

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					23780	709.0	16.5
			50	0	23790	710.0	16.6
					23800	711.0	16.5
					23780	709.0	16.2
			25	12	23790	710.0	16.7
17	16QAM	10 MHz			23800	711.0	16.5
1/	IOQAIVI	10 MINZ			23780	709.0	17.6
			1	0	23790	710.0	17.5
					23800	711.0	17.1
					23780	709.0	17.1
			1	24	23790	710.0	17.1
					23800	711.0	17.7
			25		27685	2307.5	15.1
				0	27710	2310.0	15.1
					27735	2312.5	15.4
			12	6	27685	2307.5	15.5
					27710	2310.0	15.3
		5 MHz			27735	2312.5	15.1
		5 IVITZ			27685	2307.5	16.4
20	ODCK		1	0	27710	2310.0	16.2
30	QPSK				27735	2312.5	16.5
					27685	2307.5	16.1
			1	24	27710	2310.0	16.1
					27735	2312.5	16.6
			50	0	27710	2310.0	15.3
		40.8411	25	12	27710	2310.0	15.5
		10 MHz	1	0	27710	2310.0	16.3
			1	24	27710	2310.0	16.3

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					27685	2307.5	14.3
			25	0	27710	2310.0	14.4
					27735	2312.5	14.4
					27685	2307.5	14.1
			12	6	27710	2310.0	14.6
	10000	5 MHz			27735	2312.5	14.3
			1	0	27685	2307.5	15.1
30					27710	2310.0	15.3
30	16QAM				27735	2312.5	15.4
					27685	2307.5	15.1
			1	24	27710	2310.0	15.6
					27735	2312.5	15.0
			50	0	27710	2310.0	14.2
		10 MHz	25	12	27710	2310.0	14.6
			1	0	27710	2310.0	15.4
			1	24	27710	2310.0	15.6

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					131979	1710.7	16.0
			6	0	132322	1745.0	16.2
					132665	1779.3	16.3
					131979	1710.7	16.4
			3	1	132322	1745.0	16.4
		4 4 5 4 1 -			132665	1779.3	16.4
		1.4 MHz			131979	1710.7	17.6
			1	0	132322	1745.0	17.1
					132665	1779.3	17.4
					131979	1710.7	17.2
			1	5	132322	1745.0	17.1
					132665	1779.3	17.3
					131987	1711.5	16.5
			15	0	132322	1745.0	16.5
		3 MHz			132657	1778.5	16.2
					131987	1711.5	16.2
			8	3	132322	1745.0	16.1
66	QPSK				132657	1778.5	16.2
00	QF3K		1	0	131987	1711.5	17.4
					132322	1745.0	17.1
					132657	1778.5	17.0
					131987	1711.5	17.4
			1	14	132322	1745.0	17.3
					132657	1778.5	17.5
					131997	1712.5	16.3
			25	0	132322	1745.0	16.2
					132647	1777.5	16.3
					131997	1712.5	16.1
			12	6	132322	1745.0	16.5
		5 MHz			132647	1777.5	16.5
		JIVIIIZ			131997	1712.5	17.2
			1	0	132322	1745.0	17.0
					132647	1777.5	17.5
					131997	1712.5	17.7
			1	24	132322	1745.0	17.1
					132647	1777.5	17.5

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					132022	1715.0	16.6
			50	0	132322	1745.0	16.1
					132622	1775.0	16.5
					132022	1715.0	16.3
			25	12	132322	1745.0	16.4
		40.8411			132622	1775.0	16.5
		10 MHz			132022	1715.0	17.3
			1	0	132322	1745.0	17.4
					132622	1775.0	17.5
					132022	1715.0	17.2
			1	24	132322	1745.0	17.1
					132622	1775.0	17.5
					132047	1717.5	16.3
			75	0	132322	1745.0	16.4
		15 MHz			132597	1772.5	16.2
			36		132047	1717.5	16.2
				19	132322	1745.0	16.7
66	QPSK				132597	1772.5	16.4
00	QP3N		1		132047	1717.5	17.2
				0	132322	1745.0	17.7
					132597	1772.5	17.5
					132047	1717.5	17.4
			1	74	132322	1745.0	17.5
					132597	1772.5	17.4
					132072	1720.0	16.2
			100	0	132322	1745.0	16.5
					132572	1770.0	16.3
					132072	1720.0	16.7
			50	25	132322	1745.0	16.5
		20 MHz			132572	1770.0	16.6
		20 101112			132072	1720.0	17.4
			1	49	132322	1745.0	17.6
					132572	1770.0	17.6
					132072	1720.0	17.1
			1	99	132322	1745.0	17.0
					132572	1770.0	17.5

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
						Troquency	
					131979	1710.7	15.1
			6	0	132322	1745.0	15.4
					132665	1779.3	15.5
					131979	1710.7	15.1
			3	1	132322	1745.0	15.3
					132665	1779.3	15.1
		1.4 MHz			131979	1710.7	16.2
			1	0	132322	1745.0	16.2
					132665	1779.3	16.2
					131979	1710.7	16.4
			1	5	132322	1745.0	16.5
					132665	1779.3	16.2
					131987	1711.5	15.4
			15	0	132322	1745.0	15.1
		3 MHz			132657	1778.5	15.1
			8		131987	1711.5	15.3
				3	132322	1745.0	15.6
	160484				132657	1778.5	15.6
66	16QAM		1		131987	1711.5	16.6
				0	132322	1745.0	16.1
					132657	1778.5	16.7
					131987	1711.5	16.5
			1	14	132322	1745.0	16.3
					132657	1778.5	16.1
					131997	1712.5	15.1
			25	0	132322	1745.0	15.3
					132647	1777.5	15.6
					131997	1712.5	15.7
			12	6	132322	1745.0	15.6
		5 N/H2			132647	1777.5	15.1
		5 MHz			131997	1712.5	16.6
			1	0	132322	1745.0	16.7
					132647	1777.5	16.2
					131997	1712.5	16.3
			1	24	132322	1745.0	16.3
					132647	1777.5	16.1

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
				0	132022	1715.0	15.6
			50		132322	1745.0	15.0
					132622	1775.0	15.4
					132022	1715.0	15.5
			25	12	132322	1745.0	15.6
		10 1411-			132622	1775.0	15.2
		10 MHz			132022	1715.0	16.5
			1	0	132322	1745.0	16.7
					132622	1775.0	16.5
					132022	1715.0	16.6
			1	24	132322	1745.0	16.4
					132622	1775.0	16.3
					132047	1717.5	15.3
			75	0	132322	1745.0	15.2
					132597	1772.5	15.5
					132047	1717.5	15.1
			36	19	132322	1745.0	15.4
66	16QAM	15 MHz			132597	1772.5	15.0
00	IOQAIVI		1	0	132047	1717.5	16.6
					132322	1745.0	16.1
					132597	1772.5	16.0
					132047	1717.5	16.6
			1	74	132322	1745.0	16.3
					132597	1772.5	16.1
					132072	1720.0	15.3
			100	0	132322	1745.0	15.5
					132572	1770.0	15.2
					132072	1720.0	15.2
			50	25	132322	1745.0	15.1
		20 MHz			132572	1770.0	15.1
		ZUIVITZ			132072	1720.0	16.5
			1	0	132322	1745.0	16.3
					132572	1770.0	16.6
					132072	1720.0	16.5
			1	99	132322	1745.0	16.6
					132572	1770.0	16.1

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37775	2572.5	17.2
			25	0	38000	2595.0	17.0
					38225	2617.5	16.6
		5 MHz			37775	2572.5	17.1
	ODEK		12	6	38000	2595.0	16.7
38					38225	2617.5	17.2
30	QPSK			0	37775	2572.5	17.9
					38000	2595.0	17.6
					38225	2617.5	18.1
					37775	2572.5	18.1
			1	24	38000	2595.0	18.1
					38225	2617.5	17.7

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37800	2575.0	17.1
			50	0	38000	2595.0	17.0
					38200	2615.0	17.0
					37800	2575.0	16.6
			25	12	38000	2595.0	16.8
		40 8411-			38200	2615.0	16.6
		10 MHz			37800	2575.0	18.1
			1	0	38000	2595.0	17.7
					38200	2615.0	17.7
					37800	2575.0	17.6
			1	24	38000	2595.0	18.0
					38200	2615.0	17.6
					37825	2577.5	16.5
			75	0	38000	2595.0	17.0
		15 MHz			38175	2612.5	17.0
					37825	2577.5	16.8
			36	19	38000	2595.0	16.6
38	ODCK				38175	2612.5	17.1
36	QPSK		1	0	37825	2577.5	17.5
					38000	2595.0	18.0
					38175	2612.5	17.5
				74	37825	2577.5	17.9
			1		38000	2595.0	17.7
					38175	2612.5	17.7
					37850	2580.0	17.0
			100	0	38000	2595.0	17.0
					38150	2610.0	16.6
					37850	2580.0	16.8
			50	25	38000	2595.0	16.9
		20 1447			38150	2610.0	17.0
		20 MHz			37850	2580.0	17.6
			1	0	38000	2595.0	18.1
					38150	2610.0	17.6
					37850	2580.0	17.9
			1	99	38000	2595.0	18.0
					38150	2610.0	17.8

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37775	2572.5	15.9
			25	0	38000	2595.0	16.2
					38225	2617.5	15.7
					37775	2572.5	15.8
	160414	5 MHz	12	6	38000	2595.0	16.0
38					38225	2617.5	16.1
30	16QAM			0	37775	2572.5	16.8
					38000	2595.0	17.2
					38225	2617.5	16.6
					37775	2572.5	16.5
			1	24	38000	2595.0	16.7
					38225	2617.5	16.7

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
				0	37800	2575.0	16.0
			50		38000	2595.0	16.0
					38200	2615.0	15.8
					37800	2575.0	16.0
			25	12	38000	2595.0	15.7
		40 8411-			38200	2615.0	15.7
		10 MHz			37800	2575.0	16.8
			1	0	38000	2595.0	16.7
					38200	2615.0	16.7
					37800	2575.0	16.7
			1	24	38000	2595.0	16.7
					38200	2615.0	16.9
					37825	2577.5	16.0
			75	0	38000	2595.0	16.0
					38175	2612.5	15.8
					37825	2577.5	16.0
		15 MHz	36	19	38000	2595.0	15.6
38	160414				38175	2612.5	16.0
36	16QAM		1	0	37825	2577.5	16.5
					38000	2595.0	17.0
					38175	2612.5	16.8
				74	37825	2577.5	16.6
			1		38000	2595.0	16.7
					38175	2612.5	16.7
					37850	2580.0	16.2
			100	0	38000	2595.0	16.0
					38150	2610.0	16.0
					37850	2580.0	16.1
			50	25	38000	2595.0	16.1
		20 1447			38150	2610.0	15.5
		20 MHz			37850	2580.0	16.6
			1	0	38000	2595.0	16.9
					38150	2610.0	16.8
					37850	2580.0	16.8
			1	99	38000	2595.0	16.9
					38150	2610.0	17.1

Table 11.5.2 Test Reduction Table – LTE

		able 11.J.Z	Tool Roat	JOHOIT TUD			
Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Danuwiutii	Modulation	Allocation	Offset	Reduced
		26140					Reduced ⁷
		26365			50	0	Tested
		26590					Reduced ⁷
		26140					Reduced ¹
		26365			100	0	Reduced ¹
		26590		QPSK			Reduced ¹
		26140		QI SIX			Reduced ⁷
		26365				49	Tested
		26590			1		Reduced ⁷
		26140					Reduced ²
		26365				99	Reduced ²
		26590	20 MHz				Reduced ²
	Back	26140	202				Reduced ³
		26365			50	25	Reduced ³
		26590					Reduced ³
		26140				_	Reduced ¹
		26365			100	0	Reduced ¹
		26590		16QAM			Reduced ¹
		26140		100/101	1	0	Reduced ⁴
		26365	- - -			0	Reduced ⁴
		26590					Reduced ⁴
		26140				99	Reduced ⁴
		26365 26590				99	Reduced ⁴ Reduced ⁴
			wor bandwidths (15	MU2 10 MU2 5 MU2	2 MHz 1 4 MHz)		Reduced ⁵
Band 25		26140	wer bandwidths (15	MHZ, 10 MHZ, 5 MHZ,	, 3 IVIDZ, 1.4 IVIDZ)		Tested
1850-1915 MHz		26365			50	25	Tested
		26590					Tested
		26140			100	0	Reduced ¹
		26365					Tested
		26590				O	Reduced ¹
		26140		QPSK			Tested
		26365				0	Tested
		26590				ŭ	Tested
		26140			1		Reduced ²
		26365				99	Reduced ²
		26590					Reduced ²
	Тор	26140	20 MHz				Reduced ³
		26365			50	25	Reduced ³
		26590					Reduced ³
		26140					Reduced ¹
		26365			100	0	Reduced ¹
		26590		400414			Reduced ¹
		26140		16QAM			Reduced ⁴
		26365				0	Reduced ⁴
		26590			4		Reduced ⁴
		26140			1		Reduced ⁴
		26365				99	Reduced ⁴
		26590					Reduced ⁴
		All lo	wer bandwidths (15	MHz, 10 MHz, 5 MHz	Hz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)		Reduced ⁵
		·	All rema	ining sides			Reduced ⁶

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Danuwium	Wiodulation	Allocation	Offset	Reduced
		26140					Reduced ⁷
		26365			50	0	Tested
		26590					Reduced ⁷
		26140					Reduced ¹
		26365			100	0	Reduced ¹
		26590		QPSK			Reduced ¹
		26140		QFSK		49	Tested
		26365	1				Tested
		26590			1		Tested
		26140					Reduced ²
		26365				99	Reduced ²
		26590	20 MHz				Reduced ²
Band 25	Left	26140	ZU IVITIZ		50	25	Reduced ³
1850-1915 MHz		26365					Reduced ³
		26590					Reduced ³
		26140					Reduced ¹
		26365			100	0	Reduced ¹
		26590		16QAM			Reduced ¹
		26140		100/11/1			Reduced ⁴
		26365				0	Reduced ⁴
		26590			1		Reduced ⁴
		26140			'		Reduced ⁴
		26365				99	Reduced ⁴
		26590					Reduced ⁴ Reduced ⁵
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)					
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Paduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced7- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/	Cide	Required	Donalusial 4	Madulation	RB	RB	Tested/	
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced	
rioquerioy (iiiii)		132072			7 1110 0 0 1110 11	011001	Reduced ⁷	
		132322			50	25	Tested	
		132572			00	20	Reduced ⁷	
		132072					Reduced ¹	
		132322			100	0	Reduced ¹	
		132572		0.0014			Reduced ¹	
		132072		QPSK			Reduced ⁷	
		132322				49	Tested	
		132572			1		Reduced ⁷	
		132072			ı		Reduced ²	
		132322				99	Reduced ²	
		132572	20 MHz				Reduced ²	
	Back	132072	20 IVII 12				Reduced ³	
		132322			50	25	Reduced ³	
		132572					Reduced ³	
		132072					Reduced ¹	
		132322			100	0	Reduced ¹	
		132572		16QAM			Reduced ¹	
		132072			1		Reduced ⁴	
		132322				49	Reduced ⁴	
		132572					Reduced ⁴	
		132072				00	Reduced ⁴	
		132322				99	Reduced ⁴	
		132572	war bandwidtha (15	MILL 40 MILL E MILL	2 MI I= 4 4 MI I=\		Reduced ⁴	
Band 66		132072	ower bandwidths (15 i	MHz, 10 MHz, 5 MHz	, 3 MHZ, 1.4 MHZ)		Reduced ⁵	
1710-1780 MHz		132322			50	25	Tested Tested	
		132572					Tested	
		132072			100	0	Reduced ¹	
		132322	-				Tested	
		132572				U	Reduced ¹	
		132072		QPSK			Tested	
		132322				0	Tested	
		132572				Ü	Tested	
		132072			1		Reduced ²	
		132322				99	Reduced ²	
		132572	00.1411				Reduced ²	
	Top	132072	20 MHz				Reduced ³	
	·	132322			50	25	Reduced ³	
		132572					Reduced ³	
		132072					Reduced ¹	
		132322			100	0	Reduced ¹	
		132572		16QAM			Reduced ¹	
		132072		IOQAW			Reduced ⁴	
		132322				0	Reduced ⁴	
		132572			1		Reduced ⁴	
		132072			1		Reduced ⁴	
		132322				99	Reduced ⁴	
		132572					Reduced ⁴ Reduced ⁵	
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)						
			All rema	ining sides			Reduced ⁶	

Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Danuwium	Wiodulation	Allocation	Offset	Reduced
		132072					Reduced ⁷
		132322			50	25	Tested
		132572					Reduced ⁷
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		QPSK			Reduced ¹
		132072		QFSK			Reduced ⁷
		132322				49	Tested
		132572	20 MHz		1		Reduced ⁷
		132072					Reduced ²
		132322				99	Reduced ²
		132572					Reduced ²
Band 66	Left	132072	ZU IVITIZ				Reduced ³
1710-1780 MHz		132322			50	25	Reduced ³
		132572					Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		16QAM			Reduced ¹
		132072		100/11/1			Reduced ⁴
		132322				49	Reduced⁴
		132572			1		Reduced ⁴
		132072			·		Reduced ⁴
1		132322				99	Reduced ⁴
		132572					Reduced ⁴
		All lo		MHz, 10 MHz, 5 MHz	, 3 MHz, 1.4 MHz)		Reduced ⁵
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Paduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced7- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Prequency (MHz)	Band/		Required			RB	RB	Tested/
26740		Side		Bandwidth	Modulation			
26865 26890 26740 26865 26890 26865 26890 26865 26890 2686	rioquerioy (iiii i=)					7 1110 0 0 1110 11	- Ciriout	
Reduced Redu						25	12	
26740 26865 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 2699								
26865 26990 26740 26865 26990 26990 26990 26990 26990 2699								
Back 26740 26895 26990 26740 26990 26740 26990 26740 26990				1		50	0	
Back 26965 26990 15 MHz 15 MHz 25 12 Reduced² Reduced² 26965 26990 26740 26865 25 12 Reduced² 26965 26990 26740 26865 26990 26740			26990		0.001/			Reduced ¹
Bank 26990 26740 15 MHz 25 12 Reduced? 24 Reduced? 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 25900 26740 26865 26990 26740 26865			26740		QF3N			Reduced ⁷
Back 26740 26865 26990 15 MHz 24 Reduced²			26865				0	Tested
Back 26865 26890 15 MHz 25 12 Reduced² Reduced² Reduced² Reduced² Reduced² Reduced³						1		
Bank 26399						ı		
Back 26740 15 MHz 25 12 Reduced³ Reduced§							24	
Back 26740 26865 25 12 Reduced R				15 MHz				
Band 26 Band		Back		13 1011 12				
Band 26 Band				_		25	12	
Band 26 26865 26990 26740 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26								
Band 26 26740 26865 26990 26740 26740 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26990 26865 26								
Band 26 26990 1 1			26865			50	0	
Band 26 26990 All lower bandwidths (5 MHz) 1					16QAM			
Band 26 26990 All lower bandwidths (5 MHz) Reduced¹ Reduced² Reduced¹ Reduced² Redu							0	
Band 26 26990 All lower bandwidths (5 MHz) Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ² Reduced ² Reduced ³ Reduced ⁴ Reduce							0	
Band 26 26990 All lower bandwidths (5 MHz) Reduced Reduc						1		
Band 26 26740 All lower bandwidths (5 MHz) Reduced ⁶ State				-			24	
Band 26 26740 26865 25 12 Tested Tested 26990 26740 26865							24	
Band 26 26740 26865 26990 26740 26			20330	All lowe	er handwidths (5 MHz)		l .	
Top 15 MHz 26865 26990 26740 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865			26740	All lowe			12	
Tested 26740 Tested Tested Tested Tested Tested Tested Tested Reduced¹ Reduced¹ Reduced¹ Reduced¹ Tested Reduced² Reduced² Reduced² Reduced² Reduced² Reduced² Reduced² Reduced³ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴ Reduced⁵ Reduced⁴ Reduced⁵ Reduced⁴ Reduced⁵ Reduced⁴ Reduced⁵	814-849 MHz							
Tested 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26740 26865 26990 26865 26990 266865 26990 266865 26990 26740 26740 26865 26990 26740 26740 26865 26990 26740 26740 26740 26865 26990 26740 26740 26740 26740 26740 2								
Top 26865 26990 26740 26865 26990 26990 26990 All lower bandwidths (5 MHz) All lower bandwidths (5 MHz) Reduced ⁴ Reduced ⁵						50	0	
Top				1				
Top 15 MHz				1				
Top 15 MHz			26740		QPSK			Tested
Top 15 MHz 15 MHz 24 Reduced² Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴ Reduced⁵ Re							0	Tested
Top 26740			26990			1		Tested
Top 26990 15 MHz 25						ı		
Top 26740							24	
Top 26/40 26865 25 12 Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced³ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴ Reduced⁵				15 MHz				
26990 Reduced³ Reduced¹ So Reduced¹ So Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴ Reduced⁵ Re		Top						
26740 26865 50 0 Reduced¹						25	12	
26865 16QAM 16QAM 50 0 Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ Reduced ⁵								
26990 16QAM Reduced¹ Reduced⁴ Reduced⁵ Redu						=0		
26740						50	0	
26865 26990 1 0 Reduced ⁴ Reduced ⁵ Reduc					16QAM			
26990 1 Reduced ⁴ Reduced ⁵ Redu				-			0	
26740 1 Reduced ⁴ 26865 Reduced ⁴ 24 Reduced ⁴ 26990 All lower bandwidths (5 MHz) Reduced ⁵ Redu				-			U	
26865 24 Reduced ⁴ 26990 Reduced ⁴ All lower bandwidths (5 MHz) Reduced ⁵				1		1		
26990 Reduced ⁴ All lower bandwidths (5 MHz) Reduced ⁵				1			24	
All lower bandwidths (5 MHz) Reduced ⁵				1			24	
			20330	ΔII lower	r handwidths (5 MHz)		l	
			L					Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

 $Reduced^6\text{- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within <math>\pm 0.5 \text{ dB}$, the remaining channels} are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Band/	0:-1-	Required	Daniel videlile	Madulatian	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		26740					Reduced ⁷
		26865			25	12	Tested
		26990					Reduced ⁷
		26740					Reduced ¹
		26865			50	0	Reduced ¹
		26990		QPSK			Reduced ¹
		26740	15 MHz	QF3N			Reduced ⁷
		26865				0	Tested
		26990			1		Reduced ⁷
		26740					Reduced ²
		26865				24	Reduced ²
		26990					Reduced ²
Band 26	Left	26740	13 IVITZ				Reduced ³
814-849 MHz		26865			25	12	Reduced ³
		26990					Reduced ³
		26740					Reduced ¹
		26865			50	0	Reduced ¹
		26990		16QAM			Reduced ¹
		26740		TOQAM			Reduced ⁴
		26865				0	Reduced⁴
		26990			1		Reduced ⁴
		26740			'		Reduced⁴
		26865				24	Reduced⁴
		26990					Reduced⁴
			Reduced ⁵				
			All rema	ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Paduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	0.0.0	Test Channel			Allocation	Offset	Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230		QFSK	1	0	Tested
		23230	10 MHz		ļ	24	Reduced ²
	Back	23230	I U IVITZ		25	12	Reduced ³
		23230		16QAM	50	0	Reduced ¹
		23230		IOQAIVI	1	0	Reduced ⁴
		23230			ı	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵
		23230			25	12	Tested
		23230		QPSK	50	0	Tested
		23230			1	0	Tested
		23230	10 MHz		ı	24	Reduced ²
Band 13	Top	23230	I U IVITZ		25	12	Reduced ³
777-787 MHz		23230		16QAM	50	0	Reduced ¹
		23230		TOQAM	1	0	Reduced⁴
		23230			ı	24	Reduced⁴
			All lower	bandwidths (5 MH	z)		
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ²
		23230		QFSN	1	0	Tested
		23230	10 MHz		ı	24	Reduced ²
	Left	23230	10 IVIDZ		25	12	Reduced ³
		23230		16OAM	50	0	Reduced ¹
		23230		16QAM	4	0	Reduced ⁴
		23230			1	24	Reduced ⁴
				Reduced⁵			
				bandwidths (5 MH ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
, , , , , , , , , , , , , , , , , , , ,		23330			25	12	Tested
		23330		0.0014	50	0	Reduced ¹
		23330		QPSK	4	0	Tested
		23330	40 MH		1	24	Reduced ²
	Back	23330	10 MHz		25	12	Reduced ³
		23330		400414	50	0	Reduced ¹
		23330		16QAM	4	0	Reduced ⁴
		23330			1	24	Reduced⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵
		23330	10 MHz		25	12	Tested
		23330		QPSK	50	0	Tested
		23330			1	0	Tested
	Тор	23330			ı	24	Reduced ²
Band 14		23330			25	12	Reduced ³
788-798 MHz		23330		16QAM	50	0	Reduced ¹
		23330		TOQAW	1	0	Reduced ⁴
		23330				24	Reduced ⁴
			All lower	bandwidths (5 MH	z)		
		23330			25	12	Tested
		23330		QPSK	50	0	Reduced ¹
		23330		QFSK	1	0	Tested
		23330	10 MHz		Į.	24	Reduced ²
	Left	23330	TO IVII IZ		25	12	Reduced ³
		23330		16QAM	50	0	Reduced ¹
		23330		TOQAW	1	0	Reduced ⁴
		23330		bandwidths (5 MH	1	24	Reduced ⁴
			Reduced⁵				
			All rema	ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
requesticy (iiii i=)		23060			7 0 0 0 0 0 1	O I I Cot	Reduced ⁶
		23095			25	12	Tested
		23129			-		Reduced ⁶
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		QPSK			Reduced ¹
		23060		QF3N			Reduced ⁶
		23095				12	Tested
		23129			1		Reduced ⁶
		23060			•		Reduced ¹
		23095				24	Reduced ²
	l	23129	10 MHz				Reduced ²
	Back	23060					Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060	-				Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹
		23060 23095				0	Reduced ⁴ Reduced ⁴
		23129			1	U	Reduced ⁴
		23060					Reduced ⁴
		23095				24	Reduced ⁴
	-	23129				24	Reduced ⁴
		20120	All lowe	r bandwidths (5 MHz)			Reduced ⁵
Band 12		23060		QPSK -	25 50	12	Tested
699-716 MHz		23095					Tested
		23129					Tested
		23060					Reduced ¹
		23095					Tested
		23129					Reduced ¹
		23060					Tested
		23095				24	Tested
		23129			1		Tested
		23060			•		Reduced ¹
		23095				49	Reduced ²
	_	23129	10 MHz				Reduced ²
	Top	23060					Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060			50	0	Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹ Reduced ⁴
		23060 23095				0	Reduced ⁴
		23129				J	Reduced ⁴
		23060			1		Reduced ⁴
		23095				24	Reduced ⁴
		23129				24	Reduced ⁴
		20120	All lowe	r bandwidths (5 MHz)	I		Reduced ⁵
	 	l .	All rema	Reduced ⁷			

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- İf the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Band/	C:da	Required	Dan duvi dáh	Madulation	RB	RB	Tested/		
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced		
		23060					Reduced ⁶		
		23095			25	12	Tested		
		23129					Reduced ⁶		
		23060					Reduced ¹		
		23095			50	0	Reduced ¹		
		23129		QPSK			Reduced ¹		
		23060	10 MHz	QFSK			Reduced ⁶		
		23095				12	Tested		
		23129			1		Reduced ⁶		
		23060					Reduced ¹		
		23095				24	Reduced ²		
	•	23129					Reduced ²		
Band 12	Left	23060	IO WITZ				Reduced ³		
699-716 MHz		23095			25	12	Reduced ³		
		23129					Reduced ³		
		23060					Reduced ¹		
		23095			50	0	Reduced ¹		
		23129		16QAM			Reduced ¹		
		23060		100/11/1			Reduced ⁴		
		23095				0	Reduced⁴		
		23129			1		Reduced ⁴		
		23060			'		Reduced ⁴		
		23095				24	Reduced ⁴		
		23129					Reduced ⁴ Reduced ⁵		
			All lower bandwidths (5 MHz)						
			All rema	ining sides			Reduced ⁷		

Reduced 1 – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		27710			25	12	Tested
		27710		QPSK	50	0	Reduced ¹
		27710		QFSN	1	0	Tested
		27710	10 MHz		ı	24	Reduced ²
	Back	27710	10 IVIDZ		25	12	Reduced ³
		27710		16QAM	50	0	Reduced ¹
		27710		TOQAIVI	1	0	Reduced ⁴
		27710			ı	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵
		27710	10 MHz		25	12	Tested
		27710		QPSK	50	0	Tested
		27710		QPSK	1	0	Tested
		27710			ı	24	Reduced ²
Band 30	Top	27710			25	12	Reduced ³
2305-2315 MHz		27710		16QAM	50	0	Reduced ¹
		27710		IOQAIVI	4	0	Reduced ⁴
		27710			1	24	Reduced ⁴
			All lower	bandwidths (5 MH	z)		
		27710			25	12	Tested
		27710		QPSK	50	0	Reduced ¹
		27710		QFSK	1	0	Tested
		27710	10 MHz		ı	24	Reduced ²
	Left	27710	10 IVIDZ		25	12	Reduced ³
		27710		160414	50	0	Reduced ¹
		27710		16QAM	4	0	Reduced ⁴
		27710			1	24	Reduced ⁴
			Reduced⁵				
			All rema	ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
r requeries (iiir iz)		20850			7 tiloodtion	Onoot	Reduced ⁷
		21100	1		50	0	Tested
		21350			00	ŭ	Reduced ⁷
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		0.0014			Reduced ¹
		20850	1	QPSK			Reduced ⁷
		21100				49	Tested
		21350			4		Reduced ⁷
		20850			1		Reduced ²
		21100				99	Reduced ²
		21350	20 MHz				Reduced ²
	Back	20850	ZU IVITIZ				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850		100,111	1		Reduced ⁴
		21100				49	Reduced ⁴
		21350					Reduced ⁴
		20850					Reduced ⁴
		21100				99	Reduced ⁴
		21350		MUL 40 MUL 5 MUL	0.1411- 4.41141-		Reduced ⁴
Band 7			wer bandwidths (15	MHZ, 10 MHZ, 5 MHZ,	50		Reduced ⁵
2500-2570 MHz		20850				25	Tested
		21100	-			25	Tested
		21350 20850	-		100	0	Tested Reduced ¹
		21100	-				Tested
		21350	-			U	Reduced ¹
		20850					Tested
		21100				49	Tested
		21350	1			43	Tested
		20850	1		1		Reduced ²
		21100				99	Reduced ²
		21350				00	Reduced ²
	Top	20850	20 MHz				Reduced ³
		21100	1		50	25	Reduced ³
		21350	1				Reduced ³
		20850	1				Reduced ¹
		21100	1		100	0	Reduced ¹
		21350		400414			Reduced ¹
		20850]	16QAM			Reduced ⁴
		21100]			49	Reduced⁴
		21350]		1		Reduced⁴
		20850			ı		Reduced ⁴
		21100				99	Reduced ⁴
		21350				99	Reduced ⁴
		All lo	wer bandwidths (15	MHz, 10 MHz, 5 MHz,	, 3 MHz, 1.4 MHz)		Reduced ⁵
			All rema	ining sides			Reduced ⁶

Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced3 - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

 $Reduced^7-If the SAR \ value \ measured \ on \ the \ middle \ channel \ is \ less \ than \ 0.8 \ W/kg \ and \ the \ conducted \ power \ is \ within \ \pm 0.5 \ dB, \ the \ remaining \ channels \ within \ the \ th$ are reduced per KDB941225 D05 page 4 footnote 2.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Danuwium	Wiodulation	Allocation	Offset	Reduced
		20850					Reduced ⁷
		21100			50	0	Tested
		21350					Reduced ⁷
		20850				0	Reduced ¹
		21100			100		Reduced ¹
		21350		QPSK			Reduced ¹
		20850		QFSK			Reduced ⁷
		21100				49	Tested
		21350	20 MHz		1		Reduced ⁷
		20850			•		Reduced ²
		21100				99	Reduced ²
	•	21350					Reduced ²
Band 7	Left	20850	20 1011 12				Reduced ³
2500-2570 MHz		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850		TOQAIVI			Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850			'		Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
		All lo	Reduced ⁵				
		•	All rema	ining sides			Reduced ⁶

Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced7 - If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/	0.1	Required	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		RB	RB	Tested/	
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced	
		39750					Reduced ⁷	
		40135					Reduced ⁷	
		40620			50	0	Tested	
		41105					Reduced ⁷	
		41490					Reduced ⁷	
		39750					Reduced ¹	
		40135					Reduced ¹	
		40620			100	0	Reduced ¹	
		41105					Reduced ¹	
		41490		QPSK			Reduced ¹	
		39750		QPSK			Reduced ⁷	
		40135					Reduced ⁷	
		40620				49	Tested	
		41105					Reduced ⁷	
		41490			1		Reduced ⁷	
		39750	20 MHz				Reduced ²	
		40135					Reduced ²	
		40620				99	Reduced ²	
		41105					Reduced ²	
		41490					Reduced ²	
Band 41	Back	39750					Reduced ³	
2496-2690 MHz		40135					Reduced ³	
		40620	- - -		50	25	Reduced ³	
		41105					Reduced ³	
		41490					Reduced ³	
		39750					Reduced ¹	
		40135					Reduced ¹	
		40620			100	0	Reduced ¹	
		41105					Reduced ¹	
		41490		16QAM			Reduced ¹	
		39750		TOQAW			Reduced ⁴	
		40135					Reduced ⁴	
		40620				49	Reduced ⁴	
		41105					Reduced ⁴	
		41490			1		Reduced ⁴	
		39750			ı		Reduced ⁴	
		40135					Reduced ⁴	
		40620				99	Reduced ⁴	
		41105					Reduced ⁴	
		41490					Reduced ⁴	
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)						
			All rema	ining sides			Reduced ⁶	

All remaining sides

All remaining sides

All remaining sides

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced7 - If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/	0.1	Required	5 1 1 1 1 1 1		RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
, ,		39750					Reduced ⁷
		40135					Reduced ⁷
		40620			50	0	Tested
		41105					Reduced ⁷
		41490					Reduced ⁷
		39750					Reduced ¹
		40135					Reduced ¹
		40620			100	0	Tested
		41105					Reduced ¹
		41490		QPSK			Reduced ¹
		39750		QI OIL			Tested
		40135				49	Tested
		40620					Tested
		41105					Tested
		41490			1		Tested
		39750			· ·		Reduced ²
		40135					Reduced ²
		40620				99	Reduced ²
		41105					Reduced ²
	Тор	41490	20 MHz				Reduced ²
Band 41		39750					Reduced ³
2496-2690 MHz		40135			50	25	Reduced ³
		40620					Reduced ³
		41105					Reduced ³
		41490					Reduced ³
		39750 40135					Reduced ¹
		40620	1		100	0	Reduced ¹ Reduced ¹
		41105			100	U	Reduced ¹
		41490					Reduced ¹
		39750		16QAM			Reduced ⁴
		40135					Reduced ⁴
		40620				49	Reduced ⁴
		41105				43	Reduced ⁴
		41490					Reduced ⁴
		39750			1		Reduced ⁴
		40135	1				Reduced ⁴
		40620	1			99	Reduced ⁴
		41105	 				Reduced ⁴
		41490	1				Reduced ⁴
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)					
		,		ining sides	, <u>-,</u>		Reduced ⁵ Reduced ⁶

All remaining sides

All remaining sides

All remaining sides

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced7 - If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

Band/		Required			RB	RB	Tested/
	Side		Bandwidth	Modulation			
Frequency (MHz)		Test Channel			Allocation	Offset	Reduced
		39750					Reduced ⁷
		40135					Reduced ⁷
		40620			50	0	Tested
		41105					Reduced ⁷
		41490					Reduced ⁷
		39750					Reduced ¹
		40135					Reduced ¹
		40620			100	0	Reduced ¹
		41105		QPSK			Reduced ¹
		41490					Reduced ¹
		39750		QI OIL			Reduced ⁷
		40135				49	Reduced ⁷
		40620					Tested
		41105					Reduced ⁷
	Left	41490			1		Reduced ⁷
		39750			'		Reduced ²
		40135					Reduced ²
		40620				99	Reduced ²
		41105					Reduced ²
		41490	20 MHz				Reduced ²
Band 41		39750	20 IVII 12				Reduced ³
2496-2690 MHz		40135			50	25	Reduced ³
		40620					Reduced ³
		41105					Reduced ³
		41490					Reduced ³
		39750					Reduced ¹
		40135					Reduced ¹
		40620			100	0	Reduced ¹
		41105					Reduced ¹
		41490		16QAM			Reduced ¹
		39750		100011111			Reduced ⁴
		40135					Reduced ⁴
		40620				49	Reduced ⁴
		41105					Reduced ⁴
		41490			1		Reduced ⁴
		39750			'		Reduced ⁴
		40135					Reduced ⁴
		40620				99	Reduced ⁴
		41105					Reduced ⁴
	_	41490					Reduced⁴
		All lo		MHz, 10 MHz, 5 MHz	, 3 MHz, 1.4 MHz)		Reduced ⁵
		·	All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced3 - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to right: 236.0 mm Closest Distance to Bottom: 204 mm

SAR Data Summary – 750 MHz Body – LTE Band 12

MEASUREMENT RESULTS

Gap	Plot	Position	Frequ	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
			MHz	Ch.		Size	Oliset	raryet	(dBm)	OAK (W/kg)	SAR (W/kg)
		Back	707.5	23095	10 MHz/QPSK	1	0	0	18.1	0.510	0.63
			707.5	23095	10 MHz/QPSK	25	12	0	17.2	0.410	0.49
			704.0	23060	10 MHz/QPSK	1	0	0	18.1	0.852	1.05
	1	Тор	707.5	23095	10 MHz/QPSK	1	0	0	18.1	0.916	1.13
			711.0	23129	10 MHz/QPSK	1	0	0	18.5	0.781	0.88
0			704.0	23060	10 MHz/QPSK	25	12	0	17.2	0.526	0.63
mm			707.5	23095	10 MHz/QPSK	25	12	0	17.2	0.578	0.70
			711.0	23129	10 MHz/QPSK	25	12	0	17.5	0.545	0.61
			707.5	23095	10 MHz/QPSK	50	0	0	17.3	0.468	0.56
		1 -41	707.5	23095	10 MHz/QPSK	1	0	0	18.1	0.384	0.47
		Left	707.5	23095	10 MHz/QPSK	25	0	0	17.2	0.307	0.37
		Repeated	707.5	23095	10 MHz/QPSK	1	0	0	18.1	0.891	1.10

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	SAR	Measurement

Phantom Configuration Left Head SAR Configuration Head

2. Test Signal Call Mode Test Code

4. Tissue Depth is at least 15.0 cm

⊠Eli4

Right Head

Body

Base Station Simulator

Without Belt Clip

 $\sum N/A$

Jay M. Moulton Vice President

Note: LTE Band 17 is fully within the frequency bands of Band 12. Therefore, Band 17 was not tested for this report.

Tissue Depth is at least 15.0 cm

Report Number: SAR.20190624

SAR Data Summary – 750 MHz Body – LTE Band 13

MEASUREMENT RESULTS End Frequency BW/ RB RB **MPR** Measured Reported Gap **Plot Position** Power Modulation Offset SAR (W/kg) SAR (W/kg) Size **Target** MHz Ch. (dBm) 782.0 23230 10 MHz/QPSK 1 0 19.3 0.384 0.45 Back 782.0 23230 10 MHz/QPSK 25 12 0 18.5 0.310 0.35 2 782.0 23230 10 MHz/QPSK 0 0 19.3 0.945 1.11 0 782.0 23230 10 MHz/QPSK 25 12 0 18.5 0.768 0.86 Top ----10 MHz/QPSK mm 782.0 23230 50 0 0 18.7 0.623 0.67 ---------782.0 23230 10 MHz/QPSK 1 0 0 19.3 0.357 0.42 Left -----782.0 23230 10 MHz/QPSK 25 0 0 18.5 0.287 0.32 Repeated ----782.0 23230 10 MHz/QPSK 0 0 19.3 0.926 1.09

Body 1.6 W/kg (mW/g) averaged over 1 gram

Ι.	SAR Measurement				
	Phantom Configuration	Left Head	⊠Eli4		Right Head
	SAR Configuration	Head	\boxtimes Body		
2.	Test Signal Call Mode	Test Code	⊠Base Station S	Simula	tor
3.	Test Configuration	☐With Belt Clip	☐Without Belt	Clip	$\sum N/A$

SAR Data Summary - 750 MHz Body - LTE Band 14

MEASUREMENT RESULTS End Frequency BW/ RB RB**MPR** Measured Reported Gap **Plot Position** Power Modulation Size Offset SAR (W/kg) SAR (W/kg) **Target** MHz Ch. (dBm) 793.0 23330 10 MHz/QPSK 1 0 0 19.5 0.370 0.42 Back 793.0 23330 10 MHz/QPSK 25 12 0 18.4 0.298 0.34 793.0 3 23330 10 MHz/QPSK 0 0 19.5 0.998 1.12 0 793.0 23330 10 MHz/QPSK 25 12 0 18.4 0.818 0.94 Top ---mm 793.0 23330 10 MHz/QPSK 50 0 0 18.4 0.725 0.83 --------793.0 23330 10 MHz/QPSK 1 0 0 19.5 0.340 0.38 Left -----793.0 23330 10 MHz/QPSK 25 12 0 18.4 0.276 0.32 Repeated ----793.0 23330 10 MHz/QPSK 0 0 19.5 0.976 1.10

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	SAR Measurement	
	Phantom Configuration Left Head	⊠Eli4
	SAR Configuration Head	⊠Body
2.	Test Signal Call Mode Test Code	⊠ Base Station Simulator
3.	Test Configuration With Belt Clip	☐Without Belt Clip ☐N/A
4.	Tissue Depth is at least 15.0 cm	

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.			(dBm)			(W/kg)	(W/kg)
		836.6	4183	WCDMA	Back	19.25	12.2 kbps	Test Loop 1	0.347	0.46
•		826.4	4132	WCDMA	Тор	19.16	12.2 kbps	Test Loop 1	0.679	0.92
0	4	836.6	4183	WCDMA		19.25	12.2 kbps	Test Loop 1	0.842	1.12
mm		846.6	4233	WCDMA		19.15	12.2 kbps	Test Loop 1	0.606	0.83
		836.6	4183	WCDMA	Left	19.25	12.2 kbps	Test Loop 1	0.434	0.58
		836.6	4183	WCDMA	Repeat	19.25	12.2 kbps	Test Loop 1	0.826	0.98

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
2.	Test Signal Call Mode	Test Code	⊠Base Station Sim	ılator
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	N/A
4.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 835 MHz Body – LTE Bands 26

MEA	MEASUREMENT RESULTS										
Gap	Plot	Position	Frequ	uency	BW/ Modulation	RB Size	RB Offset	MPR	End Power	Measured SAR	Reported SAR
_			MHz	Ch.			Offset	Target	(dBm)	(W/kg)	(W/kg)
		Dools	831.5	26865	15 MHz/QPSK	1	0	0	19.8	0.316	0.37
		Back	831.5	26865	15 MHz/QPSK	25	0	0	18.7	0.252	0.30
	5		821.5	26740	15 MHz/QPSK	1	0	0	19.6	0.895	1.10
			831.5	26865	15 MHz/QPSK	1	0	0	19.8	0.827	0.97
			841.5	26990	15 MHz/QPSK	1	0	0	20.5	0.874	0.87
0		Тор	821.5	26740	15 MHz/QPSK	25	0	0	18.5	0.642	0.81
mm			831.5	26865	15 MHz/QPSK	25	0	0	18.7	0.701	0.84
			841.5	26990	15 MHz/QPSK	25	0	0	19.0	0.628	0.71
			821.5	26740	15 MHz/QPSK	50	0	0	18.9	0.594	0.68
		Left	831.5	26865	15 MHz/QPSK	1	0	0	19.8	0.420	0.49
			831.5	26865	15 MHz/QPSK	25	0	0	18.7	0.328	0.39
		Repeated	821.5	26740	15 MHz/QPSK	1	0	0	19.6	0.878	1.08

Body 1.6 W/kg (mW/g) averaged over 1 gram

I.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	⊠Body	
2.	Test Signal Call Mode	Test Code	⊠ Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4	Tissue Depth is at least 15	6.0 cm	_	

Jay M. Moulton Vice President

Note: LTE Band 5 is fully within the frequency bands of Band 26. Therefore, Band 5 was not tested for this report.

SAR Data Summary – 1750 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.	Wodulation		(dBm)			(W/kg)	(W/kg)
		1732.6	1413	WCDMA	Back	16.58	12.2 kbps	Test Loop 1	0.121	0.17
-		1712.4	1312	WCDMA	Тор	16.46	12.2 kbps	Test Loop 1	0.652	0.93
	6	1732.6	1413	WCDMA		16.58	12.2 kbps	Test Loop 1	0.785	1.09
0		1752.6	1513	WCDMA		15.99	12.2 kbps	Test Loop 1	0.627	1.00
mm		1712.4	1312	WCDMA		16.46	12.2 kbps	Test Loop 1	0.622	0.89
		1732.6	1413	WCDMA	Left	16.58	12.2 kbps	Test Loop 1	0.685	0.95
		1752.6	1513	WCDMA		15.99	12.2 kbps	Test Loop 1	0.604	0.96
		1732.6	1413	WCDMA	Repeat	16.58	12.2 kbps	Test Loop 1	0.764	1.06

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
2.	Test Signal Call Mode	Test Code	⊠Base Station Simu	ılator
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 1750 MHz Body – LTE Band 66

MEASUREMENT RESULTS											
Gap	Plot	Position	Frequency		BW/	RB	RB Offset	MPR	End Power	Measured	Reported SAR
_			MHz	Ch.	Modulation	Size	Oliset	Target	(dBm)	SAR (W/kg)	(W/kg)
		Back	1745.0	132322	20 MHz/QPSK	1	0	0	17.6	0.263	0.29
		Dack	1745.0	132322	20 MHz/QPSK	50	0	0	16.5	0.235	0.26
		Тор	1720.0	132072	20 MHz/QPSK	1	0	0	17.4	0.908	1.04
	7		1745.0	132322	20 MHz/QPSK	1	0	0	17.6	0.960	1.05
			1770.0	132571	20 MHz/QPSK	1	0	0	17.6	0.924	1.01
0			1720.0	132072	20 MHz/QPSK	50	0	0	16.7	0.856	0.92
mm			1745.0	132322	20 MHz/QPSK	50	0	0	16.5	0.873	0.98
			1770.0	132571	20 MHz/QPSK	50	0	0	16.6	0.861	0.94
			1745.0	132322	20 MHz/QPSK	100	0	0	16.5	0.754	0.85
		Left	1745.0	132322	20 MHz/QPSK	1	0	0	17.6	0.168	0.18
			1745.0	132322	20 MHz/QPSK	50	0	0	16.5	0.0975	0.11
		Repeated	1745.0	132322	20 MHz/QPSK	1	0	0	17.6	0.943	1.03

Body 1.6 W/kg (mW/g) averaged over 1 gram

I.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	∐Head	⊠Body	
2.	Test Signal Call Mode	☐Test Code	⊠ Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	\square N/A
4.	Tissue Depth is at least 15	.0 cm		

Jay M. Moulton Vice President

Note: LTE Band 4 is fully within the frequency bands of Band 66. Therefore, Band 4 was not tested for this report.

SAR Data Summary – 1900 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.	Wiodulation		(dBm)			(W/kg)	(W/kg)
		1880.0	9400	WCDMA	Back	15.97	12.2 kbps	Test Loop 1	0.268	0.34
		1880.0	9400	WCDMA	Тор	15.97	12.2 kbps	Test Loop 1	0.587	0.74
0		1852.4	9262	WCDMA		15.92	12.2 kbps	Test Loop 1	0.842	1.08
mm	8	1880.0	9400	WCDMA	Left	15.97	12.2 kbps	Test Loop 1	0.875	1.11
		1907.6	9538	WCDMA		15.95	12.2 kbps	Test Loop 1	0.776	0.99
		1880.0	9400	WCDMA	Repeat	15.97	12.2 kbps	Test Loop 1	0.854	1.08

With Belt Clip

Body 1.6 W/kg (mW/g) averaged over 1 gram

Right Head

1.	SAR Measurement	
	Phantom Configuration	Left Head
	SAR Configuration	Head
2.	Test Signal Call Mode	Test Code

Base Station Simulator
Without Belt Clip ⊠N/A

⊠Eli4

 \boxtimes Body

4. Tissue Depth is at least 15.0 cm

3. Test Configuration

SAR Data Summary – 1900 MHz Body – LTE Band 25

MEA	MEASUREMENT RESULTS										
Gap	Plot	Position	Frequency		BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
_			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
		Pook	1882.5	26365	20 MHz/QPSK	1	0	0	16.1	0.280	0.34
		Back	1882.5	26365	20 MHz/QPSK	50	0	0	15.2	0.225	0.27
		Тор	1860.0	26140	20 MHz/QPSK	1	0	0	16.5	0.963	1.08
	9		1882.5	26365	20 MHz/QPSK	1	0	0	16.1	0.915	1.13
			1905.0	26590	20 MHz/QPSK	1	0	0	16.7	0.942	1.01
			1860.0	26140	20 MHz/QPSK	50	0	0	15.2	0.825	0.99
0			1882.5	26365	20 MHz/QPSK	50	0	0	15.2	0.833	1.00
mm			1905.0	26590	20 MHz/QPSK	50	0	0	15.5	0.836	0.94
			1882.5	26365	20 MHz/QPSK	100	0	0	15.6	0.719	0.79
			1860.0	26140	20 MHz/QPSK	1	0	0	16.5	0.698	0.78
		Left	1882.5	26365	20 MHz/QPSK	1	0	0	16.1	0.703	0.86
		Leit	1905.0	26590	20 MHz/QPSK	1	0	0	16.7	0.645	0.69
			1882.5	26365	20 MHz/QPSK	50	0	0	15.2	0.626	0.75
		Repeated	26365	1882.5	20 MHz/QPSK	1	0	0	16.1	0.901	1.11

Body 1.6 W/kg (mW/g) averaged over 1 gram

I.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	⊠Body	
2.	Test Signal Call Mode	Test Code	⊠ Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	5.0 cm		

Jay M. Moulton Vice President

Note: LTE Band 5 is fully within the frequency bands of Band 25. Therefore, Band 5 was not tested for this report.

SAR Data Summary – 2300 MHz Body – LTE Band 30

MEASUREMENT RESULTS

Gap	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
			MHz	Ch.	Wodulation	Size	Oliset	rarget	(dBm)	SAN (W/Kg)	SAR (W/kg)
		Back	2310	27710	10 MHz/QPSK	1	0	0	16.3	0.396	0.47
			2310	27710	10 MHz/QPSK	25	12	0	15.5	0.314	0.35
	10	Тор	2310	27710	10 MHz/QPSK	1	0	0	16.3	0.927	1.09
0			2310	27710	10 MHz/QPSK	25	12	0	15.5	0.844	0.95
mm			2310	27710	10 MHz/QPSK	50	0	0	15.3	0.759	0.89
		Left	2310	27710	10 MHz/QPSK	1	0	0	16.3	0.895	1.05
			2310	27710	10 MHz/QPSK	25	12	0	15.5	0.782	0.88
		Repeat	2310	27710	10 MHz/QPSK	1	0	0	16.3	0.912	1.07

Body 1.6 W/kg (mW/g) averaged over 1 gram

1	1	C.	٩D	1/	[easu	ran	nant
ı	١.	0/	٦ĸ	IVI	teasu	пеп	пень

Phantom Configuration Left Head SAR Configuration Head

2. Test Signal Call Mode Test Code

4. Tissue Depth is at least 15.0 cm

Body

Base Station Simulator

☐Without Belt Clip ☐N/A

lay M. Moulton

Jay M. Moulton Vice President

SAR Data Summary – 2500 MHz Body – LTE Band 7

MEA	MEASUREMENT RESULTS												
Gap	Plot	Position	Frequency		BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR		
-			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)		
		Back	2535.0	21100	20 MHz/QPSK	1	0	0	16.4	0.618	0.71		
		Dack	2535.0	21100	20 MHz/QPSK	50	0	0	15.6	0.499	0.55		
			2507.5	20850	20 MHz/QPSK	1	0	0	16.7	0.960	1.03		
			2535.0	21100	20 MHz/QPSK	1	0	0	16.4	0.972	1.12		
	11		2562.5	21350	20 MHz/QPSK	1	0	0	16.1	0.919	1.13		
0		Тор	2507.5	20850	20 MHz/QPSK	50	0	0	15.2	0.811	0.98		
mm			2535.0	21100	20 MHz/QPSK	50	0	0	15.6	0.822	0.90		
			2562.5	21350	20 MHz/QPSK	50	0	0	15.4	0.827	0.95		
			2535.0	21100	20 MHz/QPSK	100	0	0	15.4	0.711	0.82		
		Left	2535.0	21100	20 MHz/QPSK	1	0	0	16.4	0.579	0.66		
		Leit	2535.0	21100	20 MHz/QPSK	50	0	0	15.6	0.485	0.53		
		Repeat	2535.0	21100	20 MHz/QPSK	1	0	0	16.4	0.959	1.10		

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	☐Head	\boxtimes Body	
2.	Test Signal Call Mode	☐Test Code	⊠ Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	5.0 cm		

SAR Data Summary –LTE Bands 41

ME	MEASUREMENT RESULTS												
Gap	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR	End Power	Measured SAR	Reported SAR		
_			MHz	Ch.	Wodulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)		
		Back	2593	40620	20 MHz/QPSK	1	0	0	18.0	0.249	0.28		
		Dack	2593	40620	20 MHz/QPSK	50	24	0	16.7	0.194	0.23		
			2506	39750	20 MHz/QPSK	1	0	0	17.7	0.742	0.89		
			2549.5	40185	20 MHz/QPSK	1	0	0	17.9	0.825	0.95		
	12		2593	40620	20 MHz/QPSK	1	0	0	18.0	0.850	0.95		
0		Тор	2636.5	41055	20 MHz/QPSK	1	0	0	18.1	0.804	0.88		
0 mm			2680	41490	20 MHz/QPSK	1	0	0	18.1	0.797	0.87		
			2593	40620	20 MHz/QPSK	50	24	0	16.7	0.652	0.78		
			2593	40620	20 MHz/QPSK	100	0	0	16.7	0.569	0.68		
		l oft	2593	40620	20 MHz/QPSK	1	0	0	18.0	0.298	0.33		
		Left	2593	40620	20 MHz/QPSK	50	24	0	16.7	0.237	0.28		
		Repeated	2593	40620	20 MHz/QPSK	1	0	0	18.0	0.835	0.94		

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	_
2.	Test Signal Call Mode	☐Test Code	⊠Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	.0 cm	_	

Jay M. Moulton Vice President

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 41.

Note: LTE Band 38 is fully within the frequency bands of Band 41. Therefore, Band 38 was not tested for this report.

SAR Data Summary - 2450 MHz Body 802.11b & BT

ME	ASU	REMEN	ΓRESUL	.TS										
Plot	Plot Gap An	Antenna	Position	Frequency		- Modulation	Antenna	End Power	Measured SAR	Reported SAR				
Plot Gap	Antenna	FOSITION	MHz	Ch.	Antoma		(dBm)	(W/kg)	(W/kg)					
					Pools	2437	6	DSSS	Main	18.50	0.176	0.18		
							Back	2437	6	DSSS	Aux	18.50	0.198	0.20
												2437	6	DSSS
	0	lanaa	Ton	2462	11	DSSS	IVIAITI	18.50	0.500	0.50				
13	mm	Inpaq	Тор	2437	6	DSSS	Δ	18.50	0.659	0.66				
			2462	11	DSSS	Aux	18.50	0.584	0.58					
						Back	Back	2440	39	GFSK	Δ	11.47	0.0227	0.02
							-			Ton	2440	39	GESK	Aux

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery i	s fully	charged	for	all	tests.
----	-----------	---------	---------	-----	-----	--------

	Power Measured	☐ERP	□EIRP
2.	SAR Measurement		

	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	☐ Test Code	Base Station Si	mulator

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 5250 MHz Body 802.11a

ME	MEASUREMENT RESULTS									
Plot	Gap	Antenna	Position	Frequency		Modulation	Antenna	End Power	Measured SAR	Reported SAR
1 lot Gap	Antonia	า บอเนเบก	MHz	Ch.	Wodulation	Antenna	(dBm)	(W/kg)	(W/kg)	
				5220	44	OFDM	Main	17.00	0.342	0.34
			Back	5300	60	OFDM	Main	15.50	0.236	0.24
				5220	44	OFDM	Λιιν	17.00	0.264	0.26
				5300	60	OFDM	Aux	15.50	0.221	0.22
				5200	40	OFDM	Main	17.00	0.698	0.70
	0			5220	44	OFDM		17.00	0.672	0.67
	-	Inpaq		5280	56	OFDM	IVIAIII	15.50	0.658	0.66
	mm		Тор	5300	60	OFDM		15.50	0.614	0.61
14			ТОР	5200	40	OFDM		17.00	0.754	0.75
				5220	44	OFDM	Aus	17.00	0.750	0.75
	1			5280	56	OFDM	Aux	15.50	0.701	0.70
			<u> </u>	5300	60	OFDM		15.50	0.687	0.69
			Repeated	5200	40	OFDM	Aux	17.00	0.739	0.74

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for all t	ests.		
	Power Measured		□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simula	tor
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 5600 MHz Body 802.11a

ME	MEASUREMENT RESULTS																	
Plot	Gap	Antenna	Position	Frequ	ency	Modulation	Antenna	End Power	Measured SAR	Reported SAR								
				MHz	Ch.			(dBm)	(W/kg)	(W/kg)								
				5580	116	OFDM	Main	15.50	0.437	0.44								
			Back	5620	124	OFDM	IVIAIII	15.50	0.499	0.50								
			Dack	5580	116	OFDM	Aux	15.50	0.455	0.46								
	0			5620	124	OFDM	Aux	15.50	0.481	0.48								
	0	Inpaq		5580	116	OFDM	Main	15.50	0.984	0.98								
	mm		Top	5620	124	OFDM	IVIAIII	15.50	0.983	0.98								
			Тор	5580	116	OFDM	Aux	15.50	1.14	1.14								
15				5620	124	OFDM	Aux	15.50	1.19	1.19								
						_			_			Repeated	5620	124	OFDM	Aux	15.50	1.17

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery	is	fully	charged	for	all	tests.	

Power Measured	
----------------	--

□ERP	
------	--

☐ EIRP

2. SAR Measurement

Phantom Configuration	n
SAR Configuration	

Left Head	
Head	

⊠Eli4	
\boxtimes Body	

Right Head

3. Test Signal Call Mode4. Test Configuration

ĭ Test C	Code
☐With 1	Belt Clip

Base Station Simula
Without Belt Clip

lator N/A

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 5800 MHz Body 802.11a

ME	MEASUREMENT RESULTS													
Plot	Gap	Antenna	Position	Frequency		Modulation	Antenna	End Power	Measured SAR	Reported SAR				
FIOL	Gap	Antenna	Position	MHz	Ch.	Wodulation	Antenna	(dBm)	(W/kg)	(W/kg)				
			Back	5785	157	OFDM	Main	15.50	0.299	0.30				
			Dack	5785	157	OFDM	Aux	15.50	0.275	0.28				
	0	Inpaq	Inpaq	Inpaq	Inpaq	Inpaq		5785	157	OFDM	Main	15.50	0.848	0.85
	0 mm						Inpaq	Inpaq	Inpaq	Тор	5825	165	OFDM	iviairi
	111111		ТОР	5785	157	OFDM	Aux	15.50	1.11	1.11				
16				5825	165	OFDM	Aux	15.50	1.13	1.13				
			Repeated	5825	165	OFDM	Aux	15.50	1.12	1.12				

Body 1.6 W/kg (mW/g) averaged over 1 gram

Ι.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sim	
4.	Test Configuration		☐Without Belt Cli	p N/A
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – Simultaneous Evaluation

MEASUREMENT RESULTS – WWAN-WiFi (Main)													
Position	Frequency		Maxima		Frequency		Maxima			SAR ₁	SAR ₂	SAR Total	
1 03111011	MHz	Ch.	Х	Υ	Z	MHz	Ch.	Х	Y	Z	OAIN	JAIN2	OAK TOTAL
Back	5620	124	100.20	88.80	2.76	2535.0	21100	107.79	-137.99	-0.27	0.48	0.71	1.19
Top	5620	124	-1.00	87.20	0.56	2562.5	21350	-8.43	-133.19	-1.25	1.19	1.13	2.32

Body 1.6 W/kg (mW/g) averaged over 1 gram

Top - 220.52 mm

SPLSR=0.02

See Plot 1 Below

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

MEASUREMENT RESULTS – WWAN-WiFi (Aux)													
Position	Frequency		Maxima		Frequency		Maxima			SAR₁	SAR ₂	SAR Total	
1 03111011	MHz	Ch.	Х	Υ	Z	MHz	Ch.	Х	Υ	Z	OAIN1	OAI\2	OAK TOTAL
Back	5620	124	116.0	-94.00	3.27	2535.0	21100	107.79	-137.99	-0.27	0.50	0.71	1.21
Top	5620	124	0.80	-65.55	1.25	2562.5	21350	-8.43	-133.19	-1.25	0.98	1.13	2.11

Body 1.6 W/kg (mW/g) averaged over 1 gram

Top - 68.31 mm

SPLSR=0.04

See Plot 2 Below

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

MEASUREMENT RESULTS – BT												
Freque	ency	Modulation	Frequency		Modulation	SAR₁	SAR ₂	SAR Total				
MHz	Ch.	Wiodulation	MHz	Ch.	Wiodulation	SAIN1	SAIN ₂	SAIN TOTAL				
2437	6	DSSS	2440	39	GFSK	0.60	0.08	0.68				
5200	40	OFDM	2440	39	GFSK	0.70	0.08	0.78				
5580	116	OFDM	2440	39	GFSK	0.98	0.08	1.06				
5825	165	OFDM	2440	39	GFSK	0.88	0.08	0.96				

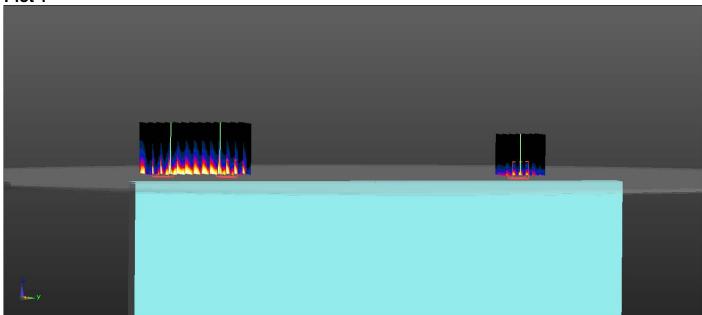
Body 1.6 W/kg (mW/g) averaged over 1 gram

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

MEASU	IREMEN	NT RE	SULT	S – Wi	Fi (Ma	in)-WiF	i (Aux)						
Position	Frequency		Maxima			Frequency		Maxima			SAR₁	SAR ₂	SAR Total
	MHz	Ch.	Х	Υ	Z	MHz	Ch.	Х	Y	Z	OAIN,	JAIL2	JAN TOLLI
Back	5280	56	100.20	88.80	2.76	5620	124	116.0	-94.00	3.27	0.48	0.50	0.98
Ton	5620	124	1.00	97 2N	0.56	5620	12/	0.80	-65 55	1 25	1 10	0.08	2 17

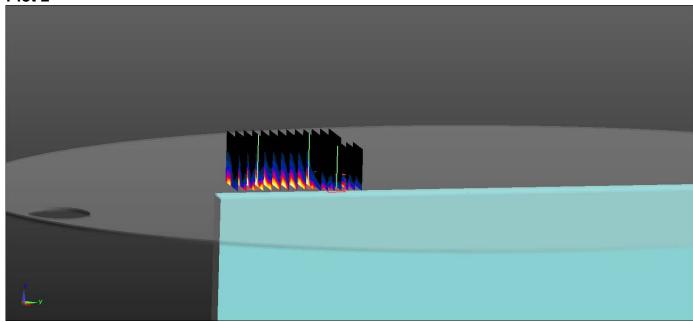
Body 1.6 W/kg (mW/g) averaged over 1 gram

Top - 152.76 mm

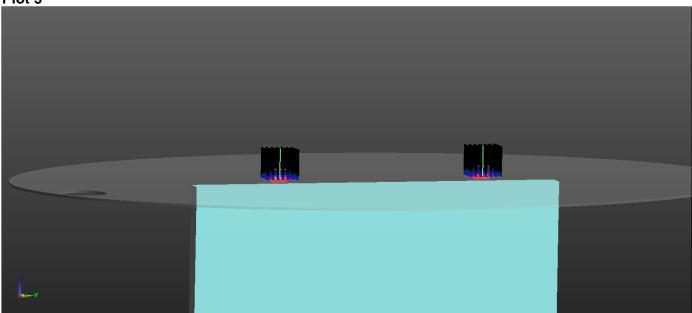

SPLSR=0.02

See Plot 3 Below

Simultaneous Separation Ratio Calculation


 $(SAR_1 + SAR_2)^{1.5}/R_i \leq 0.04$ rounded to two digits

Plot 1



Plot 2

Plot 3

11. Test Equipment List

Table 11.1 Equipment Specifications

Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI4 Flat Phantom	N/A	N/A	1065
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	08/10/2019	08/10/2018	759
Data Acquisition Electronics 4	04/16/2020	04/16/2019	1416
SPEAG E-Field Probe EX3DV4	04/24/2020	04/24/2019	3662
SPEAG E-Field Probe EX3DV4	08/27/2019	08/27/2018	3693
Speag Validation Dipole D750V2	07/13/2019	07/13/2018	1016
Speag Validation Dipole D835V2	07/13/2019	07/13/2018	4d089
Speag Validation Dipole D1750V2	07/20/2019	07/20/2018	1018
Speag Validation Dipole D1900V2	07/13/2019	07/13/2018	5d116
Speag Validation Dipole D2300V2	08/20/2019	08/20/2018	1060
Speag Validation Dipole D2550V2	07/12/2019	07/12/2018	1003
Speag Validation Dipole D2450V2	07/12/2019	07/12/2018	829
Speag Validation Dipole D5GHzV2	07/19/2019	07/19/2018	1085
Agilent N1911A Power Meter	04/27/2020	04/27/2019	GB45100254
Agilent N1922A Power Sensor	04/27/2020	04/27/2019	MY45240464
Advantest R3261A Spectrum Analyzer	03/25/2020	03/25/2019	31720068
Agilent (HP) 8350B Signal Generator	03/20/2020	03/20/2019	2749A10226
Agilent (HP) 83525A RF Plug-In	03/20/2020	03/20/2019	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/20/2020	03/20/2019	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/20/2020	03/20/2019	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/19/2020	03/19/2019	MY48360364
Anritsu MT8820C	01/26/2020	01/26/2019	6201176199
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2300 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2550 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5 GHz)	N/A	N/A	N/A

12. Conclusion


The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.
- [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.
- [6] Industry Canada, RSS 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

```
Test Result for UIM Dielectric Parameter
Tue 25/Jun/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
* value interpolated
*****************
Test Result for UIM Dielectric Parameter
Thu 27/Jun/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*************
```

^{*} value interpolated


```
***************
Test Result for UIM Dielectric Parameter
Wed 26/Jun/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*************
             FCC_eB FCC_sB Test_e Test_s 53.53 1.47 53.21 1.48
1.7100
                 53.525 1.47 53.203 1.482*
1.7124
1.7200
                 53.51 1.47 53.18 1.49
1.7300
                 53.48 1.48 53.04 1.50
1.7325
1.7326
                 53.475 1.48 53.035 1.503*

    1.7325
    53.475 1.48
    53.035 1.503*

    1.7326
    53.475 1.48
    53.035 1.503*

    1.7400
    53.46 1.48
    53.02 1.51

    1.7450
    53.445 1.485
    53.00 1.515*

    1.7500
    53.43 1.49
    52.98 1.52

    1.7526
    53.425 1.49
    52.975 1.523*

    1.7600
    53.41 1.49
    52.96 1.53

    1.7700
    53.38 1.50
    52.93 1.54

    1.7800
    53.35 1.51
    52.89 1.55

* value interpolated
***************
Test Result for UIM Dielectric Parameter
Fri 28/Jun/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e Test_s
1.8400 53.30 1.52 52.54 1.52
1.8500 53.30 1.52 52.53 1.53
1.8524 53.30 1.52 52.523 1.53*
1.8600
                 53.30 1.52 52.50 1.53
                 53.30 1.52 52.49 1.54
1.8700
1.8800
1.8825
1.8900
                53.30 1.52 52.45 1.54
53.30 1.52 52.443 1.54*
53.30 1.52 52.42 1.54
                 53.30 1.52 52.40 1.54
53.30 1.52 52.385 1.545*
1.9000
1.9050

      1.9076
      53.30
      1.52
      52.382
      1.548*

      1.9100
      53.30
      1.52
      52.37
      1.55

      1.9200
      53.30
      1.52
      52.35
      1.55
```

^{*} value interpolated


```
Test Result for UIM Dielectric Parameter
 Mon 24/Jun/2019
 Freq Frequency(GHz)
 FCC_eB Limits for Body Epsilon
 FCC_sB Limits for Body Sigma
 Test_e Epsilon of UIM
 Test_s Sigma of UIM
  *************
                               FCC_eB FCC_sB Test_e Test_s 52.91 1.80 52.06 1.80
 2.2900
                                  52.90 1.81 52.04 1.81
 2.3000
 2.3100
                                   52.89 1.82 52.02 1.82
                                  52.87 1.83 52.00 1.83
 2.3200

      2.3300
      52.86
      1.84
      51.99
      1.84

      2.3400
      52.85
      1.84
      51.97
      1.85

      2.3500
      52.83
      1.85
      51.95
      1.86

  ****************
 Test Result for UIM Dielectric Parameter
 Mon 24/Jun/2019
 Freq Frequency(GHz)
 FCC_eB Limits for Body Epsilon
 FCC_sB Limits for Body Sigma
 Test_e Epsilon of UIM
 Test_s Sigma of UIM
  **********
 Freq FCC_eB FCC_sB Test_e Test_s
                                 52.65 2.01 51.94 2.02
52.64 2.02 51.92 2.03

    2.5000
    52.64
    2.02
    51.92
    2.03

    2.5060
    52.628
    2.032
    51.902
    2.042*

    2.5100
    52.62
    2.04
    51.89
    2.05

    2.5200
    52.61
    2.05
    51.86
    2.07

    2.5300
    52.60
    2.06
    51.84
    2.09

    2.5350
    52.595
    2.07
    51.835
    2.12*

    2.5400
    52.59
    2.08
    51.83
    2.11

    2.5495
    52.571
    2.09
    51.811
    2.12*

    2.5500
    52.57
    2.09
    51.81
    2.12

    2.5600
    52.56
    2.11
    51.79
    2.14

    2.5700
    52.55
    2.12
    51.77
    2.16

    2.5800
    52.53
    2.13
    51.76
    2.17

    2.5900
    52.52
    2.15
    51.73
    2.19

    2.5930
    52.517
    2.153
    51.727
    2.196*

      2.5700
      52.55
      2.12
      51.77
      2.16

      2.5800
      52.53
      2.13
      51.76
      2.17

      2.5900
      52.52
      2.15
      51.73
      2.19

      2.5930
      52.517
      2.153
      51.727
      2.196*

      2.5950
      52.515
      2.155
      51.725
      2.20*

      2.6000
      52.51
      2.16
      51.72
      2.21

      2.6100
      52.50
      2.18
      51.69
      2.22

      2.6200
      52.48
      2.19
      51.67
      2.23

      2.6300
      52.47
      2.21
      51.66
      2.25

      2.6365
      52.464
      2.217
      51.647
      2.263*

      2.6400
      52.46
      2.22
      51.64
      2.27

      2.6500
      52.45
      2.23
      51.63
      2.28

      2.6600
      52.43
      2.25
      51.61
      2.30

      2.6700
      52.42
      2.26
      51.59
      2.31

      2.6800
      52.41
      2.28
      51.57
      2.33

      2.6900
      52.39
      2.29
      51.54
      2.35

 2.6900
                                  52.39 2.29 51.54 2.35
 2.7000
                                  52.38 2.30 51.53 2.36
 2.8000
                                  52.37 2.31 51.51 2.37
```

^{*} value interpolated

Test Result for UIM Dielectric Parameter Wed 19/Jun/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon

FCC_sB Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

^{*} value interpolated

Test Result for UIM Dielectric Parameter Tue 18/Jun/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************* FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.08 5.20 49.12 5.21 49.05 5.22 5.1000 5.1200 5.1400 49.10 5.23 49.02 5.24

^{*} value interpolated

RF Exposure Lab

Plot 1

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1016

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 55.1; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 6/25/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

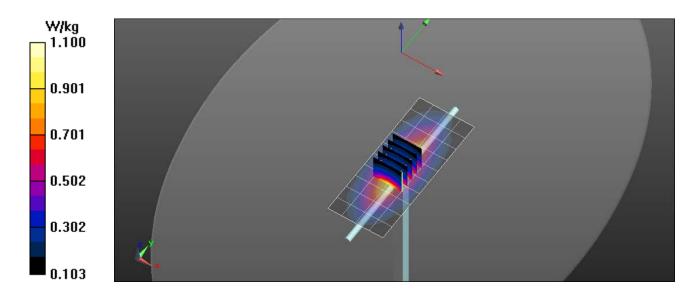
Probe: EX3DV4 - SN3662; ConvF(9.55, 9.55, 9.55); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

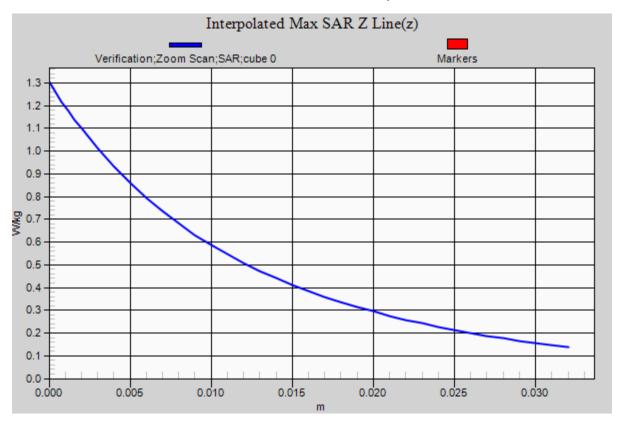
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.04 W/kg


750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.481 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 1.29 W/kg

 P_{in} = 100 mW

SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.561 W/kg Maximum value of SAR (measured) = 1.10 W/kg

RF Exposure Lab

Plot 2

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d089

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.91$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

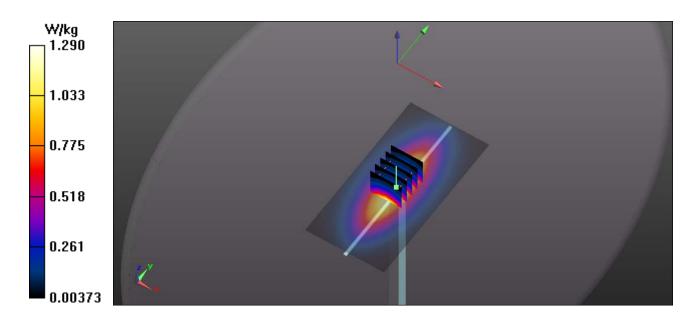
Test Date: Date: 6/27/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.34, 9.34, 9.34); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.25 W/kg


835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.638 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.45 W/kg

Pin= 100 mW

SAR(1 g) = 0.946 W/kg; SAR(10 g) = 0.631 W/kg Maximum value of SAR (measured) = 1.30 W/kg

RF Exposure Lab

Plot 3

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz, σ = 1.52 S/m; ε_r = 52.98; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 6/26/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

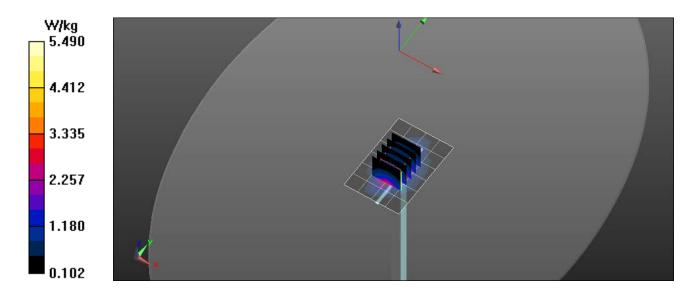
Probe: EX3DV4 - SN3662; ConvF(7.95, 7.95, 7.95); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

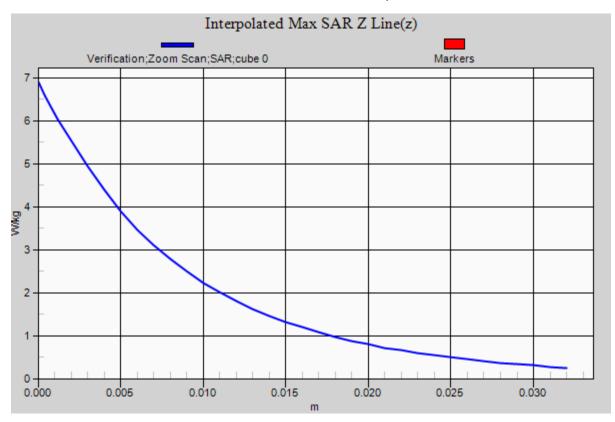
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.32 W/kg


1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.862 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 6.85 W/kg

Pin= 100 mW

SAR(1 g) = 3.68 W/kg; SAR(10 g) = 2.02 W/kg Maximum value of SAR (measured) = 5.49 W/kg

RF Exposure Lab

Plot 4

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d116

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.54 S/m; ε_r = 52.4; ρ = 1000 kg/m³

Phantom section: Flat Section

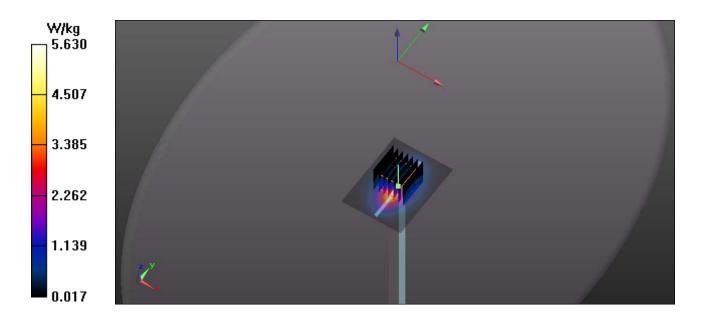
Test Date: Date: 6/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.69, 7.69, 7.69); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

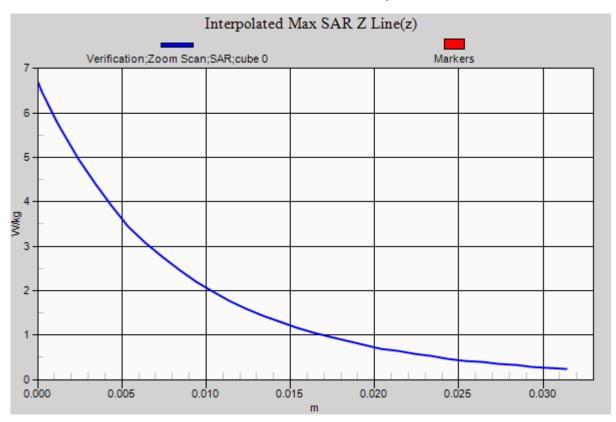
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.55 W/kg


1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.248 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 6.68 W/kg

Pin= 100 mW

SAR(1 g) = 4.02 W/kg; SAR(10 g) = 1.95 W/kg Maximum value of SAR (measured) = 5.63 W/kg

RF Exposure Lab

Plot 5

DUT: Dipole 2300 MHz D2300V2; Type: D2300V2; Serial: D2300V2 - SN:1060

Communication System: CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium: MSL2300; Medium parameters used: f = 2300 MHz, $\sigma = 1.81$ S/m; $\varepsilon_r = 52.04$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

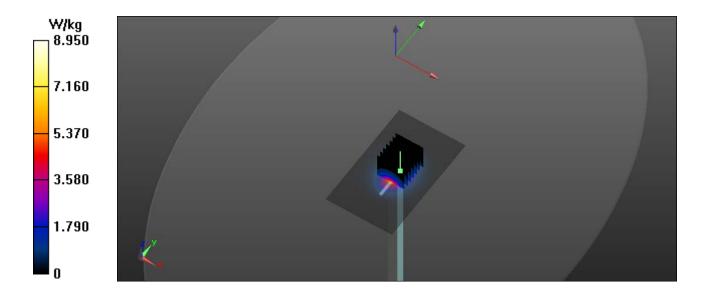
Test Date: Date: 6/24/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.43, 7.43, 7.43); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

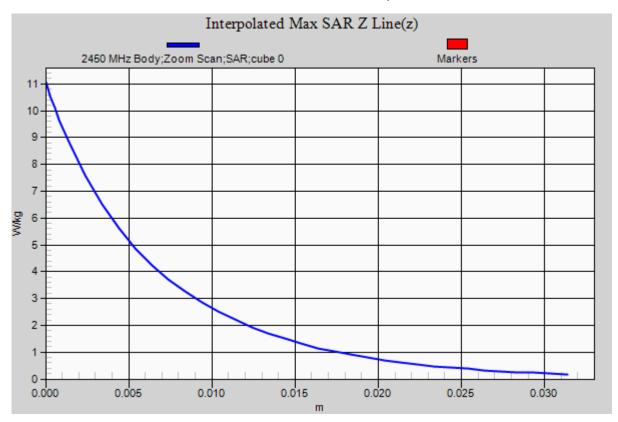
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/2300 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.89 W/kg


Body Verification/2300 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.467 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 11.02 W/kg

Pin= 100 mW

SAR(1 g) = 4.77 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 8.95 W/kg

RF Exposure Lab

Plot 6

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003

Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: f = 2550 MHz, σ = 2.12 S/m; ε_r = 51.81; ρ = 1000 kg/m³

Phantom section: Flat Section

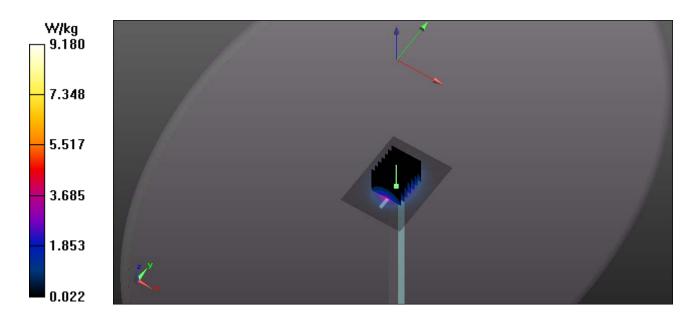
Test Date: Date: 6/24/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

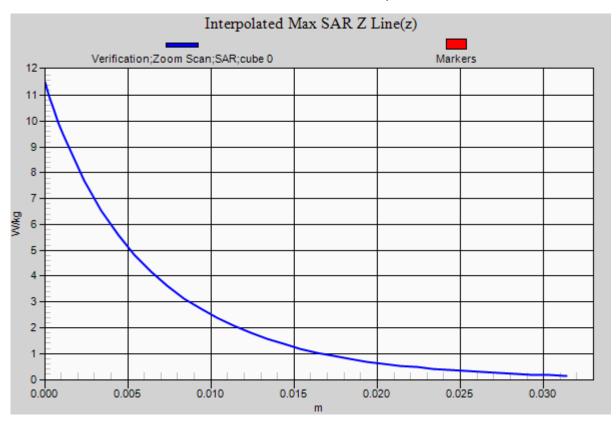
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.12 W/kg


2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.683 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 11.3 W/kg

Pin= 100 mW

SAR(1 g) = 5.33 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 9.18 W/kg

RF Exposure Lab

Plot 7

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz, σ = 1.96 S/m; ε_r = 52.64; ρ = 1000 kg/m³

Phantom section: Flat Section

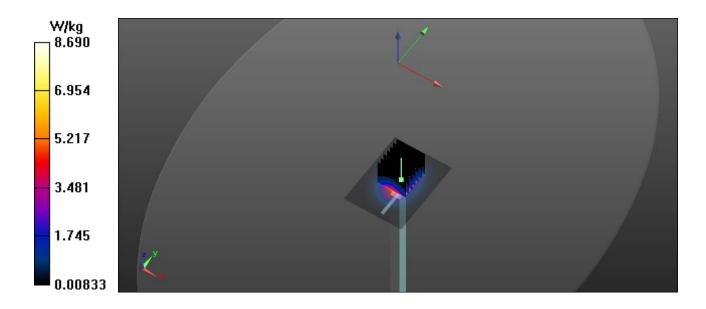
Test Date: Date: 6/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7531; ConvF(7.62, 7.62, 7.62); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA002AA; Serial: 1065

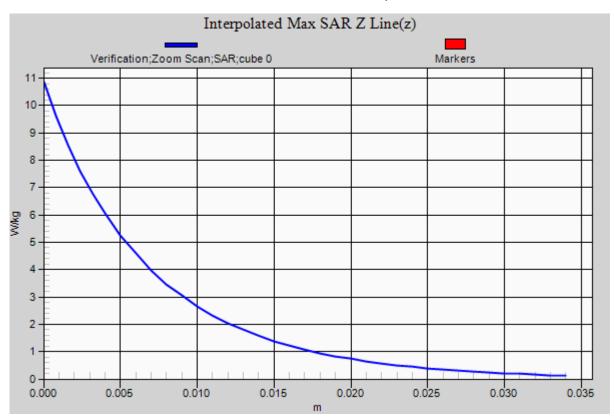
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2450 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.68 W/kg


2450 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.751 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 10.7 W/kg

P_{IN}=100 mW

SAR(1 g) = 5.18 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 5.91 W/kg

RF Exposure Lab

Plot 8

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.35$ S/m; $\epsilon_r = 48.955$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 6/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7531; ConvF(4.52, 4.52, 4.52); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA002AA; Serial: 1065

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

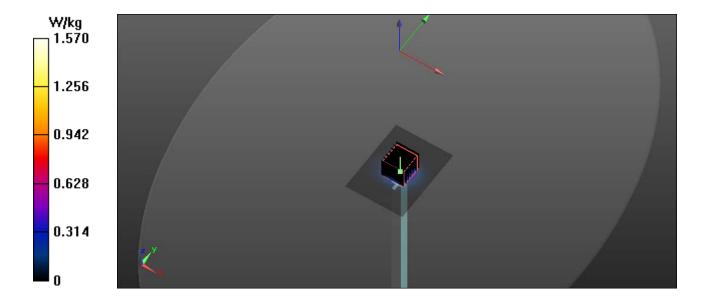
5250 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

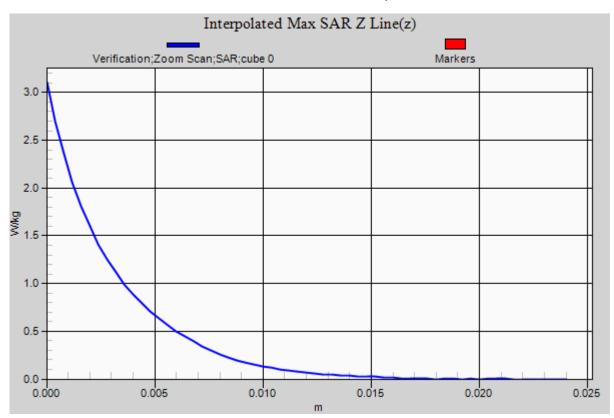
Maximum value of SAR (interpolated) = 1.55 W/kg

5250 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.759 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 3.09 W/kg

P_{IN}=10 mW


SAR(1 g) = 0.776 W/kg; SAR(10 g) = 0.225 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.58 W/kg

RF Exposure Lab

Plot 9

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.74 \text{ S/m}$; $\epsilon_r = 48.43$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

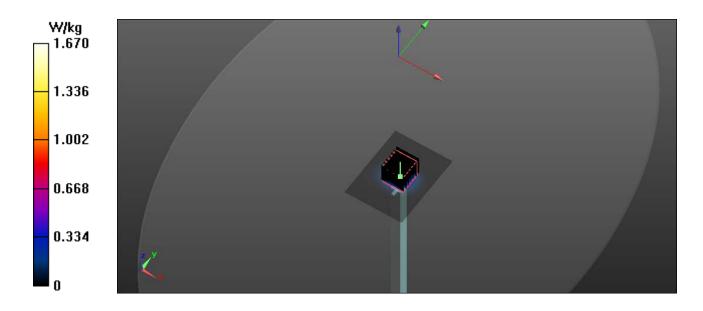
Test Date: Date: 6/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7531; ConvF(4.01, 4.01, 4.01); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA002AA; Serial: 1065

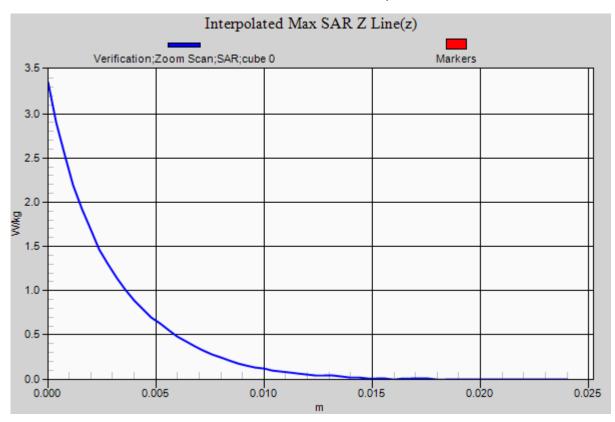
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5600 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.68 W/kg


5600 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.852 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.37 W/kg

P_{IN}=10 mW

SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.218 W/kg Maximum value of SAR (measured) = 1.71 W/kg

RF Exposure Lab

Plot 10

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.91$ S/m; $\epsilon_r = 48.205$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

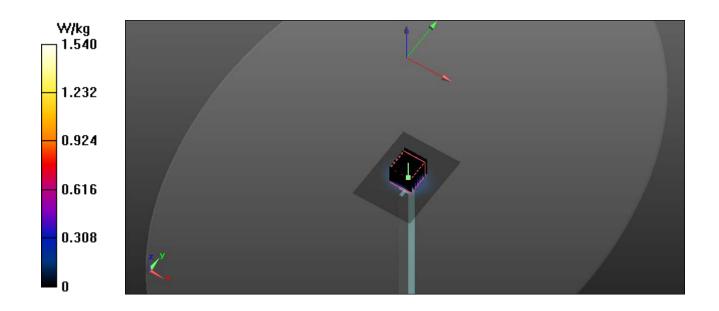
Test Date: Date: 6/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7531; ConvF(4.08, 4.08, 4.08); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA002AA; Serial: 1065

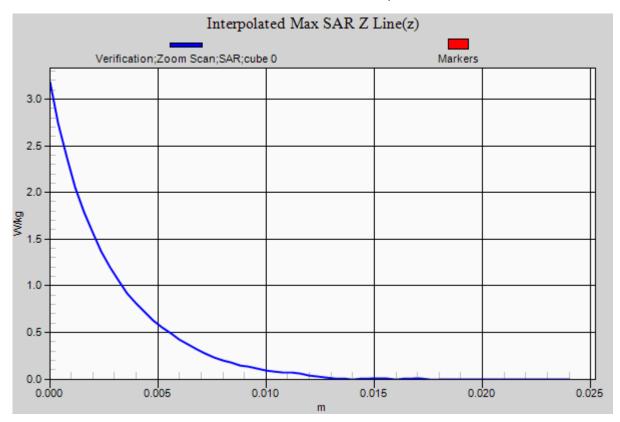
Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5800 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.54 W/kg


5800 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.812 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 3.19 W/kg

P_{IN}=10 mW

SAR(1 g) = 0.766 W/kg; SAR(10 g) = 0.219 W/kg Maximum value of SAR (measured) = 1.57 W/kg

Appendix B – SAR Test Data Plots

RF Exposure Lab

Plot 1

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.978 \text{ S/m}$; $\epsilon_r = 55.228$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 6/26/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz B12 LTE/Top Mid 1 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.06 W/kg

750 MHz B12 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 9.407 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 0.916 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.83 W/kg

750 MHz B12 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 9.407 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 q) = 0.582 W/kq

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.74 W/kg

RF Exposure Lab

Plot 2

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 1 S/m; ϵ_r = 54.982; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/26/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz B13 LTE/Top Mid 1 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.936 W/kg

750 MHz B13 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.073 V/m; Power Drift = 0.04 dB

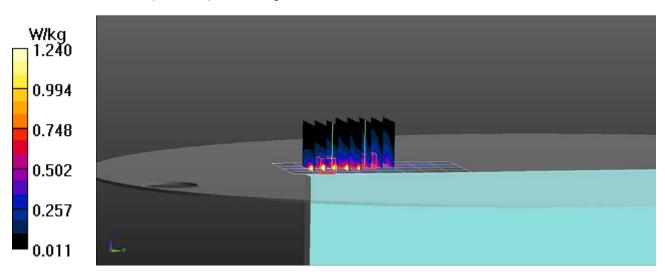
Peak SAR (extrapolated) = 4.21 W/kg

SAR(1 g) = 0.945 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.09 W/kg

750 MHz B13 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 8.073 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.05 W/kg SAR(1 g) = 0.528 W/kg

5/11(1 g) = 0.020 11/11g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 W/kg

RF Exposure Lab

Plot 3

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 793 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used (interpolated): f = 793 MHz; σ = 1.003 S/m; ϵ_r = 54.938; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 6/26/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz B14 LTE/Top Mid 1 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.878 W/kg

750 MHz B14 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 7.438 V/m; Power Drift = -0.01 dB

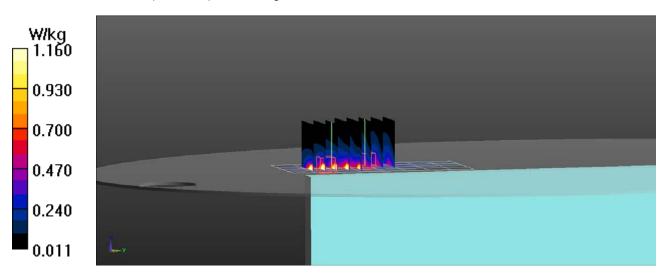
Peak SAR (extrapolated) = 3.90 W/kg

SAR(1 g) = 0.998 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.98 W/kg

750 MHz B14 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 7.438 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.467 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 W/kg

RF Exposure Lab

Plot 4

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1 \text{ S/m}$; $\varepsilon_r = 54.902$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 6/27/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.34, 9.34, 9.34); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz WCDMA/Top Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.902 W/kg

835 MHz WCDMA/Top Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.748 V/m; Power Drift = -0.04 dB

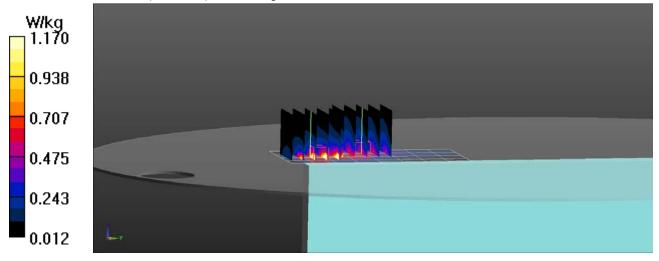
Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 0.842 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.88 W/kg

835 MHz WCDMA/Top Mid/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.748 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.503 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.17 W/kg

RF Exposure Lab

Plot 5

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 819 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 819 MHz; σ = 0.99 S/m; ϵ_r = 54.98; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 6/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.34, 9.34, 9.34); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

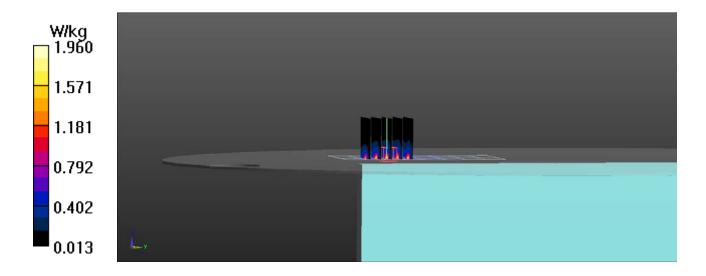
835 MHz B26 LTE/Top Low 1 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.08 W/kg

835 MHz B26 LTE/Top Low 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 6.283 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 0.895 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.96 W/kg

RF Exposure Lab

Plot 6

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.503 \text{ S/m}$; $\epsilon_r = 53.035$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 6/27/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.95, 7.95, 7.95); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

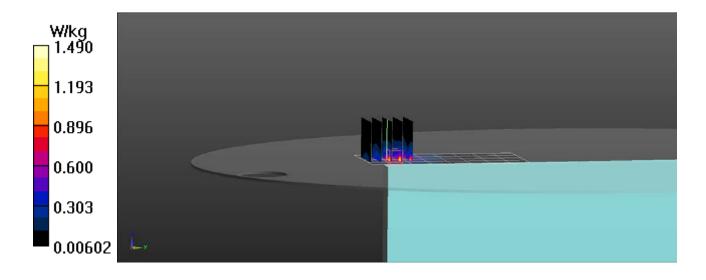
Procedure Notes:

1750 MHz WCDMA/Top Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.831 W/kg

1750 MHz WCDMA/Top Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 3.099 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.22 W/kg

SAR(1 g) = 0.785 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.49 W/kg

RF Exposure Lab

Plot 7

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1745 MHz; σ = 1.515 S/m; ϵ_r = 53; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/26/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.95, 7.95, 7.95); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

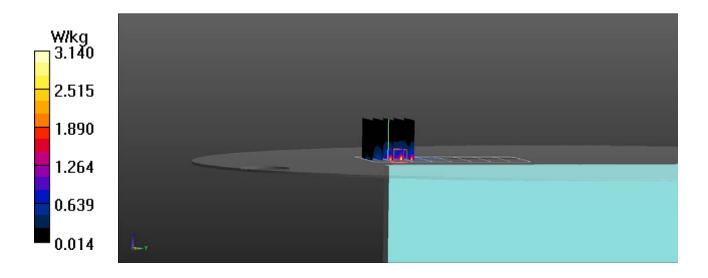
1750 MHz B66 LTE/Top Mid 1 RB 49 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.15 W/kg

1750 MHz B66 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 4.450 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 4.55 W/kg

SAR(1 g) = 0.960 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.14 W/kg

RF Exposure Lab

Plot 8

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.54 \text{ S/m}$; $\epsilon_r = 52.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 6/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

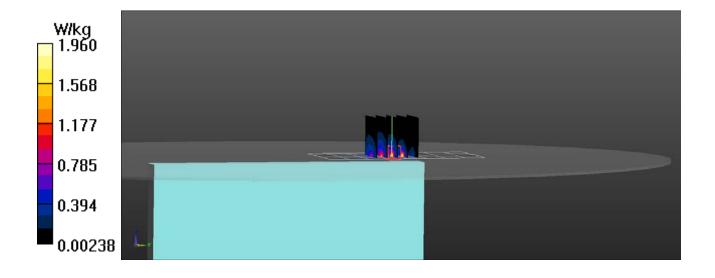
Probe: EX3DV4 - SN3662; ConvF(7.69, 7.69, 7.69); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz WCDMA/Left Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.729 W/kg


1900 MHz WCDMA/Left Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.153 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.09 W/kg

SAR(1 g) = 0.875 W/kg

Maximum value of SAR (measured) = 1.96 W/kg

RF Exposure Lab

Plot 9

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used (interpolated): f = 1882.5 MHz; σ = 1.54 S/m; ϵ_r = 52.443; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.69, 7.69, 7.69); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

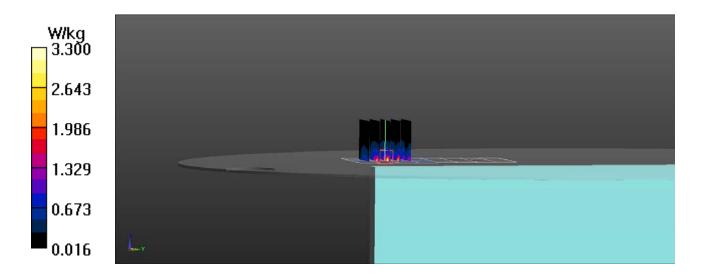
1900 MHz B25 LTE/Top Mid 1 RB 49 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.58 W/kg

1900 MHz B25 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 2.115 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.71 W/kg

SAR(1 g) = 0.915 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.30 W/kg

RF Exposure Lab

Plot 10

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2310 MHz; σ = 1.82 S/m; ϵ_r = 52.02; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 6/24/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.43, 7.43, 7.43); Calibrated: 4/24/2019;

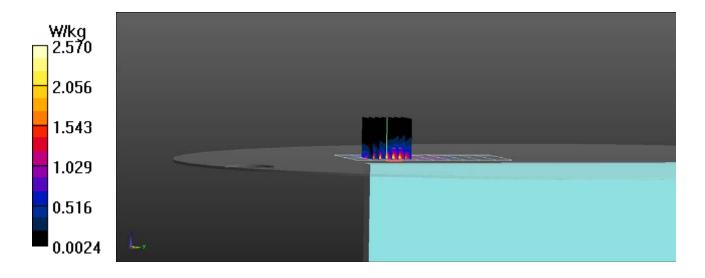
Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2300 MHz B30 LTE/Top Mid 1 RB 24 Offset/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 2.51 W/kg

2300 MHz B30 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 6.010 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.02 W/kg

SAR(1 g) = 0.927 W/kg

Maximum value of SAR (measured) = 2.57 W/kg

RF Exposure Lab

Plot 11

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used: f = 2560 MHz; σ = 2.14 S/m; ϵ_r = 51.79; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 6/25/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2600 MHz B7 LTE/Top High 1 RB 49 Offset/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.44 W/kg

2600 MHz B7 LTE/Top High 1 RB 49 Offset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

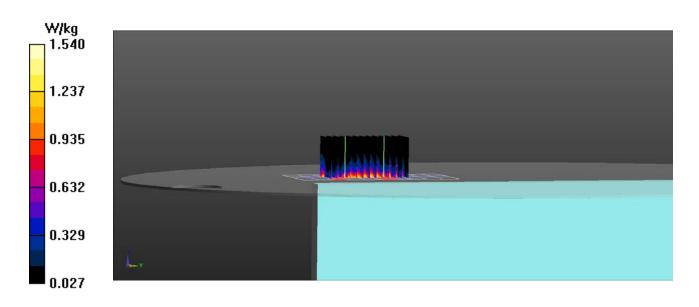
Reference Value = 6.542 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 0.919 W/kg

Maximum value of SAR (measured) = 1.54 W/kg

2600 MHz B7 LTE/Top High 1 RB 49 Offset/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 6.542 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.856 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

RF Exposure Lab

Plot 12

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:1

Medium: MSL2550; Medium parameters used (extrapolated): f = 2593 MHz, $\sigma = 2.196$ S/m; $\epsilon_r = 51.727$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 6/24/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2500 MHz B41 LTE/Top Mid 1 RB 49 Offset/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm

Info: Extrapolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.46 W/kg

2500 MHz B41 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.488 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.19 W/kg

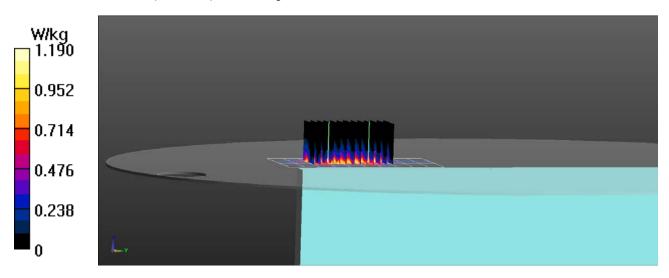
SAR(1 g) = 0.850 W/kg

Info: Extrapolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.59 W/kg

2500 MHz B41 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 4.488 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 0.693 W/kg

Info: Extrapolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.19 W/kg

RF Exposure Lab

Plot 13

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.947$ S/m; $\epsilon_r = 52.666$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 6/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7531; ConvF(7.62, 7.62, 7.62); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

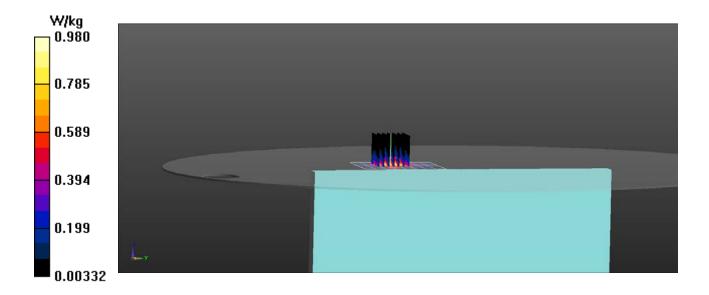
Procedure Notes:

2450 MHz Inpaq/Tablet Top Tx2 Mid/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.862 W/kg

2450 MHz Inpaq/Tablet Top Tx2 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.557 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.659 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.980 W/kg

RF Exposure Lab

Plot 14

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.3$ S/m; $\epsilon_r = 48.93$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

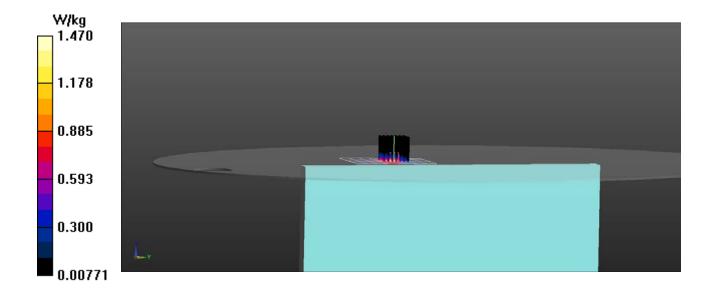
Test Date: Date: 6/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7531; ConvF(4.52, 4.52, 4.52); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


5200 MHz Inpaq/Tablet Top Tx2 40/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.31 W/kg

5200 MHz Inpaq/Tablet Top Tx2 40/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.789 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 0.754 W/kg

Maximum value of SAR (measured) = 1.47 W/kg

RF Exposure Lab

Plot 15

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5620 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5620 MHz; $\sigma = 5.76$ S/m; $\epsilon_r = 48.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 6/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7531; ConvF(4.01, 4.01, 4.01); Calibrated: 6/3/2019;

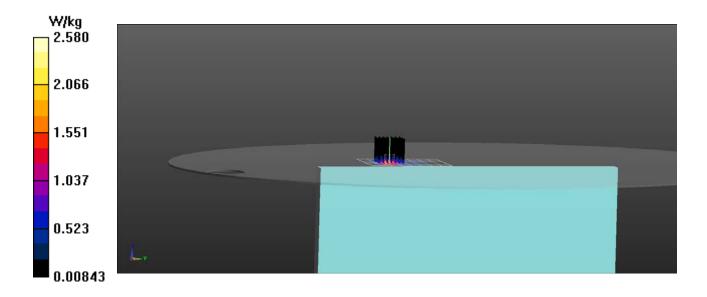
Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5600 MHz Inpaq/Tablet Top Tx2 124/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.87 W/kg

5600 MHz Inpaq/Tablet Top Tx2 124/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 3.125 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 5.47 W/kg

SAR(1 g) = 1.19 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

RF Exposure Lab

Plot 16

DUT: HSN-Q20C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5825 MHz; $\sigma = 5.998$ S/m; $\epsilon_r = 48.093$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 6/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7531; ConvF(4.08, 4.08, 4.08); Calibrated: 6/3/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

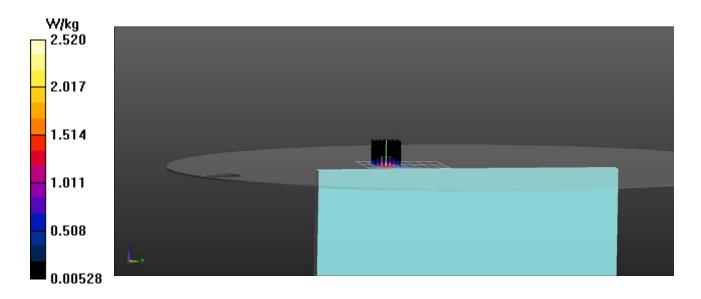
5800 MHz Inpaq/Tablet Top Tx2 165/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.20 W/kg

5800 MHz Inpaq/Tablet Top Tx2 165/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm


Reference Value = 1.467 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 5.92 W/kg

SAR(1 g) = 1.13 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.52 W/kg

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: EX3-3662_Apr19

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3662

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date: April 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245 03-Apr-19 (No. 217-02893)		Apr-20
Reference 20 dB Attenuator	Reference 20 dB Attenuator SN: S5277 (20x) 04-Apr-19 (No		Apr-20
DAE4	SN: 660 19-Dec-18 (No. DAE4-6		Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Claudio Leubler

Eaboratory Technician

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 25, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid sensitivity in free space

NORMx,y,z ConvF

sensitivity in TSL / NORMx,v,z DCP diode compression point

CF A, B, C, D

crest factor (1/duty cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*, *z*: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.43	0.45	0.50	± 10.1 %
DCP (mV) ^B	100.7	100.3	97.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc [±] (k=2)
0	cw	Х	0.0	0.0	1.0	0.00	157.7	±1.9 %	± 4.7 %
		Υ	0.0	0.0	1.0		152.9		
		Υ	0.0	0.0	1.0		153.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-22.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3662_Apr19

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
. ((0,)	OUIII X	00	00 2	Aipila	\	()
750	41.9	0.89	9.57	9.57	9.57	0.49	0.80	± 12.0 %
900	41.5	0.97	9.12	9.12	9.12	0.51	0.80	± 12.0 %
1750	40.1	1.37	8.23	8.23	8.23	0.38	0.85	± 12.0 %
1900	40.0	1.40	7.90	7.90	7.90	0.37	0.85	± 12.0 %
2300	39.5	1.67	7.50	7.50	7.50	0.39	0.85	± 12.0 %
2450	39.2	1.80	7.33	7.33	7.33	0.41	0.84	± 12.0 %
2600	39.0	1.96	7.21	7.21	7.21	0.42	0.85	± 12.0 %
3500	37.9	2.91	7.07	7.07	7.07	0.30	1.20	± 13.1 %
3700	37.7	3.12	6.92	6.92	6.92	0.35	1.25	± 13.1 %
5250	35.9	4.71	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX3-3662_Apr19

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

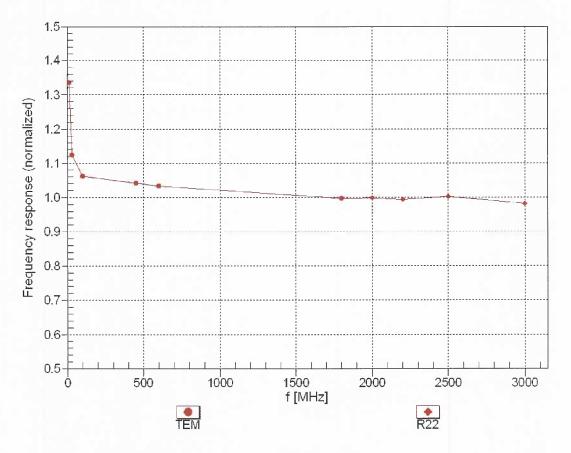
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Calibration Parameter Determined in Body Tissue Simulating Media

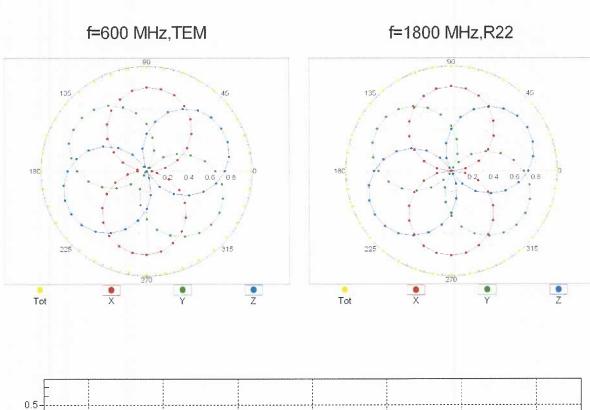
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.55	9.55	9.55	0.47	0.80	± 12.0 %
900	55.0	1.05	9.34	9.34	9.34	0.45	0.80	± 12.0 %
1750	53.4	1.49	7.95	7.95	7.95	0.40	0.85	± 12.0 %
1900	53.3	1.52	7.69	7.69	7.69	0.43	0.84	± 12.0 %
2300	52.9	1.81	7.43	7.43	7.43	0.40	0.86	± 12.0 %
2450	52.7	1.95	7.36	7.36	7.36	0.40	0.85	± 12.0 %
2600	52.5	2.16	7.12	7.12	7.12	0.22	0.97	± 12.0 %
3500	51.3	3.31	6.83	6.83	6.83	0.30	1.25	± 13.1 %
3700	51.0	3.55	6.52	6.52	6.52	0.35	1.25	± 13.1 %
5250	48.9	5.36	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


Certificate No: EX3-3662_Apr19 Page

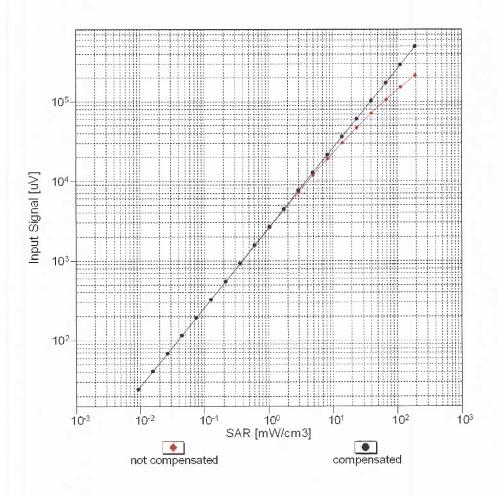
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

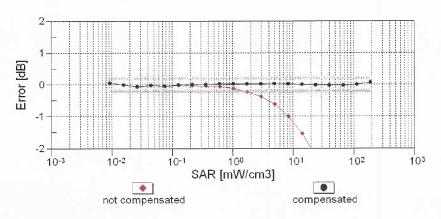
the ConvF uncertainty for indicated target tissue parameters.


Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

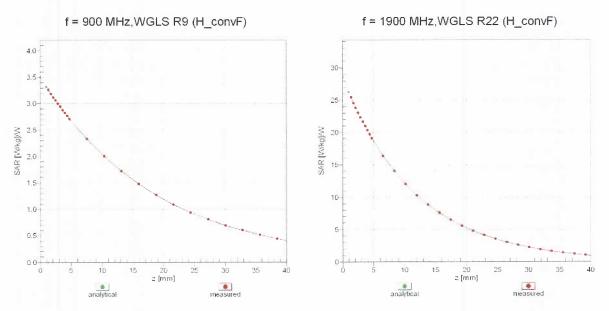

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

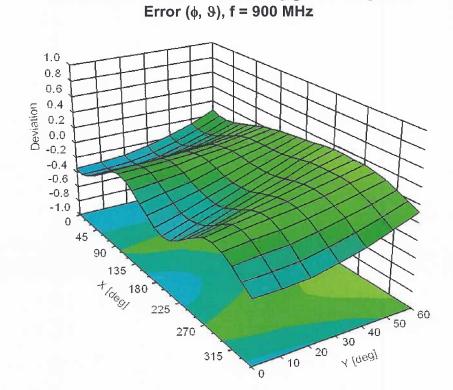


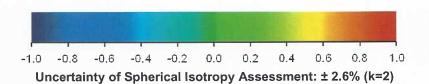
0.5 -

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


April 24, 2019

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: EX3-7531_Jun19

S

C

S

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7531

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

June 3, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20 Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Jun-20

Name

Function

Signature

Calibrated by:

Jeton Kastrati

Laboratory Technician

Let M

Approved by:

Katja Pokovic

Technical Manager

Issued: June 3, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7531_Jun19

Page 1 of 10

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7531 Jun19

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.39	0.47	0.39	± 10.1 %
DCP (mV) ^B	97.9	95.2	100.9	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
	CW	X	0.0	0.0	1.0	0.00	139.8	±3.5 %	± 4.7 %
		Υ	0.0	0.0	1.0		132.9		
		Υ	0.0	0.0	1.0		137.4		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	
Mechanical Surface Detection Mode	6.4
Optical Surface Detection Mode	enabled
	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	
Tip Diameter	9 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm
Recommended Measurement Distance from Surface	

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	13.01	13.01	13.01	0.00	1.00	± 13.3 %
220	49.0	0.81	12.68	12.68	12.68	0.00	1.00	± 13.3 %
300	45.3	0.87	12.23	12.23	12.23	0.06	1.30	± 13.3 %
450	43.5	0.87	11.43	11.43	11.43	0.13	1.30	± 13.3 %
600	42.7	0.88	10.58	10.58	10.58	0.03	1.30	± 13.3 %
1450	40.5	1.20	8.85	8.85	8.85	0.38	0.80	± 12.0 %
1640	40.2	1.31	8.71	8.71	8.71	0.28	0.91	± 12.0 %
2450	39.2	1.80	7.58	7.58	7.58	0.28	0.96	± 12.0 %
5250	35.9	4.71	5.24	5.24	5.24	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.69	4.69	4.69	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.78	4.78	4.78	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

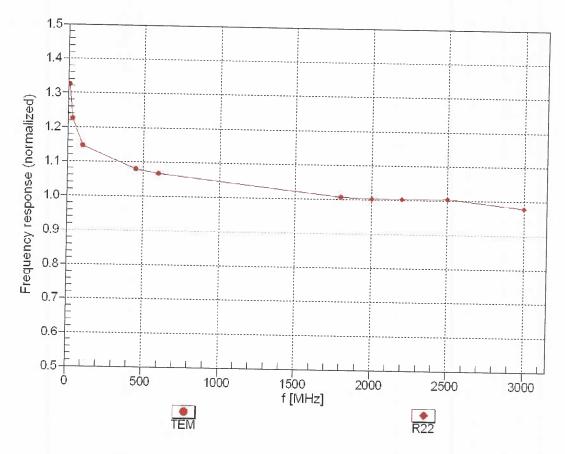
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Body Tissue Simulating Media

	Poleting Out Car									
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)		
150	61.9	0.80	12.57	12.57	12.57	0.00	1.00	± 13.3 %		
220	60.2	0.86	12.08	12.08	12.08	0.00	1.00	± 13.3 %		
300	58.2	0.92	11.64	11.64	11.64	0.03	1.20	± 13.3 %		
450	56.7	0.94	11.18	11.18	11.18	0.09	1.20	± 13.3 %		
600	56.1	0.95	10.55	10.55	10.55	0.08	1.20	± 13.3 %		
1640	53.7	1.42	8.53	8.53	8.53	0.26	0.99	± 12.0 %		
2450	52.7	1.95	7.62	7.62	7.62	0.28	0.95	± 12.0 %		
5250	48.9	5.36	4.52	4.52	4.52	0.50	1.90	± 13.1 %		
5600	48.5	5.77	4.01	4.01	4.01	0.50	1.90	± 13.1 %		
5750	48.3	5.94	4.08	4.08	4.08	0.50	1.90	± 13.1 %		

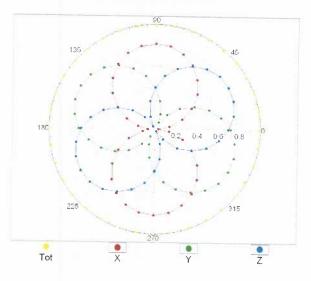

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

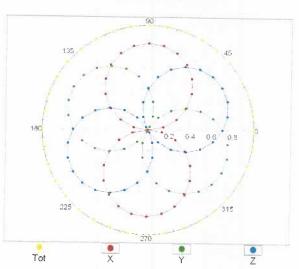
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

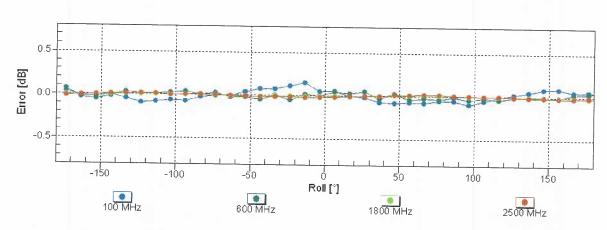
the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

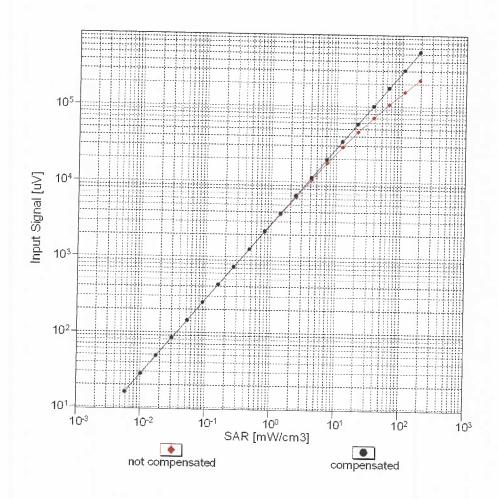
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

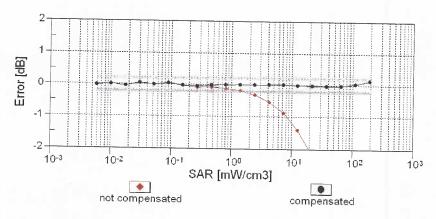



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

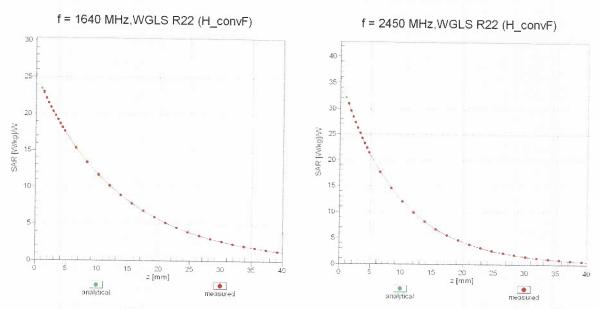

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

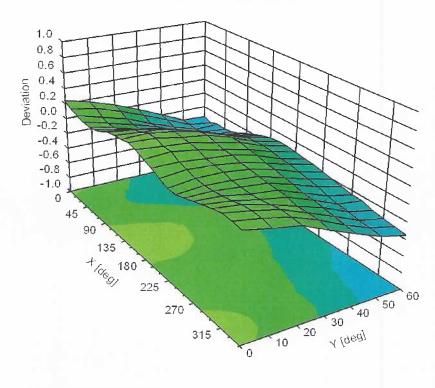
f=1800 MHz,R22

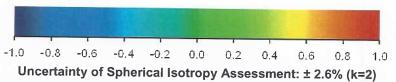




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

Report Number: SAR.20190624

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: D750V3-1016_Jul18

CALIBRATION CERTIFICATE

Object **D750V3 - SN:1016**

Calibration procedure(s) QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: July 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
			342
Approved by:	Katja Poković	Technical Manager	A.
			oppidition (

Issued: July 16, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1016_Jul18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.23 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.38 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.55 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.64 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1016_Jul18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 0.0 jΩ
Return Loss	- 29.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.038 ns
, ,	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2010

Certificate No: D750V3-1016_Jul18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1016

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017

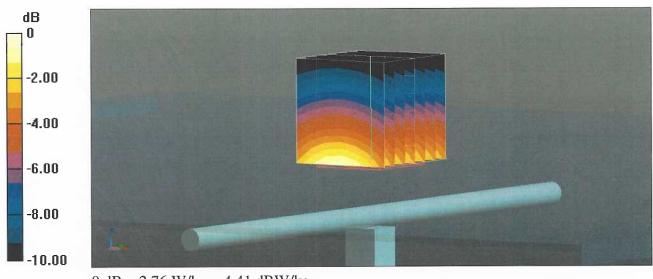
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

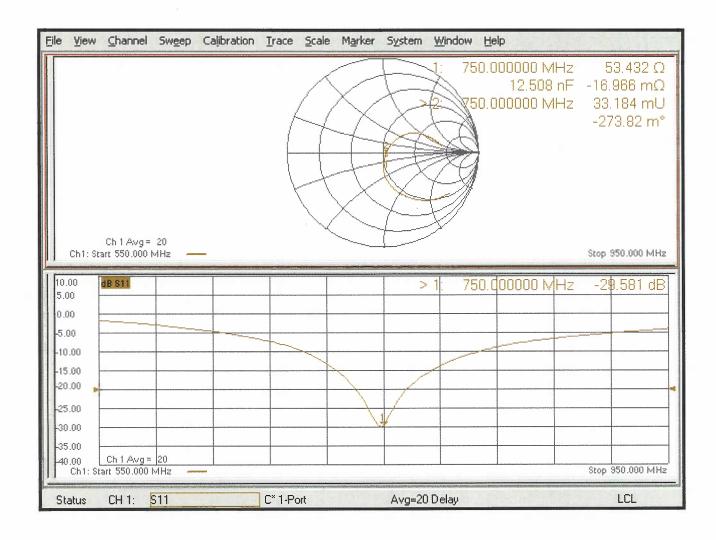
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.03 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.10 W/kg


SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.35 W/kg

Maximum value of SAR (measured) = 2.76 W/kg

0 dB = 2.76 W/kg = 4.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1016

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017

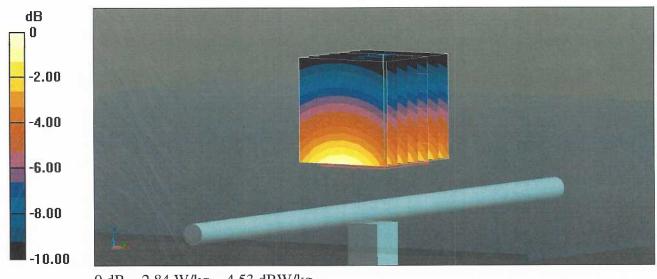
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

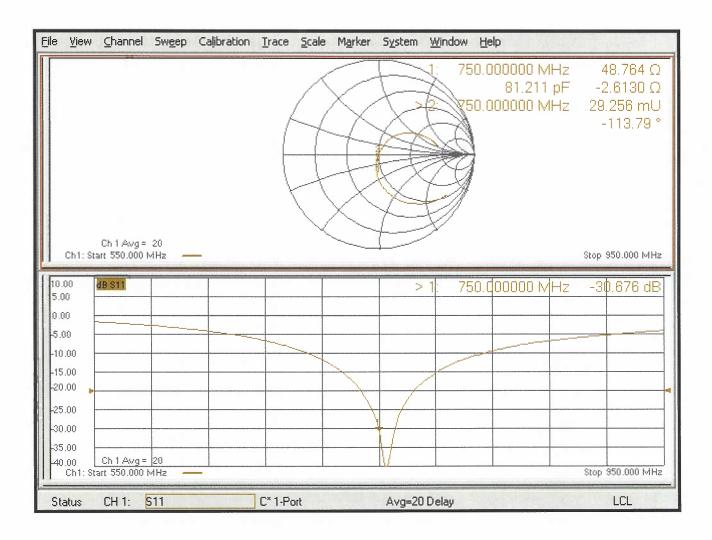
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.68 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.18 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (measured) = 2.84 W/kg

0 dB = 2.84 W/kg = 4.53 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: D835V2-4d089 Jul18

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d089

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	mil 1
			agreed -
		LANGSTON, LONGO CONTO O CLARADODAS, PROPRENTANTO, ALLE CONTO A CANADA AND	or the great and the control of the
Approved by:	Katja Pokovic	Technical Manager	
			- 1

Issued: July 17, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d089_Jul18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d089_Jul18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.44 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The tenewing parameters and tenediments and approximately	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.57 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.24 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d089_Jul18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω - 3.3 jΩ
Return Loss	- 28.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω - 5.3 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.391 ns	
Electrical Belay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 17, 2008

Certificate No: D835V2-4d089_Jul18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d089

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017

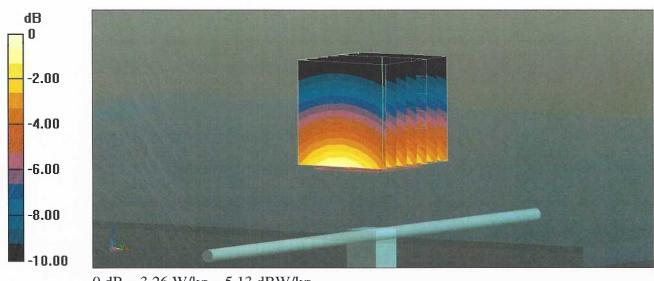
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

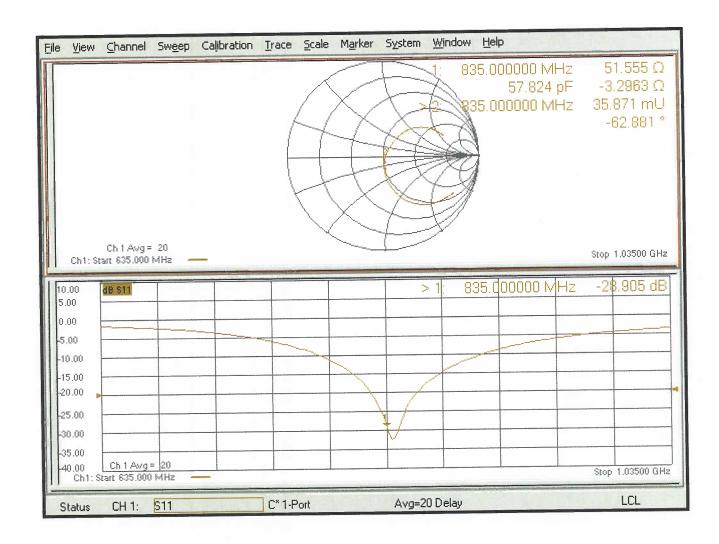
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.80 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.70 W/kg


SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d089

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017

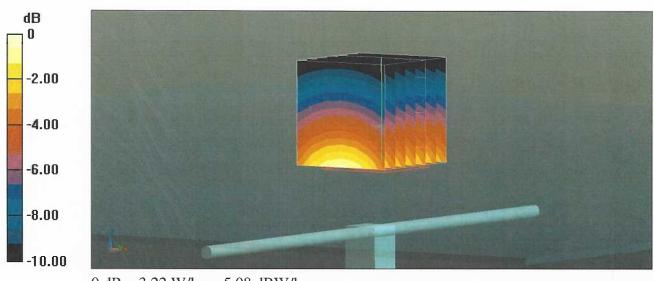
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

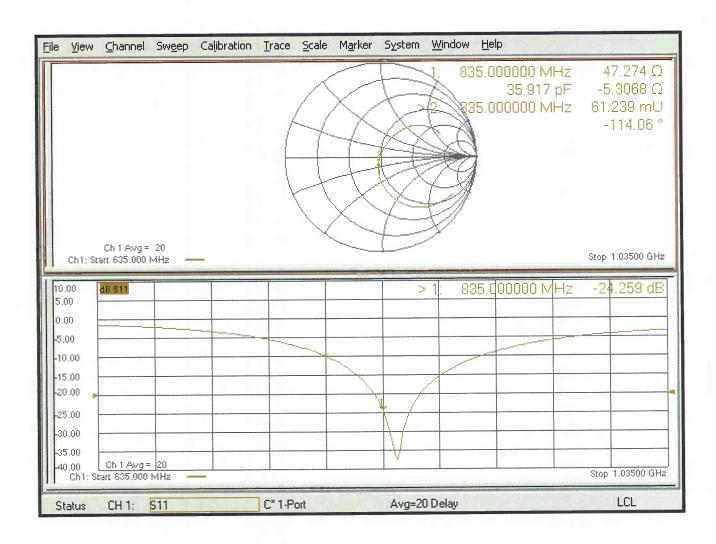
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.59 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.60 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.22 W/kg

0 dB = 3.22 W/kg = 5.08 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: D1750V2-1018_Jul18

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1018

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 20, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	MA.
Approved by:	Katja Pokovic	Technical Manager	ALC.

Issued: July 20, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1018_Jul18

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1018_Jul18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1018_Jul18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 1.3 jΩ
Return Loss	- 36.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.2 Ω - 0.1 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.221 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 11, 2009

Certificate No: D1750V2-1018_Jul18

DASY5 Validation Report for Head TSL

Date: 20.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1018

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017

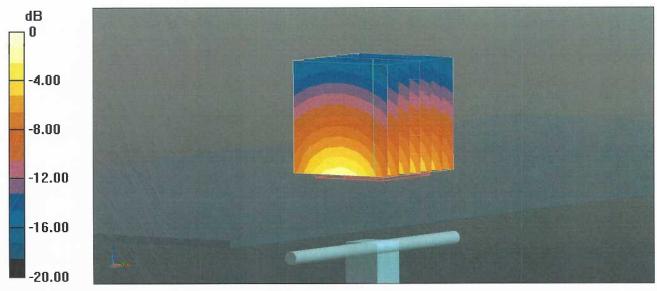
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

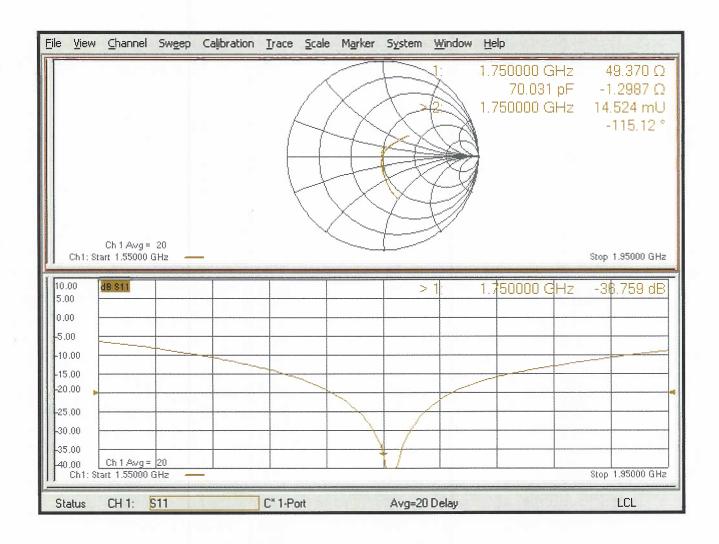
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.7 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 16.4 W/kg


SAR(1 g) = 8.95 W/kg; SAR(10 g) = 4.73 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Head TSL

