

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

**Test Report acc. to FCC Title 47 CFR Part 15
relating to
Scemtec Automation GmbH
PDD Reader**

**Title 47 - Telecommunication
Part 15 - Radio Frequency Devices
Subpart C – Intentional Radiators
Measurement Procedure:
ANSI C63.4-2009**

EUT: PPD Reader
 FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

Manufacturer	
Manufacturer's grante code	B7O
Manufacturer's address	Scemtec Automation GmbH Auf'm Angst 3 42553 Velbert Germany Phone: +49 (0) 2053 493655 Fax: + 49 (0) 2053 493649 Email: benedict.juretko@scemtecautomation.de
Manufacturer	Scemtec Automation GmbH
Relevant standard used	47 CFR Part 15C - Intentional Radiators ANSI C63.4-2009

Test Report prepared by	
Technical engineer	Ralf Trepper m. dudde hochfrequenz-technik (laboratory) Rottland 5a 51429 Bergisch Gladbach Germany Phone: +49 2207 96890 Fax: +49 2207 968920 Email: m.duddelabor@dudde.com

Equipment Under Test (EUT)	
Equipment category	Transceiver
Trade name	LOC locatesolution
Type designation	PPD Reader
Serial no.	---
Variants	---

EUT: PPD Reader
 FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

1. Test result summary

Clause	Requirements headline	Test result			Report page number
8.1	Antenna requirement	Pass	Fail	N.t.*	10
8.2	Conducted limits	Pass	Fail	N.t.*	11 to 14
8.3	Restricted bands of operation	Pass	Fail	N.t.*	15 to 17
8.4	Radiated emission limits, general requirements	Pass	Fail	N.t.*	18 to 23
8.5	Bandwidth	Pass	Fail	N.t.*	24
8.6	Peak output power	Pass	Fail	N.t.*	25 to 30
8.7	Out of band emissions	Pass	Fail	N.t.*	31 to 35
8.8	Power spectral density	Pass	Fail	N.t.*	36 to 38
8.9	Radio frequency hazard	Pass	Fail	N.t.*	39

* Not tested

The equipment meets the requirements	Yes	No
--------------------------------------	-----	----

Signature:

 (Technician)

Signature:

 (Manager)

Table of contents

1. Test result summary	3
2. Introduction	6
3. Testing laboratory	6
4. Applicant	7
5. Product and product documentation	7
6. Conclusions, observations and comments	8
7. Operational description	9
8.1 Antenna requirement	10
8.1.1 Regulation	10
8.1.2 Result	10
8.2 Conducted limits	11
8.2.1 Regulation	11
8.2.2 Test equipment	12
8.2.3 Test procedures	12
8.2.4 Result	13
8.3 Restricted bands of operation	14
8.3.1 Regulation	14
8.3.2 Result	16
8.4 Radiated emission limits, general requirements	17
8.4.1 Regulation	17
8.4.2 Test equipment	18
8.4.3 Test procedure	19
8.4.4 Calculation of the field strength	20
8.4.5 Result	21
8.5 Bandwidth	23
8.5.1 Regulation	23
8.5.2 Result	24
8.6 Peak output power	25
8.6.1 Regulation	25
8.6.2 Test equipment	27
8.6.3 Test procedure	28
8.6.4 Calculation of the peak power (radiated)	29
8.6.7 Result	30
8.7 Out of band emission	31
8.7.1 Regulation	31
8.7.2 Calculation of the “Out of band emissions”	31
8.7.3 Test equipment	32
8.7.4 Test procedure	33
8.7.5 Result	34
8.8 Power spectral density	36
8.8.1 Regulation	36
8.8.3 Test equipment	36
8.8.4 Test procedure	37

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.8.5 Result	38
8.9 Radio frequency hazard	39
8.9.1 Regulation	39
8.9.2 Test result	39
9. Additional information to the test report	40

2. Introduction

This test report consists of:

- Test result summary
- List of contents
- Introduction and further information
- Performance assessment
- Detailed test information

All pages have been numbered consecutively and bear the m. dudde hochfrequenz-technik logo, the test report number, the date, the test specification in its current version as well as the type designation of the EUT. The total number of pages in this report is **41**.

The tests were carried out at:

- m. dudde hochfrequenz-technik, D-51429 Bergisch Gladbach

in a representative assembly and in accordance with the test methods and/or requirements stated in:

FCC Title 47 CFR Part 15 Subpart C & ANSI C63.4-2009

The sample of the product was received on:

- 2012-01-24

The tests were carried out in the following period of time:

- 2012-01-24 – 2012-01-31

3. Testing laboratory

m. dudde hochfrequenz-technik
Rottland 5a, 51429 Bergisch Gladbach, Germany

Phone: +49 - (0) 22 07 / 96 89-0
Fax: +49 - (0) 22 07 / 96 89-20

- FCC Registration Number: 699717

Accredited by:

DAkkS Deutsche Akkreditierungsstelle GmbH
DAkkS accreditation number: D-PL-12053-01

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

4. Applicant

Company name : Scemtec Automation GmbH
Address : Auf'm Angst 3
: 42553 Velbert
Country : Germany
Telephone : +49 (0) 2053 493655
Fax : + 49 (0) 2053 493649
Email : benedict.juretko@scemtecautomation.de
Date of order : 2012-01-24
References : Mr. Benedict Juretko

5. Product and product documentation

Samples of the following apparatus were submitted for testing:

Manufacturer : Scemtec Automation GmbH
Trademark : LOC locatesolution
Type designation : **PPD Reader**
Hardware version : PPD Reader
Serial number : ---
Software release : ---
Type of equipment : Non specific SRD
Power used : 12 V DC
Frequency used : 2.405 GHz to 2.480 GHz (ZigBee, IEEE 802.15.4)
Generated frequencies : 2.405 GHz to 2.480 GHz (Carrier), 16 MHz (Crystal), 2*32 MHz (Crystal)
: 2*32 kHz (Crystal), 32.768 kHz (Crystal)
ITU emission class : 4M63 W1D
FCC ID : B7OPPDREADER

For issuing this report the following product documentation was used:

Description	Date	Identifications
External photographs of the Equipment Under Test (EUT)	2012-05-31	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2012-05-31	Annex no. 2
Channel occupancy / bandwidth	2012-05-31	Annex no. 3
Label sample	2012-05-31	Annex no. 4
Functional description / User manual	2012-05-31	Annex no. 5
Test setup photos	2012-05-31	Annex no. 6
Block diagram	2012-05-31	Annex no. 7
Operational description	2012-05-31	Annex no. 8
Schematics	2012-05-31	Annex no. 9
Parts list	2012-05-31	Annex no. 10

6. Conclusions, observations and comments

The test report will be filed at m. dudde hochfrequenz-technik for a period of 10 years following the issue of this report. It may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz-technik.

The results of the tests as stated in this report are exclusively applicable to the EUT as identified in this report. m. dudde hochfrequenz-technik cannot be held liable for properties of the EUT that have not been observed during these tests.

m. dudde hochfrequenz-technik assumes the sample to comply with the requirements of FCC Title 47 CFR Part 15 for the respective test sector, if the test results turn out positive.

Comments: ---

Date	: 2012-05-31	Date	: 2012-05-31
Name	: Ralf Trepper	Name	: Manfried Dudde
Function	: Technician	Function	: Manager
Signature	:	Signature	:

7. Operational description

7.1 EUT details

Transceiver PPD Reader (acc. to IEEE 802.15.4)

The person Proximity Detection (PPM) system locates people and objects using active RFID technology

7.2 EUT configuration

With the aid of test software the PPD reader can be set to in all the required test modes

7.3 EUT measurement description

Radiated measurements

The **Transceiver PPD Reader** was tested in a typical fashion. During preliminary emission tests the **Transceiver PPD Reader** was operated in continuous transmitting mode for worst case emission mode investigation. Therefore, the final qualification testing was completed with **Transceiver PPD Reader** operated in continuous modes.

All tests were performed with the applicant's typical voltage: 12.0 V DC

In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical had been varied.

Conducted measurements

The device was connected to the artificial mains network via two external power supplies **PS18A** and this to the artificial mains network. It has been tested in two runs: first, with inactive **Transceiver PPD Reader**, second with activated **Transceiver PPD Reader** in read write mode to read user data and write user data into different tags.

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.1 Antenna requirement

8.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.1.2 Result

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	
-----------------------------------	-----	----	--

Broadband ceramic antenna (2.4 GHz ISM- Band).

N.t.* See page no. 40

8.2 Conducted limits

8.2.1 Regulation

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission(MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5	56	46
5 -30	60	50

*Decreases with the logarithm of the frequency

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

1) For carrier current system containing their fundamental emission within the frequency band 535–1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535–1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtainig their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

EUT: PPD Reader
 FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.1.2 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Receiver (9 kHz - 30MHz)	Schwarzbeck FMLK 1518 (428)	1518294 9360	08/2010	08/2013	---
Panorama- Monitor FMLK / VUMA	PAZ1550 (429)	---	---	---	---
Protector limiter 9 kHz - 30MHz 10 dB	Rhode & Schwarz ESH 3Z2 (272)	357,881052	09/2011	09/2013	Dudde
V-LISN 50 ohms//(50 uH+5 ohms)	RFT NNB 11 (72)	13835240	07/2010	07/2013	Dudde
V-LISN 50 ohms//(50 uH+5 ohms)	EMCO (49b)	9512-1227	07/2011	07/2014	Dudde
RF- cable	Aircell 1.5m [BNC/N]	K30	09/2011	09/2012	Dudde

8.2.3 Test procedures

The EUT and the additional equipment (if required) are connected to the main power through a line impedance stabilization network (LISN). The LISN must be appropriate to ANSI C63.4-2009 Section 7.

Additional equipment must also be connected to a second LISN with the same specifications described in the above sentence (if required).

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.2.4 Result

Tested with external AC/DC power supply (power supply PS18A)

CONDUCTED EMISSIONS (Section 15.207)						
Tested line	Emission frequency [MHz]	Receiver bandwidth [kHz]	Result quasi-peak [dB μ V]	Spec. limit (average) [dB μ V]	Margin [dB]	Remarks
L1	0.181	9	-2	55.8	57.8	* ¹
N	0.181	9	-2	55.8	57.8	* ¹
L1	0.301	9	-2	51.7	53.7	* ¹
N	0.301	9	-2	51.7	53.7	* ¹
L1	0.4307	9	46.0	47	1.0	* ²
N	0.4307	9	46.0	47	1.0	* ²
L1	0.6237	9	40.0	46	6.0	* ²
N	0.6237	9	40.0	46	6.0	* ²
L1	0.775	9	-2	46	48.0	* ¹
N	0.775	9	-2	46	48.0	* ¹
L1	0.850	9	-2	46	48.0	* ¹
N	0.850	9	-2	46	48.0	* ¹
L1	1.000	9	-2	46	48.0	* ¹
N	1.000	9	-2	46	48.0	* ¹
L1	1.443	9	26.0	46	20.0	* ²
N	1.443	9	26.0	46	20.0	* ²
L1	1.7527	9	31.5	46	14.5	* ²
N	1.7527	9	31.5	46	14.5	* ²
L1	2.4977	9	42.0	46	4.0	* ²
N	2.4977	9	42.0	46	4.0	* ²
L1	2.7447	9	36.0	46	10.0	* ²
N	2.7447	9	36.0	46	10.0	* ²
L1	3.2527	9	32.0	46	14.0	* ²
N	3.2527	9	32.0	46	14.0	* ²
L1	4.000	9	-2	46	48.0	* ¹
N	4.000	9	-2	46	48.0	* ¹
L1	6.7644	9	-2	50	52.0	* ¹
N	6.7644	9	-2	50	52.0	* ¹
L1	14.7497	9	30.0	50	20.0	* ²
N	14.7497	9	30.0	50	20.0	* ²
L1	21.7467	9	27.0	50	23.0	* ²
N	21.7467	9	27.0	50	23.0	* ²
L1	27.0575	9	-2	50	52.0	* ¹
N	27.0575	9	-2	50	52.0	* ¹

Remark: *¹ Noise level of the measuring instrument $\leq -2\text{dB}\mu\text{V}$ (0.009 – 30MHz)Remark: *² Quasi peak measurements lower than “Specified Average Limit”

The equipment meets the requirements	Yes	No	N.t.
Further test results are attached	Yes	No	Page no.

N.t.* See page no. 40

8.3 Restricted bands of operation

8.3.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this Section:

- (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
- (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
- (3) Cable locating equipment operated pursuant to Section 15.213.
- (4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.
- (5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
- (6) Transmitters operating under the provisions of Subpart D or F of this part.
- (7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
- (8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).
- (9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator. (d) The following devices are exempt from the requirements of this Section:

- (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to Section 15.213.

(4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of Subpart D or F of this part.

(7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from § 15.249 complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

8.3.2 Result

The equipment meets the requirements	Yes	No	N.t.
Further test results are attached	Yes	No	Page no.

N.t.* See page no. 40

8.4 Radiated emission limits, general requirements

8.4.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

(b) In the emission table above, the tighter limit applies at the band edges.

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

(e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

(f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.4.2 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
OATS	Dudde (104)	---	08/2010	08/2012	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	11/2010	11/2012	Rohde & Schwarz
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	02/2010	02/2013	Rohde & Schwarz
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	01/2012	01/2014	Dudde
Pre-amplifier (1GHz - 18GHz)	Narda --- (345)	---	01/2012	01/2014	Dudde
Pre-amplifier (12GHz - 30GHz)	Schwarzbeck BBV9719 (443)	9719-004	03/2011	03/2013	Dudde
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)	---	05/2010	05/2013	Dudde
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)	---	04/2011	04/2014	Schwazbeck
Bilog antenna (1- 18 GHz)	Schwarzbeck STLP 9148 (445)	---	09/2009	09/2012	Schwazbeck
Horn antenna (15.0-40.0 GHz)	Schwarzbeck BBHA 9170 (280)	---	03/2011	03/2013	Dudde
RF- cable	Kabelmetal 18m [N]	K1	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1.5 m [SMA]	K17a	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1.5 m [SMA]	K18a	09/2011	09/2012	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N]	K52	09/2011	09/2012	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N] (K61	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	09/2011	09/2012	Dudde

8.4.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 “Radiated Emissions Testing”

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” We consider the “cone of radiation” to be the 3 dB beamwidth of the measurement antenna.

While the “bore-sighting” technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Radiated emissions test characteristics	
Frequency range	30 MHz - 4,000 MHz
Test distance	3 m*
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz) 1 MHz (1000 MHz - 4,000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/horizontal

* According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.4.4 Calculation of the field strength

The field strength is calculated by the following calculation:

$$\text{Corrected Level} = \text{Receiver Level} + \text{Correction Factor} \text{ (without the use of a pre-amplifier)}$$

$$\text{Corrected Level} = \text{Receiver Level} + \text{Correction Factor} - \text{Pre-amplifier} \text{ (with the use of a pre-amplifier)}$$

Receiver Level : Receiver reading without correction factors
 Correction Factor : Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91 dB μ V/m.

The 35.91 dB μ V value can be mathematically converted to its corresponding level in μ V/m.

$$\text{Level in } \mu\text{V/m} = \text{Common Antilogarithm} (35.91/20) = 39.8$$

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

EUT: PPD Reader
FCC ID: B70PPDREADER

Date of issue: 2012-05-31

8.4.5 Result

Remark: *¹ Noise level of the measuring instrument $\leq 4.0 \text{ dB}\mu\text{V}$ @ 10m distance (0.009 MHz –30 MHz)

Remark: * Peak Limit according to Section 15.35 (b).

The equipment meets the requirements	Yes	No	Not applicable
Further test results are attached	Yes	No	Page no.

N.t.* See page no. 40

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

TRANSMITTER SPURIOUS RADIATION ABOVE 30 MHz (Section 15.205, 15.209)

All other emissions lower than the noise level of the measuring equipment!

Measurement uncertainty	4 dB
-------------------------	------

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument $\leq 3.5 \text{dB}\mu\text{V}$ @ 3m distance (30 – 1,000 MHz)

Remark: *2 noise floor noise level of the measuring instrument $\leq 4.5 \text{ dBuV}$ @ 3m distance (1,000 – 2,000 MHz)

Remark: 3 noise floor noise level of the measuring instrument $\leq 10 \text{ dB}\mu\text{V}$ @ 3m distance (2,000 – 5,500 MHz)

Remark: 4 noise floor noise level of the measuring instrument $\leq 14\text{dB}\mu\text{V}$ @ 3m distance (5,500 – 14,500 MHz)

Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: *⁶ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements Yes No Not applicable

Further test results are attached Yes No Page no.

N.t.* See page no. 40

8.5 Bandwidth

8.5.1 Regulation

Section 15.247 (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

(2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.5.2 Result

Sub 1

6 dB BANDWIDTH (Section 15.247 (a) (2))		
Channel	Lower and upper Frequency GHz	Bandwidth MHz
11 (2.405 GHz)	F _a 2.404161	1.795
	F _b 2.405955	
18 (2.440 GHz)	F _a 2.439132	1.795
	F _b 2.440926	
26 (2.480 GHz)	F _a 2.479132	1.795
	F _b 2.480926	
Measurement uncertainty:		$\pm 5 \cdot 10^{-8}$

Sub 2

6 dB BANDWIDTH (Section 15.247 (a) (2))		
Channel	Lower and upper Frequency GHz	Bandwidth MHz
11 (2.405 GHz)	F _a 2.404334	1.592
	F _b 2.405926	
18 (2.440 GHz)	F _a 2.439276	1.563
	F _b 2.440839	
26 (2.480 GHz)	F _a 2.479276	1.650
	F _b 2.480926	
Measurement uncertainty:		$\pm 5 \cdot 10^{-8}$

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	Annex no. 3
-----------------------------------	-----	----	-------------

N.t.* See page no. 40

8.6 Peak output power

8.6.1 Regulation

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do [the word "do" should be deleted from this sentence] emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of $10 \log$ (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

EUT: PPD Reader
 FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.6.2 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
OATS	Dudde (104)	---	08/2010	08/2012	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	11/2010	11/2012	Rohde & Schwarz
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	02/2010	02/2013	Rohde & Schwarz
Pre-amplifier (1GHz - 18GHz)	Narda --- (345)	---	01/2012	01/2014	Dudde
Bilog antenna (1- 18 GHz)	Schwarzbeck STLP 9148 (445)	---	09/2009	09/2012	Schwarzbeck
RF- cable	Kabelmetal 18m [N]	K1	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N]	K52	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N] (K61	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	09/2011	09/2012	Dudde

8.6.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 “Radiated emission measurements”

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” We consider the “cone of radiation” to be the 3 dB beamwidth of the measurement antenna.

While the “bore-sighting” technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Radiated emissions test characteristics	
Frequency range	30 MHz - 12,000 MHz
Test distance	10m, 3 m*
Test instrumentation resolution bandwidth	9 kHz (20 kHz – 30 MHz) 120 kHz (30 MHz - 1,000 MHz) 1 MHz (1000 MHz - 25,000 MHz)
Receive antenna height	1 m (20 kHz – 30 MHz)
Receive antenna polarization	0° - 90° (20 kHz – 30 MHz)
Receive antenna scan height	1 m - 4 m (30 MHz - 25,000 MHz)
Receive antenna polarization	vertical/horizontal (30 MHz - 25,000 MHz)

*According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.6.4 Calculation of the peak power (radiated)

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-Amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : field attenuation + cable loss

For example:

The receiver reading is +1.0 dBm. The field attenuation for the measured frequency is +19.5 dB and the cable factor for the measured frequency is 2.1 dB, giving a power of +22.6 dBm.

The +22.6dBm value can be mathematically converted to its corresponding level in W.

+22.6 dBm = 0.182 W = 182 mW

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.6.7 Result

Sub 1

TRANSMITTER PEAK OUTPUT POWER (Section 15.247(b)(3))

f (GHz)	Bandwidth (kHz) / Type of detector	Noted receiver level dBm	Test distance m	Correction factor dB	Level corrected dBm	Limit Peak dBm	Margin dB	Polarisation EUT / antenna	Antenna height cm
2.405	1000, PK	-16.5	3	21.0	+4.5	30	25.5	H, 0°/V	122
	1000, PK	-36.1	3	21.0	-15.1	30	45.1	H, 0°/H	115
2.440	1000, PK	-18.8	3	21.0	+2.2	30	17.8	H, 0°/V	205
	1000, PK	-38.6	3	21.0	-17.6	30	47.6	H, 0°/H	130
2.480	1000, PK	-18.6	3	21.0	+2.4	30	27.6	H, 0°/V	132
	1000, PK	-38.5	3	21.0	-17.5	30	47.5	H, 0°/H	127
Measurement uncertainty						4 dB			

Bandwidth = the measuring receiver bandwidth

Sub 2

TRANSMITTER PEAK OUTPUT POWER (Section 15.247(b)(3))

f (GHz)	Bandwidth (kHz) / Type of detector	Noted receiver level dBm	Test distance m	Correction factor dB	Level corrected dBm	Limit Peak dBm	Margin dB	Polarisation EUT / antenna	Antenna height cm
2.405	1000, PK	-18.5	3	21.0	+2.5	30	17.5	H, 0°/V	120
	1000, PK	-38.8	3	21.0	-17.8	30	47.8	H, 0°/H	114
2.440	1000, PK	-16.9	3	21.0	+4.1	30	25.9	H, 0°/V	136
	1000, PK	-36.4	3	21.0	-15.4	30	45.4	H, 0°/H	128
2.480	1000, PK	-17.8	3	21.0	+3.2	30	16.8	H, 0°/V	130
	1000, PK	-37.2	3	21.0	-16.2	30	46.2	H, 0°/H	125
Measurement uncertainty						4 dB			

Bandwidth = the measuring receiver bandwidth

Remark: ^{*1} noise floor noise level of the measuring instrument ≤ -103 dBm @ 3m distance (30 – 1,000 MHz)
 Remark: ^{*2} noise floor noise level of the measuring instrument ≤ -102.5 dBm @ 3m distance (1,000 – 2,000 MHz)
 Remark: ^{*3} noise floor noise level of the measuring instrument ≤ -97 dBm @ 3m distance (2,000 – 5,500 MHz)
 Remark: ^{*4} noise floor noise level of the measuring instrument ≤ -93 dBm @ 3m distance (5,500 – 14,500 MHz)
 Remark: ^{*5} noise floor noise level of the measuring instrument ≤ -90 dBm @ 3m distance (14,500 – 25,500 MHz)
 Remark: ^{*6} for using a pre-amplifier in the range between 100 kHz and 1,000 MHz
 Remark: ^{*7} for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz
 Remark: ^{*9} for periodic operated transmitter

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	
-----------------------------------	-----	----	--

N.t.* See page no. 40

8.7 Out of band emission

8.7.1 Regulation

Section 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

8.7.2 Calculation of the “Out of band emissions”

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-Amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors
Correction Factor : field attenuation + cable loss

For example:

The receiver reading in a 100 kHz bandwidth is -45.0 dBm. The field attenuation for the measured frequency is +10.5 dB and the cable factor for the measured frequency is 1.5 dB, giving a power of -33.0 dBm.

The measured peak power in a 100 kHz bandwidth is +3.6dBm. Therefore the Attenuation can be calculated as follows:

Attenuation = measured peak power – out of band emission receiver reading = +3.6 dbm – (-33.0 dBm) = **36.6 dB**

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.7.3 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
OATS	Dudde (104)	---	08/2010	08/2012	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	11/2010	11/2012	Rohde & Schwarz
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	02/2010	02/2013	Rohde & Schwarz
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	01/2012	01/2014	Dudde
Pre-amplifier (1GHz - 18GHz)	Narda --- (345)	---	01/2012	01/2014	Dudde
Pre-amplifier (12GHz - 30GHz)	Schwarzbeck BBV9719 (443)	9719-004	03/2011	03/2013	Dudde
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)	---	05/2010	05/2013	Dudde
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)	---	04/2011	04/2014	Schwazbeck
Bilog antenna (1- 18 GHz)	Schwarzbeck STLP 9148 (445)	---	09/2009	09/2012	Schwazbeck
Horn antenna (15.0-40.0 GHz)	Schwarzbeck BBHA 9170 (280)	---	03/2011	03/2013	Dudde
RF- cable	Kabelmetal 18m [N]	K1	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1.5 m [SMA]	K17a	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1.5 m [SMA]	K18a	09/2011	09/2012	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N]	K52	09/2011	09/2012	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N] (K61	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	09/2011	09/2012	Dudde

8.7.4 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 “Radiated emission measurements”

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” We consider the “cone of radiation” to be the 3 dB beamwidth of the measurement antenna.

While the “bore-sighting” technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.7.5 Result

Sub 1

OUT OF BAND EMISSIONS (Section 15.247(d))

f (GHz)	Bandwidth (kHz) / Type of detector	Noted receiver level dBm	Test distance m	Correction factor dB	Level corrected dBm	Limit Peak \ast^{10} dBm	Margin dB	Polarisation EUT / antenna	Antenna height cm
4.810	100, PK	-69.8	3	35.0	-34.8	-15.5 \ast^{10}	19.3	H 0°/ V	172
7.215	100, PK	-73.6	3	38.9	-34.7	-15.5 \ast^{10}	19.2	H 0°/ V	162
4.880	100, PK	-70.9	3	35.0	-35.9	-17.8 \ast^{10}	18.1	H 0°/ V	187
7.320	100, PK	-75.3	3	38.9	-36.4	-17.8 \ast^{10}	18.6	H 0°/ V	168
4.960	100, PK	-72.7	3	35.0	-37.7	-17.6 \ast^{10}	20.1	H 0°/ V	186
7.440	100, PK	-76.7	3	38.9	-37.8	-17.6 \ast^{10}	20.2	H 0°/ V	152

All other emissions lower than the noise level of the measuring equipment!

Measurement uncertainty

4 dB

Bandwidth = the measuring receiver bandwidth

Remark: \ast^1 noise floor noise level of the measuring instrument \leq -103 dBm @ 3m distance (30 – 1,000 MHz)
 Remark: \ast^2 noise floor noise level of the measuring instrument \leq -102.5 dBm @ 3m distance (1,000 – 2,000 MHz)
 Remark: \ast^3 noise floor noise level of the measuring instrument \leq -97 dBm @ 3m distance (2,000 – 5,500 MHz)
 Remark: \ast^4 noise floor noise level of the measuring instrument \leq -93 dBm @ 3m distance (5,500 – 14,500 MHz)
 Remark: \ast^5 noise floor noise level of the measuring instrument \leq -90 dBm @ 3m distance (14,500 – 25,500 MHz)
 Remark: \ast^6 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz
 Remark: \ast^7 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz
 Remark: \ast^8 for using a pre-amplifier in the range between 18.0 GHz and 30 GHz
 Remark: \ast^9 for periodic operated transmitter
 Remark: \ast^{10} calculated (measured peak power – 20 dB)

The equipment meets the requirements

Yes	No	N.t.
-----	----	------

Further test results are attached

Yes	No	
-----	----	--

N.t.* See page no. 40

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

Sub 2

OUT OF BAND EMISSIONS (Section 15.247(d))

f (GHz)	Bandwidth (kHz) / Type of detector	Noted receiver level dBm	Test distance m	Correction factor dB	Level corrected dBm	Limit Peak $*10$ dBm	Margin dB	Polarisation EUT / antenna	Antenna height cm
4.810	100, PK	-75.2	3	35.0	-40.2	-17.5 $*10$	22.7	H 0°/ V	174
7.215	100, PK	-73.8	3	38.9	-34.9	-17.5 $*10$	17.4	H 0°/ V	160
4.880	100, PK	-71.5	3	35.0	-36.5	-15.9 $*10$	19.1	H 0°/ V	190
7.320	100, PK	-72.5	3	38.9	-33.6	-15.9 $*10$	17.7	H 0°/ V	170
4.960	100, PK	-69.5	3	35.0	-34.5	-16.8 $*10$	17.7	H 0°/ V	190
7.440	100, PK	-75.1	3	38.9	-36.2	-16.8 $*10$	19.4	H 0°/ V	147

All other emissions lower than the noise level of the measuring equipment!

Measurement uncertainty

4 dB

Bandwidth = the measuring receiver bandwidth

Remark: *1 noise floor noise level of the measuring instrument \leq -103 dBm @ 3m distance (30 – 1,000 MHz)
 Remark: *2 noise floor noise level of the measuring instrument \leq -102.5 dBm @ 3m distance (1,000 – 2,000 MHz)
 Remark: *3 noise floor noise level of the measuring instrument \leq -97 dBm @ 3m distance (2,000 – 5,500 MHz)
 Remark: *4 noise floor noise level of the measuring instrument \leq -93 dBm @ 3m distance (5,500 – 14,500 MHz)
 Remark: *5 noise floor noise level of the measuring instrument \leq -90 dBm @ 3m distance (14,500 – 25,500 MHz)
 Remark: *6 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz
 Remark: *7 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz
 Remark: *8 for using a pre-amplifier in the range between 18.0 GHz and 30 GHz
 Remark: *9 for periodic operated transmitter
 Remark: *10 calculated (measured peak power – 20 dB)

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	
-----------------------------------	-----	----	--

N.t.* See page no. 40

8.8 Power spectral density

8.8.1 Regulation

Section 15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

8.8.3 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
OATS	Dudde (104)	---	08/2010	08/2012	Dudde
Digital Multimeter	GW GDM-8045G (144)	0090256	08/2011	08/2014	Dudde
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	11/2010	11/2012	Rohde & Schwarz
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	02/2010	02/2013	Rohde & Schwarz
Pre-amplifier (1GHz - 18GHz)	Narda --- (345)	---	01/2012	01/2014	Dudde
Bilog antenna (1- 18 GHz)	Schwarzbeck STLP 9148 (445)	---	09/2009	09/2012	Schwarzbeck
Horn antenna (0.86-8.5 GHz)	Schwarzbeck BBHA 9120 A (284)	236	03/2009	03/2012	Dudde
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	03/2009	03/2012	Dudde
RF- cable	Kabelmetal 18m [N]	K1	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N]	K52	09/2011	09/2012	Dudde
RF- cable	Sucoflex 100 Suhner 1 m [N] (K61	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	09/2011	09/2012	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	09/2011	09/2012	Dudde

8.8.4 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2009 Section 8 “Radiated emission measurements”

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2009 states that the measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” We consider the “cone of radiation” to be the 3 dB beamwidth of the measurement antenna.

While the “bore-sighting” technique is not explicitly mentioned in C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.8.5 Result

Sub 1

POWER SPECTRAL DENSITY (Section 15.247(e))

f (GHz)	Bandwidth (kHz) / Type of detector	Noted receiver level dBm	Test distance m	Correction factor dB	Level corrected dBm	Limit Peak dBm / MHz	Margin dB	Polarisation EUT / antenna	Antenna height cm	
2.405	3, PK	-19.4	3	21.0	1.6	8	6.4	H 0°/ V	122	
2.440	3, PK	-21.3	3	21.0	-0.3	8	8.3	H 0°/ V	205	
2.480	3, PK	-21.2	3	21.0	-0.2	8	8.2	H 0°/ V	132	
Measurement uncertainty		4 dB								

Bandwidth = the measuring receiver bandwidth

Sub 2

POWER SPECTRAL DENSITY (Section 15.247(e))

f (GHz)	Bandwidth (kHz) / Type of detector	Noted receiver level dBm	Test distance m	Correction factor dB	Level corrected dBm	Limit Peak dBm / MHz	Margin dB	Polarisation EUT / antenna	Antenna height cm	
2.405	3, PK	-23.3	3	21.0	-2.3	8	10.3	H 0°/ V	120	
2.440	3, PK	-26.8	3	21.0	-5.8	8	13.8	H 0°/ V	136	
2.480	3, PK	-28.0	3	21.0	-7.0	8	15.0	H 0°/ V	130	
Measurement uncertainty		4 dB								

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floornoise level of the measuring instrument \leq -103 dBm @ 3m distance (30 – 1,000 MHz)Remark: *² noise floornoise level of the measuring instrument \leq -102.5 dBm @ 3m distance (1,000 – 2,000 MHz)Remark: *³ noise floornoise level of the measuring instrument \leq -97 dBm @ 3m distance (2,000 – 5,500 MHz)Remark: *⁴ noise floornoise level of the measuring instrument \leq -93 dBm @ 3m distance (5,500 – 14,500 MHz)Remark: *⁵ noise floornoise level of the measuring instrument \leq -90 dBm @ 3m distance (14,500 – 25,500 MHz)Remark: *⁶ for using a pre-amplifier in the range between 100 kHz and 1,000 MHznoise level of the measuring instrument \leq -103 dBm @ 3m distance (100 – 1,000 MHz)Remark: *⁷ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHznoise level of the measuring instrument \leq -102.5 dBm @ 3m distance (1.0 – 18.0 GHz)Remark: *⁷ for using a pre-amplifier in the range between 18.0 GHz and 30 GHznoise level of the measuring instrument \leq -97 dBm @ 3m distance (18.0 – 30 GHz)Remark: *⁹ for periodic operated transmitter

The equipment meets the requirements

Yes	No	N.t.
-----	----	------

Further test results are attached

Yes	No	Annex no. 3
-----	----	-------------

N.t.* See page no. 40

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

8.9 Radio frequency hazard

8.9.1 Regulation

15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

8.9.2 Test result

MPE calculation to the FCC ID:

These equations are generally accurate in the far field of an antenna but will over predict power density in the near field, where they could be used for making a "worst case" prediction.

$$S = PG/4\pi R^2$$

where S = power density (in appropriate units, e.g. mW/cm^2)

P = power input to the antenna (in appropriate units e.g. mW)

G = power gain of the antenna in the direction of interest relative to the isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units e.g. cm)

Or

$$S = \text{EIRP}/(4\pi R^2)$$

where EIRP = equivalent isotropically radiated power

Calculation:

(Calculated for max. EIRP)

EIRP: +4.5 dBm = 2.82 mW

calculated at distance of 20 cm:

$$\text{power density} = 2.82 \text{ mW} / (4\pi \cdot 20^2) = \mathbf{0.00056 \text{ mW/cm}^2}$$

Limit:

1mW/ cm² is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	
-----------------------------------	-----	----	--

N.t.* See page no. 40

9. Additional information to the test report**Remarks**

N.t.¹ Not tested, because the antenna is part of the PCB

N.t.² Not tested, because the EUT is directly battery powered

N.t.³ Not tested, because not applicable for this type of equipment

EUT: PPD Reader
FCC ID: B7OPPDREADER

Date of issue: 2012-05-31

End of test report