

**CERTIFICATION
OF A
SCANNING RECEIVER
UNDER CFR TITLE 47, PART 15.109**

GRANTEE: Taiyo Musen Co., Ltd.

FCC ID: BAA9JKTD-L1620A

October 14, 1999

Prepared By:

**Spectrum Technology, Inc.
209 Dayton Street
Edmonds, WA 98020
425 771-4482**

APPLICATION FOR CERTIFICATION

TABLE OF CONTENTS

Field Strength of Radiated Emissions Discussion Part 15.109(a)	1 - 2
Antenna Factors and Sample Calculations	3 - 6
Test Equipment	7

TEST: FIELD STRENGTH OF RADIATED EMISSIONS

Grantee: Taiyo Musen Co., Ltd.

FCC ID: BAA9JKTD-L1620A

Setup:

The equipment under test (EUT) was configured and operated in accordance with the applicable provisions of ANSI C63.4-1992, Section 6, 12. Measurements were made in accordance with applicable paragraphs of Section 8.2.2 and 8.2.3, Section 12.1.1.1 Appendix D, Section 12.1.4 and Appendix H3 and H4 where applicable.

The EUT was placed on a 1 by 1.5 meter table located 40 cm above a 2-meter diameter non-metallic turntable that sits 40 cm above the 15 X 30 meter ground plane at Spectrum's Open Area Test Site. The bi-conical or log-periodic antenna was mounted on a tower spaced at a three meters distance, and arranged for adjustment in height (1-4 meters) and vertical/horizontal polarization to maximize the emissions levels when combined with turntable rotation of the EUT. The dual ridged guide antenna was mounted on a tripod at one-meter height and adjusted for vertical or horizontal antenna orientation. A HP 8562A spectrum analyzer with a HP 8447F, Option H64 amplifier and a HP 83006A pre-amplifier were used for the peak measuring instrumentation.

Discussion:

No modifications were required prior to the final radiated emissions measurements made September 23, 1999 and reported herein.

The EUT is a synthesized triple super-hetrodyne receiver used for automatic direction finding. The receiver operates in the 110 – 170 MHz spectrum. The receiver is designed for installation in a marine vessel and used to receive incoming signals and display direction or relative bearing to the source with respect to the bow of the ship.

The receiver has four modes of operation. Measurements were made in all four modes. In Manual Mode and Spot Mode the receiver was set to operate at 112.00, 140.00, and 168.00 MHz for a low mid and high channel covering the 60 MHz wide band of the receiver.

In Manual Mode, the frequency desired is entered on the front panel, in Spot Mode, the frequency is retrieved from 1 of 30 programmable memory selections but both remain on a single frequency. In Search Mode, the receiver scans a range limited to +/- 500 kHz of the center frequency. The above three frequencies were also used while testing Search Mode of operation. In the Scanning Mode of operation, the receiver can be

programmed to scan 3 groups of up to 10 channels per group. During testing we scanned programmed channels spaced across the 60 MHz band of operation.

Preliminary measurements were made as described in Section 8.3.11 and 13.1.4.1 with the receiver operating as described. During preliminary measurements only a few emissions were detected. With the antenna immediately adjacent to the EUT we observed very low levels of emissions from 41.73 MHz up to 1.650 GHz.

None of the low-level emissions observed in close were measurable at 3 meters.

The EUT configuration is detailed in the photographs included with this report.

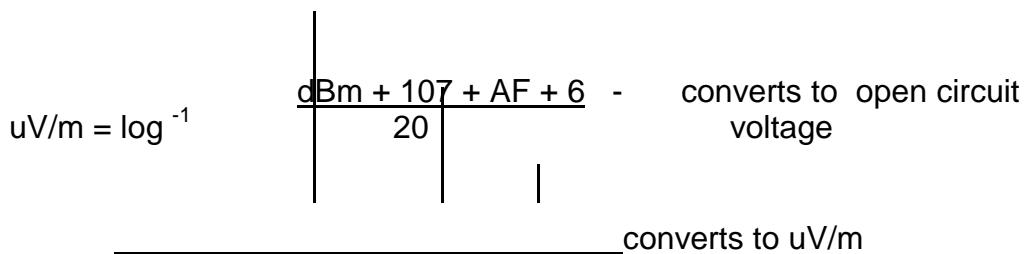
The final set of measurements was made on September 23, 1999 as specified in Section 8.3.1.2 and 13.1.4.2 were made as specified in Section 13.1.1. The receiver position is detailed in the photographs of the EUT setup submitted herein.

The EUT was 14 VDC powered with an Astron VS-35-M power supply during all of the measurements. RBW and VBW of 100 kHz were used for measurements below 1 GHz. Above 1 GHz peak measurements were made with a RBW and VBW of 1 MHz. We endeavored to maximize levels of the emissions with EUT rotation and adjustment of antenna height.

Measurements were made over the frequency range of 30 - 2000 MHz with **no radiated emissions measurable at three meters**. A HP pre-amplifier was used during the course of these measurements.

No receiver antenna conducted emissions measurements were made. The receiver easily complied with the radiated requirements with the antenna connected.

Conclusion:


The Taiyo Musen Co., Ltd. FCC ID: BAA9JKTD-L1620A, Automatic Direction Finder Receiver when operated and measured as discussed above, meets the receiver radiated spurious emissions requirements under Title 47, CFR Part 15.109(a). This receiver is not subject to the transition provisions of Part 15.37.

Antenna Factor and Field Strength Formula

level as measured with Spectrum Analyzer

converts to dBuV @ 50 ohms

converts to dBuV/m

IF FREQ => 20	AND	FREQ <= 26.5	THEN ANTF = 12.5
IF FREQ => 26.6	AND	FREQ <= 28	THEN ANTF = 13.5
IF FREQ => 28.1	AND	FREQ <= 33	THEN ANTF = 14.5
IF FREQ => 33.1	AND	FREQ <= 35	THEN ANTF = 13.5
IF FREQ => 35.1	AND	FREQ <= 45	THEN ANTF = 13
IF FREQ => 45.	AND	FREQ <= 57	THEN ANTF = 12
IF FREQ => 57.1	AND	FREQ <= 63	THEN ANTF = 11
IF FREQ => 63.1	AND	FREQ <= 66	THEN ANTF = 10
IF FREQ => 66.1	AND	FREQ <= 75	THEN ANTF = 9
IF FREQ => 75.1	AND	FREQ <= 83	THEN ANTF = 8
IF FREQ => 83.1	AND	FREQ <= 86	THEN ANTF = 9
IF FREQ => 86.1	AND	FREQ <= 90	THEN ANTF = 10
IF FREQ => 90.1	AND	FREQ <= 95	THEN ANTF = 11
IF FREQ => 95.1	AND	FREQ <= 97.5	THEN ANTF = 12.5
IF FREQ => 97.6	AND	FREQ <= 101	THEN ANTF = 13.5
IF FREQ => 101.1	AND	FREQ <= 105	THEN ANTF = 14.5
IF FREQ => 105.1	AND	FREQ <= 108	THEN ANTF = 15.5
IF FREQ => 108.1	AND	FREQ <= 115	THEN ANTF = 16.5
IF FREQ => 115.1	AND	FREQ <= 123	THEN ANTF = 15.5
IF FREQ => 123.1	AND	FREQ <= 148	THEN ANTF = 14.5
IF FREQ => 148.1	AND	FREQ <= 151.5	THEN ANTF = 15.5
IF FREQ => 151.6	AND	FREQ <= 167.5	THEN ANTF = 17
IF FREQ => 167.6	AND	FREQ <= 182.5	THEN ANTF = 18
IF FREQ => 182.6	AND	FREQ <= 200	THEN ANTF = 19
IF FREQ => 200.1	AND	FREQ <= 202	THEN ANTF = 14.7
IF FREQ => 202	AND	FREQ <= 205	THEN ANTF = 14.5
IF FREQ => 205	AND	FREQ <= 215	THEN ANTF = 14.6
IF FREQ => 215	AND	FREQ <= 230	THEN ANTF = 14.55
IF FREQ => 230	AND	FREQ <= 235	THEN ANTF = 14.5
IF FREQ => 235	AND	FREQ <= 240	THEN ANTF = 14.8
IF FREQ => 240	AND	FREQ <= 242.5	THEN ANTF = 14.9

Page 3

IF FREQ => 242.5	AND	FREQ <= 245	THEN ANTF = 15.1
IF FREQ => 245	AND	FREQ <= 247.5	THEN ANTF = 15.5
IF FREQ => 247.5	AND	FREQ <= 250	THEN ANTF = 15.7
IF FREQ => 250	AND	FREQ <= 252	THEN ANTF = 15.9
IF FREQ => 252	AND	FREQ <= 254	THEN ANTF = 16
IF FREQ => 254	AND	FREQ <= 256	THEN ANTF = 16.1
IF FREQ => 256	AND	FREQ <= 258	THEN ANTF = 16.2
IF FREQ => 258	AND	FREQ <= 260	THEN ANTF = 16.3
IF FREQ => 260	AND	FREQ <= 263.5	THEN ANTF = 16.4

IF FREQ => 263.5	AND	FREQ <= 265	THEN ANTF = 16.4
IF FREQ => 265	AND	FREQ <= 267.5	THEN ANTF = 16.6
IF FREQ => 267.5	AND	FREQ <= 271	THEN ANTF = 16.7
IF FREQ => 271	AND	FREQ <= 274	THEN ANTF = 16.8
IF FREQ => 274	AND	FREQ <= 276	THEN ANTF = 16.9
IF FREQ => 276	AND	FREQ <= 278	THEN ANTF = 17
IF FREQ => 278	AND	FREQ <= 280	THEN ANTF = 17.1
IF FREQ => 280	AND	FREQ <= 282	THEN ANTF = 17.3
IF FREQ => 282	AND	FREQ <= 284	THEN ANTF = 17.6
IF FREQ => 284	AND	FREQ <= 286	THEN ANTF = 18
IF FREQ => 286	AND	FREQ <= 288	THEN ANTF = 18.2
IF FREQ => 288	AND	FREQ <= 295	THEN ANTF = 18.4
IF FREQ => 290	AND	FREQ <= 295	THEN ANTF = 15.8
IF FREQ => 295	AND	FREQ <= 305	THEN ANTF = 18.6
IF FREQ => 305	AND	FREQ <= 310	THEN ANTF = 18.4
IF FREQ => 310	AND	FREQ <= 311	THEN ANTF = 18.3
IF FREQ => 311	AND	FREQ <= 312	THEN ANTF = 18.1
IF FREQ => 312	AND	FREQ <= 313	THEN ANTF = 18
IF FREQ => 313	AND	FREQ <= 340	THEN ANTF = 17.9
IF FREQ => 340	AND	FREQ <= 343	THEN ANTF = 18.1
IF FREQ => 343	AND	FREQ <= 350	THEN ANTF = 18.2
IF FREQ => 350	AND	FREQ <= 357	THEN ANTF = 18.3
IF FREQ => 357	AND	FREQ <= 360	THEN ANTF = 18.5
IF FREQ => 360	AND	FREQ <= 365	THEN ANTF = 18.6
IF FREQ => 365	AND	FREQ <= 375	THEN ANTF = 18.7
IF FREQ => 375	AND	FREQ <= 378	THEN ANTF = 19
IF FREQ => 378	AND	FREQ <= 381	THEN ANTF = 19.1
IF FREQ => 381	AND	FREQ <= 383	THEN ANTF = 19.2
IF FREQ => 383	AND	FREQ <= 385	THEN ANTF = 19.3
IF FREQ => 385	AND	FREQ <= 387.5	THEN ANTF = 19.4
IF FREQ => 387.5	AND	FREQ <= 390	THEN ANTF = 19.5
IF FREQ => 390	AND	FREQ <= 392	THEN ANTF = 19.7
IF FREQ => 392	AND	FREQ <= 394	THEN ANTF = 18.8
IF FREQ => 394	AND	FREQ <= 396	THEN ANTF = 19.9
IF FREQ => 396	AND	FREQ <= 398	THEN ANTF = 20
IF FREQ => 398	AND	FREQ <= 402	THEN ANTF = 20.1
IF FREQ => 402	AND	FREQ <= 405	THEN ANTF = 20.2
IF FREQ => 405	AND	FREQ <= 410	THEN ANTF = 20.3
IF FREQ => 410	AND	FREQ <= 415	THEN ANTF = 20.4
IF FREQ => 415	AND	FREQ <= 420	THEN ANTF = 20.6
IF FREQ => 420	AND	FREQ <= 425	THEN ANTF = 20.8
IF FREQ => 425	AND	FREQ <= 430	THEN ANTF = 21
IF FREQ => 430	AND	FREQ <= 435	THEN ANTF = 21.2
IF FREQ => 435	AND	FREQ <= 440	THEN ANTF = 21.3
IF FREQ => 440	AND	FREQ <= 445	THEN ANTF = 21.4
IF FREQ => 445	AND	FREQ <= 450	THEN ANTF = 21.5
IF FREQ => 450	AND	FREQ <= 455	THEN ANTF = 21.6
IF FREQ => 455	AND	FREQ <= 460	THEN ANTF = 21.8
IF FREQ => 460	AND	FREQ <= 465	THEN ANTF = 21.9
IF FREQ => 465	AND	FREQ <= 470	THEN ANTF = 22
IF FREQ => 470	AND	FREQ <= 472.5	THEN ANTF = 22.1
IF FREQ => 472.5	AND	FREQ <= 475	THEN ANTF = 22.2
IF FREQ => 475	AND	FREQ <= 477	THEN ANTF = 22.4
IF FREQ => 477	AND	FREQ <= 478	THEN ANTF = 22.5
IF FREQ => 478	AND	FREQ <= 481	THEN ANTF = 22.6

Page 4

IF FREQ => 481	AND	FREQ <= 482.5	THEN ANTF = 22.7
IF FREQ => 482.5	AND	FREQ <= 485	THEN ANTF = 22.8
IF FREQ => 485	AND	FREQ <= 488	THEN ANTF = 22.9
IF FREQ => 488	AND	FREQ <= 515	THEN ANTF = 23.1
IF FREQ => 515	AND	FREQ <= 540	THEN ANTF = 23.3
IF FREQ => 540	AND	FREQ <= 560	THEN ANTF = 23.6
IF FREQ => 560	AND	FREQ <= 570	THEN ANTF = 23.7
IF FREQ => 570	AND	FREQ <= 580	THEN ANTF = 23.9
IF FREQ => 580	AND	FREQ <= 590	THEN ANTF = 24
IF FREQ => 590	AND	FREQ <= 610	THEN ANTF = 24.2
IF FREQ => 610	AND	FREQ <= 615	THEN ANTF = 24.4
IF FREQ => 615	AND	FREQ <= 620	THEN ANTF = 24.5

IF FREQ => 620	AND	FREQ =< 625	THEN ANTF = 24.6
IF FREQ => 625	AND	FREQ =< 630	THEN ANTF = 24.8
IF FREQ => 630	AND	FREQ =< 635	THEN ANTF = 24.9
IF FREQ => 635	AND	FREQ =< 640	THEN ANTF = 25
IF FREQ => 640	AND	FREQ =< 645	THEN ANTF = 25.1
IF FREQ => 645	AND	FREQ =< 647.5	THEN ANTF = 25.3
IF FREQ => 647.5	AND	FREQ =< 650	THEN ANTF = 25.4
IF FREQ => 650	AND	FREQ =< 652.5	THEN ANTF = 25.6
IF FREQ => 652.5	AND	FREQ =< 655	THEN ANTF = 25.7
IF FREQ => 655	AND	FREQ =< 660	THEN ANTF = 25.8
IF FREQ => 660	AND	FREQ =< 665	THEN ANTF = 26.1
IF FREQ => 665	AND	FREQ =< 670	THEN ANTF = 26.3
IF FREQ => 670	AND	FREQ =< 680	THEN ANTF = 26.6
IF FREQ => 680	AND	FREQ =< 690	THEN ANTF = 26.7
IF FREQ => 690	AND	FREQ =< 720	THEN ANTF = 26.9
IF FREQ => 720	AND	FREQ =< 760	THEN ANTF = 26.8
IF FREQ => 760	AND	FREQ =< 800	THEN ANTF = 27
IF FREQ => 800	AND	FREQ =< 802.5	THEN ANTF = 27.3
IF FREQ => 802.5	AND	FREQ =< 805	THEN ANTF = 27.5
IF FREQ => 805	AND	FREQ =< 807.5	THEN ANTF = 27.6
IF FREQ => 807.5	AND	FREQ =< 810	THEN ANTF = 27.7
IF FREQ => 810	AND	FREQ =< 815	THEN ANTF = 27.8
IF FREQ => 815	AND	FREQ =< 820	THEN ANTF = 27.9
IF FREQ => 820	AND	FREQ =< 840	THEN ANTF = 28.2
IF FREQ => 840	AND	FREQ =< 860	THEN ANTF = 28.4
IF FREQ => 860	AND	FREQ =< 870	THEN ANTF = 28.8
IF FREQ => 870	AND	FREQ =< 880	THEN ANTF = 29.3
IF FREQ => 880	AND	FREQ =< 890	THEN ANTF = 29.4
IF FREQ => 890	AND	FREQ =< 910	THEN ANTF = 29.6
IF FREQ => 910	AND	FREQ =< 920	THEN ANTF = 29.7
IF FREQ => 920	AND	FREQ =< 930	THEN ANTF = 29.9
IF FREQ => 930	AND	FREQ =< 940	THEN ANTF = 30
IF FREQ => 940	AND	FREQ =< 960	THEN ANTF = 30.2
IF FREQ => 960	AND	FREQ =< 970	THEN ANTF = 30.6
IF FREQ => 970	AND	FREQ =< 975	THEN ANTF = 30.8
IF FREQ => 975	AND	FREQ =< 980	THEN ANTF = 31
IF FREQ => 980	AND	FREQ =< 985	THEN ANTF = 31.1
IF FREQ => 985	AND	FREQ =< 990	THEN ANTF = 31.3
IF FREQ => 990	AND	FREQ =< 1000	THEN ANTF = 31.4

Page 5

Serial Number 6225	ELECTO-METRICS GAIN AND ANTENNA FACTORS MODEL RGA-60	1 METER CALIBRATION
--------------------------	--	---------------------------

FREQUENCY MHz	14 FOOT CABLE LOSS FSJI-50A	ANTENNA FACTOR
------------------	-----------------------------------	-------------------

1000	.84	23.21
1500	1.05	25.70
2000	1.22	27.15
2500	1.38	28.37
3000	1.53	29.93
3500	1.67	31.01
4000	1.80	32.45
4500	1.92	31.98
5000	2.04	33.33
5500	2.15	34.24
6000	2.27	34.48
6500	2.37	35.19
7000	2.48	36.05
7500	2.58	36.77
8000	2.68	37.33
8500	2.78	37.38
9000	2.87	37.14
9500	2.96	37.55
10000	3.06	38.33

Page 6

**TEST EQUIPMENT LIST A
SPECTRUM TECHNOLOGY, INC.**

<u>Equipment</u>	<u>Manufacturer</u>	<u>Serial Number</u>	<u>Cal Date/Due Date</u>
Spectrum Analyzer	Hewlett-Packard 8562A	08562-60062	11/04/98 11/04/99
Amplifier 9 kHz-1300 MHz	Hewlett-Packard 8447F OPT H64	2727A02208	11/04/98 11/04/99
RF Signal Gen.	Fluke 6071A	2915016	5/14/99 4/14/00
Service Monitor	IFR FM/AM 500A	4103	---

Oscilloscope	Kikusui C055060	6132295	---	
Power Supply	Astron VS35	8601266	---	
Voltmeter	Fluke 8020A	N2420658	---	
Multimeter	Fluke 25	3710310	---	
Wattmeter	Bird 43	56227	---	
RF Termination	Bird 8135	10004	---	
Dual Phase LISN 50 ohm/50 uH	STI per MP-4	02	1/8/99	1/9/00
Dual Phase LISN 50 ohm/50 uH	Compliance Design	8012-50R-24-BNC	1/8/99	1/9/00
Audio Generator	Hewlett-Packard 205-AG	8689	---	
Thermometer	Fluke 52	3965185	---	
Test Line	Simulator, Teltone TLS-2	none	---	
Turn Table, RC	EMCO 1060-2M	8912-1415	---	
Antenna Mast, RC	Compliance Design, Inc.	M100	---	
Antennas:				
Dipole Set	EMCO Model: 3121C	1335	reference only	
Dipole Set	EMCO Model: 3121C	1336	reference only	
Bi-Conical	EMCO 3104	3763	reference only	
Bi-Conical	EMCO 3104C	9401-4635	01/24/99	1/24/00
Log-Periodic	EMCO 3146	1754	06/10/99	6/10/00
BiConiLog	EMCO 3141	1125	10/10/98	04/28/00
Active Loop	EMCO 6502	9107-2645	reference only	