

**FCC CFR47 PART 15 SUBPART C
INDUSTRY CANADA RSS-210 ISSUE 7**

CERTIFICATION TEST REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: IT- 800E

**FCC ID: BBQIT800
IC: 2388F-IT800**

REPORT NUMBER: 09J12750-4, Revision B

ISSUE DATE: NOVEMBER 13, 2009

Prepared for
COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

Prepared by
COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

NVLAP[®]

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
--	11/04/09	Initial Issue	T. Chan
A	11/09/09	Revised model number on page 5	A. Zaffar
B	11/13/09	Addressed TCB Reviewer's Questions	M. Mekuria

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS.....	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION.....	5
4. CALIBRATION AND UNCERTAINTY	5
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	5
4.2. <i>SAMPLE CALCULATION.....</i>	5
4.3. <i>MEASUREMENT UNCERTAINTY.....</i>	5
5. EQUIPMENT UNDER TEST	6
5.1. <i>DESCRIPTION OF EUT.....</i>	6
5.2. <i>ACCESSORY AND MODEL DIFFERENCES.....</i>	6
5.3. <i>DESCRIPTION OF AVAILABLE ANTENNAS.....</i>	7
5.4. <i>SOFTWARE AND FIRMWARE.....</i>	7
5.5. <i>WORST-CASE CONFIGURATION AND MODE</i>	7
5.6. <i>MODIFICATIONS.....</i>	7
5.7. <i>DESCRIPTION OF TEST SETUP.....</i>	8
6. TEST AND MEASUREMENT EQUIPMENT	10
7. RADIATED EMISSION TEST RESULTS.....	11
7.1. <i>LIMITS AND PROCEDURE</i>	11
7.1.1. <i>FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)</i>	13
7.1.2. <i>TX SPURIOUS EMISSION 30 TO 1000 MHz (HORIZONTAL).....</i>	14
7.1.3. <i>TX SPURIOUS EMISSIONS ABOVE 1 GHz.....</i>	17
7.1.4. <i>RX SPURIOUS EMISSIONS ABOVE 1 GHz</i>	18
8. AC MAINS LINE CONDUCTED EMISSIONS	19
9. FREQUENCY STABILITY.....	23
10. 99% BANDWIDTH.....	24
11. SETUP PHOTOS	26

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CASIO COMPUTER CO., LTD
6-2 HON-MACHI 1-CHOME
SHIBUYA-KU
TOKYO, 151-8543, JAPAN

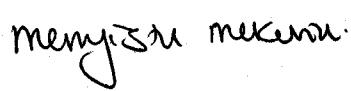
EUT DESCRIPTION: HANDHELD TERMINAL

MODEL: IT-800R (HANDHELD) & HA-H62IO (ETHERNET CRADLE)

SERIAL NUMBER: 73 (CONDUCTED) & 02121 (RADIATED)

DATE TESTED: OCTOBER 21 TO 29, 2009

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	Pass
INDUSTRY CANADA RSS-210 Issue 7, Annex 2	Pass
INDUSTRY CANADA RSS-GEN Issue 2	Pass


Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

THU CHAN
EMC MANAGER
COMPLIANCE CERTIFICATION SERVICES

MENGISTU MEKURIA
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

$$\begin{aligned} \text{Field Strength (dBuV/m)} &= \text{Measured Voltage (dBuV)} + \text{Antenna Factor (dB/m)} + \\ &\text{Cable Loss (dB)} - \text{Preamp Gain (dB)} \\ 36.5 \text{ dBuV} + 18.7 \text{ dB/m} + 0.6 \text{ dB} - 26.9 \text{ dB} &= 28.9 \text{ dBuV/m} \end{aligned}$$

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth and RFID equipped Handheld Terminal

The RFID module is manufactured by NXP Semiconductors.

5.2. ACCESSORY AND MODEL DIFFERENCES

The EUT model IT-800E (2D) with HA-H62IO was chosen as a representative of the following models for testing since it represents the worst-case scenario. The table below shows the model differences:

*: Model tested

Type	Bluetooth	RFID	2D Scanner	SD slot	Camera
*2D Model	X	X	X		X
SD Model	X	X		X	X

Product name	Model name	Mode			
		LAN	USB Host	USB Client	Charge
USB Cradle	HA-H60IO		mode1	mode2	
AC Adapter	AD-S42120B				
*Ethernet Cradle	HA-H62IO	mode3	mode4	mode5	
AC Adapter	AD-S42120B				
Cradle-type Battery Charger	HA-H30CHG				mode6
AC Adapter	AD-S15050B				
AC Adapter directly connected to Handheld Terminal	AD-S15050B				mode7

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a loop antenna.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was NFCTest Ver 0.19.00.

5.5. WORST-CASE CONFIGURATION AND MODE

Emission with highest power is considered to be the worst-case. To determine the worst case configuration the EUT investigate in X, Y, Z-Positions, and EUT with the Ethernet cradle. The highest power is turned out for the EUT with Y-Position. As a result, all the necessary harmonics tests have done with this EUT orientation.

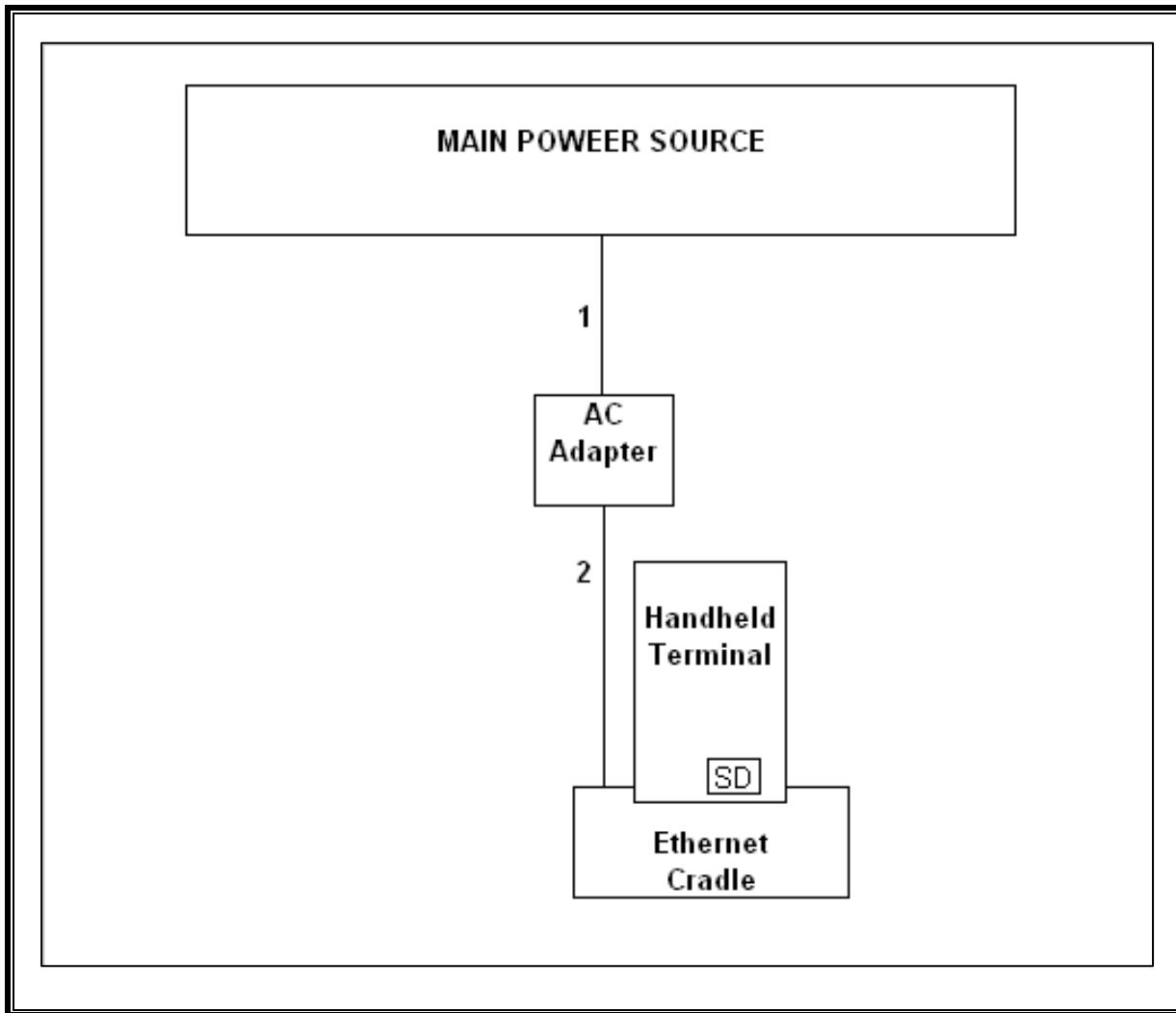
5.6. MODIFICATIONS

No modifications were made during testing.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST			
Description	Manufacturer	Model	Serial Number
AC/DC Adapter	Casio	AD-S42120B	N/A
Ethernet Cradle	Casio	HA-H62IO	N/A
Micro SD	San Disk	09228042950J1	N/A
ACCESSSS CARD	N/A	N/A	N/A


I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	US 115V	Un-shielded	2m	N/A
2	DC	1	DC	Un-shielded	2m	one ferrite at Cradle end.

TEST SETUP

The EUT is sited on the cradle that connects to AC Adapter.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset No.	Cal Due
RF Filter Section	HP	85420E	C00958	03/24/11
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	C00957	03/24/11
Antenna, Loop, 30 MHz	EMCO	6502	C00593	09/16/10
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	1/14/2010
Antenna, Horn, 18 GHz	EMCO	3115	C00945	1/29/2010
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	12/16/2009
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	2/4/2010
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	8/24/2010
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	1/5/2010
Spectrum Analyzer, 40 GHz	Agilent / HP	8564E	C00951	6/12/2010
Power Meter	Agilent / HP	437B	N02785	12/2/2009
Power Sensor, 18 GHz	Agilent / HP	8481A	N02783	11/2/2009
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	4/6/2010

7. RADIATED EMISSION TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMIT

§15.225

IC RSS-210, Section 2.6 (Transmitter)
IC RSS-GEN, Section 6 (Receiver)

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows:

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for radiated disturbance of an intentional radiator		
Frequency range (MHz)	Limits (μ V/m)	Measurement Distance (m)
0.009 – 0.490	2400 / F (kHz)	300
0.490 – 1.705	24000 / F (kHz)	30
1.705 – 30.0	30	30
30 – 88	100**	3
88 - 216	150**	3
216 – 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the field strength from uV/m to dBuV/m is:

Limit (dBuV/m) = 20 log limit (uV/m)

In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

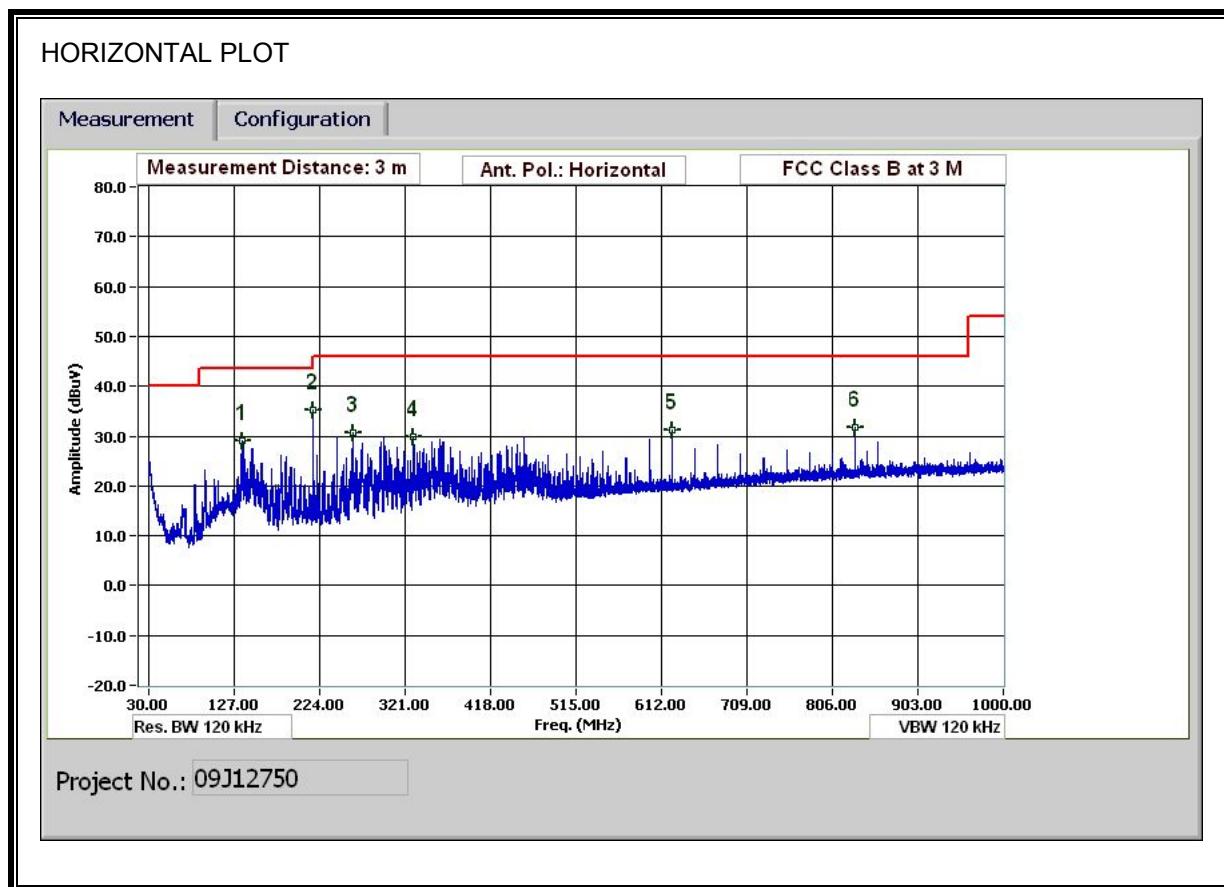
TEST PROCEDURE

ANSI C63.4

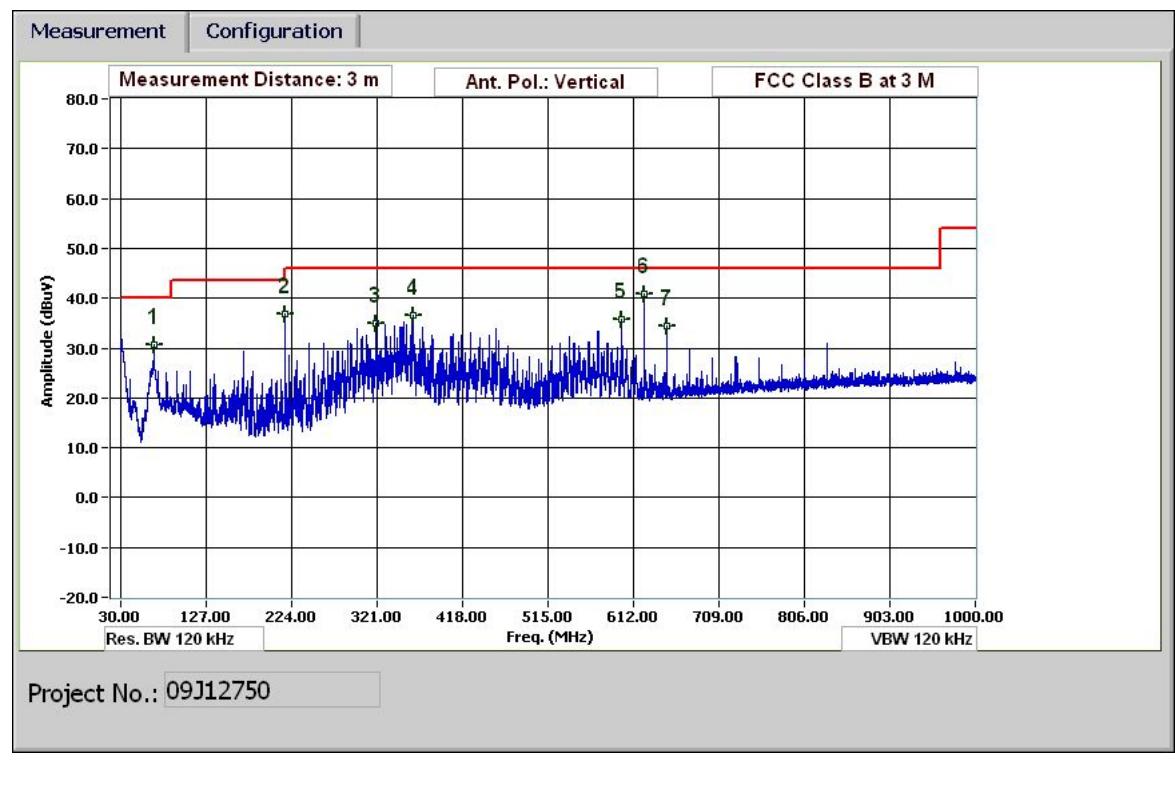
The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 130 MHz; therefore, the frequency range was investigated from 30 MHz to the 10th harmonic of the highest fundamental frequency.

RESULTS

7.1.1. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)


FCC Part 15, Subpart B & C 10 Meter Distance Measurement At Open Field												
Frequency (MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	AF dB/m	Distance Correction (dB)	PK Corrected Reading (dBuV/m)	AV Corrected Reading (dBuV/m)	QP Limit (dBuV/m)	AV Limit (dBuV/m)	PK Margin (dB)	AV Margin (dB)	Notes
Loop Antenna Face On: 13.56	58.98		N/A	10.56	-40.00	29.54	N/A	84.00	N/A	-54.5	N/A	Fundamental Measured @ 3m Dist
Loop Antenna Face Off: 13.56	53.41		N/A	10.56	-40.00	23.97	N/A	84.00	N/A	-60.0	N/A	Fundamental Measured @ 3m Dist

* No other emissions were found of 20dB below the system noise up to 30MHz


Note: The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 10000Mhz. Radiated emission limits in these three bands are based on measurements employing an average detector.

P.K. = Peak
Q.P. = Quasi Peak Reading
A.F. = Antenna factor

7.1.2. TX SPURIOUS EMISSION 30 TO 1000 MHz (HORIZONTAL)

VERTICAL PLOT

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement
Compliance Certification Services, Fremont 5m Chamber

Test Engr: MENGISTU MEKURIA
Date: 10/21/2009
Project #: 09J12752
Company: CASIO COMPUTER CO., LTD
EUT Description: HANDHELD TERMINAL WITH ETHERNET CRADLE
EUT M/N: IT-800R
Test Target: FCC CLASS B
Mode Oper: TX 13.56 MHz

	Measurement	Frequency	Amp	Preamp	Gain
Dist	Distance to Antenna		D	Corr	Distance Correct to
Read	Analyzer Reading		Filter		Filter Insert Loss

f MHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Filter dB	Corr. dBuV/m	Limit dBuV/m	Margin dB	Ant. Pol. V/H	Det. P/A/QP	Notes
135.604	3.0	42.9	13.4	1.1	28.3	0.0	0.0	29.1	43.5	-14.4	H	P	
216.968	3.0	50.3	11.9	1.3	28.2	0.0	0.0	35.3	46.0	-10.7	H	P	
261.730	3.0	45.2	12.2	1.4	28.2	0.0	0.0	30.5	46.0	-15.5	H	P	
329.652	3.0	42.5	13.9	1.6	28.1	0.0	0.0	29.9	46.0	-16.1	H	P	
624.024	3.0	37.6	18.7	2.3	27.4	0.0	0.0	31.1	46.0	-14.9	H	P	
831.993	3.0	35.4	21.3	2.7	27.6	0.0	0.0	31.8	46.0	-14.2	H	P	
67.802	3.0	50.2	8.0	0.7	28.4	0.0	0.0	30.6	40.0	-9.4	V	P	
216.968	3.0	52.0	11.9	1.3	28.2	0.0	0.0	37.0	46.0	-9.0	V	P	
319.482	3.0	47.7	13.7	1.6	28.1	0.0	0.0	34.9	46.0	-11.1	V	P	
362.534	3.0	48.5	14.4	1.7	28.1	0.0	0.0	36.4	46.0	-9.6	V	P	
597.983	3.0	42.7	18.4	2.2	27.5	0.0	0.0	35.8	46.0	-10.2	V	P	
624.024	3.0	47.2	18.7	2.3	27.4	0.0	0.0	40.8	46.0	-5.2	V	P	
650.066	3.0	40.4	19.0	2.3	27.4	0.0	0.0	34.4	46.0	-11.7	V	P	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

7.1.3. TX SPURIOUS EMISSIONS ABOVE 1 GHz

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber																		
Company:	CASIO COMPUTER CO., LTD.																	
Project #:	09J12752																	
Date:	10/29/2009																	
Test Engineer:	MENGISTU MEKURIA																	
Configuration:	HANDHELD TERMNA, ETHERNET CRADLE, AND AC ADAPTER																	
Mode:	TX MODE																	
Test Equipment:																		
Horn 1-18GHz			Pre-amplifier 1-26GHz			Pre-amplifier 26-40GHz			Horn > 18GHz						Limit			
T73; S/N: 6717 @3m			T144 Miteq 3008A00931												FCC 15.209			
Hi Frequency Cables																		
3' cable 22807700			12' cable 22807600			20' cable 22807500			HPF			Reject Filter			Peak Measurements			
3' cable 22807700			12' cable 22807600			20' cable 22807500									RBW=VBW=1MHz			
Average Measurements																		
RBW=1MHz ; VBW=10Hz																		
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes (V/H)			
1.064	3.0	51.7	36.0	24.1	2.4	-39.4	0.0	0.0	38.8	23.1	70.0	50.0	-31.2	-26.9	H			
1.209	3.0	52.7	45.1	24.6	2.6	-39.2	0.0	0.0	40.7	33.1	70.0	50.0	-29.3	-16.9	H			
1.067	3.0	61.5	39.2	24.1	2.4	-39.4	0.0	0.0	48.6	26.3	70.0	50.0	-31.4	-23.7	V			
1.200	3.0	50.6	45.2	24.5	2.6	-39.2	0.0	0.0	38.5	33.1	70.0	50.0	-31.5	-16.9	V			
4.874	3.0	54.6	32.7	33.1	5.8	-36.5	0.0	0.0	57.1	35.2	70.0	50.0	-12.9	-14.8	V			
Rev. 11.10.08																		
f	Measurement Frequency				Amp	Preamp Gain								Avg Lim	Average Field Strength Limit			
Dist	Distance to Antenna				D Corr	Distance Correct to 3 meters								Pk Lim	Peak Field Strength Limit			
Read	Analyzer Reading				Avg	Average Field Strength @ 3 m								Avg Mar	Margin vs. Average Limit			
AF	Antenna Factor				Peak	Calculated Peak Field Strength								Pk Mar	Margin vs. Peak Limit			
CL	Cable Loss				HPF	High Pass Filter												

7.1.4. RX SPURIOUS EMISSIONS ABOVE 1 GHz

These requirements do not apply to receivers used in combination with permanently co-located transmitters continuously transmitting

8. AC MAINS LINE CONDUCTED EMISSIONS

LIMITS

§15.207
IC RSS-GEN, Section 7.2.2

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

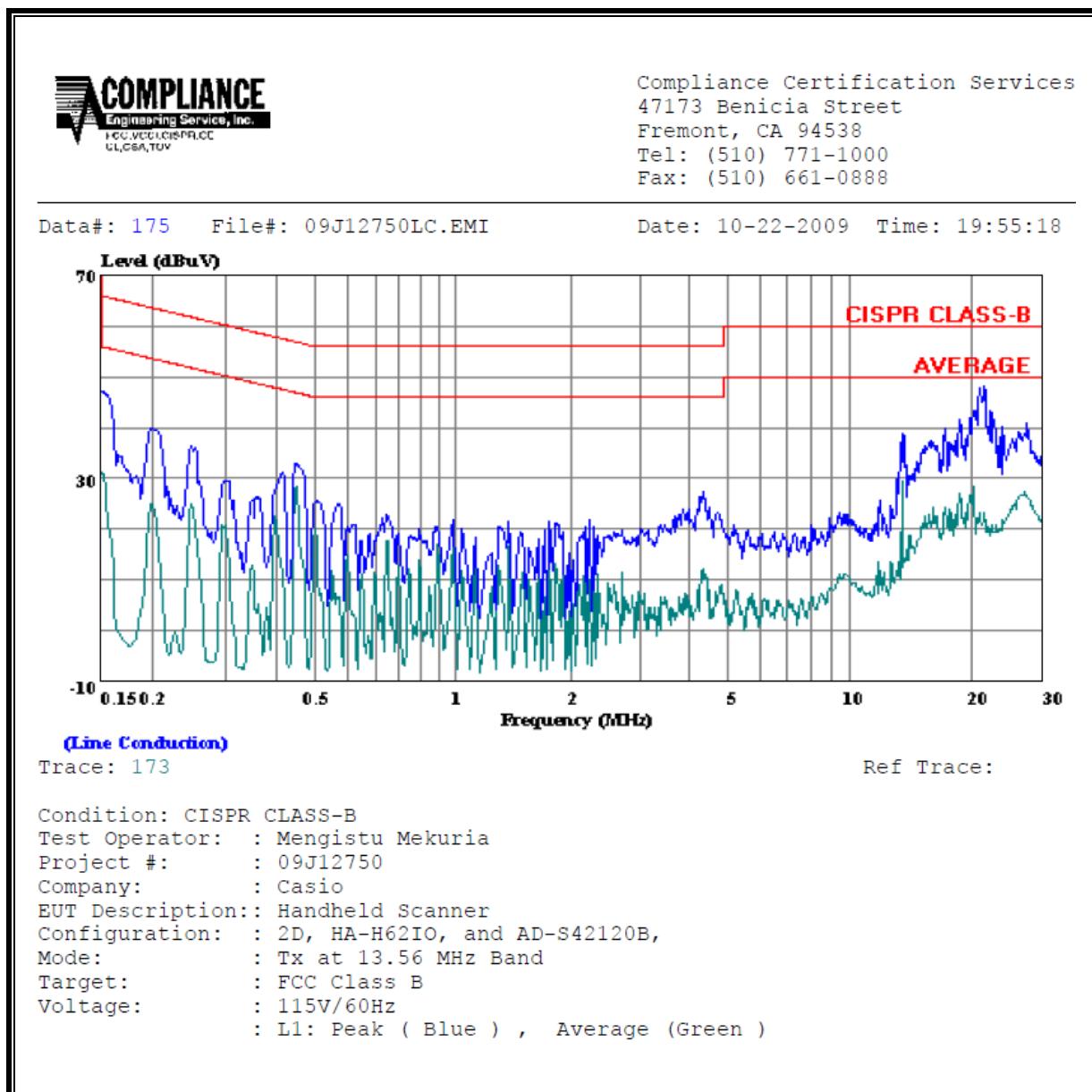
Frequency range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Notes:

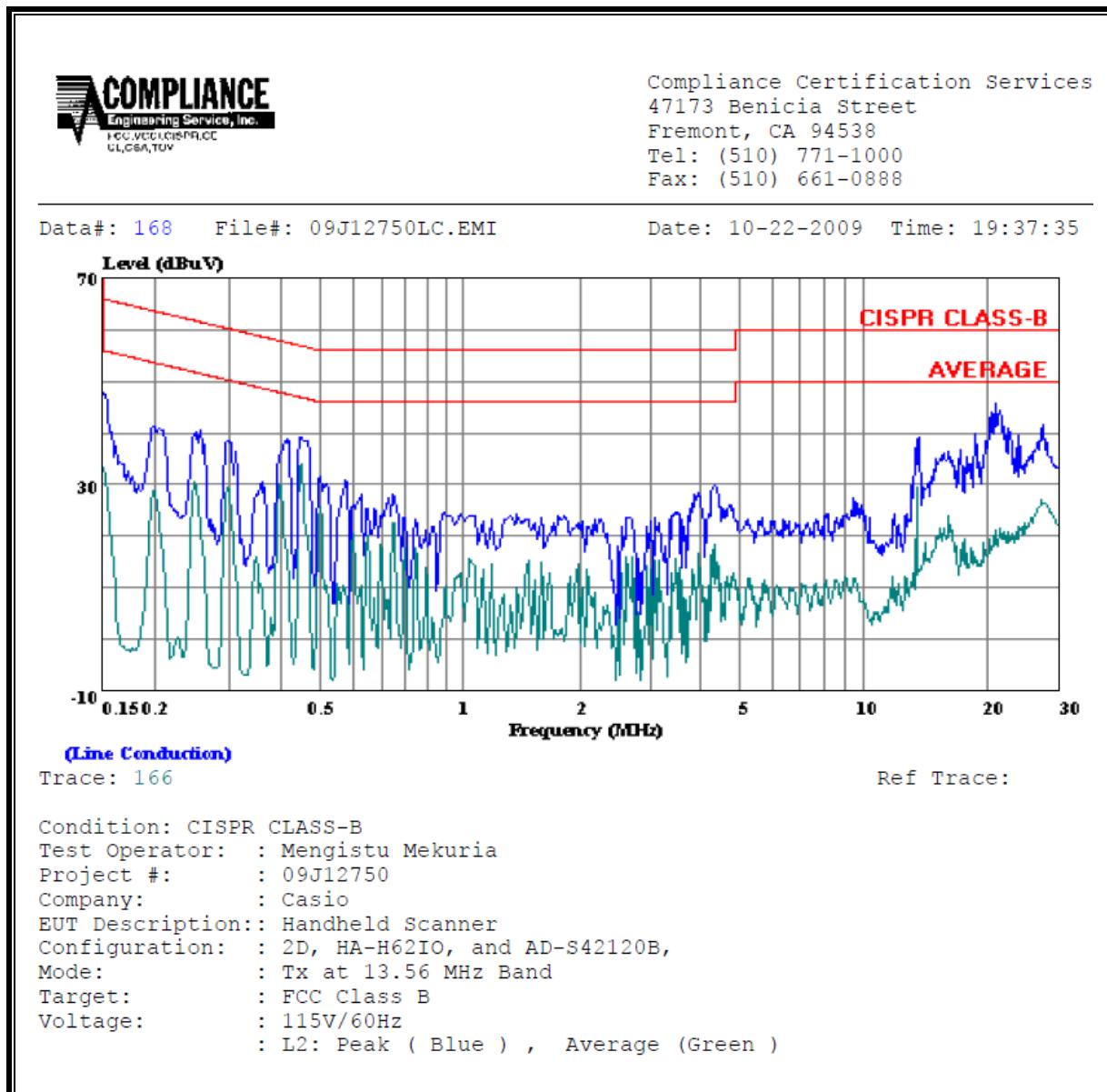
1. The lower limit shall apply at the transition frequencies
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

TEST PROCEDURE

ANSI C63.4


RESULTS

No non-compliance noted:


6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq. (MHz)	Reading			Closs (dB)	Limit	EN_B	Margin		Remark
	PK (dBuV)	QP (dBuV)	AV (dBuV)				QP (dB)	AV (dB)	
0.15	47.25	--	31.04	0.00	66.00	56.00	-18.75	-24.96	L1
0.45	32.83	--	28.42	0.00	56.89	46.89	-24.06	-18.47	L1
20.92	47.90	--	28.35	0.00	60.00	50.00	-12.10	-21.65	L1
0.15	47.71	--	33.45	0.00	66.00	56.00	-18.29	-22.55	L2
0.42	38.77	--	30.19	0.00	57.55	47.55	-18.78	-17.36	L2
0.45	39.29	--	34.08	0.00	56.93	46.93	-17.64	-12.85	L2
6 Worst Data									

LINE 1 RESULTS

LINE 2 RESULTS

9. FREQUENCY STABILITY

LIMIT

§15.225 (e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.3.1 and 2.3.2

RESULTS

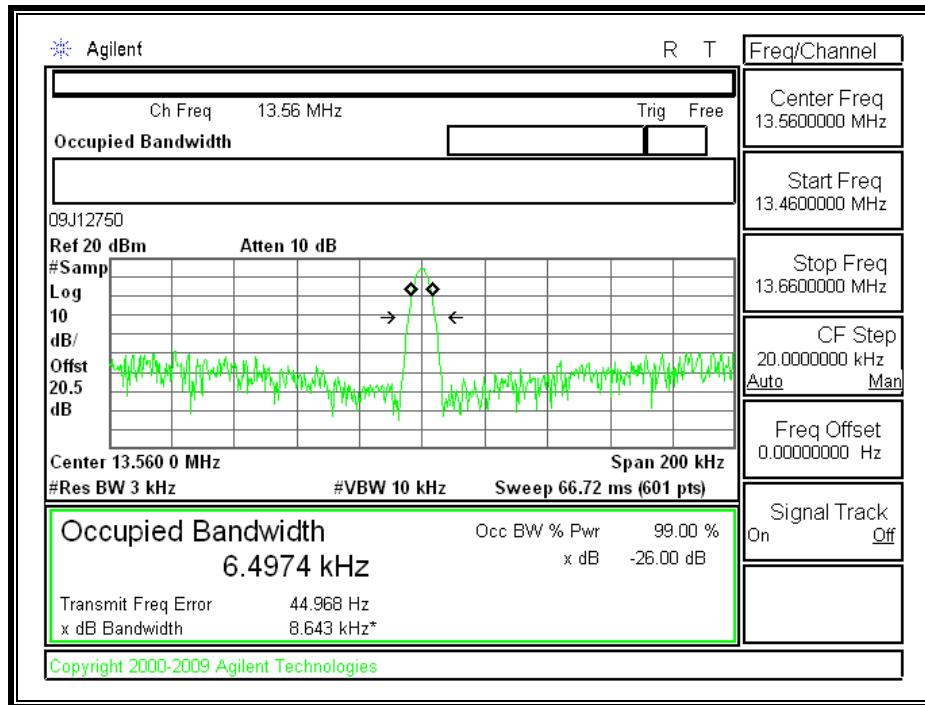
Reference Frequency: EUT Channel 13.56 MHz @ 20°C Limit: ± 100 ppm = 1.356 kHz					
Power Supply (Vac)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse			
		(MHz)	Delta (ppm)	Limit (ppm)	Minutes
115.00	50	13.5599835	1.278	± 100	10
115.00	40	13.5599843	1.214	± 100	10
115.00	30	13.5599971	0.273	± 100	10
115.00	20	13.5600008	0.000	± 100	10
115.00	10	13.5600208	-1.477	± 100	10
115.00	0	13.5600287	-2.055	± 100	10
115.00	-10	13.5600217	-1.539	± 100	10
115.00	-20	13.5599933	0.552	± 100	10
97.15	20	13.5600005	0.023	± 100	10
132.25	20	13.5600007	0.008	± 100	10

Note: While maintaining a constant temperature inside the environmental chamber, the EUT has been recorded at operating frequency at startup and two, five, and ten minutes, but only the worst case readings of minutes was reporting.

10. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE

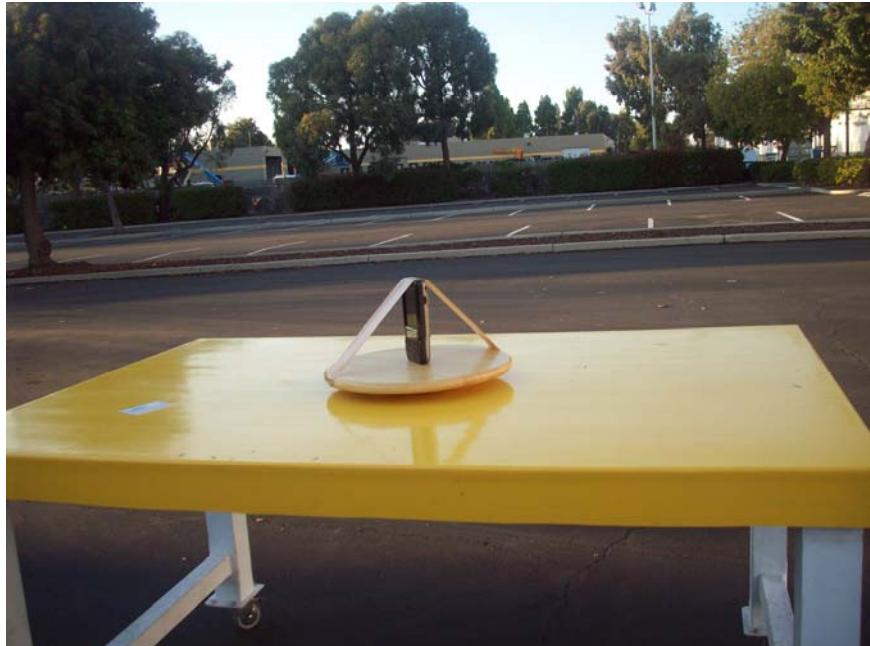
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Frequency (MHz)	99% Bandwidth (KHz)
13.65	6.4974

99% BANDWIDTH

11. SETUP PHOTOS

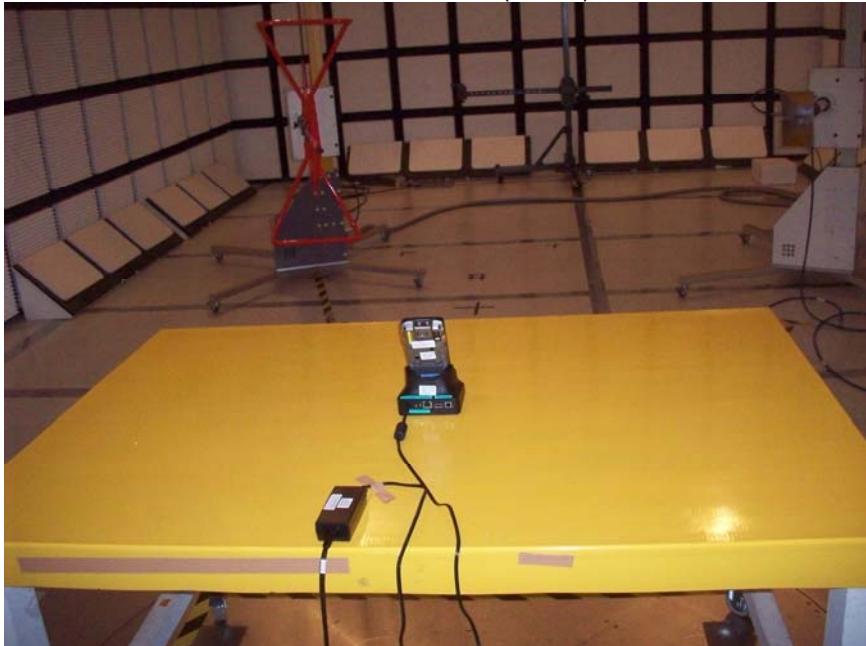

RADIATED EMISSION BELOW 30 MHz

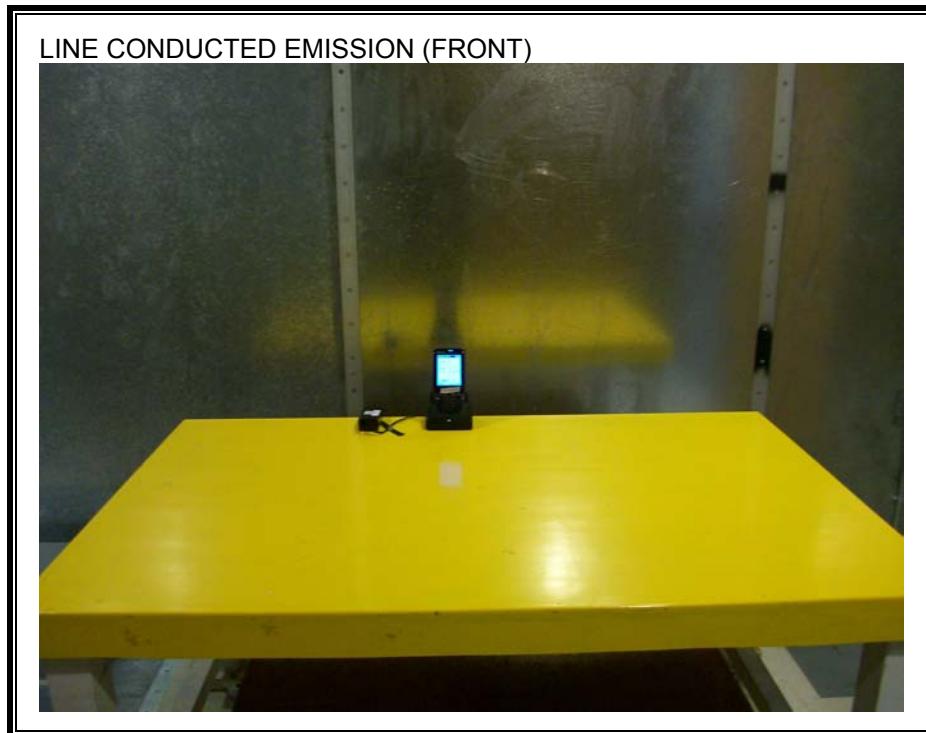
RADIATED BELOW 30MHz Y-POSITION PHOTO

RADIATED BELOW 30MHz Z-POSITION PHOTO

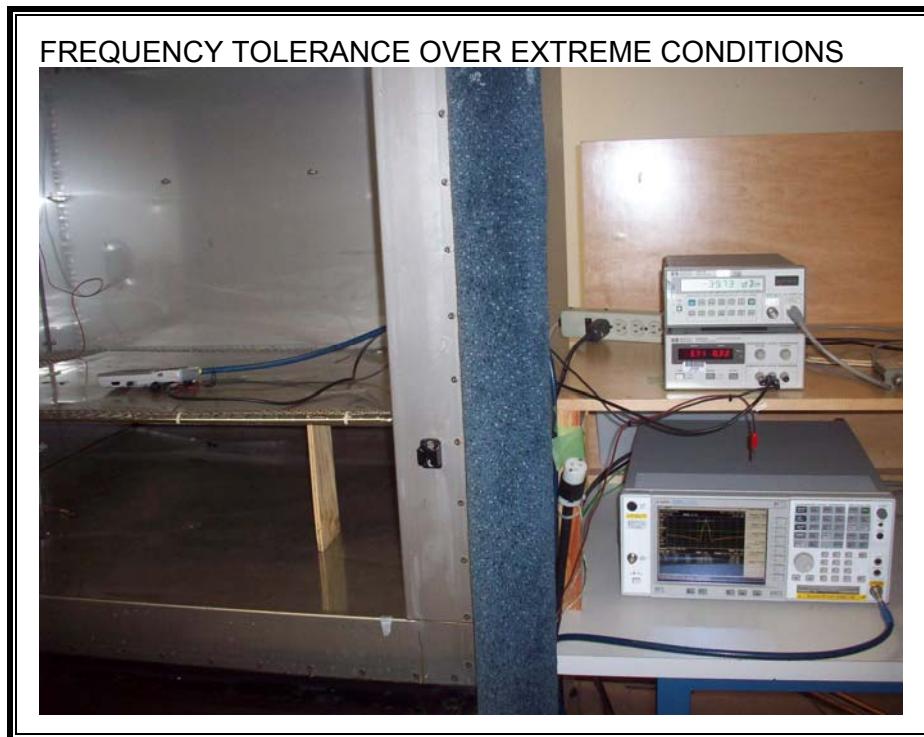
RADIATED BELOW 30MHz ETHERNET CRADLE PHOTO

RADIATED BELOW 30MHz FACE ON PHOTO


RADIATED BELOW 30MHz FACE OFF PHOTO


RADIATED EMISSION ABOVE 30 MHz

RADIATED EMISSIONS ABOVE 30 MHz (BACK)


AC MAINS LINE CONDUCTED EMISSION

LINE CONDUCTED EMISSION (BACK)

FREQUENCY TOLERANCE OVER EXTREME CONDITIONS

END OF REPORT