

RADIO TEST REPORT

Test Report No. 15398805H-A

Customer	DENSO TEN Limited	
Description of EUT	Car Audio	
Model Number of EUT	TN0047A	
FCC ID	BABTN0047A	
Test Regulation	FCC Part 15 Subpart C	
Test Result	Complied	
Issue Date	October 15, 2024	
Remarks	Wireless LAN (2.4 GHz band) part only	

Representative Test Engineer	Approved By
PRQueei	Ryata yamaneka
Shousei Hamaguchi Engineer	Ryota Yamanaka Engineer ACCREDITED
	CERTIFICATE 5107.02
☐ The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15398805H-A Page 2 of 40

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15398805H-A

Revision	Test Report No.	Date	Page Revised Contents
-	15398805H-A	October 15, 2024	-
(Original)			

Test Report No. 15398805H-A Page 3 of 40

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	IEC	International Electrotechnical Commission
AC	Alternating Current	IEEE	Institute of Electrical and Electronics Engineers
AFH	Adaptive Frequency Hopping	IF	Intermediate Frequency
AM	Amplitude Modulation	ILAC	International Laboratory Accreditation Conference
Amp, AMP	Amplifier	ISED	Innovation, Science and Economic Development Canada
ANSI	American National Standards Institute	ISO	International Organization for Standardization
Ant, ANT	Antenna	JAB	Japan Accreditation Board
AP	Access Point	LAN	Local Area Network
ASK	Amplitude Shift Keying	LIMS	Laboratory Information Management System
Atten., ATT	Attenuator	MCS	Modulation and Coding Scheme
AV	Average	MRA	Mutual Recognition Arrangement
BPSK	Binary Phase-Shift Keying	N/A	Not Applicable
BR	Bluetooth Basic Rate	NIST	National Institute of Standards and Technology
BT	Bluetooth	NS	No signal detect.
BT LE	Bluetooth Low Energy	NSA	Normalized Site Attenuation
BW	BandWidth	NVLAP	National Voluntary Laboratory Accreditation Program
Cal Int	Calibration Interval	OBW	Occupied Band Width
CCK	Complementary Code Keying	OFDM	Orthogonal Frequency Division Multiplexing
Ch., CH	Channel	OFDMA	Orthogonal Frequency Division Multiple Access
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PP	Preamble Puncturing
DSSS	Direct Sequence Spread Spectrum	PRBS	Pseudo-Random Bit Sequence
EDR	Enhanced Data Rate	PSD	Power Spectral Density
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QAM	Quadrature Amplitude Modulation
EMC	ElectroMagnetic Compatibility	QP	Quasi-Peak
EMI	ElectroMagnetic Interference	QPSK	Quadri-Phase Shift Keying
EN	European Norm	RBW	Resolution Band Width
ERP, e.r.p.	Effective Radiated Power	RDS	Radio Data System
EU	European Union	RE	Radio Equipment
EUT	Equipment Under Test	RF	Radio Frequency
Fac.	Factor	RMS	Root Mean Square
FCC	Federal Communications Commission	RSS	Radio Standards Specifications
FHSS	Frequency Hopping Spread Spectrum	Rx	Receiving
FM	Frequency Modulation	SA, S/A	Spectrum Analyzer
Freq.	Frequency	SG	Signal Generator
FSK	Frequency Shift Keying	SVSWR	Site-Voltage Standing Wave Ratio
GFSK	Gaussian Frequency-Shift Keying	TR	Test Receiver
GNSS	Global Navigation Satellite System	Tx	Transmitting
GPS	Global Positioning System	VBW	Video BandWidth
Hori.	Horizontal	Vert.	Vertical
ICES	Interference-Causing Equipment Standard	WLAN	Wireless LAN

CONTENTS	
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	7
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	
Radiated Spurious Emission	
Antenna Terminal Conducted Tests	

Test Report No. 15398805H-A Page 5 of 40

SECTION 1: Customer Information

Company Name	DENSO TEN Limited
Address 2-28, Gosho-dori 1-Chome, Hyogo-ku, KOBE 652-8510 JAPAN	
Telephone Number +81 78 682 2159	
Contact Person	Kaoru Abe

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Audio	
Model Number	TN0047A	
Serial Number	Refer to SECTION 4.2	
Condition	Production prototype	
	(Not for Sale: This sample is equivalent to mass-produced items.)	
Modification	No Modification by the test lab	
Receipt Date	August 9, 2024	
Test Date	August 26 to September 10, 2024	

2.2 Product Description

General Specification

Rating	DC 12 V
Operating temperature	-20 deg. C to +65 deg. C

Radio Specification-1/2

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

[WLAN (IEEE802.11b/11a/11n-20)]

Equipment Type	Transceiver
Frequency of Operation	2437 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain ^{a)}	-0.57 dBi

[Bluetooth (BR/EDR)]

Equipment Type	Transceiver	
Frequency of Operation	2402 MHz to 2480 MHz	
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)	
Antenna Gain	-0.49 dBi	

Test Report No. 15398805H-A Page 6 of 40

Radio Specification-2/2

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

Equipment Type	Transceiver	
Frequency of Operation	20 MHz Band	5765 MHz
	40 MHz Band	5755 MHz
	80 MHz Band	5775 MHz
Type of Modulation	OFDM	
Antenna Gain	0.31 dBi	

[AM/FM/DAB]

Equipment Type	Receiver	
Frequency of Operation	AM: 530 kHz to 1625 kHz	
	FM: Band II: 87.5 MHz to 108.0 MHz	
	DAB (Band III): 174.928 MHz to 239.200 MHz	
Type of Modulation	AM	
	FM	
	DAB: OFDM	
Antenna Connector Type	HFC IV	
Impedance	AM, FM: 75 ohm	
	DAB: 50 ohm	

^{*} WLAN and Bluetooth do not transmit simultaneously.

2.3 Variant models

There has five types; A, B, C, D, E and H. Tests were performed to Type A (base model) as representative model.

Frequency of Operation for WLAN is as following table.

	Type A (EUT)	Type B	Тур	e C	Тур	e D	Type E	Type H
	A-1	B-1	C-1	C-3	D-1	D-3	E-1	H-1,
			C-2	C-4	D-2	D-4	E-2	H-2
5735 MHz to 5815 MHz	Y	Υ	Y	-	Y	-	Y	Y
2426 MHz to 2448 MHz	Υ	-	-	Υ	-	Υ	-	-

^{*}Wireless block hardware is the same as Type A.

Wifi frequency can be selected between 2.4 GHz or 5 GHz by the product's built-in software.

Test Report No. 15398805H-A Page 7 of 40

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
İ	ISED: -	ISED : RSS-247 5.2(a)	1		
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	9.8 dB	Complied	Conducted
Emission	15.247		400.00 MHz,		(below 30 MHz)/
Restricted	Meas Guidance v05r02		QP, Vertical		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 15398805H-A Page 8 of 40

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz	GHz to 6 GHz		5.1
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 18 GHz 18 GHz to 26.5 GHz		dB	5.4
			dB	5.3
	26.5 GHz to 40 GHz			4.8
0.5 m	26.5 GHz to 40 GHz		dB	5.0

Antenna Terminal Conducted

İtem	Unit	Calculated Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15398805H-A Page 9 of 40

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15398805H-A Page 10 of 40

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	48 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 1 (Long GI), PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

*Power of the EUT was set by the software as follows;

Power Setting: 11b: 13 dBm

11g: 11 dBm 11n-20: 10 dBm

Software: Wi-Fi Test FW_WF1 Version: WF1

(Date: August 8, 2024, Storage location: EUT memory)

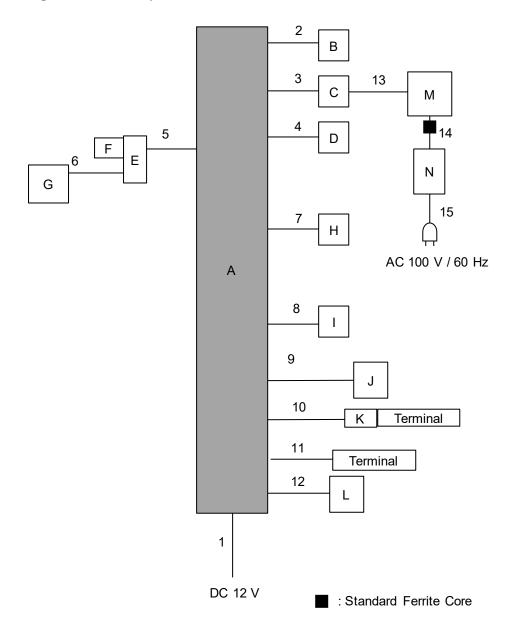
*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing -

Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.


*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx 11n-20 *1)	2437 MHz
6dB Bandwidth,	Tx 11b	2437 MHz
Maximum Peak Output Power,	Tx 11g	
Power Density,	Tx 11n-20	
99% Occupied Bandwidth		
Conducted Spurious Emission		
Radiated Spurious Emission (Above 1 GHz)	Tx 11b	2437 MHz
	Tx 11n-20 *2)	

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

^{*2)} Since 11g and 11n-20 have the same nominal channel bandwidth and no differences in transmitting specification, test was performed on the 11n-20 mode.

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15398805H-A Page 12 of 40

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Car Audio	TN0047A	100292248-0004	DENSO TEN Limited	EUT
В	Micro Phone	86730-78010	31C043761	Panasonic	-
С	Jig board	-	-	-	-
D	Digital Camera	867B0-78070	THX4235Q05385	Panasonic	-
E	USB I/F BOX	86190-78020	500870	Panasonic	-
F	USB Memory	RUF3-K16GB	P10416	Buffalo Inc.	-
G	iPod touch	MC540J/A	C3RJ4SLADT75	Apple	-
Н	Steering Switch	84250-58150-BO	NO2	-	-
I	GNSS Antenna	86880-78010	34347	Harada Industry Co.,	-
				Ltd.	
J	Speaker Dummy	SP Dummy	DUMMY -210810-	DENSO TEN Limited	-
			001		
K	AM / FM Dummy	AM / FM Dummy	NO1	DENSO TEN Limited	-
L	Analog Camera	86790-60670	D310026	Panasonic	-
M	Laptop PC	CF-N8HWCDPS	0BKSA08729	Panasonic	*1)
N	AC Adapter	CF-AA6372B	6372BM610909023E	Panasonic	*1)

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	5.0	Unshielded	Unshielded	-
2	Signal Cable	3.0	Unshielded	Unshielded	-
3	Flat Cable	0.1	Unshielded	Unshielded	-
4	Signal Cable	5.0	Unshielded	Unshielded	-
5	Signal Cable	3.0	Unshielded	Unshielded	=
6	USB Cable	1.0	Shielded	Shielded	=
7	Signal Cable	3.0	Unshielded	Unshielded	=
8	GNSS Antenna Cable	3.0	Shielded	Shielded	=
9	Speaker Cable	3.0	Unshielded	Unshielded	=
10	AM / FM Cable	0.2	Shielded	Shielded	=
11	DAB Cable	3.5	Unshielded	Unshielded	=
12	Signal Cable	3.0	Unshielded	Unshielded	-
13	USB Cable	0.9	Shielded	Shielded	*1)
14	DC Cable	1.0	Unshielded	Unshielded	*1)
15	AC Cable	0.8	Unshielded	Unshielded	*1)

^{*1)} Antenna Terminal Conducted test only

Test Report No. 15398805H-A Page 13 of 40

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

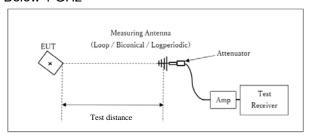
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Test Report No. 15398805H-A Page 14 of 40

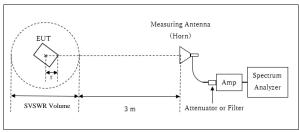
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz	•	20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

Test Report No. 15398805H-A Page 15 of 40

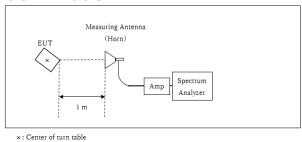
Figure 1: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz to 10 GHz


- r: Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor: $20 \times (3.55 \text{ m} / 3.0 \text{ m}) = 1.47 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.55 m

SVSWR Volume: 1.5 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.) $r = 0.2 \, m$

10 GHz to 26.5 GHz

Distance Factor: $20 \times (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$ *Test Distance: 1 m

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. 15398805H-A Page 16 of 40

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz).

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

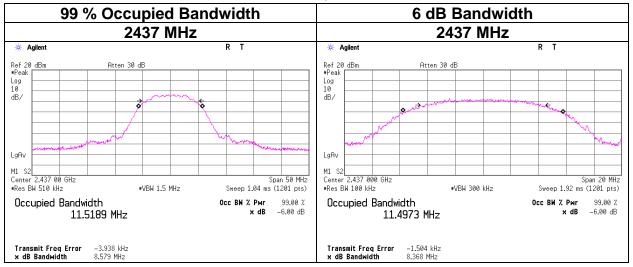
Test Report No. 15398805H-A Page 17 of 40

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.7 Shielded Room

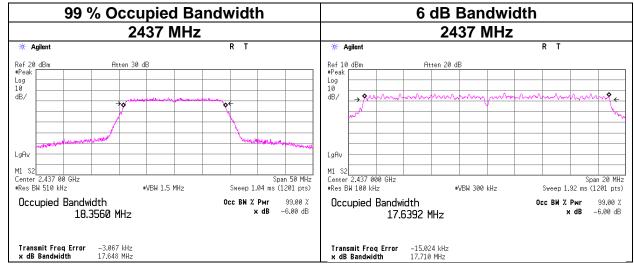
Date September 10, 2024
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Hiroki Numata


Mode Tx

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2437	11518.9	8.368	> 0.5000
11g	2437	17327.3	16.447	> 0.5000
11n-20	2437	18356.0	17.710	> 0.5000


Test Report No. 15398805H-A Page 18 of 40

99 % Occupied Bandwidth and 6 dB Bandwidth


11b

11g

11n-20

Test Report No. 15398805H-A Page 19 of 40

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room

August 26, 2024 23 deg. C / 60 % RH Date Temperature / Humidity Engineer Shousei Hamaguchi

Mode Tx 11b

					Conducted Power					e.i.r.p. for RSS-247				
Freq.	Reading	Cable	Atten.	Re	sult	Lir	nit	Margin	Antenna	Re	sult	Lir	nit	Margin
		Loss	Loss				Gain					-		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2437	4.16	1.71	10.07	15.94	39.27	30.00	1000	14.06	-0.57	15.37	34.44	36.02	4000	20.65

Sample Calculation:
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	3.50	
2	3.99	
5.5	4.04	
11	4.16	*

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

Test Report No. 15398805H-A Page 20 of 40

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room

August 26, 2024 23 deg. C / 60 % RH Date Temperature / Humidity Engineer Shousei Hamaguchi

Mode Tx 11g

					Conducted Power				e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	Result		Limit		Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2437	9.59	1.71	10.07	21.37	137.12	30.00	1000	8.63	-0.57	20.80	120.25	36.02	4000	15.22

Sample Calculation:
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	9.46	
9	8.76	
12	8.58	
18	8.61	
24	7.96	
36	8.44	
48	9.59	*
54	7.41	

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

Test Report No. 15398805H-A Page 21 of 40

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room

August 26, 2024 23 deg. C / 60 % RH Date Temperature / Humidity Engineer Shousei Hamaguchi

Mode Tx 11n-20

					Conducted Power					e.i.r.p. for RSS-247				
Freq.	Reading	Cable	Atten.	Re	esult	Limit		Margin	Antenna	Result		Limit		Margin
		Loss	Loss					_	Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2437	0.23	1.71	19.99	21.93	155.99	30.00	1000	8.07	-0.57	21.36	136.80	36.02	4000	14.66

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

MCS	Reading	Reading	Remark
Number	Long GI	Short GI	
	[dBm]	[dBm]	
0	0.11	-	
1	0.23	0.17	*
2	-0.24	-	
3	-0.53	-	
4	-0.71	-	
5	0.02	-	
6	-0.66	-	
7	-1.71	-	

*: Worst MCS

All comparison were carried out on same frequency and measurement factors.

Test Report No. 15398805H-A Page 22 of 40

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.8 Measurement Room

Date August 26, 2024
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Shousei Hamaguchi

Mode Tx

11b **1 Mbps**

Freq.	Reading	Cable	Atten.	Re	Result		Res	sult
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]
2437	0.53	1.71	10.07	12.31	17.03	0.04	12.35	17.18

11g **6 Mbps**

Freq.	Reading	Cable	Atten.	Result		Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]
2437	-1.23	1.71	10.07	10.55	11.35	0.28	10.83	12.11

11n-20 MCS 0

Freq.	Reading	Cable	Atten.	Result		Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]
2437	-1.40	1.71	10.07	10.38	10.92	0.30	10.68	11.70

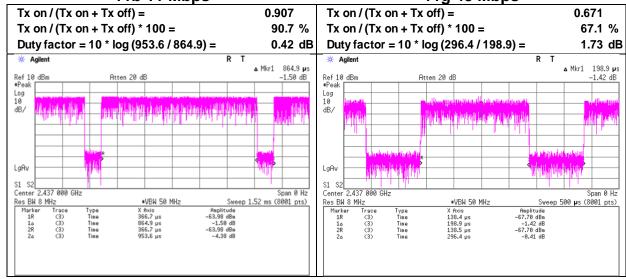
Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

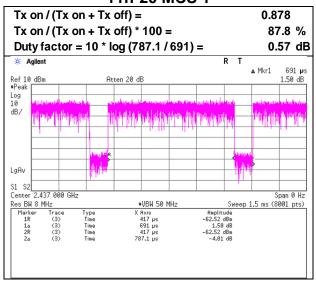
The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Test Report No. 15398805H-A Page 23 of 40

Burst rate confirmation


Test place Ise EMC Lab. No.8 Measurement Room

Date August 26, 2024
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Shousei Hamaguchi

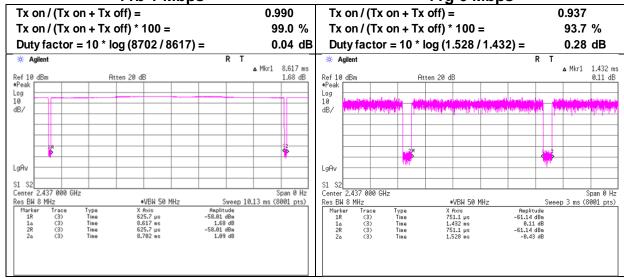

Mode T:

11b 11 Mbps

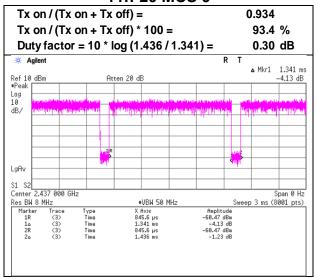
11g 48 Mbps

11n-20 MCS 1

Test Report No. 15398805H-A Page 24 of 40


Burst rate confirmation

Test place Ise EMC Lab. No.8 Measurement Room


Date August 26, 2024
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Shousei Hamaguchi

Mode T.

11b 1 Mbps 11g 6 Mbps

11n-20 MCS 0

Test Report No. 15398805H-A Page 25 of 40

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date August 29, 2024 September 1, 2024 Temperature / Humidity 23 deg. C / 62 % RH 22 deg. C / 71 % RH Tetsuro Yoshida Engineer Hiroki Numata (Above 10 GHz) (1 GHz to 10 GHz)

Mode Tx 11b 2437 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	43.0	34.7	27.7	4.5	32.2	0.4	42.9	35.0	73.9	53.9	31.0	18.9	*1)
Hori.	2483.5	42.7	34.8	27.5	4.5	32.2	0.4	42.6	35.0	73.9	53.9	31.3	18.9	*1)
Hori.	4874.0	40.9	32.6	31.6	6.6	31.2	-	47.9	39.6	73.9	53.9	26.0	14.3	Floor noise
Hori.	7311.0	41.4	34.1	35.5	7.7	32.0	-	52.6	45.3	73.9	53.9	21.3	8.6	Floor noise
Hori.	9748.0	41.6	34.1	36.0	8.3	32.7	-	53.1	45.7	73.9	53.9	20.8	8.2	Floor noise
Vert.	2390.0	43.9	35.0	27.7	4.5	32.2	0.4	43.8	35.3	73.9	53.9	30.2	18.6	*1)
Vert.	2483.5	44.8	35.4	27.5	4.5	32.2	0.4	44.7	35.7	73.9	53.9	29.2	18.2	*1)
Vert.	4874.0	40.6	32.8	31.6	6.6	31.2	-	47.6	39.8	73.9	53.9	26.3	14.1	Floor noise
Vert.	7311.0	41.6	33.9	35.5	7.7	32.0	-	52.8	45.1	73.9	53.9	21.1	8.8	Floor noise
Vert.	9748.0	41.9	34.0	36.0	8.3	32.7	-	53.5	45.5	73.9	53.9	20.4	8.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1 GHz.

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2437.0	95.5	27.6	4.5	32.2	95.3	-	-	Carrier
Hori.	2400.0	35.2	27.6	4.5	32.2	35.1	75.3	40.2	
Vert.	2437.0	96.7	27.6	4.5	32.2	96.6	-	-	Carrier
Vert.	2400.0	36.1	27.6	4.5	32.2	36.0	76.6	40.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

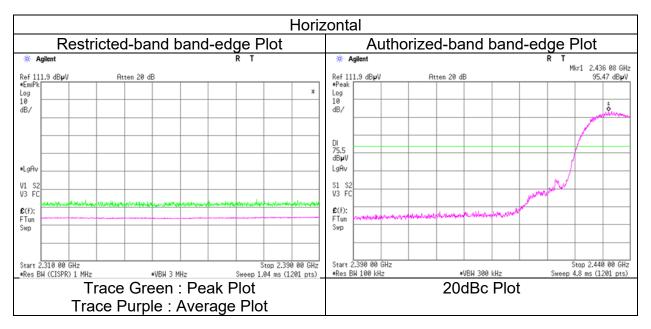
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

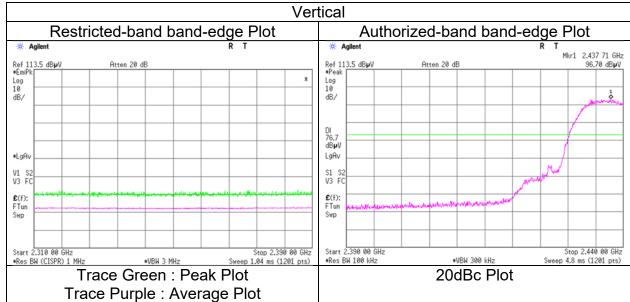
^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 15398805H-A Page 26 of 40

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Ise EMC Lab. No.2


Date


August 29, 2024 23 deg. C / 62 % RH

Temperature / Humidity Engineer

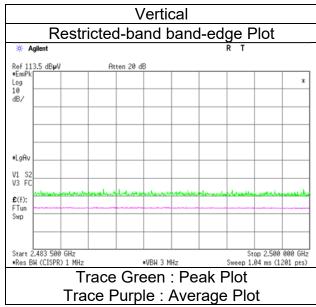
23 deg. C / 62 % RF Hiroki Numata (1 GHz to 10 GHz)

Mode Tx 11b 2437 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15398805H-A Page 27 of 40


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.2 August 29, 2024 23 deg. C / 62 % RH Hiroki Numata (1 GHz to 10 GHz) Tx 11b 2437 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15398805H-A Page 28 of 40

Radiated Spurious Emission

Test place

Ise EMC Lab.

Semi Anechoic Chamber

No.2 Date

Temperature / Humidity Engineer

August 29, 2024 23 deg. C / 62 % RH Hiroki Numata

(1 GHz to 10 GHz)

No.2

September 1, 2024 22 deg. C / 71 % RH

Tetsuro Yoshida (Above 10 GHz)

No.3

September 2, 2024 22 deg. C / 74 % RH Tetsuro Yoshida (Below 1 GHz)

Mode

Tx 11n-20 2437 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	65.9	31.2	-	6.8	7.5	32.2	-	13.3	-	40.0	-	26.7	-	
Hori.	200.0	37.6	-	16.6	8.9	32.1	-	31.0	-	43.5	-	12.5	-	
Hori.	400.0	40.4	-	15.6	10.3	32.0	-	34.4	-	46.0	-	11.6	-	
Hori.	438.7	30.0	-	16.2	10.6	32.0	-	24.7	-	46.0	-	21.3	-	
Hori.	891.0	31.4	-	22.0	12.9	31.0	-	35.2	-	46.0	-	10.8	-	
Hori.	1000.0	33.5	-	22.3	13.4	30.4	-	38.8	-	53.9	-	15.1	-	
Hori.	2390.0	44.9	35.5	27.7	4.5	32.2	0.6	44.8	36.0	73.9	53.9	29.1	17.9	*1)
Hori.	2483.5	43.4	35.1	27.5	4.5	32.2	0.6	43.2	35.5	73.9	53.9	30.7	18.4	*1)
Hori.	4874.0	40.1	32.8	31.6	6.6	31.2	-	47.2	39.8	73.9	53.9	26.7	14.1	Floor noise
Hori.	7311.0	41.3	34.4	35.5	7.7	32.0	-	52.5	45.6	73.9	53.9	21.4	8.3	Floor noise
Hori.	9748.0	41.6	34.4	36.0	8.3	32.7	-	53.1	46.0	73.9	53.9	20.8	8.0	Floor noise
Vert.	66.0	34.8	-	6.8	7.5	32.2	-	16.9	-	40.0	-	23.2	-	
Vert.	200.0	36.4	-	16.6	8.9	32.1	-	29.8	-	43.5	-	13.7	-	
Vert.	400.0	42.2	-	15.6	10.3	32.0	-	36.2	-	46.0	-	9.8	-	
Vert.	438.7	34.7	-	16.2	10.6	32.0	-	29.4	-	46.0	-	16.6	-	
Vert.	891.0	22.3	-	22.0	12.9	31.0	-	26.1	-	46.0	-	19.9	-	
Vert.	1000.0	32.1	-	22.3	13.4	30.4	-	37.4	-	53.9	-	16.5	-	
Vert.	2390.0	44.9	35.8	27.7	4.5	32.2	0.6	44.8	36.2	73.9	53.9	29.1	17.7	,
Vert.	2483.5	43.8	36.2	27.5	4.5	32.2	0.6	43.7	36.6	73.9	53.9	30.2	17.3	,
Vert.	4874.0	41.0	32.4	31.6	6.6	31.2	-	48.0	39.5	73.9	53.9	25.9	_	Floor noise
Vert.	7311.0	41.6	33.8	35.5	7.7	32.0	-	52.8	45.0	73.9	53.9	21.1		Floor noise
Vert.	9748.0	41.9	33.9	36.0	8.3	32.7	-	53.5	45.5	73.9	53.9	20.4	8.4	Floor noise

[|] vent | 97/45.0 | 41.9 | 33.9 | 36.0 | 8.3 | 32.7 | - | 53.5 | 45.5 | 7 | Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) | Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2437.0	89.8	27.6	4.5	32.2	89.6	-	-	Carrier
Hori.	2400.0	37.0	27.6	4.5	32.2	36.9	69.6	32.8	
Vert.	2437.0	93.0	27.6	4.5	32.2	92.8	-	-	Carrier
Vert.	2400.0	39.3	27.6	4.5	32.2	39.2	72.8	33.6	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

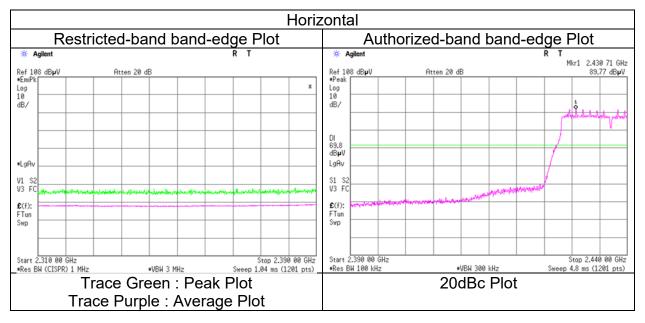
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

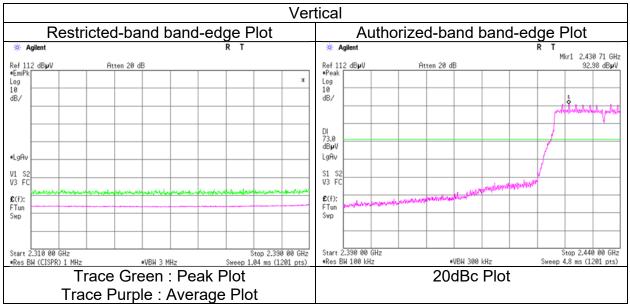
^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 15398805H-A Page 29 of 40

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber


Date


Temperature / Humidity 23 deg. C / 62 % RH Engineer Hiroki Numata (1 GHz to 10 GHz) Tx 11n-20 2437 MHz Mode

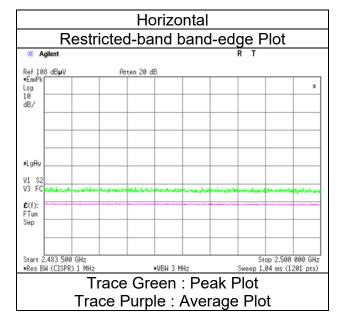
Ise EMC Lab.

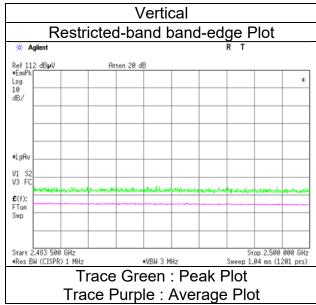
August 29, 2024

No.2

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.


Test Report No. 15398805H-A Page 30 of 40


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

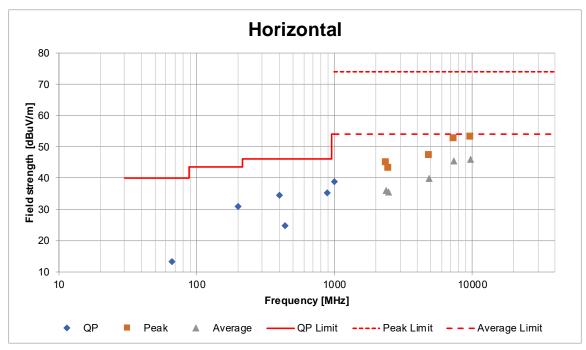
Mode

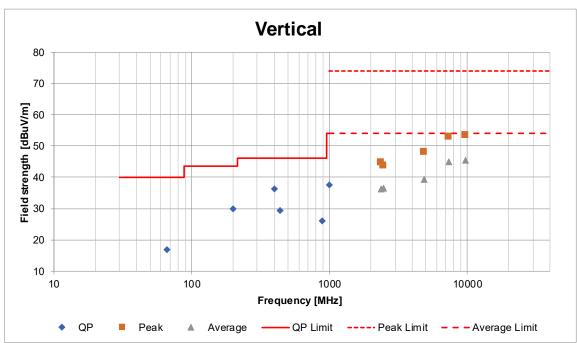
Ise EMC Lab. No.2 August 29, 2024 23 deg. C / 62 % RH Hiroki Numata (1 GHz to 10 GHz) Tx 11n-20 2437 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15398805H-A Page 31 of 40

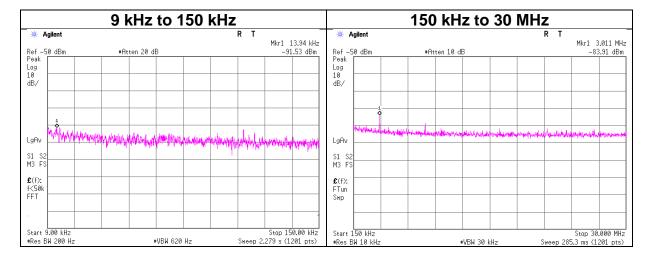

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)


Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Temperature / Humidity 23 deg.
Engineer Hiroki N
(1 GHz
Mode Tx 11n-

Ise EMC Lab. No.2 August 29, 2024 23 deg. C / 62 % RH Hiroki Numata (1 GHz to 10 GHz) Tx 11n-20 2437 MHz

No.2 September 1, 2024 22 deg. C / 71 % RH Tetsuro Yoshida (Above 10 GHz) No.3 September 2, 2024 22 deg. C / 74 % RH Tetsuro Yoshida (Below 1 GHz)


^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15398805H-A Page 32 of 40

Conducted Spurious Emission

Test place Date Temperature / Humidity

Ise EMC Lab. No.7 Shielded Room September 10, 2024 23 deg. C / 65 % RH Hiroki Numata Engineer Mode Tx 11b 2437 MHz

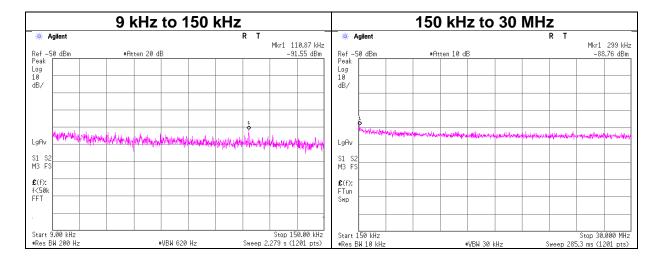
Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin
		Loss	Loss	Gain*	(Number			bounce	(field strength)		
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]
13.94	-91.5	6.52	9.7	2.0	1	-73.3	300	6.0	-12.1	44.7	56.8
3011.00	-83.9	6.52	9.7	2.0	1	-65.7	30	6.0	15.5	29.5	14.0

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.


Test Report No. 15398805H-A Page 33 of 40

Conducted Spurious Emission

Test place
Date
Temperature / Humidity
Engineer

Mode

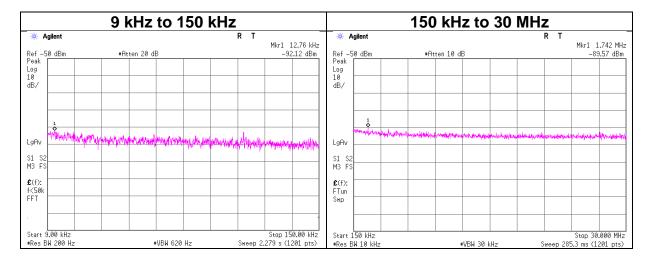
Ise EMC Lab. No.7 Shielded Room September 10, 2024 23 deg. C / 65 % RH Hiroki Numata Tx 11g 2437 MHz

ĺ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)		
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]
ſ	110.87	-91.6	6.52	9.7	2.0	1	-73.4	300	6.0	-12.1	26.7	38.8
	299.00	-88.8	6.52	9.7	2.0	1	-70.6	300	6.0	-9.3	18.0	27.3

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15398805H-A Page 34 of 40

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room Date September 10, 2024
Temperature / Humidity 23 deg. C / 65 % RH
Engineer Hiroki Numata

Engineer Hiroki Numata
Mode Tx 11n-20 2437 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin
		Loss	Loss	Gain*	(Number			bounce	(field strength)		
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]
12.76	-92.1	6.52	9.7	2.0	1	-73.9	300	6.0	-12.7	45.4	58.1
1742.00	-89.6	6.52	9.7	2.0	1	-71.4	30	6.0	9.9	29.5	19.7

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15398805H-A Page 35 of 40

Power Density

Test place Ise EMC Lab. No.7 Shielded Room Date September 10, 2024
Temperature / Humidity 23 deg. C / 65 % RH

Engineer Hiroki Numata

Mode

11b

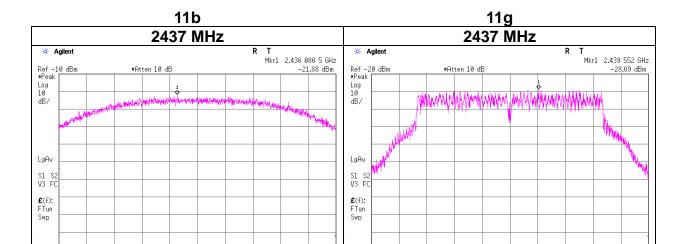
116						
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2437	-21.88	2.29	9.73	-9.86	8.00	17.86

Reading Cable Margin Freq. Atten. Result Limit Loss Loss [dBm / 3 kHz] [dB] [dB] [dBm / 3 kHz] [dBm / 3 kHz] [dB] [MHz] 2.29 9.73 8.00 2437 -28.69 -16.67 24.67

11n-20

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2437	-27.40	2.29	9.73	-15.38	8.00	23.38

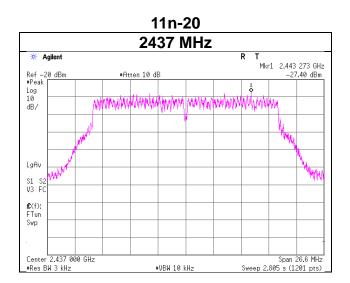
Sample Calculation:


Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Test Report No. 15398805H-A Page 36 of 40

#VBW 10 kHz

Span 24.7 MHz Sweep 2.604 s (1201 pts)


Power Density

Span 12.6 MHz Sweep 1.329 s (1201 pts)

#VBW 10 kHz

Center 2.437 000 0 GHz #Res BW 3 kHz Center 2.437 000 GHz #Res BW 3 kHz

Test Report No. 15398805H-A Page 37 of 40

APPENDIX 2: Test Instruments

Test Equipment

Test	Equipm						
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE		High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
RE	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	1915	03/15/2024	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	254	10/17/2023	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/19/2024	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/06/2024	12
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/30/2024	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	06/05/2024	12
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/06/2024	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	242170	Logperiodic Antenna	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	00728	11/29/2023	12
RE	244707	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202102	01/25/2024	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	245788	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	690	03/06/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12
AT	141328	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28636/2	04/01/2024	12
ΑT	141334	Attenuator(10dB)	Suhner	6810.19.A	-	12/12/2023	12
ΑT	141360	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	070900532	01/31/2024	12
ΑT	141414	Microwave Cable	Junkosha	MWX221	1207S407	07/06/2024	12
ΑT	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/22/2024	12
AT	141420	Attenuator	Weinschel Associates	WA56-10	56100307	05/22/2024	12
ΑT	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	070900530	01/31/2024	12
ΑT	141572	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	3401	01/10/2024	12
ΑT	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	08/22/2024	12
AT	141840	Power sensor	Anritsu Corporation	MA2411B	011737	08/22/2024	12
ΑT	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/29/2023	12
ΑT	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/30/2024	12
AT	244711	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202105	01/25/2024	12

Test Report No. 15398805H-A Page 38 of 40

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission