1010

Communication System: UID 0, CW; Frequency: 850 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used: $f = 850 \text{ MHz}; \ \sigma = 0.994 \text{ S/m}; \ \epsilon_r = 52.673; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-14-2020; Ambient Temp: 21.1°C; Tissue Temp: 21.8°C

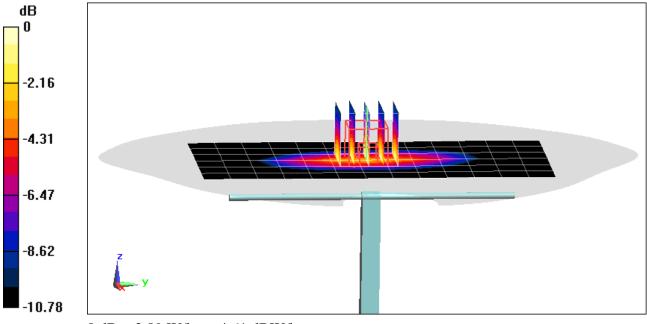
Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 850 MHz; Calibrated: 3/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

850 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.22 W/kg

SAR(10 g) = 1.41 W/kg

Deviation(10 g) = 5.54%

0 dB = 2.89 W/kg = 4.61 dBW/kg

DUT: Dipole 850 MHz; Type: D850V2; Serial: 1010

Communication System: UID 0, CW; Frequency: 850 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used: $f = 850 \text{ MHz}; \ \sigma = 1.016 \text{ S/m}; \ \epsilon_r = 53.635; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-26-2020; Ambient Temp: 23.4°C; Tissue Temp: 22.8°C

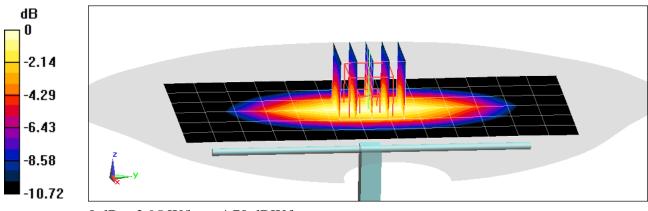
Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 850 MHz; Calibrated: 3/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

850 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.31 W/kg

SAR(10 g) = 1.43 W/kg

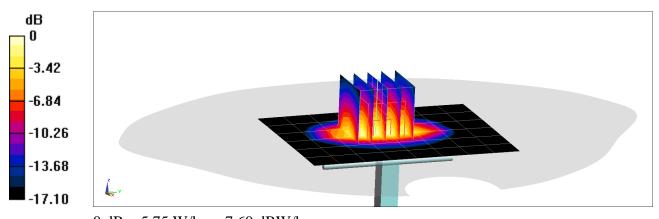
Deviation(10 g) = 7.04%

0 dB = 2.95 W/kg = 4.70 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1092

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.464 \text{ S/m}; \ \epsilon_r = 52.473; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-08-2020; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C


Probe: EX3DV4 - SN7532; ConvF(8.34, 8.34, 8.34) @ 1750 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.81 W/kg SAR(10 g) = 1.99 W/kg Deviation(10 g) = 2.58%

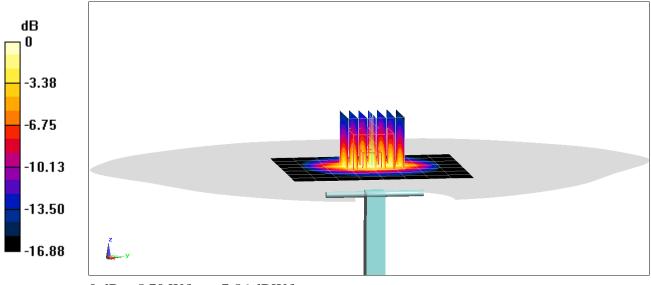
0 dB = 5.75 W/kg = 7.60 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1104

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 MHz Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.444 \text{ S/m}; \ \epsilon_r = 52.325; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-10-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7416; ConvF(7.85, 7.85, 7.85) @ 1750 MHz; Calibrated: 6/22/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn701; Calibrated: 6/11/2020

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.69 W/kg SAR(10 g) = 1.97 W/kg Deviation(10 g) = 0.51%

0 dB = 5.70 W/kg = 7.56 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d180

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 MHz Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.574 \text{ S/m}; \ \epsilon_r = 52.265; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

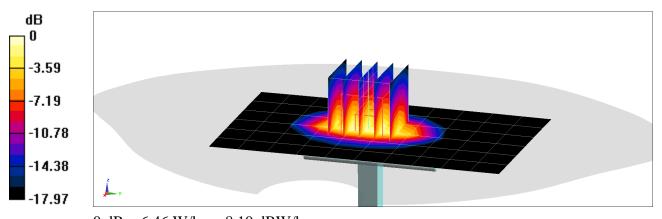
Test Date: 07-08-2020; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.68 W/kg

SAR(10 g) = 2.14 W/kg

Deviation (10 g) = 2.39%

0 dB = 6.46 W/kg = 8.10 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 750

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.023 \text{ S/m}; \ \epsilon_r = 51.697; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-06-2020; Ambient Temp: 21.4°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 8/29/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(10 g) = 2.44 W/kg Deviation(10 g) = 1.24%

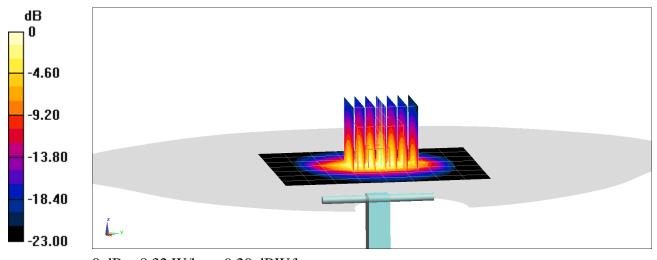
0 dB = 8.99 W/kg = 9.54 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.022 \text{ S/m}; \ \epsilon_r = 51.965; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-08-2020; Ambient Temp: 21.4°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7416; ConvF(7.28, 7.28, 7.28) @ 2450 MHz; Calibrated: 6/22/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn701; Calibrated: 6/11/2020

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.4 W/kg SAR(10 g) = 2.26 W/kg Deviation(10 g) = -5.04%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 MHz Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.031 \text{ S/m}; \ \epsilon_r = 51.758; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-13-2020; Ambient Temp: 23.3°C; Tissue Temp: 21.9°C

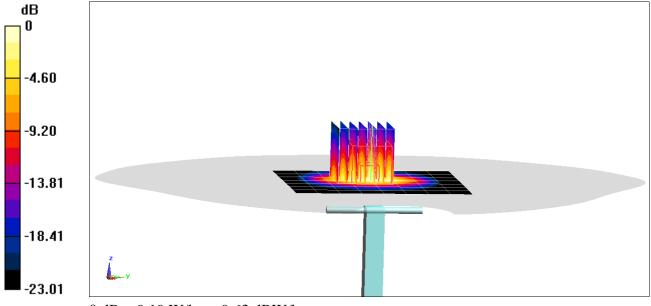
Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 8/29/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.3 W/kg

SAR(10 g) = 2.55 W/kg

Deviation(10 g) = 7.14%

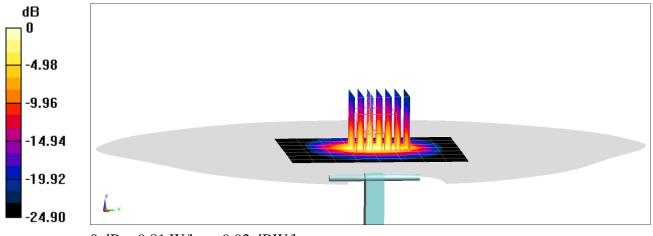
0 dB = 9.19 W/kg = 9.63 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1042

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Body Medium parameters used f = 2600 MHz; $\sigma = 2.226$ S/m; $\varepsilon_r = 51.192$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-06-2020; Ambient Temp: 21.4°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN3949; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 8/29/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.7 W/kg SAR(10 g) = 2.46 W/kg Deviation(10 g) = -1.20%

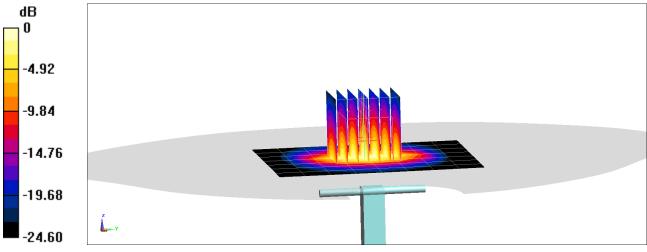
0 dB = 9.81 W/kg = 9.92 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450-2600 MHz Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.233 \text{ S/m}; \ \epsilon_r = 51.401; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-08-2020; Ambient Temp: 21.4°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7416; ConvF(7.23, 7.23, 7.23) @ 2600 MHz; Calibrated: 6/22/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn701; Calibrated: 6/11/2020

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 13.0 W/kg SAR(10 g) = 2.51 W/kg Deviation(10 g) = 1.21%

APPENDIX C: SAR TISSUE SPECIFICATIONS

FCC ID: BCG-A2353	Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/29/2020 - 08/26/2020	Watch		Page 1 of 4

© 2020 PCTEST REV 21.4 M 09/11/2019

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.


escription: Aqueous solution with eclarable, or hazardous compon		
CAS: 107-21-1 EINECS: 203-473-3 Reg.nr.: 01-2119456816-28-0000	Ethanediol STOT RE 2, H373; Acute Tox. 4, H302	>1.0-4.9%
CAS: 68608-26-4 EINECS: 271-781-5 Reg.nr.: 01-2119527859-22-0000	Sodium petroleum sulfonate Eye Irrit. 2, H319	< 2.9%
CAS: 107-41-5 EINECS: 203-489-0 Reg.nr.: 01-2119539582-35-0000	Hexylene Glycol / 2-Methyl-pentane-2,4-diol Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.9%
CAS: 68920-66-1 NLP: 500-236-9 Reg.nr.: 01-2119489407-26-0000	Alkoxylated alcohol, > C ₁₆ Aquatic Chronic 2, H411; Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.0%

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: BCG-A2353	Proud to be port of @ element SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX C:
06/29/2020 - 08/26/2020	Watch	Page 2 of 4

© 2020 PCTEST REV 21.4 M 09/11/2019

2050 53.4 14.4 1.64

2100 53.3 14.4

2200 53.2

2250 53.1 14.4 1.81

2300 53.1

2350 53.0 14.5 1.89

2550 527

52.9

53.2 1.57

53.2 1.62

53.0 1.71

53.0 1.76

52.9 1.81

52.8 1.85

526 209

53.1 1.66

1.68

1.85

1.94

52.9 14.5 1.98 52.7

14.6 2.07

2600 52.6 14.7 2.12 52.5 2.16

14.4

0.3

0.2

0.3

0.2

0.4

0.3

02

4.5

3.7

3.6

2.9

2.8

2.2

2.2

-10

Figure C-2 600 - 5800 MHz Body Tissue Equivalent Matter

FCC ID: BCG-A2353	PCTEST° Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/29/2020 - 08/26/2020	Watch		Page 3 of 4

© 2020 PCTEST **REV 21.4 M**

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Head Tissue Simulating Liquid (HBBL600-10000V6) SL AAH U16 BC (Batch: 181031-2) Product No. Manufacturer SPEAG

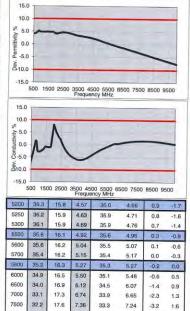
Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C Test Date 31-Oct-18 Operator CL

Additional Information

TSL Density TSL Heat-capacity

	Meas	ured		Targe	et	Diff.to Tar	net [%]
f [MHz]	e'	e"	sigma		sigma	Δ-eps	Δ-sigma
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5
900	43,5	18.9	0.95	41.5	0.97	4.8	-2.1
1400	42,5	15.0	1.17	40.6	1.18	4.7	-0.8
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7
1640	42.2	14.2	1.30	40.3	1,31	4.8	-0.5
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7
1810	41.9	13.8	1.40	40.0	1.40	4.7	0.0
1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7
1850	41.8	13.8	1.42	40.0	1.40	4.5	1.4
1900	41.8	13.7	1.45	40.0	1.40	4.5	3.6
1950	41.7	13.7	1.48	40.0	1.40	4.3	5.7
2000	41,6	13.6	1.51	40.0	1.40	4.0	7.9
2050	41.6	13.6	1.55	39.9	1.44	4.2	7.3
2100	41.5	13.5	1,58	39.8	1.49	4.2	6.1
2150	41.4	13.5	1.62	39.7	1.53	4.2	5.7
2200	41.4	13.5	1,65	39.6	1.58	4.4	4.6
2250	41,3	13.5	1.69	39.6	1.62	4.4	4.2
2300	41.2	13.5	1.72	39.5	1.67	4.4	3.2
2350	41.1	13.5	1.76	39.4	1.71	4.4	2.9
2400	41.1	13.5	1.80	39.3	1.76	4.6	2.5
2450	41.0	13.5	1.84	39.2	1.80	4.6	2.2
2500	40.9	13.5	1.88	39.1	1.85	4.5	1.4
2550	40.8	13.5	1.92	39.1	1.91	4.4	0.6
2600	40.8	13.6	1.96	39.0	1.96	4.6	-0.2
3500	39.2	14.1	2,74	37.9	2.91	3.3	-5.8
3700	38.9	14.2	2.93	37.7	3.12	3.1	-6.1

7.84 -4.1 1.7

TSL Dielectric Parameters

Figure C-3 600 - 5800 MHz Head Tissue Equivalent Matter

8000 31.4 17.9 7.97 32.7

8500 30.5 18.2 8.59 32.1 8.45 -5.0 1.6

9000 29.7 18.4 9.20 31.5 9.08 -5.9 1.3

9500

18.5 9.80 31.0 9.71 -6.8 0.9

FCC ID: 579C-A2353	Proud to be port of the selection SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX C:
06/29/2020 - 08/26/2020	Watch	Page 4 of 4

© 2020 PCTEST REV 21.4 M

APPENDIX D: SAR SYSTEM VALIDATION

FCC ID: BCG-A2353	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	Appendix D
06/29/2020 - 08/26/2020	Watch	Page 1 of 2

REV 21.4 M 09/11/2019 © 2020 PCTEST

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D-1
SAR System Validation Summary – 1q

SAR					COND. PERM. CW VALIDATION				I	MOD. VALIDATION			
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE C	AL. POINT	(σ)	(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
AM8	750	6/25/2020	7532	750	Head	0.901	42.435	PASS	PASS	PASS	N/A	N/A	N/A
AM6	835	3/10/2020	3837	835	Head	0.992	54.144	PASS	PASS	PASS	GMSK	PASS	N/A
AM2	835	12/5/2019	7420	835	Head	0.879	42.987	PASS	PASS	PASS	GMSK	PASS	N/A
AM2	1750	12/6/2019	7420	1750	Head	1.345	41.1	PASS	PASS	PASS	N/A	N/A	N/A
AM1	1750	3/12/2020	7427	1750	Head	1.324	39.689	PASS	PASS	PASS	N/A	N/A	N/A
AM6	1900	3/10/2020	3837	1900	Head	1.437	40.78	PASS	PASS	PASS	GMSK	PASS	N/A
AM2	2450	12/9/2019	7420	2450	Head	1.798	39.1	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
AM2	2600	12/9/2019	7420	2600	Head	1.923	38.76	PASS	PASS	PASS	TDD	PASS	N/A

Table D-2 SAR System Validation Summary – 10g

Ortic Cyclom Famulation Cummary 109												
					COND.	PERM.	C	W VALIDATION		N	MOD. VALIDATION	1
FREQ. [MHz]	DATE	PROBE SN	PROBE C	AL. POINT	(σ)	(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
750	5/27/2020	7532	750	Body	0.942	52.946	PASS	PASS	PASS	N/A	N/A	N/A
835	4/22/2020	7421	835	Body	0.992	54.556	PASS	PASS	PASS	GMSK	PASS	N/A
1750	5/27/2020	7532	1750	Body	1.454	51.143	PASS	PASS	PASS	N/A	N/A	N/A
1750	7/6/2020	7416	1750	Body	1.437	51.23	PASS	PASS	PASS	N/A	N/A	N/A
1900	5/27/2020	7532	1900	Body	1.561	50.995	PASS	PASS	PASS	GMSK	PASS	N/A
2450	9/4/2019	3949	2450	Body	1.955	52.22	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
2450	7/6/2020	7416	2450	Body	1.996	51.99	PASS	PASS	PASS	OFDMTDD	PASS	PASS
2600	9/4/2019	3949	2600	Body	2.096	51.97	PASS	PASS	PASS	TDD	PASS	N/A
2600	7/6/2020	7416	2600	Body	2.226	51.419	PASS	PASS	PASS	TDD	PASS	N/A
	750 835 1750 1750 1900 2450 2450 2600	750 5/27/2020 835 4/22/2020 1750 5/27/2020 1750 7/6/2020 1900 5/27/2020 2450 9/4/2019 2450 7/6/2020 2600 9/4/2019	750 5/27/2020 7532 835 4/22/2020 7532 1750 5/27/2020 7532 1750 7/6/2020 7416 1900 5/27/2020 7532 2450 9/4/2019 3949 2450 7/6/2020 7416 2600 9/4/2019 3949	FREQ. [MHz] DATE PROBE SN PROBE Co. 750 5/27/2020 7532 750 835 4/22/2020 7421 835 1750 5/27/2020 7532 1750 1750 7/6/2020 7416 1750 1900 5/27/2020 7532 1900 2450 9/4/2019 3949 2450 2450 7/6/2020 7416 2450 2600 9/4/2019 3949 2600	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT 750 5/27/2020 7532 750 Body 835 4/22/2020 7421 835 Body 1750 5/27/2020 7532 1750 Body 1750 7/6/2020 7416 1750 Body 1900 5/27/2020 7532 1900 Body 2450 9/4/2019 3949 2450 Body 2450 7/6/2020 7416 2450 Body 2600 9/4/2019 3949 2600 Body	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT COND. 750 5/27/2020 7532 750 Body 0.942 835 4/22/2020 7421 835 Body 0.992 1750 5/27/2020 7532 1750 Body 1.454 1750 7/6/2020 7416 1750 Body 1.437 1900 5/27/2020 7532 1900 Body 1.561 2450 9/4/2019 3949 2450 Body 1.955 2450 7/6/2020 7416 2450 Body 1.996 2600 9/4/2019 3949 2600 Body 2.096	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT COND. PERM. 750 5/27/2020 7532 750 Body 0.942 52.946 835 4/22/2020 7421 835 Body 0.992 54.556 1750 5/27/2020 7532 1750 Body 1.454 51.143 1750 7/6/2020 7416 1750 Body 1.454 51.23 1900 5/27/2020 7532 1900 Body 1.561 50.995 2450 9/4/2019 3949 2450 Body 1.955 52.22 2450 7/6/2020 7416 2450 Body 1.996 51.99 2600 9/4/2019 3949 2600 Body 2.096 51.97	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT COND. PERM. COND. 750 5/27/2020 7532 750 Body 0.942 52.946 PASS 835 4/22/2020 7421 835 Body 0.992 54.556 PASS 1750 5/27/2020 7532 1750 Body 1.454 51.143 PASS 1750 7/6/2020 7416 1750 Body 1.437 51.23 PASS 1900 5/27/2020 7532 1900 Body 1.561 50.995 PASS 2450 9/4/2019 3949 2450 Body 1.955 52.22 PASS 2450 7/6/2020 7416 2450 Body 1.996 51.99 PASS 2600 9/4/2019 3949 2600 Body 2.096 51.97 PASS	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT COND. PERM. CW VALIDATION 750 5/27/2020 7532 750 Body 0.942 52.946 PASS PASS 835 4/22/2020 7421 835 Body 0.992 54.556 PASS PASS 1750 5/27/2020 7532 1750 Body 1.454 51.143 PASS PASS 1750 7/6/2020 7416 1750 Body 1.437 51.23 PASS PASS 1900 5/27/2020 7532 1900 Body 1.561 50.995 PASS PASS 2450 9/4/2019 3949 2450 Body 1.965 52.22 PASS PASS 2450 7/6/2020 7416 2450 Body 1.996 51.99 PASS PASS 2600 9/4/2019 3949 2600 Body 2.096 51.97 PASS PASS	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT COND. PERM. CW VALIDATION 750 5/27/2020 7532 750 Body 0.942 52.946 PASS PASS<	PROBE SN	FREQ. [MHz] DATE PROBE SN PROBE CAL. POINT (σ) (εr) SENSITIVITY PROBE LINEARITY FROBE LINEARITY FROBE LINEARITY FROBE LINEARITY DUTY FACTOR DUTY FACTOR DUTY FACTOR N/A N/A N/A N/A N/A N/A N/A N/

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: BCG-A2353	PCTEST SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	Appendix D
06/29/2020 - 08/26/2020	Watch	Page 2 of 2

© 2020 PCTEST REV 21.4 M 09/11/2019

APPENDIX F: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service sulsse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No. D750V3-1D34 May18

Object	D750V8LSN40	34	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure.for.dipole.validation.kits.abo	ove:700 MHz
			5/3/126
Calibration date:	May 18; 2018		50 MHž 5/3/(26 5/3/(26 5/01/)
his calibration certificate docum	nents the traceability to nat	ional standards, which realize the physical un	/
the medadiements and the phot	errainties with confidence p	probability are given on the following pages ar	nd are part of the certificate.
ui calibrations have been condu	icted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%,
allbration Equipment used (M&	TE critical for calibration)		
Manager Okasi at a sudi.			
nmary Standards	ID#	Cal Date (Certificate No.)	Schodulad Calibratian
	ID# SN: 104778	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673)	Scheduled Calibration
ower meter NRP	····-	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
ower meter NRP lower sensor NRP-Z91 lower sensor NRP-Z91 leference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673)	Apr-19 Apr-19 Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Rype-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19 Apr-19
ower meter NRP lower sensor NRP-Z91 lower sensor NRP-Z91 leference 20 dB Attenuator lype-N mismatch combination leference Probe EX3DV4 lAE4 lecondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18
Power meter NRP Power sensor NRP-Z91 Power meter SPR-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator rype-N mismatch combination reference Probe EX3DV4 rAE4 recondary Standards rower meter EPM-442A rower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (In house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check; Oct-18 In house check; Oct-18
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator rype-N mismatch combination reference Probe EX3DV4 rAE4 recondary Standards rower meter EPM-442A rower sensor HP 8481A regenerator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02683) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-16 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check; Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Reference PRS SMT-06 Reference PRSSE	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02683) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-16 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 16-Oct-01 (in house check Oct-17) Function	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator rype-N mismatch combination reference Probe EX3DV4 rAE4 recondary Standards rower meter EPM-442A rower sensor HP 8481A regenerator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02683) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (In house check Oct-16) 07-Oct-15 (In house check Oct-16) 15-Jun-15 (In house check Oct-16) 16-Oct-01 (In house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator rype-N mismatch combination reference Probe EX3DV4 rAE4 econdary Standards rower meter EPM-442A rower sensor HP 8481A reference Probe EX3DV4 refe	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02683) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-16 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 16-Oct-01 (in house check Oct-17) Function	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Certificate No: D750V3-1034_May18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1034_May18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-44-

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.32 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.57 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.67 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D750V3-1034_May18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 0.0 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω - 3.2 jΩ
Return Loss	- 29.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 06, 2011

Certificate No: D750V3-1034_May18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 17.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1034

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; σ = 0.89 S/m; ϵ_r = 41; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017

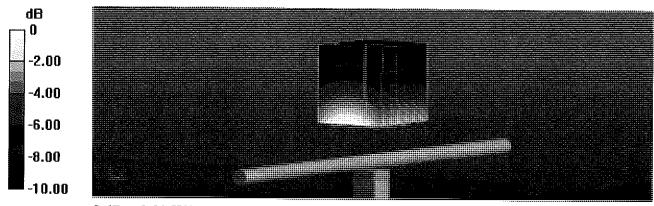
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

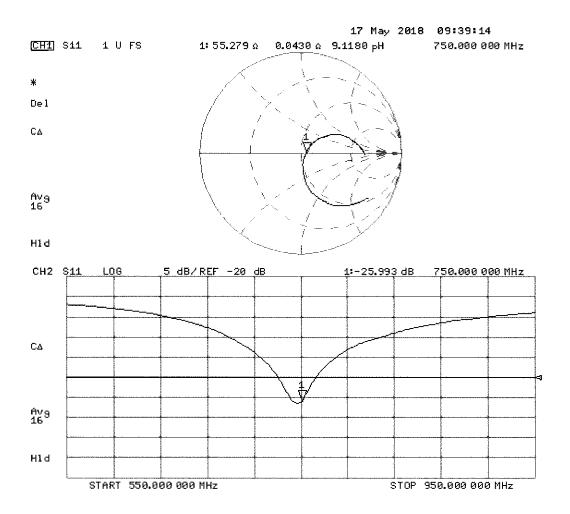
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.66 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.18 W/kg


SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1034

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017

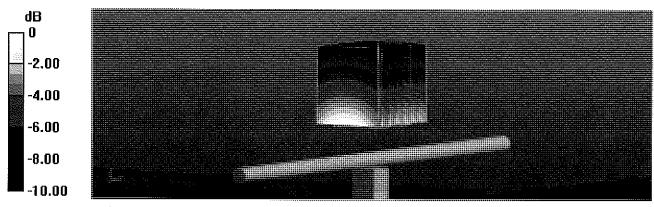
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

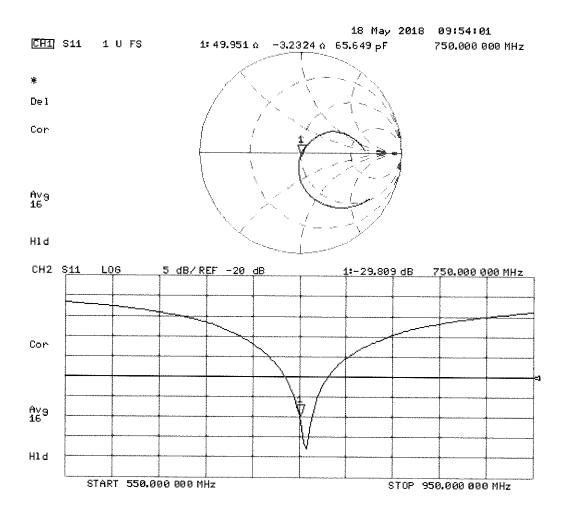
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.60 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D750V3 – SN: 1034

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 16, 2019

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402

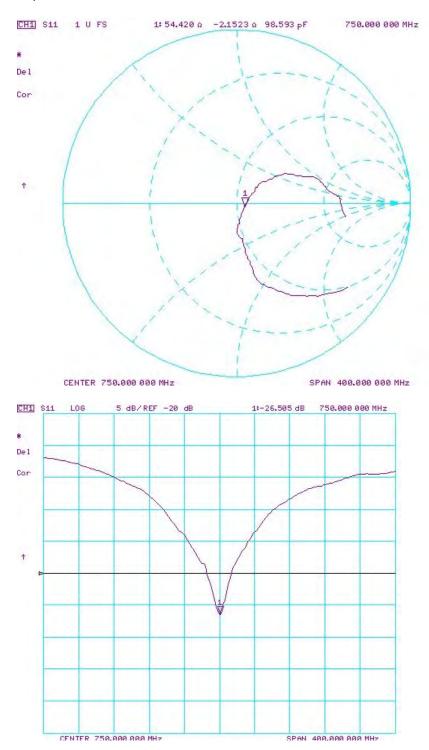
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1034	05/16/2019	rage ror4

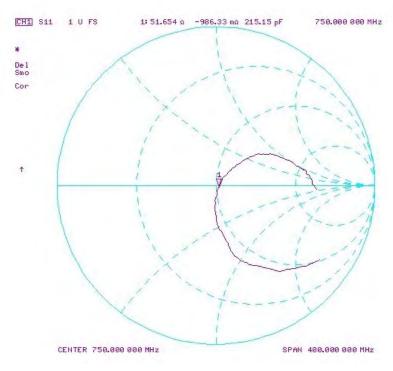
DIPOLE CALIBRATION EXTENSION

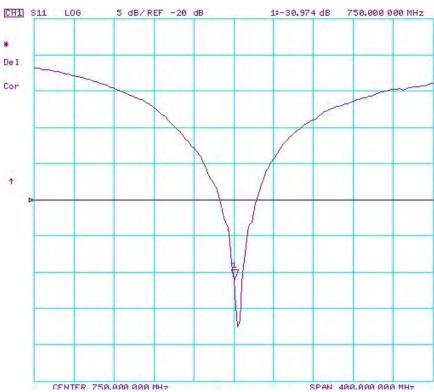
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date		Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
5/18/2018	5/16/2019	1.034	1.664	1.65	-0.84%	1.084	1.08	-0.37%	55.3	54.4	0.9	0	-2.2	2.2	-26	-26.5	-1.90%	PASS
Calibration Date	Extension Date	Delay (ns)	W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
5/18/2018	5/16/2019	1.034	1.714	1.81	5.60%	1.134	1.19	4.94%	50	51.7	1.7	-3.2	-1	2.2	-29.8	-31	-3.90%	PASS


Object:	Date Issued:	Page 2 of 4
D750V3 - SN: 1034	05/16/2019	1 age 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D750V3 - SN: 1034	05/16/2019	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D750V3 – SN: 1034	05/16/2019	rage 4 01 4

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D750V3 – SN: 1034

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 18, 2020

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2020	Annual	2/13/2021	1403
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	2/19/2020	Annual	2/19/2021	7427
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421

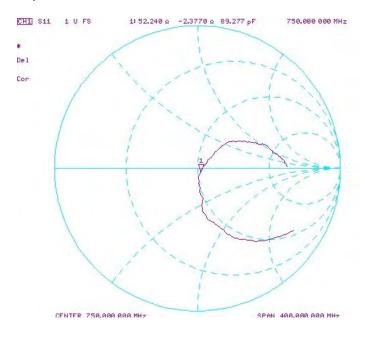
Measurement Uncertainty = ±23% (k=2)

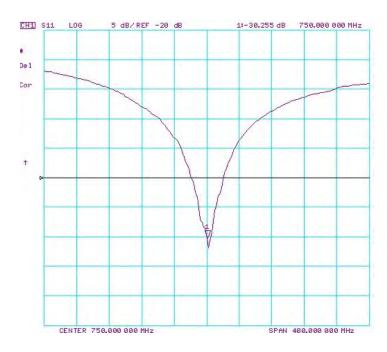
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	3CDK

Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1034	5/18/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

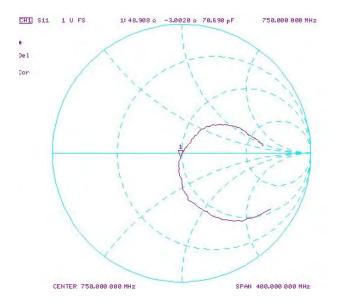
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

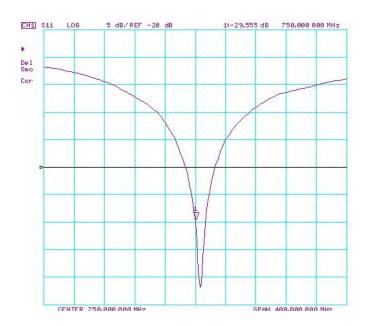

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date			Measured Head SAR (1g) W/kg @ 23.0 dBm	(9/.)		Head SAR	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/18/2018	5/18/2020	1.034	1.664	1.63	-2.04%	1.084	1.08	-0.37%	55.3	52.2	3.1	0	-2.4	2.4	-26	-30.3	-16.50%	PASS
Date	Extension Date		W/kg @ 23.0 dBm	asm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
5/18/2018	5/18/2020	1.034	1.714	1.73	0.93%	1.134	1.15	1.41%	50	48.9		-3.2		0.2	-29.8	-29.6	0.70%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 - SN: 1034	5/18/2020	r aye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D750V3 – SN: 1034	5/18/2020	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D750V3 - SN: 1034	5/18/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No. D750V3-1097 Sep17

Object	D750V3 - SN:10	97 3 7 Barrier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	ove 700 MHz SC 10/03/20
Callbration date:	September 08, 2	2017	a10/2010
This calibration certificate docum	ents the traceability to nat	tional standards, which realize the physical un	oits of measurements (SI). and are part of the certificate.
ne measurements and the unce	atainties with confidence p	probability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	cled in the closed laborato	ory facility: environment temperature (22 ± 3)°(C and himidity < 70%
Calibration Equipment used (M&T			o and radiusky 17076.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Callbration
	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91			Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenualor	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18
Power sensor NBP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power sensor NBP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power sensor NBP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power sensor NBP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292763	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 May-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generetor R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292763 SN: MY41092317	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB37480704 SN: US37292763 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 May-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor NBP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292763 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 May-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1097 Sep17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	_
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity 0.89 mho/m	
Nominal Head TSL parameters	22.0 °C	41.9		
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.90 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.39 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.5 ± 6 %	0.96 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.56 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 0.6 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω - 3.6 jΩ
Return Loss	- 28.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2013

Certificate No: D750V3-1097_Sep17

DASY5 Validation Report for Head TSL

Date: 08.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.49, 10.49, 10.49); Calibrated: 31.05.2017;

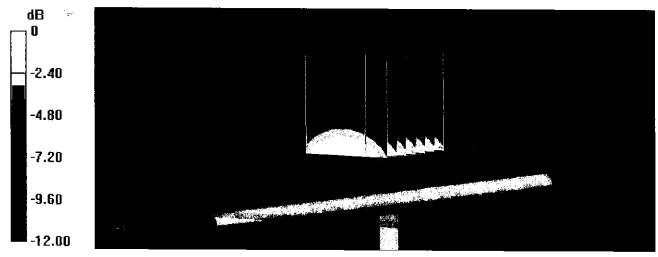
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

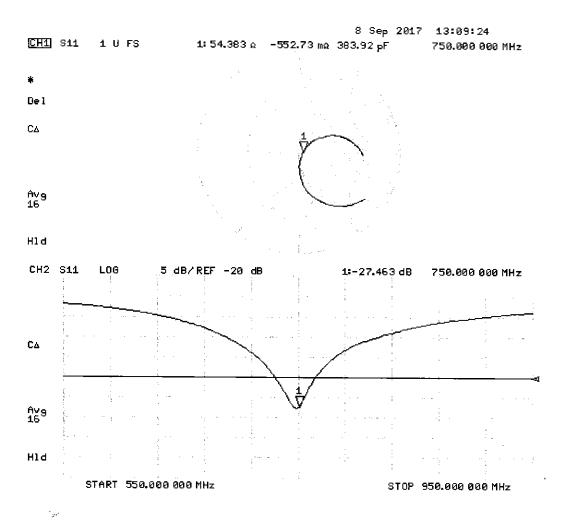
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.59 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.19 W/kg


SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.35, 10.35, 10.35); Calibrated: 31.05.2017;

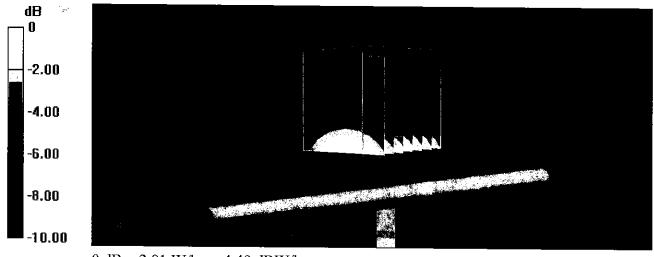
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

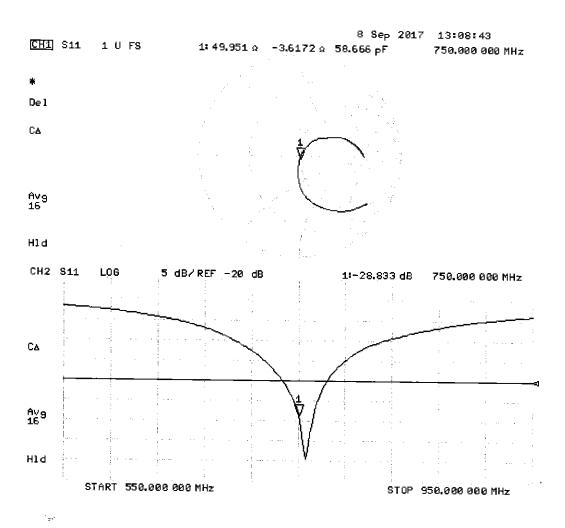
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.96 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 2.81 W/kg

0 dB = 2.81 W/kg = 4.49 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D750V3 – SN: 1097

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 08, 2018

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/18/2018	Annual	1/18/2019	793

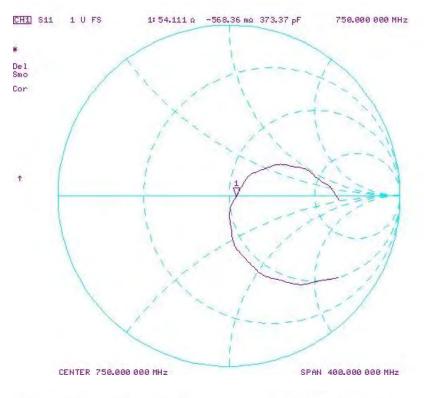
Measurement Uncertainty = $\pm 23\%$ (k=2)

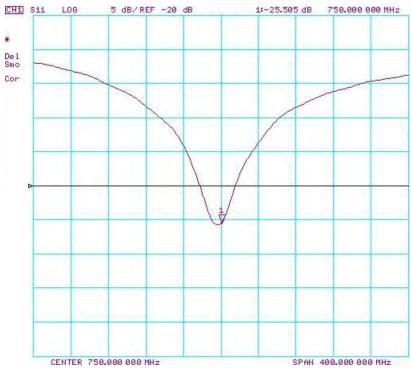
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Tengen
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1097	09/08/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

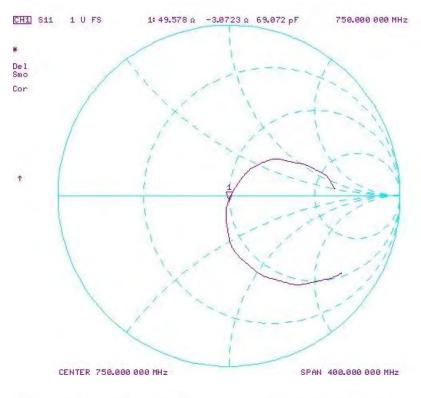
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

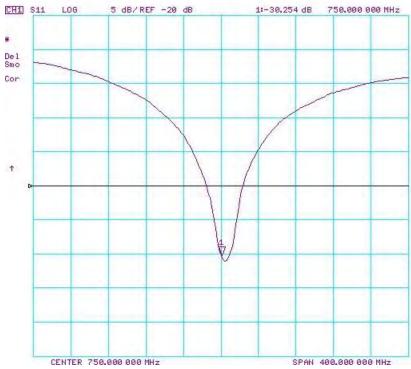

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 23.0 dBm	asm	(%)	VV/kg ⊚ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Head (dB)	Head (dB)	Deviation (%)	
9/8/2017	9/8/2018	1.034	1.644	1.7	3.41%	1.078	1.12	3.90%	54.4	54.1	0.3	-0.6	-0.6	0	-27.5	-25.5	7.30%	PASS
Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 23.0 dBm	asm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Body (dB)	Body (dB)	Deviation (%)	
9/8/2017	9/8/2018	1.034	1.712	1.78	3.97%	1.136	1.17	2.99%	50	49.6	0.4	-3.6	-3.1	0.5	-28.8	-30.3	-5.20%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 – SN: 1097	09/08/2018	raye 2 014


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D750V3 – SN: 1097	09/08/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D750V3 – SN: 1097	09/08/2018	raye 4 01 4

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D750V3 – SN: 1097

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 8, 2019

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	11/1/2017	Biennial	11/1/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	DAE4	Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532

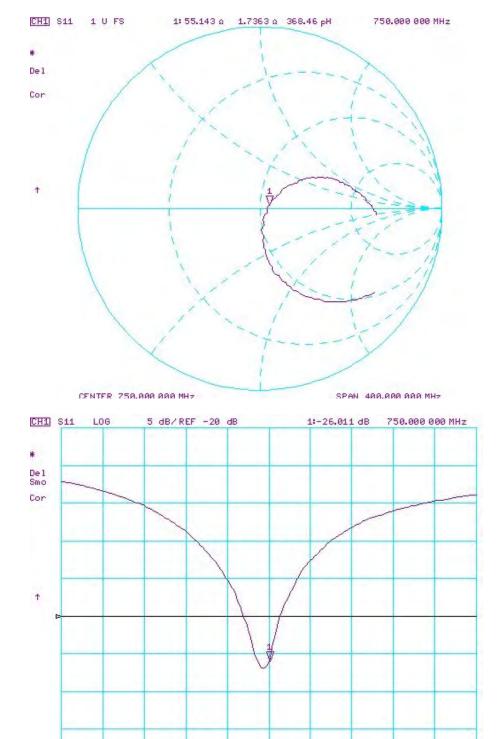
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1097	09/08/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

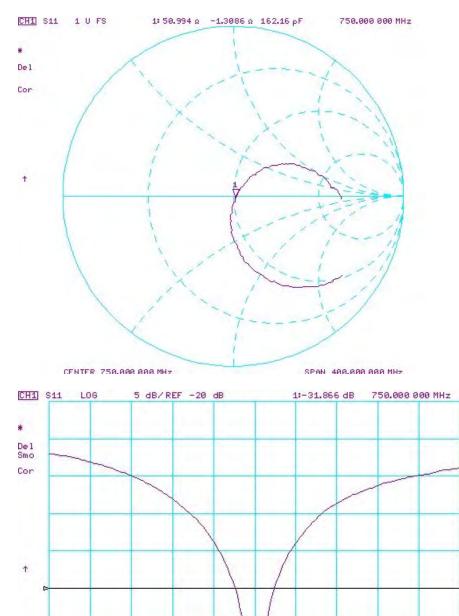

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 23.0 dBm	(9/)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/8/2017	9/8/2019	1.034	1.644	1.56	-5.11%	1.078	1.03	-4.45%	54.4	55.1	0.7	-0.6	1.7	2.3	-27.5	-26	5.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 23.0 dBm	(9/.)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/8/2017	9/8/2019	1.034			-3.62%	1.136		-3.17%				-3.6		2.3	-28.8	-31.9	-10.80%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 - SN: 1097	09/08/2019	raye 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL



CENTER 750,000 000 MHz

Object:	Date Issued:	Page 3 of 4
D750V3 – SN: 1097	09/08/2019	rage 3 01 4

SPAN 400,000 000 MHz

Impedance & Return-Loss Measurement Plot for Body TSL

CENTER 750.000 000 MHz

Object:	Date Issued:	Page 4 of 4
D750V3 - SN: 1097	09/08/2019	Page 4 of 4

SPAN 400.000 000 MHz

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Tes

Certificate No: D835V2-4d040_Jun19

Object	D835V2 - SN:4d0	040	ATIA
Calibration procedure(s)	QA CAL-05.v11		· ATM
	Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz (//)
			/
			1/1/1
Na Dibaration and Alice	N 00 0010		\times AP
Callbration date:	June 20, 2019		· 1
			-1/2I
et 1 - 19 - 11 19 1		and the second control of the second control of	the of managements (CI)
		onal standards, which realize the physical uni	
The measurements and the unce	riainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conduc	ited in the closed laborato	ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&	E critical for calibration)		
Calibration Equipment used (M&	E critical for calibration)		
	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	ı	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893)	Scheduled Calibration Apr-20
Primary Standards Power meter NRP	ID#		
Primary Standards Power meter NRP Power sensor NRP-Z91	ID # SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778 SN: 103244 SN: 103245	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Altenuator	ID # SN: 104778 SN: 103244	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	Apr-20 Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (In house) 30-Oct-14 (In house check Feb-19) 07-Oct-15 (In house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Altenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (In house) 30-Oct-14 (In house check Feb-19) 07-Oct-15 (In house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (In house) 30-Oct-14 (In house check Feb-19) 07-Oct-15 (In house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358/	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20

Issued: June 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Approved by:

Technical Manager

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.50 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.9 7 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.24 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d040_Jun19

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 4.1 jΩ
Return Loss	- 27.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 6.5 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D835V2-4d040_Jun19

DASY5 Validation Report for Head TSL

Date: 20.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 29.05.2019

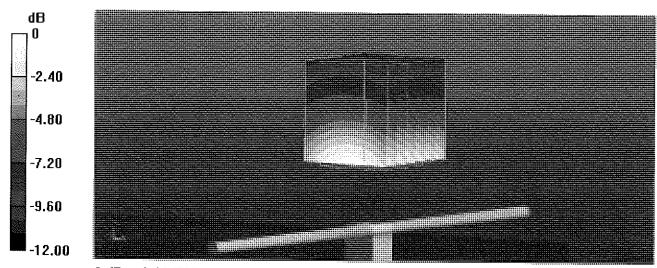
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

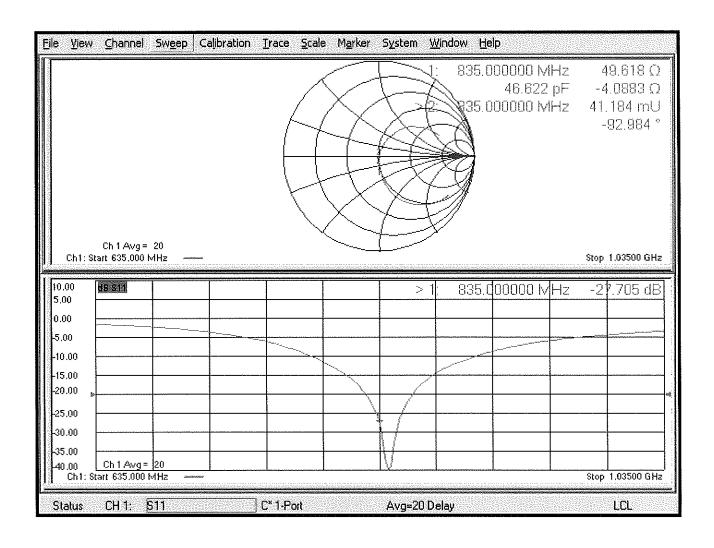
• DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.05 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.60 W/kg


SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.19 W/kg

0 dB = 3.19 W/kg = 5.04 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 29.05.2019

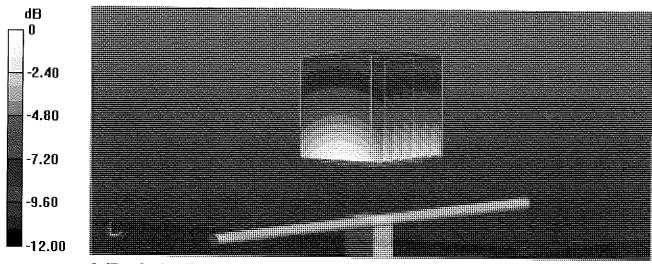
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

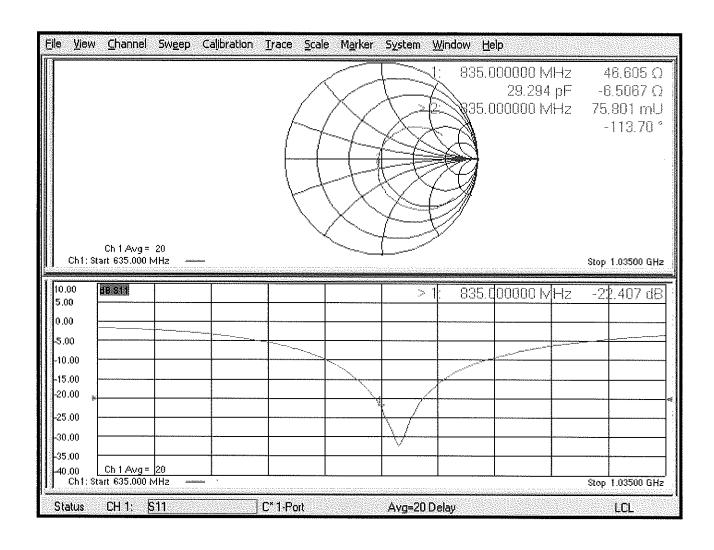
DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.73 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.59 W/kg


SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.21 W/kg

0 dB = 3.21 W/kg = 5.07 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D835V2 – SN: 4d040

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 20, 2020

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421

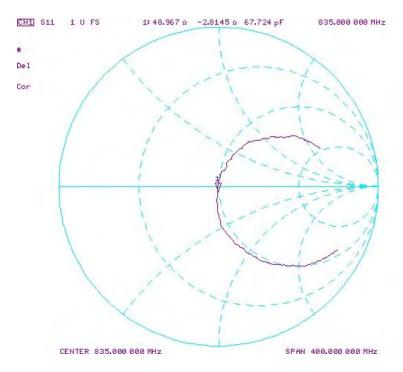
Measurement Uncertainty = ±23% (k=2)

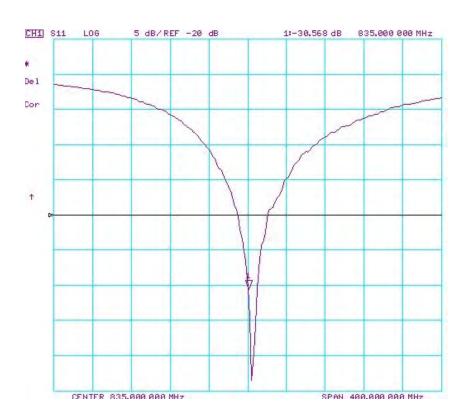
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	20K

Object:	Date Issued:	Page 1 of 4
D835V2 - SN: 4d040	6/20/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 23.0 dBm	(9/)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/20/2019	6/20/2020	1.393	1.900	2	5.26%	1.226	1.31	6.85%	49.6	49	0.6	-4.1	-2.8	1.3	-27.7	-30.6	-10.50%	PASS
Date	Extension Date	,,	W/kg @ 23.0 dBm	dBm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
6/20/2019	6/20/2020	1.393	1.906	2.04	7.03%	1.248	1.34	7.37%	46.6	45.6	1	-6.5	-5.2	1.3	-22.4	-23.1	-3.10%	PASS

Object:	Date Issued:	Page 2 of 4
D835V2 - SN: 4d040	6/20/2020	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D835V2 - SN: 4d040	6/20/2020	rage 3 of 4