PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC Part 90

Applicant: Apple Inc. 1 Infinite Loop Cupertino, CA 95014 **United States**

Date of Testing: 6/9-8/4/2017 Test Site/Location:

PCTEST Lab., Morgan Hill, CA, USA

Test Report Serial No.: 1C1706160002-89-09-R5.BCG

FCC ID: **BCG-A1889**

APPLICANT: APPLE INC.

Applicant Type: Certification

Model: A1889, A1969

EUT Type: Watch

FCC Classification: Licensed Non-Broadcast Transmitter Worn on Body (TNT)

FCC Rule Part: §2.1049, §90.691

ANSI/TIA-603-E-2016, KDB 971168 D01 v02r02, KDB 648474 D03 **Test Procedure(s):**

v01r04, KDB 414788 D01 Radiated Test Site v01

identical prototype [S/N: FH7TR00CJ76N, FH7TR001J76N, **Test Device Serial No.:**

FH7TQ008J77T]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1C1706160002-89-09-R5.BCG) supersedes and replaces the previously issued test report (S/N: 1C1706160002-89-09-R4.BCG) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 4 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 1 of 33

TABLE OF CONTENTS

FCC F	PART 9	90 MEASUREMENT REPORT	3
1.0	INTF	RODUCTION	5
	1.1	Scope	5
	1.2	Testing Facility	5
2.0	PRC	DDUCT INFORMATION	6
	2.1	Equipment Description	6
	2.2	Device Capabilities	6
	2.3	Antenna Configuration	6
	2.4	Test Support Equipment	6
	2.5	Test Configuration	7
	2.6	Software and Firmware	7
	2.7	EMI Suppression Device(s)/Modifications	7
3.0	DES	SCRIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	Radiated Power and Radiated Spurious Emissions	8
4.0	MEA	ASUREMENT UNCERTAINTY	9
5.0	TES	T EQUIPMENT CALIBRATION DATA	10
6.0	SAM	IPLE CALCULATIONS	11
7.0	TES	T RESULTS	12
	7.1	Summary	12
	7.2	Occupied Bandwidth	13
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	18
	7.4	Band Edge Emissions at Antenna Terminal	21
	7.5	Conducted Power Output Data	26
	7.6	Radiated Spurious Emissions Measurements	27
	7.7	Frequency Stability / Temperature Variation	30
8.0	CON	NCLUSION	33

FCC ID: BCG-A1889	PCTEST INGINEERING LABORATORY, INC	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 2 of 22
1C1706160002-89-09-R5 BCG	6/9-8/4/2017	Watch	Page 2 of 33

MEASUREMENT REPORT FCC Part 90

§2.1033 General Information

APPLICANT: Apple Inc. **APPLICANT ADDRESS:** 1 Infinite Loop

Cupertino, CA 95014, United States

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 18855 Adams Court, Morgan Hill, CA 95037 USA

BASE MODEL: A1889, A1969

FCC CLASSIFICATION: Licensed Non-Broadcast Transmitter Worn on Body (TNT)

MODE:

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)

FH7TR00CJ76N,

Test Device Serial No.: FH7TR001J76N, ☐ Production □ Pre-Production ☐ Engineering

FH7TQ008J77T

DATE(S) OF TEST: 6/9-8/4/2017

TEST REPORT S/N: 1C1706160002-89-09-R5.BCG

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Morgan Hill, CA 95037, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCG-A1889	PCTEST	(6. 40. 41.)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 2 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 3 of 33

MEASUREMENT REPORT FCC Part 90

Mode	Tx Frequency (MHz)	Emission Designator	Measurement	Max. Power (W)	Max. Power (dBm)	Modulation
LTE Band 26	814.7 - 823.3	1M07G7D	Conducted	0.247	23.93	QPSK
LTE Band 26	814.7 - 823.3	1M07W7D	Conducted	0.199	22.99	16-QAM
LTE Band 26	815.5 - 822.5	2M69G7D	Conducted	0.251	24.00	QPSK
LTE Band 26	815.5 - 822.5	2M69W7D	Conducted	0.197	22.94	16-QAM
LTE Band 26	816.5 - 821.5	4M51G7D	Conducted	0.251	23.99	QPSK
LTE Band 26	816.5 - 821.5	4M49W7D	Conducted	0.200	23.00	16-QAM
LTE Band 26	819	8M97G7D	Conducted	0.250	23.98	QPSK
LTE Band 26	819	8M97W7D	Conducted	0.200	23.00	16-QAM

EUT Overview

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 4 of 33

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science, and Economic Development Canada.

1.2 Testing Facility

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 18855 Adams Court, Morgan Hill, CA 95037.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo F of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 5 of 33

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Apple Watch FCC ID: BCG-A1889. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 90.691. According to the manufacturer, models A1889 and A1969 are electrically identical. Model A1889 was used for final testing.

2.2 **Device Capabilities**

This device contains the following capabilities:

850 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE), NFC

2.3 **Antenna Configuration**

Following antenna gain was used for the testing.

Frequency	Antenna Gain
(MHz)	(dBi)
814-824	-23.27

Table 2-1. Peak Antenna Gain

2.4 **Test Support Equipment**

1	Apple MacBook	Model:	A1502	S/N:	C02NQ01YG465
	w/ AC/DC Adapter	Model:	A1435	S/N:	C04325505K1F288BG
2	Apple USB Cable	Model:	Kanzi	S/N:	20153D
	w/ Charging Dock	Model:	FAPS61	S/N:	6304000736
	w/ Dock	Model:	X241	S/N:	SJH3002AP2AS
3	USB Cable	Model:	N/A	S/N:	N/A
			Shielded USB Cable		
4	w/ AC Adapter	Model:	B353	S/N:	N/A
5	Test Pathfinder Board	Model:	X988	S/N:	FGH7648700BDHMV323
6	Wireless Charging Pad (WCP)	Model:	A1598	FCC ID:	BCGA1598

Table 2-2. Test Equipment

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dono C of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 6 of 33

2.5 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v02r02. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on a certified wireless charging pad (WCP) while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

The worst case configuration was investigated for all combinations of the three materials, aluminum, ceramic, and stainless steel, and various types of wristbands, metal and non-metal wrist bands. The store display sample was investigated with the three types of EUTs. The EUT was also investigated with and without wireless charger.

The worst case configuration found was used for all testing. The worst case material was aluminum. The worst case accessory was metal wristband but no significant difference was found between various types of wrist bands.

The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.6 Software and Firmware

The test was conducted with firmware version 15R328 installed on the EUT.

For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation," Version 3.9.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 7 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 7 of 33

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v02r02) were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions §2.1053, §90.635, §90.691

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high Styrodur Plastic Test Table is placed on top of the turntable.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v02r02.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log10(Power [Watts]) specified in 90.691.

For fundamental radiated power measurements, the guidance of KDB 971168 D01 v02r02 is used to record the EUT power level that is subsequently matched via the aforementioned substitution method given in ANSI/TIA-603-E-2016.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 0 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 8 of 33

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo O of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 9 of 33

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AM LTX1	Licensed Tramsmitter Cable Set	3/17/2017	Annual	3/17/2018	AM LTX1
-	EMI 3117-ESW1	Radiated Cable Set	3/1/2017	Biennial	3/1/2018	N/A
-	EMI HL562E-ESW1	Radiated Cable Set	2/28/2017	Biennial	2/28/2018	N/A
ESPEC	SU-241	Temperature Chamber	3/10/2017	Annual	3/10/2018	92009574
Keysight Technologies	N9030A	3Hz-44Ghz PXA Signal Analyzer	3/13/2017	Annual	3/13/2018	MY49430244
Pasternack	NC100	Torque Wrench	8/21/2015	Biennial	8/21/2017	81968
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/10/2017	Annual	1/10/2018	161675
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	5/8/2017	Annual	5/8/2018	161616-DF
Rohde & Schwarz	ESW26	ESW26 EMI Test Receiver	1/20/2017	Annual	1/20/2018	101299
Rohde & Schwarz	HL562E	Bi-Log Antenna (30MHz - 6GHz)	1/19/2017	Annual	1/19/2018	100610
Rohde & Schwarz	OSP130	Open Switch and control unit	1/18/2017	Annual	1/18/2018	100970
Rohde & Schwarz	SFUNIT-RX	TS-SFUNIT SHIELDED FILTER UNIT	2/3/2017	Annual	2/3/2018	102131
Rohde & Schwarz	TS-PR8	Pre-amplifer (30MHz - 8GHz)	2/3/2017	Annual	2/3/2018	102325
Rohde & Schwarz	TC-TA18	CROSS POL. VIVALDI ANT (400MHz - 18GHz)	11/8/2016	Annual	11/8/2017	101056-AE

Table 5-1. Test Equipment

FCC ID: BCG-A1889	PCTEST	(0 - 47 - 47 - 3	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 10 of 33

SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHzG = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

16QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

Spurious Radiated Emission - LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: BCG-A1889	PCTEST		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 11 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 11 of 33

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Apple Inc.</u>

FCC ID: BCG-A1889

FCC Classification: Licensed Non-Broadcast Transmitter Worn on Body (TNT)

Mode(s): <u>LTE</u>

Band: Band 26

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
2.1051 90.691	Conducted Band Edge / Spurious Emissions	> 43 + log ₁₀ (P[Watts]) for all out- of-band emissions except > 50 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions within 37.5kHz of Block Edge	CONDUCTED	PASS	Sections 7.3, 7.4
2.1055 90.213	Frequency Stability	< 2.5 ppm		PASS	Section 7.7
2.1046 90.635	Conducted Power	< 100 Watts		PASS	Section 7.5
2.1053 90.691	Radiated Spurious Emissions	> 43 + log ₁₀ (P[Watts]) for all out- of-band emissions except > 50 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions within 37.5kHz of Block Edge	RADIATED	PASS	Section 7.6

Table 7-1. Summary of Test Results

Notes:

- All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 7.0 were taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation," Version 3.9.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 10 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 12 of 33

Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v02r02 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within 1 – 5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes


None.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 12 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 13 of 33

Plot 7-1. Occupied Bandwidth Plot (1.4MHz QPSK – RB Size 6– Low Channel)

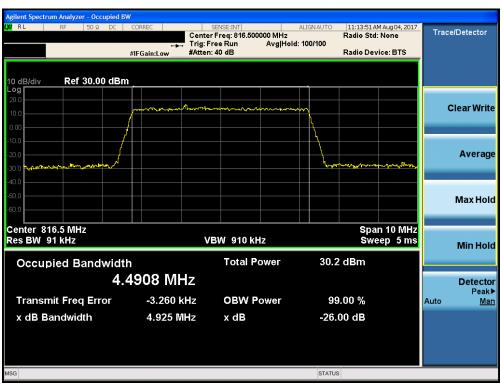
Plot 7-2. Occupied Bandwidth Plot (1.4MHz 16-QAM - RB Size 6- Low Channel)

FCC ID: BCG-A1889	PCTEST	(O : 100 : 1)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 14 of 33


© 2017 PCTEST Engineering Laboratory, Inc.

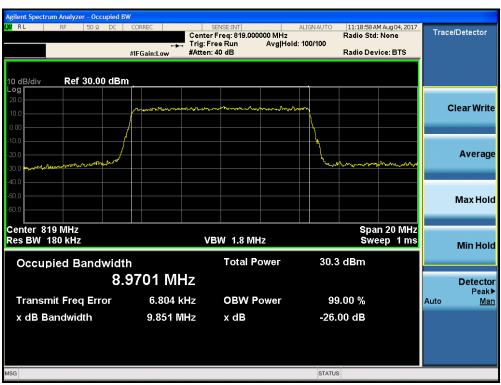
V 6.6 06/06/2017

Plot 7-3. Occupied Bandwidth Plot (3MHz QPSK - RB Size 15- Low Channel)


Plot 7-4. Occupied Bandwidth Plot (3MHz 16-QAM - RB Size 15- Low Channel)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 45 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 15 of 33

Plot 7-5. Occupied Bandwidth Plot (5MHz QPSK - RB Size 25- Low Channel)


Plot 7-6. Occupied Bandwidth Plot (5MHz 16-QAM - RB Size 25- Low Channel)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 16 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 16 of 33

Plot 7-7. Occupied Bandwidth Plot (10MHz QPSK - RB Size 50)

Plot 7-8. Occupied Bandwidth Plot (10MHz 16-QAM - RB Size 50)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 17 of 33

Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §90.691

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[watts]), where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v02r02 - Section 6.0

Test Settings

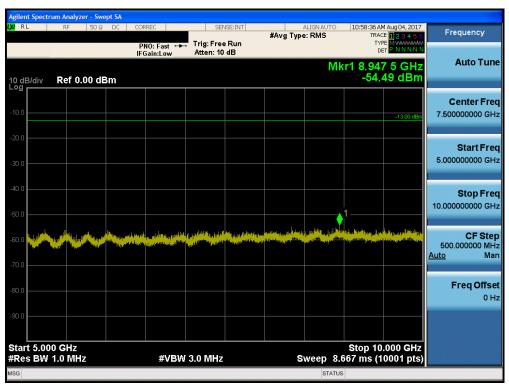
- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. RBW ≥ 1MHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

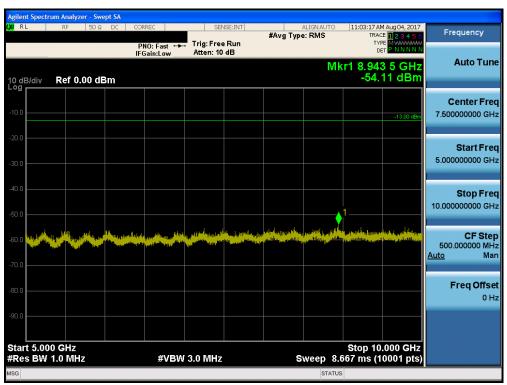

Figure 7-2. Test Instrument & Measurement Setup

Test Notes


Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 18 of 33


Plot 7-9. Conducted Spurious Plot (1.4MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-10. Conducted Spurious Plot (1.4MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 19 of 33

Plot 7-11. Conducted Spurious Plot (1.4MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-12. Conducted Spurious Plot (1.4MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCG-A1889	PCTEST	(0 - 400 - 40 - 3)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 20 of 33

7.4 Band Edge Emissions at Antenna Terminal §2.1051, §90.691

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by greater than 37.5 kHz is 43 + log₁₀(P_[Watts]), where P is the transmitter power in Watts.

The minimum permissible attenuation level of any spurious emission removed from the EA *licensee's frequency block by up to and including 37.5 kHz* is $50 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v02r02 - Section 6.0

Test Settings

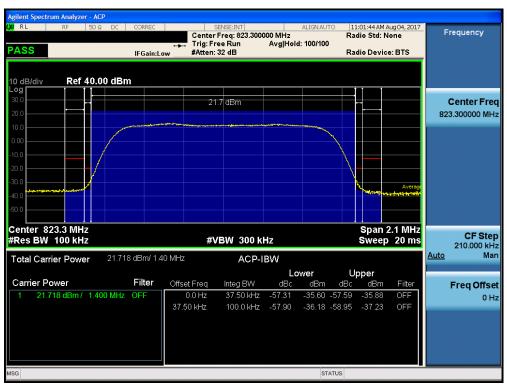
- 1. Span was set large enough so as to capture all out of band emissions near the band edge
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = RMS
- 5. Trace mode = trace average
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

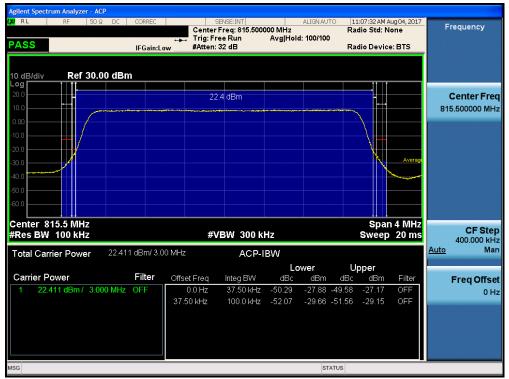
The EUT and measurement equipment were set up as shown in the diagram below.

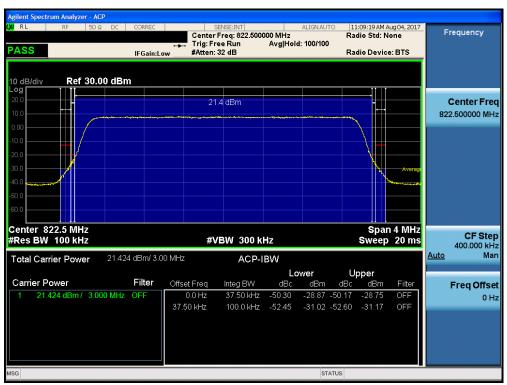
Figure 7-3. Test Instrument & Measurement Setup

Test Notes


For channel edge emission, the signal analyzer's "ACP" measurement capability is used.

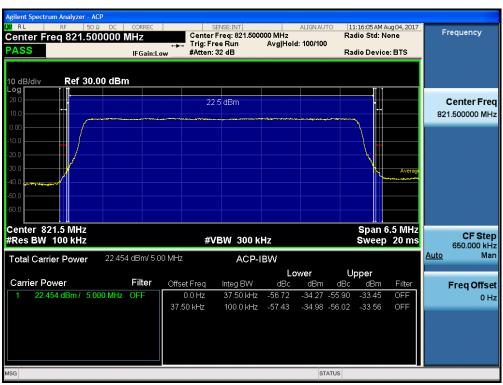
FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 24 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 21 of 33


Plot 7-13. Channel Edge Plot (1.4MHz QPSK - RB Size 6- Low Channel)

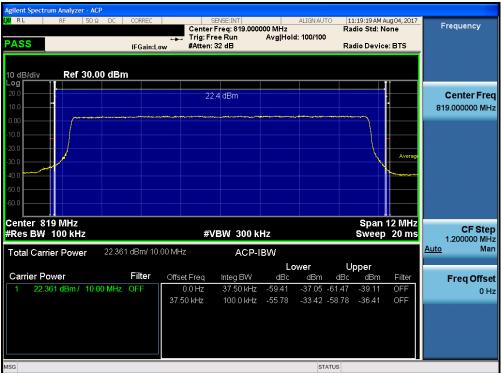

Plot 7-14. Channel Edge Plot (1.4MHz QPSK – RB Size 6 – High Channel)

FCC ID: BCG-A1889	PCTEST	(0 - 400 - 40 - 3)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 22 of 33

Plot 7-15. Channel Edge Plot (3MHz QPSK - RB Size 15- Low Channel)


Plot 7-16. Channel Edge Plot (3MHz QPSK - RB Size 15 - High Channel)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 22 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 23 of 33


Plot 7-17. Channel Edge Plot (5MHz QPSK - RB Size 25- Low Channel)

Plot 7-18. Channel Edge Plot (5MHz QPSK - RB Size 25 - High Channel)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 24 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 24 of 33

Plot 7-19. Channel Edge Plot (10MHz QPSK - RB Size 50)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 25 of 33

7.5 Conducted Power Output Data §90.635

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Cond. PWR [dBm]	Cond. PWR [Watts]	Cond. PWR Limit [dBm]	Margin [dB]
814.70	1.4	QPSK	23.93	0.247	50.00	-26.07
823.30	1.4	QPSK	23.90	0.245	50.00	-26.10
814.70	1.4	16-QAM	22.99	0.199	50.00	-27.01
823.30	1.4	16-QAM	22.81	0.191	50.00	-27.19
815.50	3	QPSK	24.00	0.251	50.00	-26.00
822.50	3	QPSK	23.98	0.250	50.00	-26.02
815.50	3	16-QAM	22.94	0.197	50.00	-27.06
822.50	3	16-QAM	22.94	0.197	50.00	-27.06
816.50	5	QPSK	23.99	0.251	50.00	-26.01
821.50	5	QPSK	23.97	0.249	50.00	-26.03
816.50	5	16-QAM	23.00	0.200	50.00	-27.00
821.50	5	16-QAM	22.95	0.197	50.00	-27.05
819.00	10	QPSK	23.98	0.250	50.00	-26.02
819.00	10	16-QAM	23.00	0.200	50.00	-27.00

Table 7-20. LTE Band 26 Conducted Power Output Data

Test Notes

- 1) For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 2) This unit was tested with its standard battery.

FCC ID: BCG-A1889	PCTEST	(0 - 47 - 47 - 3	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 33
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	raye 20 01 33

7.6 Radiated Spurious Emissions Measurements §2.1053, §90.691

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v02r02 - Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 27 of 33

The EUT and measurement equipment were set up as shown in the diagram below.

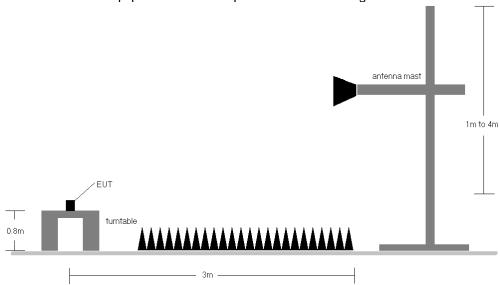


Figure 7-4. Test Instrument & Measurement Setup

Test Notes

- 1. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 2. This unit was tested with its standard battery.
- 3. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 4. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: BCG-A1889	PCTEST		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 20 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 28 of 33

OPERATING FREQUENCY: 815.50 MHz

CHANNEL: 26705

MODULATION SIGNAL: QPSK

BANDWIDTH: 3.0 MHz
DISTANCE: 3 meters
LIMIT: -13.00 dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	Margin [dB]
1631.00	Н	128	331	-76.90	6.92	-69.98	-57.0
2446.50	Н	-	-	-75.88	6.84	-69.05	-56.0

Table 7-2. Radiated Spurious Data (Ch. 26705)

OPERATING FREQUENCY: 822.50 MHz

CHANNEL: 26775

MODULATION SIGNAL: QPSK

BANDWIDTH: 3.0 MHz
DISTANCE: 3 meters
LIMIT: -13.00 dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	Margin [dB]
1645.00	Н	125	278	-72.63	7.00	-65.63	-52.6
2467.50	Н	-	-	-76.03	6.93	-69.10	-56.1

Table 7-3. Radiated Spurious Data (Ch. 26705)

FCC ID: BCG-A1889	PCTEST	(0 - 400 - 40 - 3)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 29 of 33

7.7 Frequency Stability / Temperature Variation §2.1055, §90.213

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: BCG-A1889	PCTEST		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 30 of 33

Frequency Stability / Temperature Variation §2.1055, §90.213

OPERATING FREQUENCY: 815,500,000 Hz

CHANNEL: 26705

3.82 REFERENCE VOLTAGE: VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.82	+ 20	815,499,994	-6	-0.0000007
100 %		- 30	815,499,887	-113	-0.0000139
100 %		- 20	815,500,118	118	0.0000145
100 %		- 10	815,499,926	-74	-0.0000091
100 %		0	815,500,105	105	0.0000129
100 %		+ 10	815,499,970	-30	-0.0000037
100 %		+ 20	815,499,921	-79	-0.0000097
100 %		+ 30	815,499,996	-4	-0.0000005
100 %		+ 40	815,500,321	321	0.0000394
100 %		+ 50	815,500,031	31	0.0000038
BATT. ENDPOINT	3.42	+ 20	815,500,027	27	0.0000033

Table 7-4. LTE Band 26 Frequency Stability Data (Ch. 26705)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 33
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 31 01 33

Frequency Stability / Temperature Variation §2.1055, §90.213

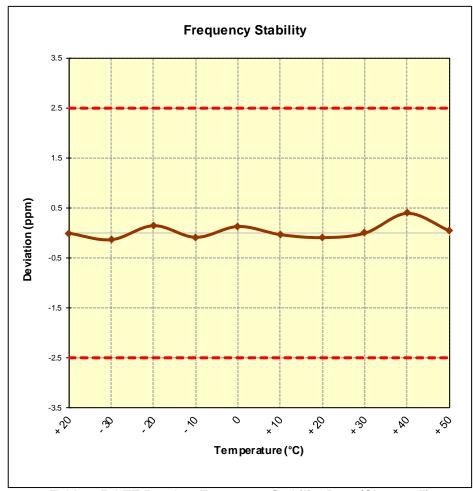


Table 7-5. LTE Band 26 Frequency Stability Data (Ch. 26705)

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 32 of 33

CONCLUSION

The data collected relate only to the item(s) tested and show that the Apple Watch FCC ID: BCG-A1889 complies with all the requirements of Part 90 of the FCC rules.

FCC ID: BCG-A1889	PCTEST	Part 90 LTE MEASUREMENT REPORT (Certification)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 22 of 22
1C1706160002-89-09-R5.BCG	6/9-8/4/2017	Watch	Page 33 of 33