

Date(s) of Evaluation
August 23, 2007

Test Report Issue Date
August 28, 2007

Test Report Serial No. 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

S	AR TES	T REPOR	RT					
RF EXPOSURE EVALU	ATION	SPECIF	FIC	ABSO	RPTI	ON RATE		
APPLICANT	C	OBRA ELECT	RON	ICS COR	PORA	ATION		
PRODUCT	PORTA	BLE FRS/GMF	RS P	TT RADIO TRANSCEIVER				
MODEL(S)	PR188	PR190		PR1	95	PR199		
IDENTIFIER(S)	FCC ID:	BBOPR190		IC ID:	9	06B-PR190		
APPLICATION TYPE		New	Cer	tification				
STANDARD(S) APPLIED	FCC 47 CI	FR §2.1093	He	alth Can	ada S	afety Code 6		
PROCEDURE(S) APPLIED	FCC	OET Bulletin				· ,		
DE EVECUEE CATECORY	0.00	Industry Car						
RF EXPOSURE CATEGORY	General Population / Uncontrolled Exposure							
TEST REPORT SERIAL NO.	082307BBO-T848-S95U							
TEST REPORT REVISION NO.		Revision '			lease)			
TEST REPORT ISSUE DATE		Aug	just	28, 2007				
	Testing an	Ву	Test Report Reviewed By					
TEST REPORT SIGNATORIES	Cheri F Cellte	Jonathan Hughes Celltech Labs Inc.						
TEST LAB AND LOCATION	Cellte	ch Complianc	е Те	sting & E	ngine	ering Lab		
TEST LAB AND LOCATION	21-364 Lo	ugheed Road	, Kel	owna, B.	C. V1)	K 7R8 Canada		
TEST LAB CONTACT INFO.	Tel.: 2	50-765-7650		Fa	x: 250	-765-7645		
TEST LAB CONTACT INFO.	info@ce	lltechlabs.con	n	www	.cellte	echlabs.com		
TEST LAB ACCREDITATION(S)		lac-M	white	ACCREDI				

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	906B-PR190	Carro			
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION					
2007 Celltech La	07 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

	DECLA SAR RI						_				
Test Lab Information:	Celltech 21-364 Lo		_	elown	a, B.C. \	/1X 7R	t8 Car	ıada			
Company Information:	Cobra Ele 6500 Wes				_	60707 l	Jnited	States			
Standard(s) Applied:	FCC F	CC 47 CF	R §2.10	093		IC	Heal	th Canad	a Safet	y Code 6	
Procedure(s) Applied:	FCC F	CC OET	Bulletin	65, Sı	uppleme	nt C (E	dition	01-01)			
Procedure(s) Applied.	IC In	dustry Ca	anada R	SS-10	02 Issue	2					
Device Identifier(s):	FCC ID:	FCC ID: BBOPR190 IC ID: 906B-PR190									
Device Model(s):	PR188	PR188 PR190 PR195 PR199									
Device Serial No.:	0083264	0083264 Model: PR190 Identical Prototype									
Device Description:	Portable I	M UHF	FRS/GM	IRS P	TT Radi	o Trans	sceive	r			
	462.5500 - 462.7250 MHz (GMRS Channels 15-22)										
Transmit Frequency Range(s):	462.5625 - 462.7125 MHz (FRS/GMRS Channels 1-7)										
	467.5625 - 467.7125 MHz (FRS Channels 8-14)										
Max. RF Output Power Tested:	300 mW	24	1.8 dBm	dBm ERP			2.7250	MHz	GMR	S Ch. 22	
Antenna Type(s) Tested:	External F	ixed Stu	bby (No	n-deta	achable)	·					
Pottomy Tymo(a) Tootady	NiCd			AAA	x3			1.2V,	300mAh	า	
Battery Type(s) Tested:	Alkaline D	uracell F	rocell	AAA	x3			1.5V,	1150m <i>A</i>	\h	
Body-worn Accessories Tested:	Plastic Be	elt-Clip (6	mm thic	ckness	s)						
Audio Accessories Connected:	Ear-bud v	vith Lapel	-Microp	hone							
May SAR Level(a) Evaluated:	Face-held	0.159	W/kg	1g	50% d	uty cyc	le A	NSI/IEE	E Limit	1.6 W/kg	1g
Max. SAR Level(s) Evaluated:	Body-wor	n 0.19	l W/kg	1g	50% d	50% duty cycle ANSI/IEE			E Limit	1.6 W/kg	1g
Calltach Lahe Inc. declares under its so	la raananaihi	lity that th	io wirolog		abla davi	aa baa	al a .aa a .a	atratad as			:¢:-

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By:

Sean Johnston

Celltech Labs Inc.

Company:	Cob	ra Electronics Corporation	n FCC ID: BBOPR190 IC ID:		FCC ID: BBOPR190 IC ID: 90				
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION					
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									

Test Report Issue Date
August 28, 2007

Test Report Serial No. 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category
General Population

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 MEASUREMENT SUMMARY	5
4.0 DETAILS OF SAR EVALUATION	6
5.0 EVALUATION PROCEDURES	6
6.0 SYSTEM PERFORMANCE CHECK	7
7.0 SIMULATED EQUIVALENT TISSUES	8
8.0 SAR SAFETY LIMITS	8
9.0 ROBOT SYSTEM SPECIFICATIONS	9
10.0 PROBE SPECIFICATION (ET3DV6)	10
11.0 SIDE PLANAR PHANTOM	10
12.0 VALIDATION PLANAR PHANTOM	10
13.0 DEVICE HOLDER	10
14.0 TEST EQUIPMENT LIST	11
15.0 MEASUREMENT UNCERTAINTIES	12
MEASUREMENT UNCERTAINTIES (CONT.)	13
16.0 REFERENCES	14
APPENDIX A - SAR MEASUREMENT DATA	15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	22
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	25
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	28
APPENDIX E - SYSTEM VALIDATION	34
APPENDIX F - PROBE CALIBRATION	35

Company:	Cob	Cobra Electronics Corporation FCC II		BBOPR190	BBOPR190 IC ID:		Calma		
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION					
2007 Celltech La	7 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
August 28, 2007

Test Report Serial No. 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

1.0 INTRODUCTION

This measurement report demonstrates compliance of the Cobra Electronics Corporation Model(s): PR188 / PR190 / PR195 / PR199 Portable FM UHF FRS/GMRS PTT Radio Transceiver with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR System with Plexiglas side planar phantom

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	-	
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS CONFORMATION				
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
August 28, 2007

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category
General Population

3.0 MEASUREMENT SUMMARY

					5	SAR EV	/AL	JATIO	N RESI	JLTS						
Test	Freq.	Ch	annel	Test Mode	Battery	Acc	essori	ies	DUT Position to Planar	Start Power (ERP)	Measur 1g (\	red S <i>l</i> N/kg)	Du	AR Orift Iring	Scaled with d	lroop
Type				Wode	Type	Body-wo	orn S	Spacing	Phantom		Duty Cycle		, т	est	Duty (Cycle
	MHz					Audio		cm		mW	100%	50	%	dB	100%	50%
Face	462.7250	22	GMRS	CW	NiCd	-		2.5	Front Side	300	0.307	0.307 0.154		.165	0.319	0.159
Body	462.7250	22	GMRS	CW	NiCd	Belt-Cli Ear-Mi	•	0.6	Back Side	300	0.363	0.1	82 -0	.228	0.383	0.191
Body	462.7250	22	GMRS	CW	Alkaline	Belt-Clip 0.6 Back Side			300	0.288	0.1	44 -0	.194	0.301	0.151	
ANSI	/ IEEE C95.1	2005	- SAFETY	LIMIT	BRA	IN / BODY	: 1.6 W	V/kg (ave	raged over	· 1 gram)	Uncont	trolled		al Pea re / G	ık eneral Pop	ulation
Tes	t Date(s)		Augu	st 23, 200	7		Augus	st 23, 2007	7	Measured	Fluid Typ	е	Brain	1	Body	Unit
			450	MHz Brair	1		450 MHz Body			Atmospheric Pres		re	101.1		101.1	kPa
Dielecti	ric Constant ε _r	IEE	E Target	Meas.	Dev.	IEEE Ta	arget	Meas.	Dev.	Relative	Humidity		33		33	%
	5	43.	5 <u>+</u> 5%	42.5	-2.3%	56.7	<u>+</u> 5%	56.3	-0.7%	Ambient T	emperatu	re	21.3		21.7	°C
			450	MHz Brair		450 M	/IHz Body		Fluid Temperature			23.4		23.9	°C	
	ductivity mho/m)	IEE	E Target	Meas.	Dev.	IEEE Ta	rget	Meas.	Dev.	Fluid	Depth		≥ 15		≥ 15	cm
,	,,	0.8	7 <u>+</u> 5%	0.83	-4.6%	0.94	<u>+</u> 5%	0.94	0.0%	ρ (Kg/m³)			1000			
		1.								ested in the o						etailed
		2.							10 MHz; see refere	therefore sir ence [3]).	ngle chan	inel d	lata only	is re	ported (pe	er FCC
		3.								rged batterie to the zoom s				ın wa	s complet	ed the
N	lote(s)	4.	meas	ured SAI r droop e	R İevels t	o report s was perf	scaled	d SAR re	sults as s	the duration shown in the SAR level co	above te	st da	ta table.	A S	SAR-versu	s-Time
		5.								he SAR evalı dielectric par					erature rer	nained
		6.								es were meas ork Analyzer				eval	uations us	sing an
		7.	The S	SAR evalu	uations we	ere perfor	performed within 24 hours of the system performance check.									

Test Report Serial No.

082307BBO-T848-S95U

Company:	Cobra Electronics Corporation		FCC ID:	: BBOPR190 IC IE		906B-PR190	C
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

4.0 DETAILS OF SAR EVALUATION

The Cobra Electronics Corporation Model(s): PR188 / PR190 / PR195 / PR199 Portable FM UHF FRS/GMRS PTT Radio Transceiver was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm spacing was maintained between the front of the DUT and the outer surface of the planar phantom.
- 2. The DUT was tested in a body-worn configuration with the back of the radio placed parallel to the outer surface of the planar phantom. The attached plastic belt-clip accessory was touching the planar phantom and provided a 0.6 cm spacing from the back of the DUT to the outer surface of the planar phantom. The DUT was evaluated for body-worn SAR with the Cobra supplied ear-bud/lapel-microphone audio accessory connected to the audio port.
- 3. The RF conducted output power of the DUT could not be measured due to a non-detachable antenna. The DUT was evaluated for SAR at the maximum conducted power level preset by the manufacturer.
- The output power level (ERP) of the DUT referenced in this test report was measured by Timco Engineering Inc. prior to the SAR evaluations.
- 5. The power drift of the DUT during the SAR evaluations was measured by the DASY4 system.
- 6. The area scan evaluation was performed with fully charged batteries. After the area scan was completed the batteries were replaced with fully charged batteries prior to the zoom scan evaluation.
- 7. The DUT was tested at maximum power setting in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 9. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).
- 10. The SAR evaluations were performed within 24 hours of the system performance check.

5.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Company:	Cob	Cobra Electronics Corporation FCC ID: BB		BBOPR190	IC ID: 906B-PR19		Cobra
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	ELECTRONICS COMPONATION			
2007 Celltech La	on of Celltech Labs Inc.	Page 6 of 35					

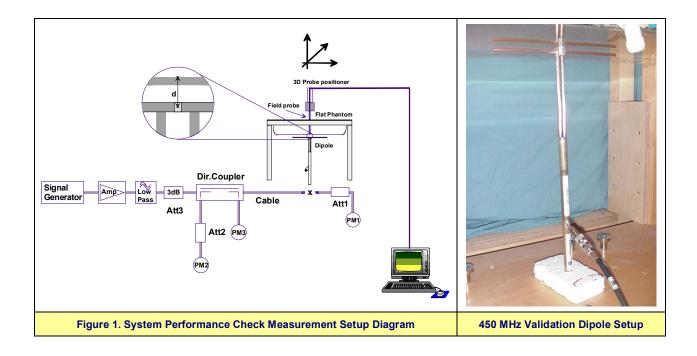
Test Report Issue Date
August 28, 2007

Description of Test(s)
Specific Absorption Rate

Test Report Serial No. 082307BBO-T848-S95U

RF Exposure Category
General Population

Test Report Revision No.


Revision 1.0

6.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed using a Plexiglas planar phantom and 450 MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of +10% from the system validation target SAR value (see Appendix B for system performance check test plot).

				S	YSTEM	PERF	ORMA	NCE CH	ECK E	VALU	JATION					
Test	Equiv. Tissue		SAR 1g (W/kg)		Dielectric Constant ε _r			Conductivity σ (mho/m)			ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. MHz	Sys. Val Target	Meas.	Dev.	Sys. Val Target	Meas.	Dev.	Sys. Val Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Aug 23	Brain 450	1.29 ±10%	29±10% 1.23 -4.6% 43.1±5% 42.5 -1.4% 0.85±5% 0.83 -2.4% 1000 22.5 23.8 ≥ 15 32 101.7												101.1	
		1. The tar	get SAR '	value is	referenced f	rom the S	System \	/alidation pr	ocedure p	erforme	d by Cellt	ech Labs	Inc. (see	Appendix	¢Ε).	
		2. The targ	get dielec	tric para	meters are	reference	d from t	he System \	/alidation	procedu	re perforr	ned by Ce	elltech La	bs Inc. (s	ee Append	dix E).
Not	e(s)		3. The fluid temperature was measured prior to and after the system performance check to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.													
		4. The SAR evaluations were performed within 24 hours of the system performance check.														

Company:	Cob	ra Electronics Corporation	FCC ID:	FCC ID: BBOPR190 IC ID: 906B-PR190				
Model(s):	: PR188 / PR190 / PR195 / PR199		Portable FM UHF FRS/GMRS PTT Radio Transceiver				Cobra ELECTRONICS COMPONATION	
2007 Celltech La	abs Inc.	This document is not to be reproduce	ed in whole or in p	part without the prior wri	itten permissio	on of Celltech Labs Inc.	Page 7 of 35	

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

7.0 SIMULATED EQUIVALENT TISSUES

The 450 MHz simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures, and measured for dielectric parameters (permittivity and conductivity).

	SIMULATED TISSUE MIXTURES			
INGREDIENT	450 MHz Brain	450 MHz Body		
INGREDIENT	System Check & DUT Evaluation	DUT Evaluation		
Water	38.56 %	52.00 %		
Sugar	56.32 %	45.65 %		
Salt	3.95 %	1.75 %		
HEC	0.98 %	0.50 %		
Bactericide	0.19 %	0.10 %		

8.0 SAR SAFETY LIMITS

	SAR (V	V/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	906B-PR190	Cobra	
Model(s):): PR188 / PR190 / PR195 / PR199		Portable FM UHF FRS/GMRS PTT Radio Transceiver				ELECTRONICS COMPONATION
2007 Celltech La	ibs Inc.	This document is not to be reproduce	ed in whole or in p	part without the prior wri	tten permissio	n of Celltech Labs Inc.	Page 8 of 35

Test Report Issue Date
August 28, 2007

Test Report Serial No. 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category

General Population

9.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Software	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1387
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Evaluation Phantom	
Туре	Side Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	2.0 mm ± 0.1 mm
Outer Dimensions	75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
Validation Phantom (≤ 450MHz)	
Туре	Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	6.2 mm ± 0.1 mm
Outer Dimensions	86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	906B-PR190	Calma	
Model(s):	PR188 / PR190 / PR195 / PR199		Portable FM UHF FRS/GMRS PTT Radio Transceiver				Cobra ELECTRONICS COMPONATION
2007 Celltech La	abs Inc.	This document is not to be reproduce	ed in whole or in p	part without the prior wri	itten permissio	on of Celltech Labs Inc.	Page 9 of 35

Test Report Issue Date
August 28, 2007

Description of Test(s)
Specific Absorption Rate

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

RF Exposure Category
General Population

Test Report Revision No.

Revision 1.0

10.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

Surface Detect: \pm 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone

ET3DV6 E-Field Probe

11.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

12.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.

Plexiglas Validation Planar Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	906B-PR190	Cobra	
Model(s):	odel(s): PR188 / PR190 / PR195 / PR199		Portable	ELECTRONICS CONFORMATION			
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduc			part without the prior wri	itten permissio	on of Celltech Labs Inc.	Page 10 of 35

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

14.0 TEST EQUIPMENT LIST

	TEST EC	UIPMENT	ACCET NO	OFFILM NO	D	ATE	CALIBRATION
USED	DE	SCRIPTION	ASSET NO.	SERIAL NO.	CALIE	BRATED	DUE DATE
х	Schmid & F	Partner DASY4 System	-	-		-	-
х	-DASY4	Measurement Server	00158	1078	1	N/A	N/A
х		-Robot	00046	599396-01	1	N/A	N/A
х		-DAE4	00019	353	10	Jul07	10Jul08
		-DAE3	00018	370	131	Mar07	13Mar08
	-ET3D	V6 E-Field Probe	00016	1387	161	Mar07	16Mar08
	-EX3DV4 E-Field Probe		00213	3600	24	Jan07	24Jan08
	-300 MH	dz Validation Dipole	00023	135	08.	Jun07	08Jun08
х	-450 MH	dz Validation Dipole	00024	136	30	Jul07	30Jul08
	-835 MHz Validation Dipole		00022	444	Brain	07Jun07	07Jun08
	-030 IVIF	12 Validation Dipole	00022	411	Body	07Jun07	07Jun08
	000 MI	Iz Validation Dinale	00020	054	Brain	07Jun07	07Jun08
	-900 IVIF	dz Validation Dipole	00020	054	Body	07Jun07	07Jun08
	4000 M	H-Malidation Divide	00004	0.47	Brain	06Jun07	06Jun08
	-1800 MI	Hz Validation Dipole	00021	247	Body	06Jun07	06Jun08
	4000 M	H-Malidation Divide	00000	454	Brain	06Jun07	06Jun08
	-1900 MI	Hz Validation Dipole	00032	151	Body	06Jun07	06Jun08
	-2450 MHz Validation Dipole		00005	450	Brain	08Jun07	08Jun08
			00025	150	Body	08Jun07	08Jun08
		-5200 MHz			Body	18May07	18May08
	5GHz	-5500 MHz	00400	4004	Body	22May07	22May08
	Validation Dipole	5000 MIL-	00126	1031	Brain	09May07	09May08
	·	-5800 MHz			Body	10May07	10May08
	-SAM	Phantom V4.0C	00154	1033	ı	N/A	N/A
	-Barsk	ki Planar Phantom	00155	03-01	1	N/A	N/A
х	-Plexiglas	Side Planar Phantom	00156	161	1	N/A	N/A
х	-Plexiglas Va	alidation Planar Phantom	00157	137	ı	V/A	N/A
	ALS-PR-DI	EL Dielectric Probe Kit	00160	260-00953	1	N/A	N/A
х	HP 85070	C Dielectric Probe Kit	00033	US39240170	1	N/A	N/A
х	Gigatronic	s 8652A Power Meter	00007	1835272	261	Mar07	26Mar08
	Gigatronic	s 8652A Power Meter	80000	1835267	22.	Jan07	22Jan08
	Gigatronics	80701A Power Sensor	00012	1834350	22.	Jan07	22Jan08
х	Gigatronics	80701A Power Sensor	00014	1833699	22.	Jan07	22Jan08
х	Gigatronics	80701A Power Sensor	00109	1834366	261	Mar07	26Mar08
х	HP 8753ET Network Analyzer		00134	US39170292	20/	Apr07	20Apr08
х	HP 8648D Signal Generator		00005	3847A00611	N	ICR	NCR
	Rohde & Schwarz SMR20 Signal Generator		00006	100104	N	ICR	NCR
x			00106	26235	N	ICR	NCR
	Amplifier Researc	h 10W1000C Power Amplifier	00041	27887	N	ICR	NCR
	Nextec NB00	383 Microwave Amplifier	00151	0535	N	ICR	NCR
	HP E4408	BB Spectrum Analyzer	00015	US39240170	05F	eb07	05Feb08

Company:	Cob	ra Electronics Corporation	FCC ID:	FCC ID: BBOPR190 IC ID: 906B-PR190					
Model(s):	Model(s): PR188 / PR190 / PR195 / PR199		Portable	lio Transceiver	Cobra ELECTRONICS COMPORATION				
2007 Celltech La	abs Inc.	This document is not to be reproduce	ed in whole or in p	part without the prior wri	itten permissio	on of Celltech Labs Inc.	Page 11 of 35		

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category
General Population

15.0 MEASUREMENT UNCERTAINTIES

UI	ICERTAINT	Y BUDGET FOR	DEVICE EVAL	.UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0.8	Rectangular	1.732050808	1	0.5	∞
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞
Combined Standard Uncertaint	:y				12.65	
Expanded Uncertainty (k=2)					25.31	
	ertainty Table	in accordance with	IEEE Standard 152	28-2003 (se		

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	906B-PR190	Cobra	
Model(s):	(s): PR188 / PR190 / PR195 / PR199		Portable	lio Transceiver	ELECTRONICS COMPONATION		
2007 Celltech La	ibs Inc.	This document is not to be reproduce	ed in whole or in p	part without the prior wri	itten permissio	n of Celltech Labs Inc.	Page 12 of 35

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category
General Population

MEASUREMENT UNCERTAINTIES (Cont.)

UI	NCERTAINT'	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	œ
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	œ
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	œ
Readout electronics	0.3	Normal	1	1	0.3	œ
Response time	0	Rectangular	1.732050808	1	0.0	œ
Integration time	0	Rectangular	1.732050808	1	0.0	œ
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	œ
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	<u></u>
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	× ×
Combined Standard Uncertaint	v			•	11.20	
Expanded Uncertainty (k=2)					22.39	
•	ertainty Table i	n accordance with	IEEE Standard 152	8-2003 (se		

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

16.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] ANSI/IEEE C95.1-2005 "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz", New York: IEEE, April 2006.

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Cale
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX A - SAR MEASUREMENT DATA

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	C-12-12
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u>
Revision 1.0

RF Exposure Category

General Population Certificate No. 2470.01

Dated Tested: 08/23/2007

Face-Held SAR - NiCd Batteries - Channel 22 - 462.7250 MHz (GMRS)

DUT: Cobra Model: PR190; Type: Portable FM UHF FRS/GMRS PTT Radio Transceiver; Serial: 0083264

Ambient Temp: 21.3°C; Fluid Temp: 23.4°C; Barometric Pressure: 101.1kPa; Humidity: 33%

Communication System: FM UHF RF Output Power: 300 mW (ERP) 1.2 V, 300 mAh NiCd Batteries AAA (x3) Frequency: 462.725 MHz; Duty Cycle: 1:1

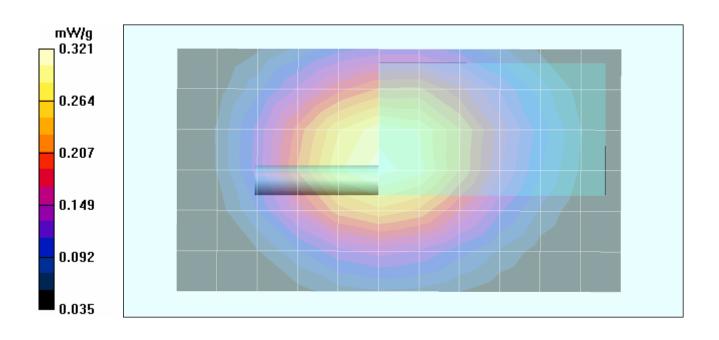
Medium: HSL450 Medium parameters used: f = 462.725 MHz; $\sigma = 0.83$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Channel 22

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.311 mW/g


Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Channel 22

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.165 dB

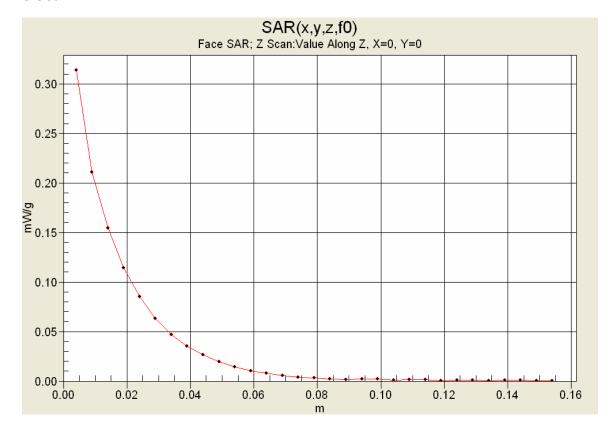
Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.213 mW/gMaximum value of SAR (measured) = 0.321 mW/g

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	C. France
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U


Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category
General Population

Z-Axis Scan

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

Date Tested: 08/23/2007

Body-Worn SAR - NiCd Batteries - Channel 22 - 462.7250 MHz (GMRS)

DUT: Cobra Model: PR190; Type: Portable FM UHF FRS/GMRS PTT Radio Transceiver; Serial: 0083264

Body-Worn Accessory: Plastic Belt-Clip; Audio Accessory: Ear-bud w/ Lapel-Microphone

Ambient Temp: 21.7°C; Fluid Temp: 23.9°C; Barometric Pressure: 101.1 kPa; Humidity: 33%

Communication System: FM UHF RF Output Power: 300 mW (ERP) 1.2 V, 300 mAh NiCd Batteries AAA (x3) Frequency: 462.725 MHz; Duty Cycle: 1:1

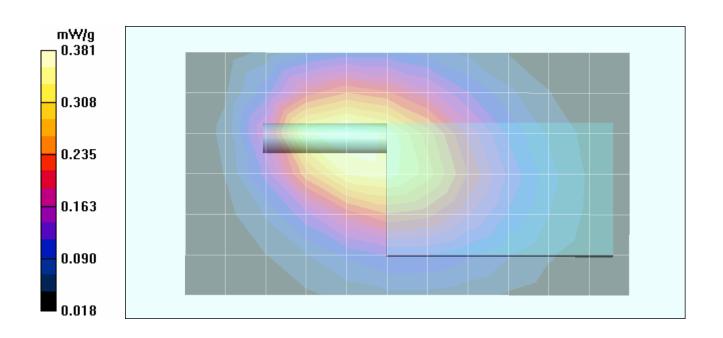
Medium: M450 Medium parameters used: f = 462.725 MHz; $\sigma = 0.94$ mho/m; $\varepsilon_r = 56.3$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(6.9, 6.9, 6.9); Calibrated: 16/03/2007
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Channel 22

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.336 mW/g


Body-Worn SAR - 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Channel 22

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

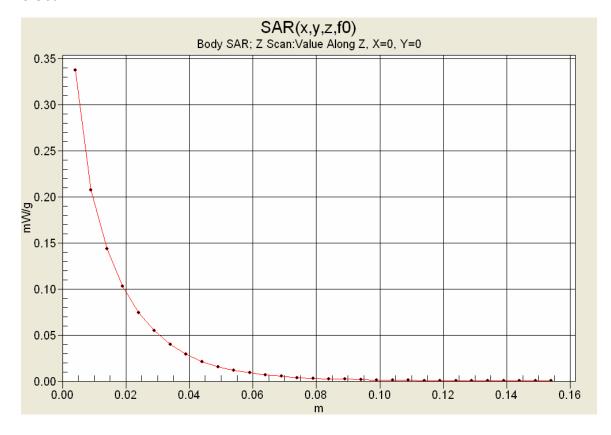
Reference Value = 18.2 V/m; Power Drift = -0.228 dB

Peak SAR (extrapolated) = 0.608 W/kg

SAR(1 g) = 0.363 mW/g; SAR(10 g) = 0.230 mW/gMaximum value of SAR (measured) = 0.381 mW/g

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	C.Fr.
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 18 of 35

Test Report Issue Date
August 28, 2007


<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

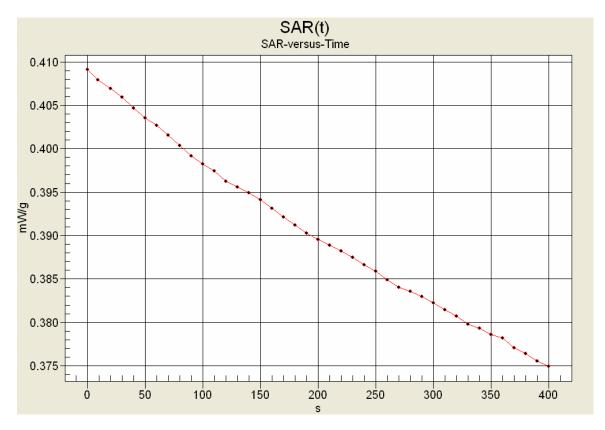
RF Exposure Category
General Population

Z-Axis Scan

Company:	Cobra Electronics Corporation		FCC ID:	BBOPR190	IC ID:	906B-PR190	Cabra
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 19 of 35

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

SAR- versus-Time Power Droop Evaluation

Body-Worn Configuration NiCd Batteries Channel 22 GMRS - 462.7250 MHz

Max SAR: 0.409 mW/g

Low SAR: 0.375 mW/g (-0.377 dB) SAR after 340s: 0.379 mW/g (-0.331 dB)

(340s = Zoom Scan Duration) (400s = Area Scan Duration)

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	C
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category
General Population

Date Tested: 08/23/2007

Body-Worn SAR - Alkaline Batteries - Channel 22 - 462.7250 MHz (GMRS)

DUT: Cobra Model: PR190; Type: Portable FM UHF FRS/GMRS PTT Radio Transceiver; Serial: 0083264

Body-Worn Accessory: Plastic Belt-Clip; Audio Accessory: Ear-bud w/ Lapel-Microphone

Ambient Temp: 21.7°C; Fluid Temp: 23.9°C; Barometric Pressure: 101.1 kPa; Humidity: 33%

Communication System: FM UHF RF Output Power: 300 mW (ERP) Frequency: 462.725 MHz; Duty Cycle: 1:1

1.5 V, 1150 mAh Duracell Procell Alkaline Batteries AAA (x3)

Medium: M450 Medium parameters used: f = 462.725 MHz; $\sigma = 0.94$ mho/m; $\varepsilon_r = 56.3$; $\rho = 1000$ kg/m³

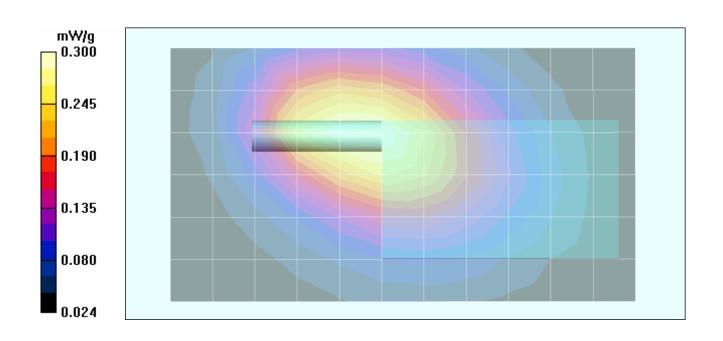
- Probe: ET3DV6 SN1387; ConvF(6.9, 6.9, 6.9); Calibrated: 16/03/2007
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Channel 22

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.239 mW/g

Body-Worn SAR - 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Channel 22


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 16.2 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.288 mW/g; SAR(10 g) = 0.192 mW/g

Maximum value of SAR (measured) = 0.300 mW/g

Company:	Cob	Cobra Electronics Corporation		BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 21 of 35

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company:	Cobra Electronics Corporation		FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 22 of 35

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

General Population

Test Report Revision No.

Revision 1.0

Date Tested: 08/23/2007

System Performance Check - 450 MHz Dipole - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 07/30/2007

Ambient Temp: 22.5°C; Fluid Temp: 23.8°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

Communication System: CW

Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\epsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 - SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007

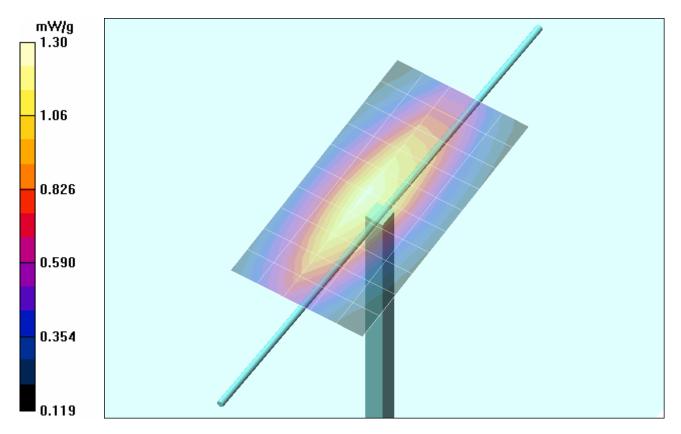
Sensor-Surface: 4 mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn353; Calibrated: 10/07/2007

- Phantom: Validation Planar; Type: Plexiglas; Serial: 137

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Performance Check/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.26 mW/g

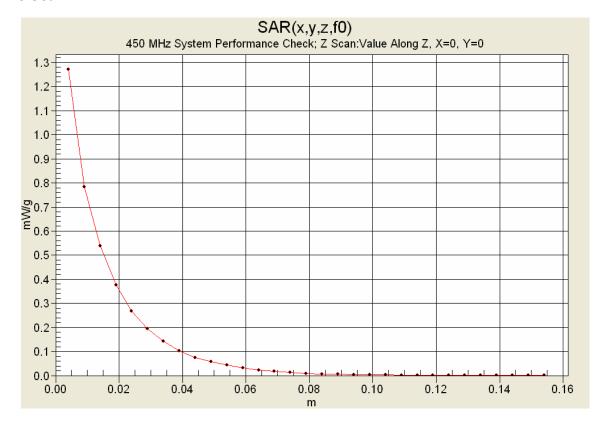
450 MHz Dipole - System Performance Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.0 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.782 mW/g Maximum value of SAR (measured) = 1.30 mW/g

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					


<u>Test Report Issue Date</u> August 28, 2007 <u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

Z-Axis Scan

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Cale
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	7 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 25 of 35

Test Report Issue Date
August 28, 2007

Description of Test(s)
Specific Absorption Rate

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

RF Exposure Category
General Population

Test Report Revision No.

Revision 1.0

450 MHz System Performance Check & DUT Evaluation (Brain)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Thu 23/Aug/2007
Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

*****	******	******	*****	******	******
Freq		FCC_eH	FCC_sH	Test_e	Test_s
0.35	00	44.70	0.87	44.70	0.74
0.36	00	44.58	0.87	44.59	0.76
0.37	00	44.46	0.87	44.32	0.76
0.38	00	44.34	0.87	44.04	0.77
0.39	00	44.22	0.87	43.73	0.78
0.40	00	44.10	0.87	43.56	0.79
0.41	00	43.98	0.87	43.26	0.80
0.42	.00	43.86	0.87	43.22	0.81
0.43	00	43.74	0.87	43.01	0.82
0.44	.00	43.62	0.87	42.65	0.82
<mark>0.45</mark>	00	43.50	0.87	42.48	0.83
0.46	00	43.45	0.87	42.38	0.84
0.47	00	43.40	0.87	42.12	0.85
0.48	00	43.34	0.87	41.79	0.86
0.49	00	43.29	0.87	41.63	0.87
0.50	00	43.24	0.87	41.49	0.88
0.51	00	43.19	0.87	41.22	0.89
0.52	.00	43.14	0.88	41.15	0.89
0.53	00	43.08	0.88	40.90	0.90
0.54	.00	43.03	0.88	40.87	0.91
0.55	00	42.98	0.88	40.69	0.92

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	C.Fr.
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 26 of 35	

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u>
Revision 1.0

RF Exposure Category
General Population

450 MHz DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Thu 23/Aug/2007
Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM

*******	******	******	*****	*******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	57.58	0.87
0.3600	57.60	0.93	57.46	0.88
0.3700	57.50	0.93	57.24	0.88
0.3800	57.40	0.93	57.35	0.89
0.3900	57.30	0.93	57.10	0.90
0.4000	57.20	0.93	56.89	0.91
0.4100	57.10	0.93	56.74	0.91
0.4200	57.00	0.94	56.59	0.92
0.4300	56.90	0.94	56.75	0.92
0.4400	56.80	0.94	56.46	0.93
0.4500	56.70	0.94	56.29	0.94
0.4600	56.66	0.94	56.18	0.95
0.4700	56.62	0.94	56.23	0.95
0.4800	56.58	0.94	55.93	0.96
0.4900	56.54	0.94	55.74	0.97
0.5000	56.51	0.94	55.72	0.98
0.5100	56.47	0.94	55.49	0.99
0.5200	56.43	0.95	55.49	1.00
0.5300	56.39	0.95	55.31	1.00
0.5400	56.35	0.95	55.34	1.01
0.5500	56.31	0.95	55.36	1.01

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Cobra	
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Portable FM UHF FRS/GMRS PTT Radio Transceiver				
2007 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 27 of 35	

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	FM UHF FRS/GMF	RS PTT Rad	lio Transceiver	Cobra ELECTRONICS COMPONATION
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 28 of 35

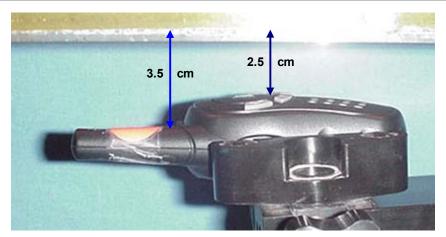


Test Report Issue Date
August 28, 2007

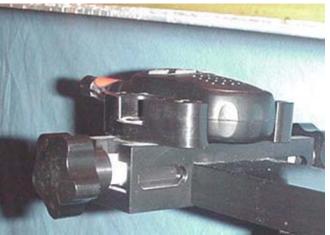
Test Report Serial No. 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

General Population



Certificate No. 2470.01


FACE-HELD SAR TEST SETUP PHOTOGRAPHS

2.5 cm Spacing from Front of DUT to Planar Phantom

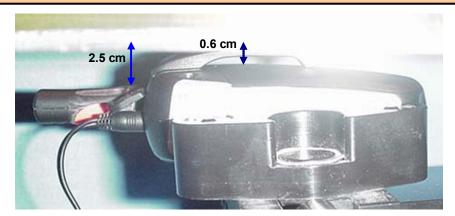
Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190 IC ID: 90		906B-PR190	Color
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 29 of 35

<u>Test Report Issue Date</u> August 28, 2007 <u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

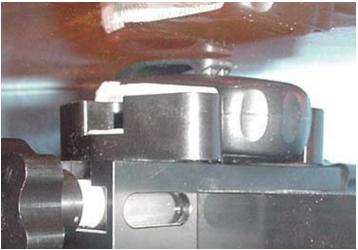
RF Exposure Category

General Population



ACCREDITED

Certificate No. 2470.01


BODY-WORN SAR TEST SETUP PHOTOGRAPHS

0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom With Ear-bud & Lapel-Microphone Audio Accessory

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	C
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	Iltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date August 28, 2007

Test Report Serial No. 082307BBO-T848-S95U

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Revision 1.0

RF Exposure Category General Population

DUT PHOTOGRAPHS

Front of DUT

Bottom end of DUT

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Cobra	
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Portable FM UHF FRS/GMRS PTT Radio Transceiver				
2007 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 31 of 35	

Test Report Issue Date August 28, 2007

Test Report Serial No. 082307BBO-T848-S95U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Revision 1.0

RF Exposure Category

General Population

Certificate No. 2470.01

DUT PHOTOGRAPHS

Left Side of DUT with Plastic Belt-Clip

Right Side of DUT with Plastic Belt-Clip

DUT Battery Compartment

DUT with NiCd AAA Batteries (x3)

DUT with Alkaline AAA Batteries (x3)

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Carro
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech La	ech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 32 of 35	

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

DUT PHOTOGRAPHS

DUT with Ear-bud & Lapel-Microphone Audio Accessory

Company:	Cobra Electronics Corporation		FCC ID:	BBOPR190	IC ID:	906B-PR190	Cobra	
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Portable FM UHF FRS/GMRS PTT Radio Transceiver				
2007 Celltech La	bs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
August 28, 2007

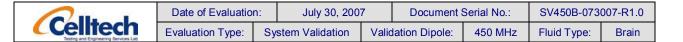
<u>Test Report Serial No.</u> 082307BBO-T848-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX E - SYSTEM VALIDATION

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Cohen
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	Cobra ELECTRONICS COMPONATION			
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 34 of 35	

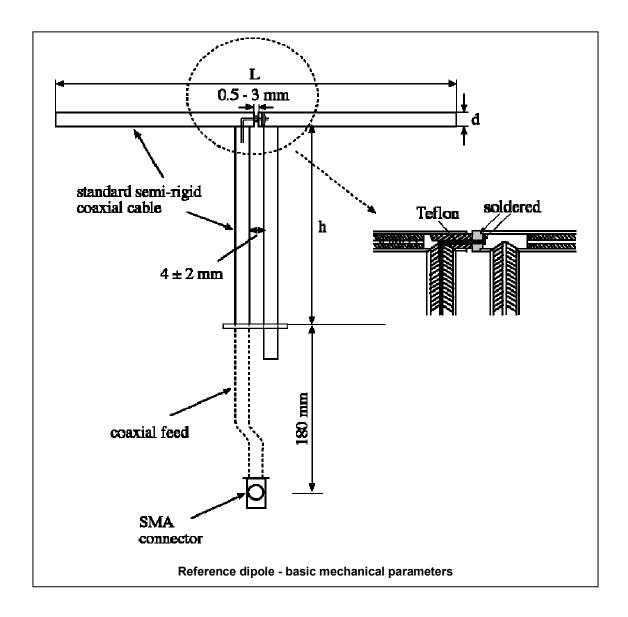

450 MHz SYSTEM VALIDATION

Type:	450 MHz Validation Dipole
Asset Number:	00024
Serial Number:	136
Place of Validation:	Celltech Labs Inc.
Date of Validation:	July 30, 2007

Celltech Labs Inc. certifies that the 450 MHz System Validation was performed on the date indicated above.

Validated by: Cheri Frangiadakis

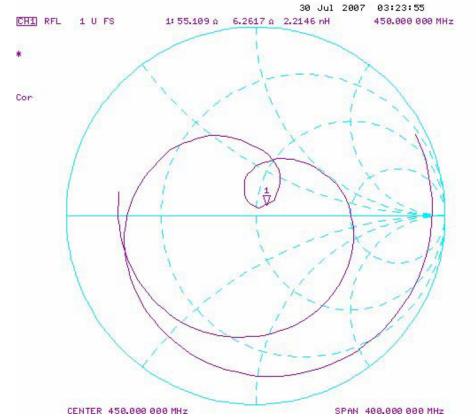
Approved by: Sean Johnston

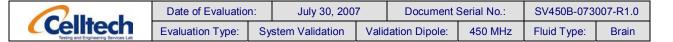

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450 MHz $Re{Z} = 55.109\Omega$

 $Im{Z} = 6.2617\Omega$


Return Loss at 450 MHz -22.210dB



2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

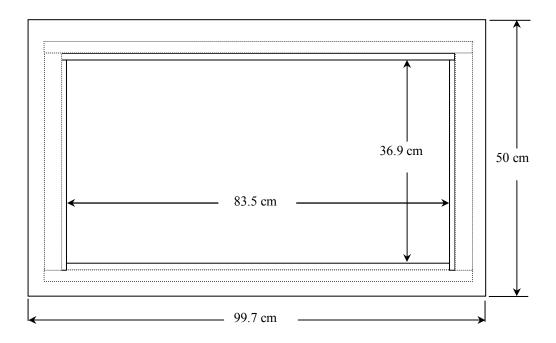
Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

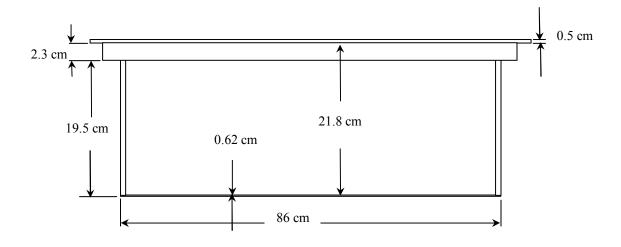
4. Validation Phantom

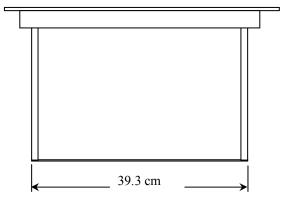
The validation phantom (planar) was constructed using relatively low-loss tangent Plexiglas material.

The inner dimensions of the validation phantom are as follows:

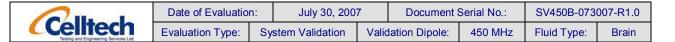
Length: 83.5 cm Width: 36.9 cm Height: 21.8 cm

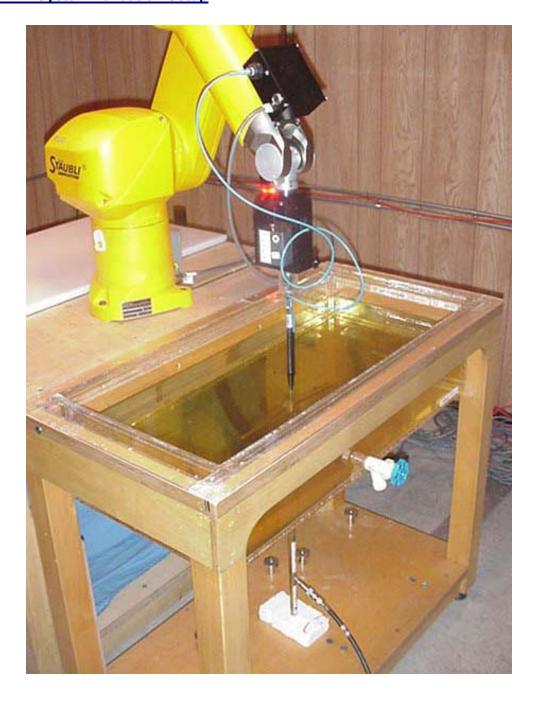

The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.


5. Test Equipment List


TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	10Jul07	10Jul08
SPEAG ET3DV6 E-Field Probe	00016	1387	16Mar07	16Mar08
450 MHz Validation Dipole	00024	136	30Jul07	30Jul08
Plexiglas Validation Planar Phantom	00157	137	N/A	N/A
HP 85070C Dielectric Probe Kit	00033	US39240170	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	26Mar07	26Mar08
Gigatronics 80701A Power Sensor	00014	1833699	22Jan07	22Jan08
Gigatronics 80701A Power Sensor	00109	1834366	26Mar07	26Mar08
HP 8753ET Network Analyzer	00134	US39170292	20Apr07	20Apr08
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

6. Dimensions of Plexiglas Planar Phantom

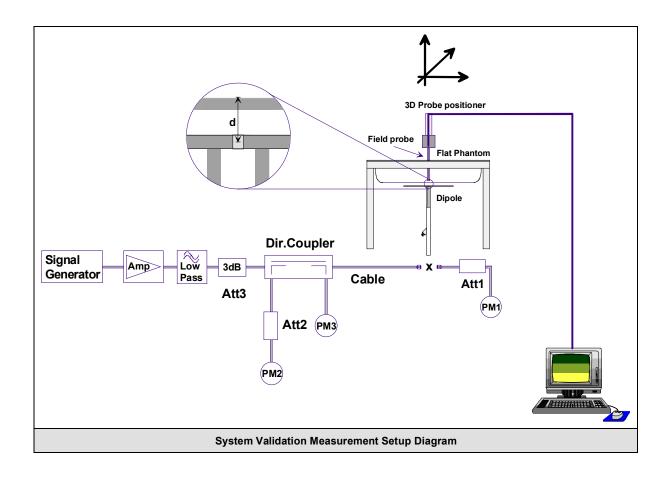



SV450B-073007-R1.0

Brain

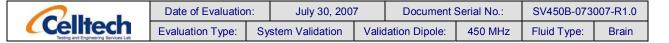
Fluid Type:

7. 450 MHz System Validation Setup


8. 450 MHz Validation Dipole Setup

9. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1387, Conversion Factor 7.0). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.


First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

SV450B-073007-R1.0

Brain

Fluid Type:

10. Measurement Conditions

The validation phantom was filled with 450 MHz Brain tissue simulant.

Relative Permittivity: 43.1 (-0.9% deviation from target)

0.85 mho/m (-2.3% deviation from target) Conductivity: 23.1°C (Start of Test) / 23.3°C (End of Test) Fluid Temperature:

Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 24.5°C Barometric Pressure: 101.1 kPa Humidity: 31%

The 450 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight				
Water	38.56%				
Sugar	56.32%				
Salt	3.95%				
HEC	0.98%				
Dowicil 75	0.19%				
IEEE Target Dielectric Parameters:	$\epsilon_{\rm r}$ = 43.5 (+/- 5%) σ = 0.87 S/m (+/- 5%)				

11. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)						SAR @ 1W Input averaged over 1g (W/kg)				
IEEE/IE	C Target	M	easured	Dev	/iation	IEE	IEEE/IEC T		Measured	Deviation
1.23	+/- 10%		1.29	+4	4.9%	4.9)	+/- 10%	5.16	+5.3%
SAR @ 0.	25W Input av	vera	ged over	10g (\	N/kg)	SAR	@ 11	V Input av	eraged over 10	g (W/kg)
IEEE/IE	C Target	M	easured	Dev	/iation	IEE	E/IEC	Target	Measured	Deviation
0.825	+/- 10%		0.832	+(0.8%	3.3	3	+/- 10%	3.33	+1.0%
Frequency (MHz)		,	1 g SAI	ı	10 g	SAR	surf	eal SAR at face (above ed-point)	Local SAR at surface (y = 2 cm offset from feed-point) ^a	
	300		3.0		2.	0	4.4		2.1	
	450		4.9	3	.3		7.2	3.2		
	835		9.5		6.	2	4.1	4.9		
	900		10.8		6.9 1	16.4	5.4			
	1450		29.0		16	.0	50.2	6.5		
	1800		38.1		19	.8		69.5	6.8	
	1900		39.7		20	.5		72.1	6.6	
	2000		41.1	21		.1		74.6	6.5	
	2450		52.4		24.0 25.7			104.2	7.7	
	3000		63.8					140.2	9.5	

System Validation - 450 MHz Dipole - July 30, 2007 - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 07/30/2007

Ambient Temp: 24.5°C; Fluid Temp: 23.1°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

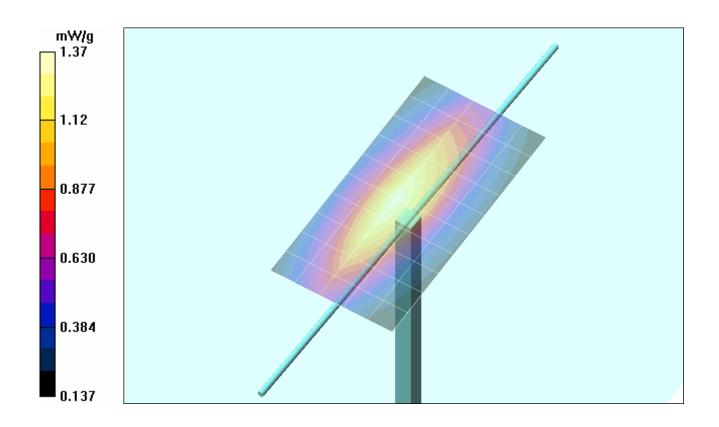
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

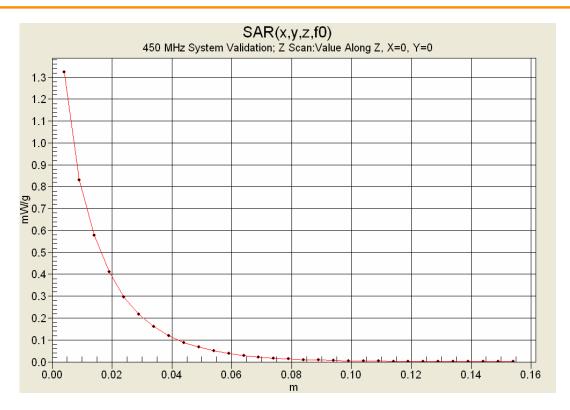
Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.85$ mho/m; $\varepsilon_r = 43.1$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Validation/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.35 mW/g


450 MHz Dipole - System Validation/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.832 mW/g Maximum value of SAR (measured) = 1.37 mW/g

12. Measured Fluid Dielectric Parameters

System Validation - 450 MHz (Brain)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 30/Jul/2007

Frequency (GHz)

FCC_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon

FCC sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	_	HFCC_sh	_	Test_s
0.3500	44.70	0.87	45.67	0.76
0.3600	44.58	0.87	45.22	0.77
0.3700	44.46	0.87	45.13	0.78
0.3800	44.34	0.87	44.88	0.79
0.3900	44.22	0.87	44.58	0.80
0.4000	44.10	0.87	44.42	0.81
0.4100	43.98	0.87	44.21	0.82
0.4200	43.86	0.87	43.93	0.82
0.4300	43.74	0.87	43.66	0.83
0.4400	43.62	0.87	43.15	0.84
0.4500	43.50	0.87	43.09	0.85
0.4600	43.45	0.87	42.96	0.86
0.4700	43.40	0.87	42.63	0.87
0.4800	43.34	0.87	42.72	0.87
0.4900	43.29	0.87	42.45	0.89
0.5000	43.24	0.87	42.18	0.90
0.5100	43.19	0.87	42.03	0.90
0.5200	43.14	0.88	41.77	0.91
0.5300	43.08	0.88	41.78	0.92
0.5400	43.03	0.88	41.42	0.93
0.5500	42.98	0.88	41.19	0.93

Date of Evaluation:		July 30, 2007		Document S	Serial No.:	SV450B-073007-R1.0	
Evaluation Type:	Sy	System Validation		lation Dipole:	450 MHz	Fluid Type:	Brain

13. Measurement Uncertainties

## Error Description ### Probability Value ±% Divisor Divisor 1g Uncertainty Value ±% (1g) ### Measurement System Frobe calibration (450 MHz) 8.0 Normal 1 1 8.0 ### Axial isotropy of the probe 4.7 Rectangular 1.732050808 1 2.7 ### Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 ### Spatial resolution 0 Rectangular 1.732050808 1 0.0 ### Boundary effects 1 Rectangular 1.732050808 1 0.6 ### Probe linearity 4.7 Rectangular 1.732050808 1 0.6 ### Probe linearity 4.7 Rectangular 1.732050808 1 0.6 ### Readout electronics 0.3 Normal 1 1 0.3 ### Readout electronics 0.3 Normal 1 1 0.3 ### Response time 0 Rectangular 1.732050808 1 0.0 ### Integration time 0 Rectangular 1.732050808 1 0.0 ### Readout conditions 3 Rectangular 1.732050808 1 0.0 ### Readout conditions 3 Rectangular 1.732050808 1 0.0 ### Probe positioning 2.9 Rectangular 1.732050808 1 0.2 ### Probe positioning 2.9 Rectangular 1.732050808 1 0.2 ### Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ### Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 2.7 ### Phantom uncertainty 4 Rectangular 1.732050808 1 2.7 ### Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ### Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ### Liquid conductivity (measured) 5 Normal 1 0.64 3.2 ### Liquid permittivity (measured) 5 Normal 1 0.6 3.0 ### Combined Standard Uncertainty 1.732050808 0.6 1.7 ### Liquid permittivity (measured) 5 Normal 1 0.6 3.0 ### Combined Standard Uncertainty 1.732050808 0.6 1.7 ### Liquid permittivity (measured) 5 Normal 1 0.6 3.0 ### Combined Standard Uncertainty 1.732050808 0.6 1.7 ### Liquid permittivity (measured) 5 Normal 1 0.	UNCERTAINTY BUDGET FOR SYSTEM VALIDATION								
Probe calibration (450 MHz) 8.0 Normal 1 1 8.0 Axial isotropy of the probe 4.7 Rectangular 1.732050808 1 2.7 Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 Spatial resolution 0 Rectangular 1.732050808 1 0.0 Boundary effects 1 Rectangular 1.732050808 1 0.6 Probe linearity 4.7 Rectangular 1.732050808 1 2.7 Detection limit 1 Rectangular 1.732050808 1 0.6 Readout electronics 0.3 Normal 1 1 0.0 Response time 0 Rectangular 1.732050808 1 0.0 <t< th=""><th>V_i or V_{eff}</th><th>Value</th><th></th><th>Divisor</th><th></th><th>Value</th><th>Error Description</th></t<>	V _i or V _{eff}	Value		Divisor		Value	Error Description		
Axial isotropy of the probe 4.7 Rectangular 1.732050808 1 2.7 Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 Spatial resolution 0 Rectangular 1.732050808 1 0.0 Boundary effects 1 Rectangular 1.732050808 1 0.6 Probe linearity 4.7 Rectangular 1.732050808 1 2.7 Detection limit 1 Rectangular 1.732050808 1 0.6 Readout electronics 0.3 Normal 1 1 0.6 Readout electronics 0.3 Normal 1 1 0.3 Response time 0 Rectangular 1.732050808 1 0.0 Integration time 0 Rectangular 1.732050808 1 1.7 Mech. constraints of robot 0.4 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1							Measurement System		
Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 Spatial resolution 0 Rectangular 1.732050808 1 0.0 Boundary effects 1 Rectangular 1.732050808 1 0.6 Probe linearity 4.7 Rectangular 1.732050808 1 2.7 Detection limit 1 Rectangular 1.732050808 1 0.6 Readout electronics 0.3 Normal 1 1 0.3 Response time 0 Rectangular 1.732050808 1 0.0 Integration time 0 Rectangular 1.732050808 1 0.0 RF ambient conditions 3 Rectangular 1.732050808 1 1.7 Mech. constraints of robot 0.4 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1 1.7 Ext Sample Related Dipole Positioning 2 Normal 1.7320	∞	8.0	1	1	Normal	8.0	Probe calibration (450 MHz)		
Spatial resolution	∞	2.7	1	1.732050808	Rectangular	4.7	Axial isotropy of the probe		
Boundary effects	∞	0.0	1	1.732050808	Rectangular	0	Spherical isotropy of the probe		
Probe linearity	∞	0.0	1	1.732050808	Rectangular	0	Spatial resolution		
Detection limit	∞	0.6	1	1.732050808	Rectangular	1	Boundary effects		
Readout electronics 0.3 Normal 1 1 0.3 Response time 0 Rectangular 1.732050808 1 0.0 Integration time 0 Rectangular 1.732050808 1 0.0 RF ambient conditions 3 Rectangular 1.732050808 1 1.7 Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 Probe positioning 2.9 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid permittivity (target) 5	∞	2.7	1	1.732050808	Rectangular	4.7	Probe linearity		
Response time 0 Rectangular 1.732050808 1 0.0 Integration time 0 Rectangular 1.732050808 1 0.0 RF ambient conditions 3 Rectangular 1.732050808 1 1.7 Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 Probe positioning 2.9 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measure	∞	0.6	1	1.732050808	Rectangular	1	Detection limit		
Integration time	∞	0.3	1	1	Normal	0.3	Readout electronics		
RF ambient conditions 3 Rectangular 1.732050808 1 1.7 Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 Probe positioning 2.9 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid permittivity (measured) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Rectangular 1.732050808 0.6	∞	0.0	1	1.732050808	Rectangular	0	Response time		
Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 Probe positioning 2.9 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid permittivity (measured) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	0.0	1	1.732050808	Rectangular	0	Integration time		
Probe positioning 2.9 Rectangular 1.732050808 1 1.7 Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	×	1.7	1	1.732050808	Rectangular	3	RF ambient conditions		
Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	0.2	1	1.732050808	Rectangular	0.4	Mech. constraints of robot		
Test Sample Related Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	1.7	1	1.732050808	Rectangular	2.9	Probe positioning		
Dipole Positioning 2 Normal 1.732050808 1 1.2 Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	0.6	1	1.732050808	Rectangular	1	Extrapolation & integration		
Power & Power Drift 4.7 Normal 1.732050808 1 2.7 Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0							Test Sample Related		
Phantom and Setup Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	1.2	1	1.732050808	Normal	2	Dipole Positioning		
Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	2.7	1	1.732050808	Normal	4.7	Power & Power Drift		
Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0							Phantom and Setup		
Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	2.3	1	1.732050808	Rectangular	4	Phantom uncertainty		
Liquid conductivity (measured) 5 Normal 1 0.64 3.2 Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	1.8	0.64	1.732050808	Rectangular	5	Liquid conductivity (target)		
Liquid permittivity (measured) 5 Normal 1 0.6 3.0	∞	3.2	0.64	1	Normal	5	Liquid conductivity (measured)		
	∞	1.7	0.6	1.732050808	Rectangular	5	Liquid permittivity (target)		
Combined Standard Uncertainty 11 20	∞	3.0	0.6	1	Normal	5	Liquid permittivity (measured)		
Ombinou otaniana oncortainty		11.20					Combined Standard Uncertainty		
Expanded Uncertainty (k=2) 22.39									

Date(s) of Evaluation August 23, 2007

Test Report Issue Date
August 28, 2007

<u>Test Report Serial No.</u> 082307BBO-T848-S95U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX F - PROBE CALIBRATION

Company:	Cob	ra Electronics Corporation	FCC ID:	BBOPR190	IC ID:	906B-PR190	Cale
Model(s):	PR1	88 / PR190 / PR195 / PR199	Portable	FM UHF FRS/GMF	RS PTT Rad	lio Transceiver	Cobra ELECTRONICS COMPONATION
2007 Celltech La	07 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 35 of 35	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1387_Mar07

Accreditation No.: SCS 108

Client Celitech Labs

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1387

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: March 16, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Name Function Signature
Calibrated by: Katja Pokovic Technical Manager

Approved by: Fin Bomholt R&D Director

Issued: March 19, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1387_Mar07

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1387_Mar07 Page 2 of 9

ET3DV6 SN:1387 March 16, 2007

Probe ET3DV6

SN:1387

Manufactured:

September 21, 1999

Last calibrated:

March 16, 2006

Recalibrated:

March 16, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1387 March 16, 2007

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free Space^A Diode Compression^B

1.68 ± 10.1% $\mu V/(V/m)^2$ DCP X 91 mV 1.73 ± 10.1% $\mu V/(V/m)^2$ DCP Y 92 mV

NormZ 1.73 ± 10.1% $\mu V/(V/m)^2$ DCP Z 92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

NormX

NormY

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance

SAR_{be} [%] Without Correction Algorithm

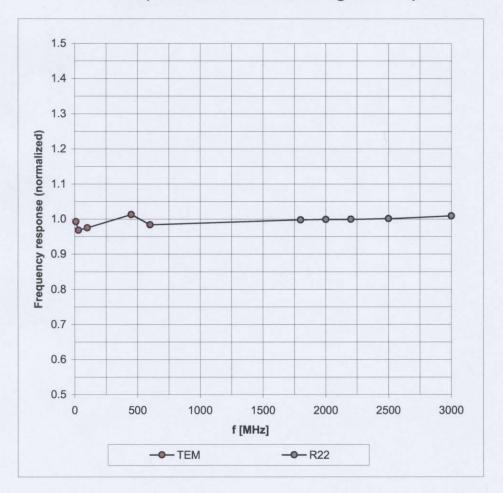
8.2 3.7

SAR_{be} [%] With Correction Algorithm

0.8 0.9

Sensor Offset

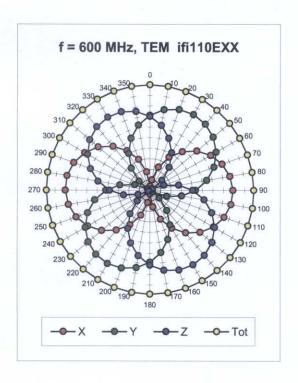
Probe Tip to Sensor Center 2.7 mm

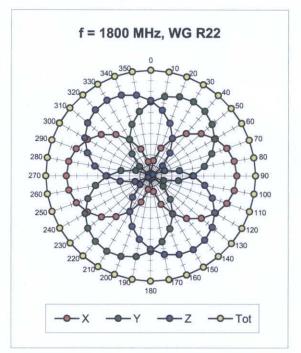

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

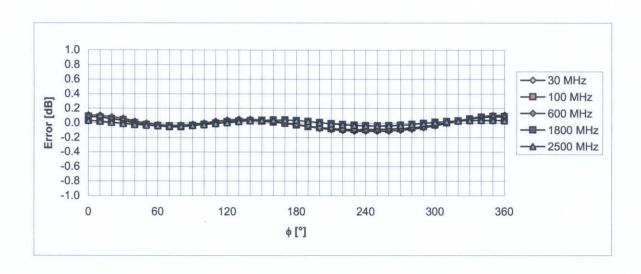
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

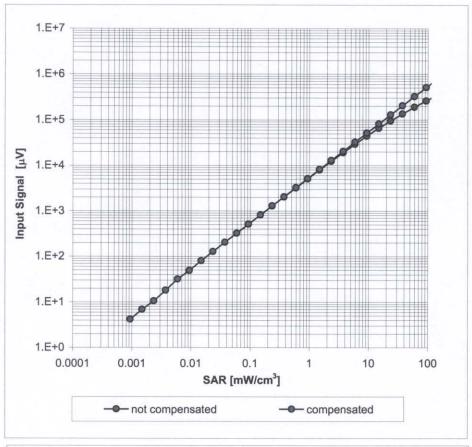

(TEM-Cell:ifi110 EXX, Waveguide: R22)

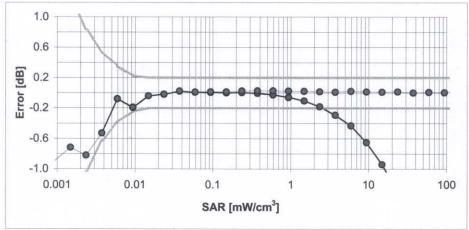



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6 SN:1387 March 16, 2007

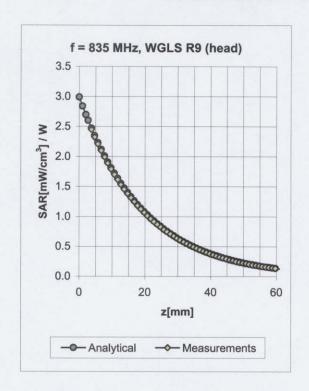
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

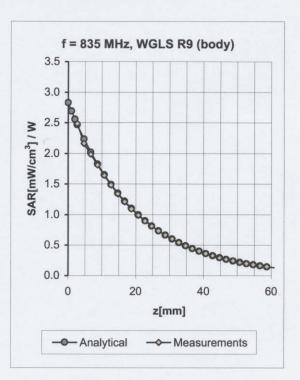




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

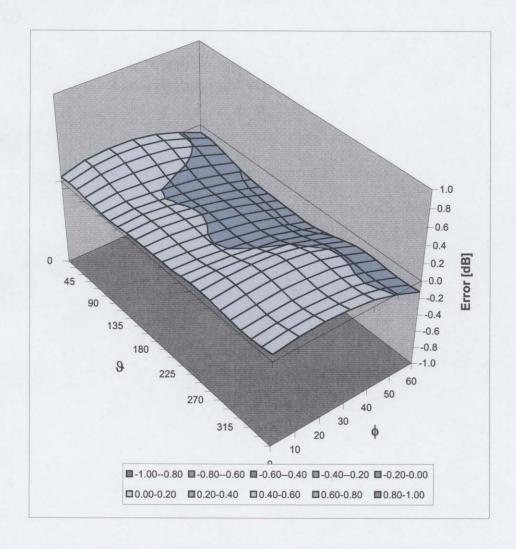
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF l	Jncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.36	2.45	6.25	± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.34	2.66	6.18	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 20, 2007
Probe Calibration Date:	March 16, 2007

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

f = 150 MHz	ConvF	$7.8 \pm 10\%$	$\varepsilon_r = 52.3 \pm 5\%$
			$\sigma = 0.76 \pm 5\% \text{ mho/m}$
			(head tissue)
f = 300 MHz	ConvF	$7.3 \pm 9\%$	$\varepsilon_r = 45.3 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
			(11111111111111111111111111111111111111
f = 450 MHz	ConvF	$7.0 \pm 8\%$	$\varepsilon_r = 43.5 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
f = 750 MHz	ConvF	$6.3 \pm 8\%$	$\varepsilon_r = 41.8 \pm 5\%$
			$\sigma = 0.89 \pm 5\% \text{ mho/m}$
			(head tissue)
			(
f = 150 MHz	ConvF	$7.8 \pm 10\%$	$\varepsilon_r = 61.9 \pm 5\%$
			$\sigma = 0.80 \pm 5\% \text{ mho/m}$
			(body tissue)
f = 450 MHz	ConvF	$6.9 \pm 8\%$	$\varepsilon_r = 56.7 \pm 5\%$
			$\sigma = 0.94 \pm 5\% \text{ mho/m}$
			(body tissue)
			L. Control of the Con
f = 750 MHz	ConvF	$6.0 \pm 8\%$	$\varepsilon_r = 55.4 \pm 5\%$
			$\sigma = 0.96 \pm 5\% \text{ mho/m}$
			(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.