

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

# **FCC/ISED Test Report**

Prepared for: Bosch Security Systems, LLC

Address: 3401 Village Drive, Suite 110

Lincoln NE 68516

Product: AP-1000 Access Point

Test Report No: R20240829-00-E5 Rev: 0

Approved by:

Fox Lane,

**EMC Test Engineer** 

DATE: July 30, 2025

Total Pages: 52

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.





0

Prepared for: | Bosch Security Systems, LLC

| REVISION PAGE |              |                   |  |
|---------------|--------------|-------------------|--|
| Rev. No. Date |              | Description       |  |
| 0             | 20 July 2025 | Issued by FLane   |  |
| l 0           | 30 July 2025 | Prepared by Flane |  |

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 2 of 52



Report Number:

Prepared for:

R20240829-00-E5

Bosch Security Systems, LLC

Rev

0

# CONTENTS

|     | U    |                                                        |    |
|-----|------|--------------------------------------------------------|----|
| 1.0 |      | nmary of test results                                  |    |
| 2.0 |      | Description                                            |    |
| 2.0 | 2.1  | Equipment under test                                   |    |
|     | 2.2  | Description of test modes                              |    |
|     | 2.3  | Description of support units                           |    |
| 3.0 | Lab  | oratory and General Test Description                   |    |
|     | 3.1  | Laboratory description                                 | 7  |
|     | 3.2  | Test personnel                                         | 7  |
|     | 3.3  | Test equipment                                         | 8  |
|     | 3.4  | General Test Procedure and Setup for Radio Measuremnts | 9  |
| 4.0 | Res  | ults                                                   | 11 |
|     | 4.1  | Output Power                                           | 12 |
|     | 4.2  | Bandwidth                                              | 13 |
|     | 4.3  | Duty Cycle                                             | 14 |
|     | 4.4  | Radiated emissions                                     | 15 |
|     | 4.5  | Power Spectral Density                                 | 19 |
|     | 4.6  | Conducted AC Mains Emissions                           | 20 |
|     | 4.7  | Automatic Discontinuation                              | 22 |
|     | 4.8  | In-Band Emissions                                      | 23 |
|     | 4.9  | Out-Of-Band Emissions                                  | 25 |
|     | 4.10 | Receiver Spurious Emissions                            | 38 |
|     | 4.11 | Frequency Stability                                    | 39 |
|     | 4.12 | Frame-Jitter                                           | 40 |
|     | 4.13 | Monitoring Threshold, LIC                              | 41 |



 Report Number:
 R20240829-00-E5
 Rev
 0

 Prepared for:
 Bosch Security Systems, LLC

|      | 4.14    | Reaction Time and Monitoring Interval | 42 |
|------|---------|---------------------------------------|----|
|      | 4.15    | Dual Access Criteria                  | 43 |
| Appe | endix A | Sample Calculation                    | 44 |
| Appe | endix B | – Measurement Uncertainty             | 45 |
| Appe | endix C | – Graphs and Tables                   | 46 |
| REPO | ORT EN  | D                                     | 52 |



| Report Number: | R20240829-00-E5             | Rev | 0 |
|----------------|-----------------------------|-----|---|
| Prepared for:  | Bosch Security Systems, LLC |     |   |

# 1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-213, Issue 3

| APPLIED STANDARDS AND REGULATIONS               |                                  |        |  |  |  |
|-------------------------------------------------|----------------------------------|--------|--|--|--|
| Standard Section                                | Test Type                        | Result |  |  |  |
| FCC Part 15.319(c)(e)<br>RSS-213 Sec 6.5        | Output Power                     | Pass   |  |  |  |
| FCC Part 15.319(b)<br>RSS-213 Sec 6.1           | Digital Modulation<br>Techniques | Pass   |  |  |  |
| FCC Part 15.323(a)<br>RSS-231 Sec. 6.4          | Bandwidth                        | Pass   |  |  |  |
| FCC Part 15.323(d)<br>RSS-213 Sec. 6.7.2        | In-band emissions                | Pass   |  |  |  |
| FCC Part 15.323(d)<br>RSS-213 Sec 6.7.1         | Out-of-band emissions            | Pass   |  |  |  |
| FCC Part 15.319(d)<br>RSS-213 4.3.2.1           | Power Spectral Density           | Pass   |  |  |  |
| FCC Part 15.319(f)<br>RSS-213 Sec. 4.3.4        | Automatic discontinuation        | Pass   |  |  |  |
| FCC Part 15.323<br>RSS-213 Sec. 4.3.4           | Timing measurements              | Pass   |  |  |  |
| FCC Part 15.207<br>RSS-Gen Issue 5, Section 8.8 | Conducted Emissions              | Pass   |  |  |  |

Page 5 of 52



| Report Number: | R20240829-00-E5             | Rev | 0 |
|----------------|-----------------------------|-----|---|
| Prepared for:  | Bosch Security Systems, LLC |     |   |

# 2.0 EUT DESCRIPTION

### 2.1 EQUIPMENT UNDER TEST

**Summary and Operating Condition:** 

| EUT                       | AP-1000 Access Point                                                                                                                                                                                                                                                                   |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC ID B5DM545            |                                                                                                                                                                                                                                                                                        |
| IC ID                     | 1321A-AP1000                                                                                                                                                                                                                                                                           |
| EUT Received              | 4 November 2024                                                                                                                                                                                                                                                                        |
| EUT Tested                | 4 November 2024- 2 July 2025                                                                                                                                                                                                                                                           |
| Serial No.                | 045661447524010029<br>045661447524010032                                                                                                                                                                                                                                               |
| Operating Band            | 1920 – 1930 MHz                                                                                                                                                                                                                                                                        |
| Device Type               | ☐ GMSK ☐ GFSK ☐ BT BR ☐ BT EDR 2MB ☐ BT EDR 3MB ☐ 802.11x ☒ DECT                                                                                                                                                                                                                       |
| Power Supply /<br>Voltage | Power-Over-Ethernet (PoE) 802.3at (PoE+) or 802.3bt (PoE++) Can be powered using either EtherCON port. Device cannot source power to another AP or other device. Power Supply (Optional): 12VDC in-line power supply Battery (Optional): Li-lon, Anton Bauer Titon 90, 14.2 VDC, 92 Wh |

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

# 2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

**DECT Transmissions:** 

| Channel | Frequency    |
|---------|--------------|
| Low     | 1921.536 MHz |
| High    | 1928.448 MHz |

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequencies and designations.

#### 2.3 DESCRIPTION OF SUPPORT UNITS

For timing measurements or connection results. The device was paired/connected to a CMD60 communications analyzer.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 6 of 52



| Report Number: | R20240829-00-E5 | Rev | 0 |
|----------------|-----------------|-----|---|
|                |                 |     |   |

Prepared for: | Bosch Security Systems, LLC

# 3.0 LABORATORY AND GENERAL TEST DESCRIPTION

# 3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)

4740 Discovery Drive

Lincoln, NE 68521

A2LA Certificate Number: 1953.01
FCC Accredited Test Site Designation No: US1060
Industry Canada Test Site Registration No: 4294A
NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of 35  $\pm$  4%

Temperature of 22  $\pm$  3° Celsius



#### 3.2 TEST PERSONNEL

| No. | PERSONNEL     | TITLE         | ROLE               |
|-----|---------------|---------------|--------------------|
| 1   | Fox Lane      | Test Engineer | Testing and Report |
| 2   | Ethan Schmidt | Test Engineer | Testing and Report |

Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 7 of 52



 Report Number:
 R20240829-00-E5
 Rev
 0

Prepared for: | Bosch Security Systems, LLC


# 3.3 TEST EQUIPMENT

| 0.0 TEOT EQUIT MENT                                       |                                       |                            |                       |                      |
|-----------------------------------------------------------|---------------------------------------|----------------------------|-----------------------|----------------------|
| DESCRIPTION AND MANUFACTURER                              | MODEL NO.                             | SERIAL NO.                 | LAST CALIBRATION DATE | CALIBRATION DUE DATE |
| Keysight MXE Signal Analyzer<br>(44GHz)                   | N9038A                                | MY59050109                 | July 17, 2024         | July 18, 2026        |
| Keysight MXE Signal Analyzer (26.5GHz)                    | N9038A                                | MY56400083                 | July 17, 2024         | July 18, 2026        |
| Keysight EXA Signal Analyzer                              | N9010A                                | MY56070862                 | July 18, 2023         | July 17, 2025        |
| SunAR RF Motion                                           | JB1                                   | A082918-1                  | July 17, 2024         | July 17, 2025        |
| EMCO Horn Antenna                                         | 3117                                  | 29616                      | June 12, 2024         | June 12, 2026        |
| EMCO Horn Antenna                                         | 3116                                  | 2576                       | July 31, 2023         | July 30, 2025        |
| Com-Power LISN, Single Phase                              | LI-220C                               | 20070017                   | July 17, 2023         | July 17, 2025        |
| Agilent Preamp*                                           | 87405A                                | 3207A01475                 | May 2, 2024           | May 2, 2026          |
| ETS Red Preamplifier (Orange)*                            | 3115-PA                               | 00218576                   | January 22, 2024      | January 22, 2026     |
| Keysight MXG Analog Signal<br>Generator                   | N5183B                                | MY59100122                 | July 18, 2023         | July 18, 2025        |
| Rohde & Schwarz Vector Signal<br>Generator                | SMBV100B                              | 1423.1003K02-<br>102434-Hd | June 17, 2024         | June 17, 2026        |
| Trilithic High Pass Filter*                               | 6HC330                                | 23042                      | June 5, 2023          | June 5, 2026         |
| Rohde and Schwarz Communication<br>Analyzer               | CMD60                                 | 827462/036                 | December 12, 2024     | December 12, 2026    |
| ETS – Lindgren- VSWR on 10m<br>Chamber                    | 10m Semi-<br>anechoic<br>chamber-VSWR | 4740 Discovery<br>Drive    | May 15, 2024          | May 15, 2027         |
| NCEE Labs-NSA on 10m Chamber*                             | 10m Semi-<br>anechoic<br>chamber-NSA  | NCEE-001                   | May 22, 2024          | May 22, 2026         |
| RF Cables (3m Ant. to Control room Bulkhead)              | MFR-57500                             | 1E3874                     | January 20, 2024      | January 20, 2026     |
| RF Cable (antenna to 10m chamber bulkhead)*               | FSCM 64639                            | 01E3872                    | January 21, 2024      | January 21, 2026     |
| RF Cable (10m chamber bulkhead to control room bulkhead)* | FSCM 64639                            | 01E3874                    | January 21, 2024      | January 21, 2026     |
| RF Cable (control room bulkhead to test receiver)*        | FSCM 64639                            | 01F1206                    | January 21, 2024      | January 21, 2026     |
| N connector bulkhead (10m chamber)*                       | PE9128                                | NCEEBH1                    | January 21, 2024      | January 21, 2026     |
| N connector bulkhead (control room)*                      | PE9128                                | NCEEBH2                    | January 21, 2024      | January 21, 2026     |
| TDK Emissions Lab Software                                | V11.25                                | 700307                     | NA                    | NA                   |
|                                                           |                                       |                            |                       |                      |

<sup>\*</sup>Internal Characterization

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 8 of 52



# 3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

#### Conducted ⊠

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph. For measurements requiring packet/timing measurements, a companion device or a CMD60 communication analyzer was also connected to the EUT.



Figure 1 - Bandwidth Measurements Test Setup

#### Radiated ⊠

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521



 Report Number:
 R20240829-00-E5
 Rev
 0

Prepared for: | Bosch Security Systems, LLC

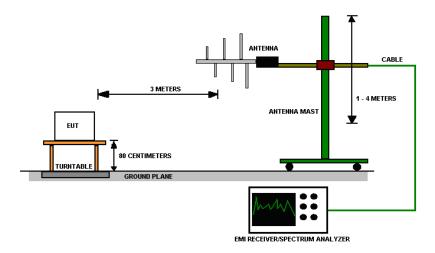



Figure 2 - Radiated Emissions Test Setup

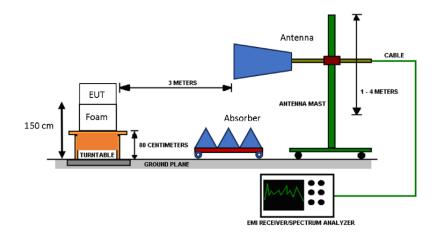



Figure 3 - Radiated Emissions Test Setup, >1GHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 10 of 52



0

Prepared for: | Bosch Security Systems, LLC

# 4.0 RESULTS

| DECT Radio Measurements                     |       |           |                                                               |                               |        |      |
|---------------------------------------------|-------|-----------|---------------------------------------------------------------|-------------------------------|--------|------|
| CHANNEL Mode Occupied BW (kHz)              |       | PSD (dBm) | Peak OUTPUT<br>POWER (dBm)                                    | Peak OUTPUT RESULT POWER (mW) |        |      |
| Low                                         | Ant 1 | 1180.7    | 2.710                                                         | 18.531                        | 71.302 | PASS |
| High                                        | Ant 1 | 1175.8    | 2.460                                                         | 18.347                        | 68.344 | PASS |
| Low                                         | Ant 2 | 1188.0    | 3.043                                                         | 18.845                        | 76.648 | PASS |
| High                                        | Ant 2 | 1183.8    | 2.716                                                         | 18.615                        | 72.694 | PASS |
| Occupied Bandwidth Lim = 50kHz < X < 2.5MHz |       |           | Peak Output Power Lim = see Sec 4.1;<br>PSD Lim = 3mW/4.77dBm |                               | 1;     |      |



R20240829-00-E5 Report Number: Rev 0

Prepared for:

Bosch Security Systems, LLC

#### 4.1 **OUTPUT POWER**

#### **Test Method:**

All measurements were performed using section 11.9.1.1 from ANSI C63.10.

# Limits of power measurements:

100uW \* √[BW(Hz)]  $100 * \sqrt{(1.1188*10^6)} = 105773.3426 \text{uW} = 105.7733426 \text{mW} = 20.244 \text{dBm}$ 

### Test procedures:

Details can be found in section 3.4 of this report.

#### **Deviations from test standard:**

No deviation.

# Test setup:

Details can be found in section 3.4 of this report.

# **EUT** operating conditions:

Details can be found in section 2.1 of this report.

#### Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Page 12 of 52



| Report Number: | R20240829-00-E5             | Rev | 0 |
|----------------|-----------------------------|-----|---|
| Prepared for:  | Bosch Security Systems, LLC |     |   |

4.2 BANDWIDTH

## **Test Method:**

C63.10 Sec 11.8

#### Limits of bandwidth measurements:

Occupied bandwidth must be greater than 50kHz and less than 2.5MHz

# Test procedures:

Details can be found in section 3.4 of this report.

### **Deviations from test standard:**

No deviation.

# Test setup:

Test setup details can be found in section 3.4 of this report.

# **EUT** operating conditions:

Details can be found in section 2.1 of this report.

#### Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Page 13 of 52



| Report Number: | R20240829-00-E5             | Rev | 0 |
|----------------|-----------------------------|-----|---|
| Prepared for:  | Bosch Security Systems, LLC |     |   |

# 4.3 DUTY CYCLE

The worst-case duty cycle declared by the manufacturer is 41.66% = 0.4166

DCCF (For Emissions) = 20\*log(1/0.4166) = 7.606dB

DCCF (For Power) =  $10*\log(1/0.4166) = 3.803dB$ 

Page 14 of 52



R20240829-00-E5 Report Number: Rev 0

Prepared for: Bosch Security Systems, LLC

#### **RADIATED EMISSIONS** 4.4

#### **Test Method:**

ANSI C63.4-2020, Section 8

#### Limits for radiated emissions measurements:

15.109 Class A (for unintentional spurious emissions) See out of band emissions for limits pertaining to transmitter.

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 \* log \* Emission level ( $\mu$ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 15 of 52



 Report Number:
 R20240829-00-E5
 Rev
 0

 Prepared for:
 Bosch Security Systems, LLC

Test procedures:

- a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

#### NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

#### **Deviations from test standard:**

No deviation.

#### **EUT** operating conditions

Details can be found in section 2.1 of this report.



 Report Number:
 R20240829-00-E5
 Rev
 0

Prepared for: | Bosch Security Systems, LLC

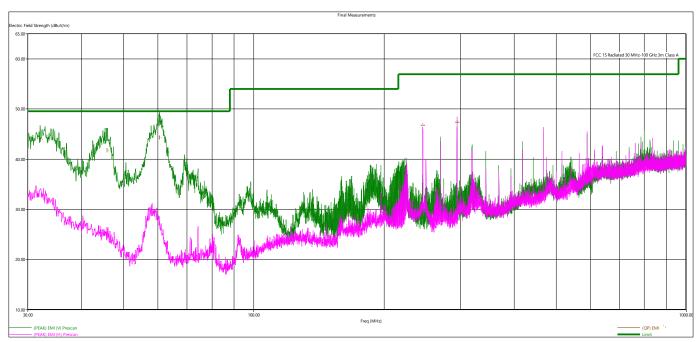



Figure 4 - Radiated Emissions Plot, DECT RX, PoE

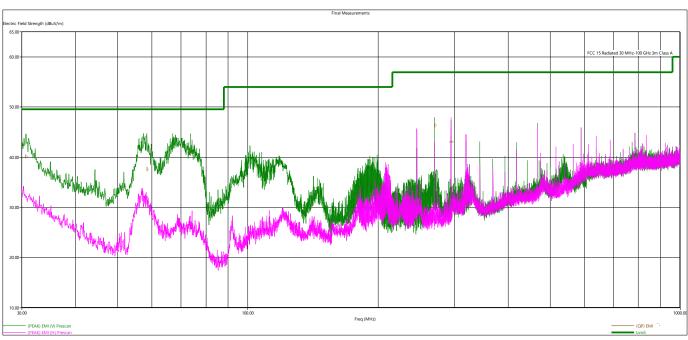



Figure 5 - Radiated Emissions Plot, DECT RX, XLR PSU

## **REMARKS:**

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. Margin value = Emission level Limit value
- 4. Emissions were investigated up to 20GHz. No other emissions were found to be within 10dB of the applicable limits and therefore were not tabulated.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 17 of 52



 Report Number:
 R20240829-00-E5
 Rev
 0

Prepared for: | Bosch Security Systems, LLC

|            | Quasi-Peak Measurements, 30MHz – 1GHz |        |        |        |        |     |     |            |
|------------|---------------------------------------|--------|--------|--------|--------|-----|-----|------------|
| Frequency  | Level                                 | Limit  | Margin | Height | Angle  | Pol | PSU | Modulation |
| MHz        | dBμV/m                                | dBμV/m | dB     | cm.    | deg.   |     |     |            |
| 294.906960 | 42.92                                 | 56.90  | 13.98  | 263.02 | 257.00 | Н   | XLR | Rx         |
| 30.609120  | 40.05                                 | 49.54  | 9.49   | 113.35 | 261.75 | V   | XLR | Rx         |
| 58.501680  | 37.53                                 | 49.54  | 12.01  | 120.70 | 104.50 | V   | XLR | Rx         |
| 73.707600  | 41.11                                 | 49.54  | 8.43   | 112.52 | 91.25  | V   | XLR | Rx         |
| 270.346320 | 46.32                                 | 56.90  | 10.58  | 155.08 | 360.00 | V   | XLR | Rx         |
| 245.761920 | 46.63                                 | 56.90  | 10.27  | 112.46 | 268.00 | Н   | PoE | Rx         |
| 294.909840 | 47.28                                 | 56.90  | 9.62   | 104.16 | 89.00  | Н   | PoE | Rx         |
| 32.156640  | 43.83                                 | 49.54  | 5.71   | 112.28 | 211.00 | V   | PoE | Rx         |
| 45.827040  | 41.75                                 | 49.54  | 7.79   | 104.40 | 82.50  | V   | PoE | Rx         |
| 60.544320  | 44.24                                 | 49.54  | 5.30   | 122.73 | 355.50 | V   | PoE | Rx         |

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above.

| Peak Measurements, >1GHz |        |        |        |        |        |     |      |      |
|--------------------------|--------|--------|--------|--------|--------|-----|------|------|
| Frequency                | Level  | Limit  | Margin | Height | Angle  | Pol | Ant. | Ch.  |
| MHz                      | dΒμV/m | dΒμV/m | dB     | cm.    | deg.   |     |      |      |
| 3842.346000              | 48.65  | 73.98  | 25.33  | 133.47 | 128.50 | V   | 2    | Low  |
| 3858.708000              | 42.34  | 73.98  | 31.64  | 170.01 | 195.00 | V   | 1    | High |

|             | Average Measurements, >1GHz |        |        |        |        |     |      |      |
|-------------|-----------------------------|--------|--------|--------|--------|-----|------|------|
| Frequency   | Level                       | Limit  | Margin | Height | Angle  | Pol | Ant. | Ch.  |
| MHz         | dBµV/m                      | dBµV/m | dB     | cm.    | deg.   |     |      |      |
| 3842.346000 | 41.044                      | 53.98  | 12.936 | 133.47 | 128.50 | V   | 2    | Low  |
| 3858.708000 | 34.734                      | 53.98  | 19.246 | 170.01 | 195.00 | V   | 1    | High |

Average level = Peak Level – DCCF (for emissions)
For more information regarding DCCF, see section 4.3



| Report Number: | R20240829-00-E5 | Rev | 0 |
|----------------|-----------------|-----|---|
|                |                 |     |   |

Prepared for: | Bosch Security Systems, LLC

4.5 POWER SPECTRAL DENSITY

C63.17 Sec 6.1.5

**Test Method:** 

#### Limits:

The maximum PSD allowed is 3mW/4.77dBm

# Test procedures:

Details can be found in section 3.4 of this report.

# **Deviations from test standard:**

No deviation.

#### Test setup:

Details can be found in section 3.4 of this report.

# **EUT** operating conditions:

Details can be found in section 2.1 of this report.

#### Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Lincoln, NE 68521 Page 19 of 52



| Report Number: | R20240829-00-E5 | Rev | 0 |
|----------------|-----------------|-----|---|
| - 16           |                 | •   | • |

Prepared for: | Bosch Security Systems, LLC

#### 4.6 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2020, Section(s) 6.2

#### Limits for conducted emissions measurements:

| FREQUENCY OF EMISSION | D LIMIT    |          |  |
|-----------------------|------------|----------|--|
| (MHz)                 | (dBµV)     |          |  |
|                       | Quasi-peak | Average  |  |
| 0.15-0.5              | 66 to 56   | 56 to 46 |  |
| 0.5-5                 | 56         | 46       |  |
| 5-30                  | 60         | 50       |  |

#### Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

#### **Test Procedures:**

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

#### Deviation from the test standard:

No deviation

### **EUT operating conditions:**

Details can be found in section 2.1 of this report.

### **Test Results:**



Prepared for: | Bosch Security Systems, LLC



Figure 6 - Conducted Emissions Plot, Line




Figure 7 - Conducted Emissions Plot, Neutral

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 52



| Report Number: | R20240829-00-E5              | Rev | 0 |
|----------------|------------------------------|-----|---|
| Duan and fam   | Basah Casarita Castarra II C | ,   |   |

Prepared for: | Bosch Security Systems, LLC

### 4.7 AUTOMATIC DISCONTINUATION

**Test Method**: ANSI C63.27, Section 7.8.2, 7.8.3, 7.8.4

#### Limits

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

#### Test setup:

Details can be found in section 3.4 of this report.

# **EUT** operating conditions:

Details can be found in section 2.1 of this report.

### Test results:

| Reaction        | Test                                                 |
|-----------------|------------------------------------------------------|
| connection lost | Power removed from EUT                               |
| connection lost | Power removed from companion device (comm. anaylzer) |
| connection lost | EUT turned off                                       |
| connection lost | companion device turned off                          |

# **Pass**

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 52



Prepared for:

Bosch Security Systems, LLC

#### 4.8 IN-BAND EMISSIONS

Test Method: ANSI C63.17, Section 6.1.6.1

Limits:

B < f2 ≤2B: 2B < f2 ≤3B: 3B < f2 ≤UPCS Band

Edge:

less than or equal to 30 dB below max. permitted peak power level less than or equal to 50 dB below max. permitted peak power level less than or equal to 60 dB below max. permitted

peak power level

# Test setup:

Details can be found in section 3.4 of this report.

# **EUT** operating conditions:

Details can be found in section 2.1 of this report.

### Test results:

# **Pass**

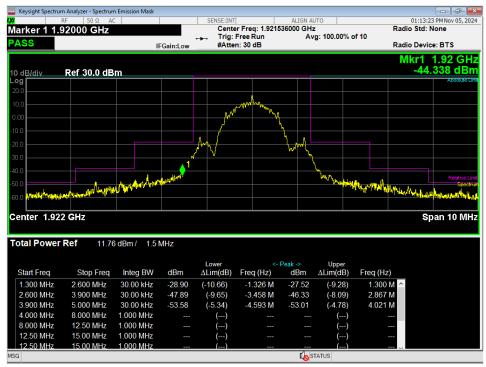



Figure 8 - In-Band Spurious Emissions, Low Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 52



Prepared for: | Bosch Security Systems, LLC

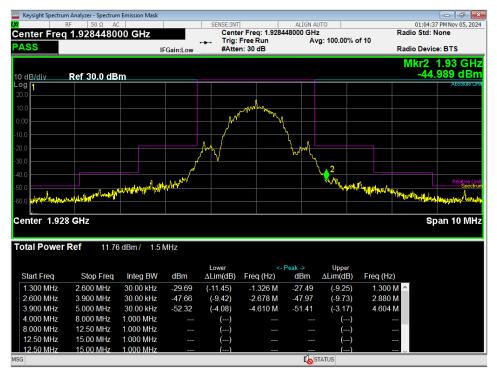



Figure 9 – In-Band Spurious Emissions, High Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 24 of 52



 Report Number:
 R20240829-00-E5
 Rev
 0

Prepared for: | Bosch Se

Bosch Security Systems, LLC

#### 4.9 OUT-OF-BAND EMISSIONS

Test Method: ANSI C63.17, Section 6.1.6.2

#### Limits:

Emissions outside the band shall be attenuated below a reference power of 112 milliwatts as follows: 30 dB between the band and 1.25 MHz above or below the band; 50 dB between 1.25 and 2.5 MHz above or below the band; and 60 dB at 2.5 MHz or greater above or below the band. Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

| f ≤ 1.25 MHz outside UPCS band:           | ≤ -9.5 dBm  |
|-------------------------------------------|-------------|
| 1.25 MHz ≤ f ≤ 2.5 MHz outside UPCS band: | ≤ -29.5 dBm |
| f ≥ 2.5 MHz outside UPCS band:            | ≤ -39.5 dBm |

#### Test setup:

Details can be found in section 3.4 of this report.

#### **EUT** operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 25 of 52



Prepared for: | Bosch Security Systems, LLC

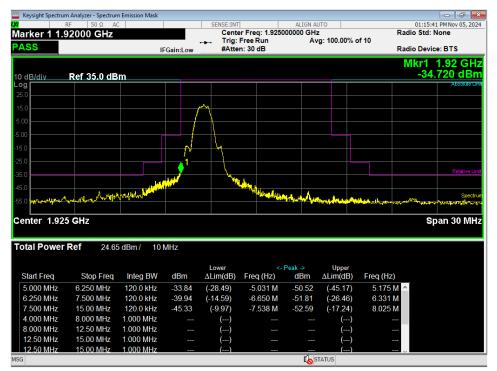



Figure 10 - Out-of-Band Spurious Emissions, Low Channel, Ant 1

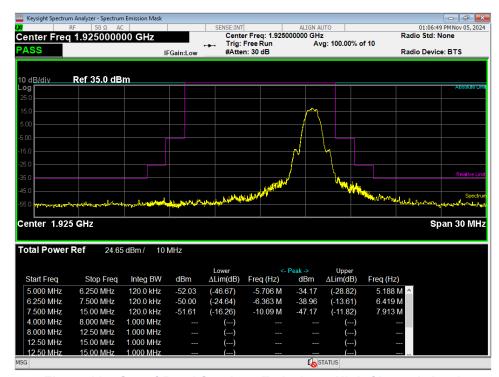



Figure 11 - Out-of-Band Spurious Emissions, High Channel, Ant 1

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 52



Prepared for: | Bosch Security Systems, LLC

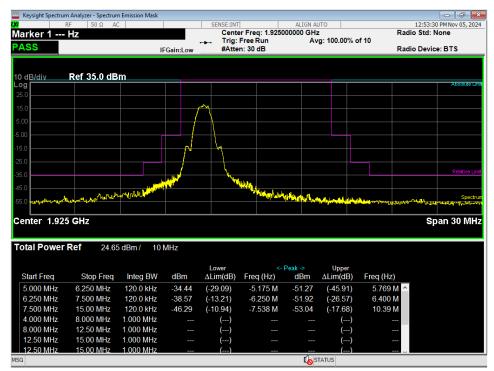



Figure 12 - Out-of-Band Spurious Emissions, Low Channel, Ant 2

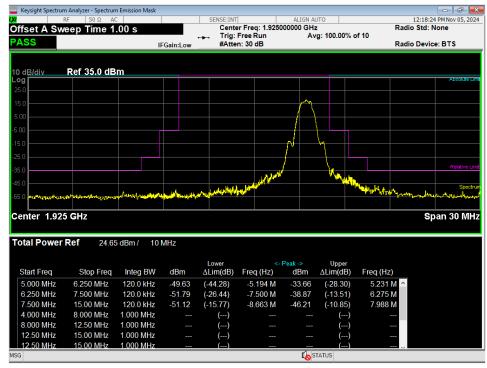



Figure 13 - Out-of-Band Spurious Emissions, High Channel, Ant 2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 27 of 52



Prepared for: | Bosch Security Systems, LLC

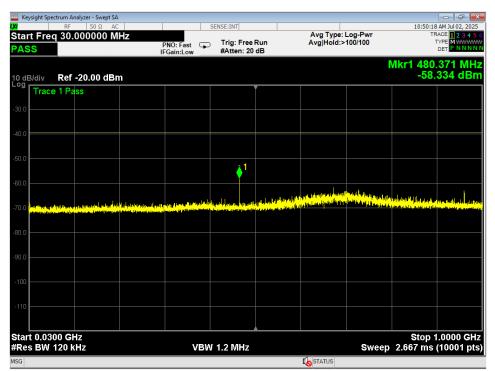



Figure 14 - Out-of-Band Spurious Emissions, 30MHz - 1GHz, Low Channel, Ant 1

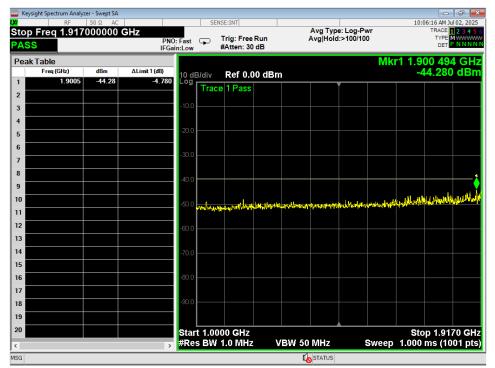



Figure 15 – Out-of-Band Spurious Emissions, 1GHz – 1.917GHz, Low Channel, Ant 1

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 28 of 52



Prepared for: | Bosch Security Systems, LLC

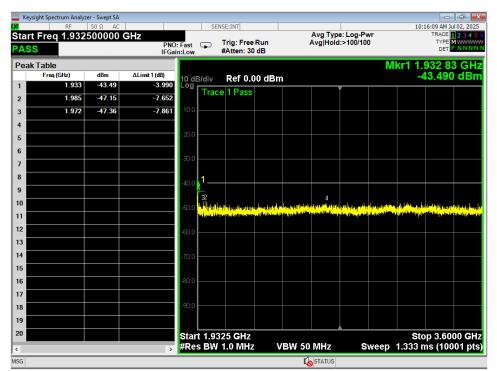



Figure 16 - Out-of-Band Spurious Emissions, 1.9325GHz - 3.6GHz, Low Channel, Ant 1

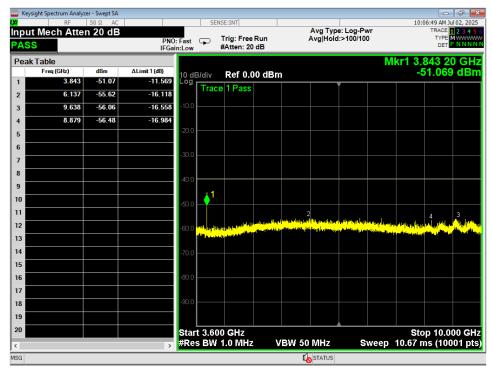



Figure 17 - Out-of-Band Spurious Emissions, 3.6GHz - 10GHz, Low Channel, Ant 1

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 29 of 52



Prepared for: | Bosch Security Systems, LLC



Figure 18 - Out-of-Band Spurious Emissions, 10GHz - 20GHz, Low Channel, Ant 1

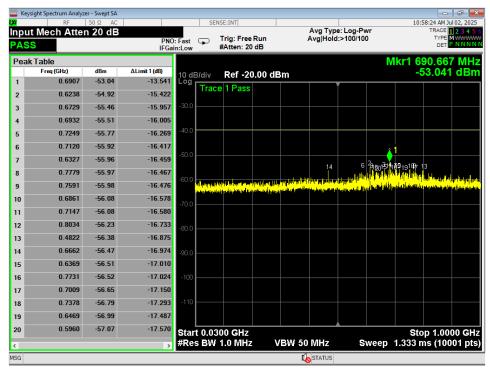



Figure 19 - Out-of-Band Spurious Emissions, 30MHz - 1GHz, High Channel, Ant 1

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 30 of 52



Prepared for: | Bosch Security Systems, LLC

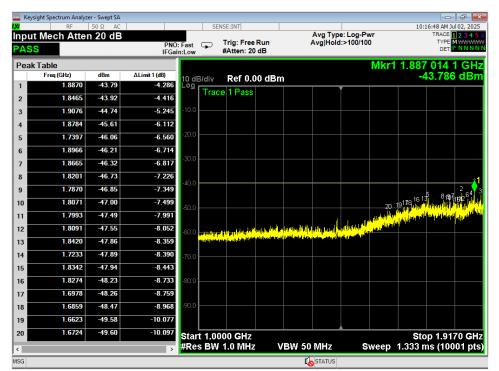



Figure 20 - Out-of-Band Spurious Emissions, 1GHz - 1.917GHz, High Channel, Ant 1



Figure 21 - Out-of-Band Spurious Emissions, 1.9325GHz - 3.6GHz, High Channel, Ant 1

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 52



Prepared for: | Bosch Security Systems, LLC

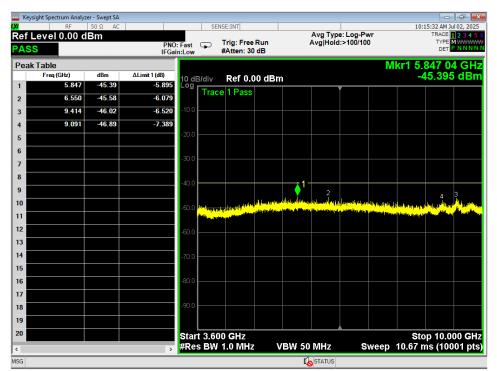



Figure 22 - Out-of-Band Spurious Emissions, 3.6GHz - 10GHz, High Channel, Ant 1




Figure 23 - Out-of-Band Spurious Emissions, 10GHz - 20GHz, High Channel, Ant 1

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 52



Prepared for: | Bosch Security Systems, LLC

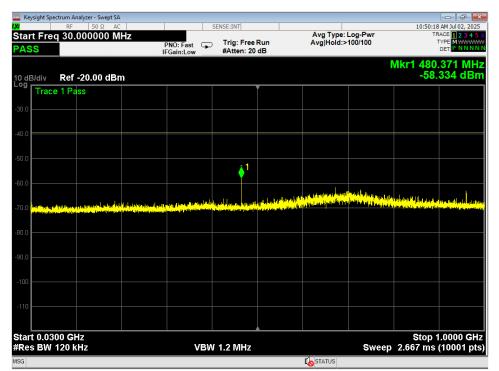



Figure 24 - Out-of-Band Spurious Emissions, 30MHz - 1GHz, Low Channel, Ant 2

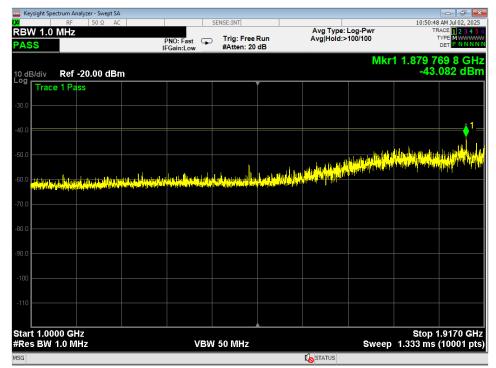



Figure 25 - Out-of-Band Spurious Emissions, 1GHz - 1.917GHz, Low Channel, Ant 2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 33 of 52



 Report Number:
 R20240829-00-E5
 Rev
 0

Prepared for: | Bosch Security Systems, LLC

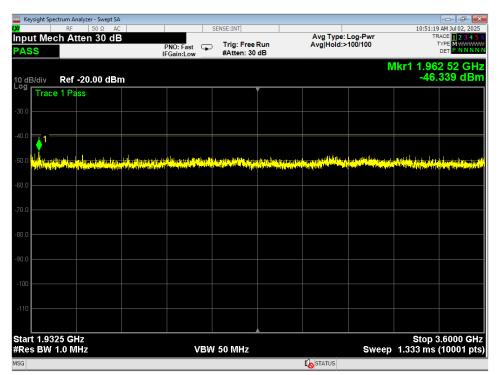



Figure 26 – Out-of-Band Spurious Emissions, 1.9325GHz – 3.6GHz, Low Channel, Ant 2

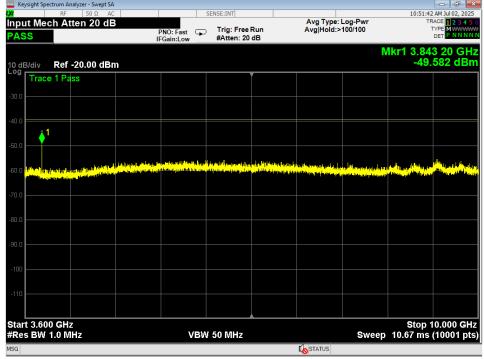



Figure 27 - Out-of-Band Spurious Emissions, 3.6GHz - 10GHz, Low Channel, Ant 2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 34 of 52



Prepared for: | Bosch Security Systems, LLC



Figure 28 - Out-of-Band Spurious Emissions, 10GHz - 20GHz, Low Channel, Ant 2

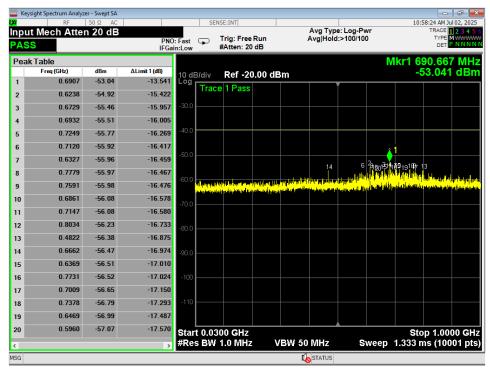



Figure 29 - Out-of-Band Spurious Emissions, 30MHz - 1GHz, High Channel, Ant 2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 52



Prepared for: | Bosch Security Systems, LLC

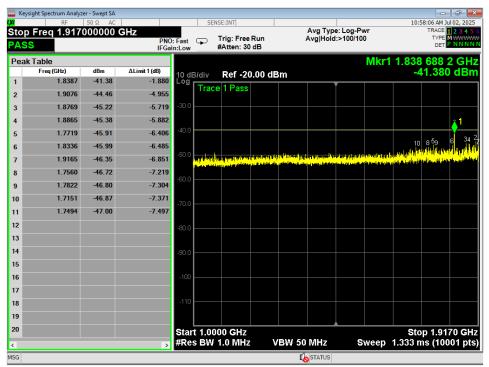



Figure 30 - Out-of-Band Spurious Emissions, 1GHz - 1.917GHz, High Channel, Ant 2

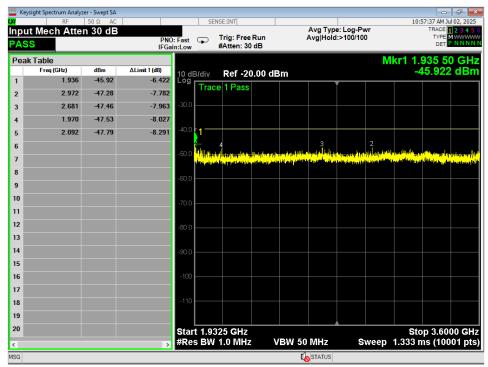



Figure 31 - Out-of-Band Spurious Emissions, 1.9325GHz - 3.6GHz, High Channel, Ant 2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 36 of 52



Prepared for: | Bosch Security Systems, LLC

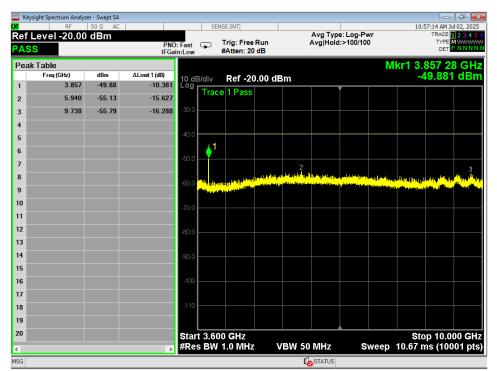



Figure 32 - Out-of-Band Spurious Emissions, 3.6GHz - 10GHz, High Channel, Ant 2



Figure 33 – Out-of-Band Spurious Emissions, 10GHz – 20GHz, High Channel, Ant 2

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 37 of 52



Report Number: R202

R20240829-00-E5

Rev

0

Prepared for:

Bosch Security Systems, LLC

## 4.10 RECEIVER SPURIOUS EMISSIONS

Test Method: ANSI C63.17, Section 6.1.6.2

Limits:

**RSS-Gen Section 7.4** 

30MHz – 1GHz: 2nW = -57dBm >1GHz: 5nW = -53dBm

Test setup:

Details can be found in section 3.4 of this report.

## **EUT operating conditions:**

Details can be found in section 2.1 of this report.

Test results:

**Pass** 

| Frequency | Antenna | Worst Case Value | Limit | Margin |
|-----------|---------|------------------|-------|--------|
| MHz       |         | dBm              | dBm   | dB     |
| 30 - 1000 | 1       | -65.350          | -57   | 8.35   |
| >1000     | 1       | -59.464          | -53   | 6.464  |
| 30 - 1000 | 2       | -87.607          | -57   | 30.607 |
| >1000     | 2       | -66.621          | -53   | 13.621 |

Page 38 of 52



Prepared for: Bos

Bosch Security Systems, LLC

## 4.11 FREQUENCY STABILITY

Test Method: ANSI C63.17 Sec. 6.2.1

## **Limits for Frequency Stability**

10ppm

For 1921.536MHz; Limit = 19215.36Hz For 1928.448MHz; Limit = 19284.48Hz

#### Test setup:

Details can be found in section 3.4 of this report.

## **EUT operating conditions:**

Details can be found in section 2.1 of this report.

## Test results:

## **Pass**

| DECT Antenna 1   |         |                       |              |  |  |
|------------------|---------|-----------------------|--------------|--|--|
|                  | Voltage | Frequency Error (kHz) |              |  |  |
| Temperature (°C) | (VDC)   | Ch 1 Ch 2             |              |  |  |
|                  |         | 1921.536 MHz          | 1928.448 MHz |  |  |
| -20°C            | PoE     | 1.269                 | 2.730        |  |  |
| +20°C            | PoE     | 3.799                 | -4.376       |  |  |
| +50°C            | PoE     | 3.446                 | -3.525       |  |  |
| DECT Antenna 2   |         |                       |              |  |  |
|                  | Voltage | Frequency             | Error (kHz)  |  |  |
| Temperature (°C) | (VDC)   | Ch 1 Ch 2             |              |  |  |
|                  |         | 1921.536 MHz          | 1928.448 MHz |  |  |
| -20°C            | PoE     | -12.212               | -17.440      |  |  |
| +20°C            | PoE     | -12.618               | -16.342      |  |  |
| +50°C            | PoE     | 3.544                 | -16.704      |  |  |

| <b>DECT Stability over time</b>      |        |        |  |  |
|--------------------------------------|--------|--------|--|--|
| DECT Antenna 1 (Low Channel)         |        |        |  |  |
| Temp (°C) Time Frequency Error (kHz) |        |        |  |  |
| 20°C                                 | Start  | -5.194 |  |  |
| 20°C                                 | 15 min | -5.081 |  |  |
| 20°C                                 | 30 min | -4.305 |  |  |
| 20°C                                 | 45 min | -5.609 |  |  |
| 20°C                                 | 60 min | -7.383 |  |  |

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521



Prepared for: Bosch Security Systems, LLC

#### 4.12 **FRAME-JITTER**

Test Method: ANSI C63.17, Section 6.2.3

**Limits for Frame Jitter** 

| Frame Period         | 20ms or <b>10ms</b> |
|----------------------|---------------------|
| Maximum Jitter (+/-) | 25uS                |
| 3x StD of Jitter     | 12.5uS              |

## Test setup:

Details can be found in section 3.4 of this report.

**EUT operating conditions:**Details can be found in section 2.1 of this report.

#### Test results:

| Frame Period (ms) | Max Pos Jitter<br>(uS) | Max Neg Jitter<br>(uS) | Max Jitter (uS) |
|-------------------|------------------------|------------------------|-----------------|
| 10.00             | 0.00                   | 0.01                   | 0.10            |

Maximum jitter shows compliance with limits

# **Pass**

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 40 of 52



Prepared for: | Bosch

Bosch Security Systems, LLC

## 4.13 MONITORING THRESHOLD, LIC

**Test Method**: ANSI C63.17, Section 7.3.2, 7.3.3

Test setup:

Details can be found in section 3.4 of this report.

**EUT** operating conditions:

Details can be found in section 2.1 of this report.

**Lower Threshold:** 

 $T_L = -174 + 10*Log(B) + M_L + P_{MAX} - P_{EUT}$ 

B = Emissions Bandwidth (Hz)

 $M_L$  = dB the threshold may exceed thermal noise (30 for  $T_L$ )

 $P_{MAX} = 5*Log(B) - 10 (dBm)$ 

P<sub>EUT</sub> = Transmitted Power (dBm)

| Monitor Threshold | B (Hz)     | ML | P <sub>MAX</sub> (dBm) | P <sub>EUT</sub> (dBm) | TL     |
|-------------------|------------|----|------------------------|------------------------|--------|
| Lower Threshold   | 1.188*10^6 | 30 | 20.48                  | 18.845                 | -81.72 |

## Test results:

| Interferer Description / Limits                                                                                                                                                                                                                                                                                   | Reaction of EUT | Results |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Apply interference to the EUT on $f$ 1 at a level of $TL + UM + 7$ dB and on $f$ 2 at a level of $TL + UM$ . Initiate transmission. The EUT should transmit on f2. Terminate the connection. Repeat five times. If the EUT transmits once or more on any of the system carriers other than f2, the test failed.   | EUT Tx on f2    | PASS    |
| Apply interference to the EUT on $f$ 1 at a level of $TL + UM$ and on $f$ 2 at a level of $TL + UM + 7$ dB. Initiate transmission. The EUT should transmit on f1. Terminate the connection. Repeat five times. If the EUT transmits once or more on any of the system carriers other than f1, the test failed     | EUT Tx on f1    | PASS    |
| Apply interference to the EUT on $f$ i at a level of $TL + UM + 1$ dB and on $f$ 2 at a level of $TL + UM - 6$ dB. Initiate transmission. If the EUT transmits on f2, terminate the connection. Repeat five times. If the EUT transmits once or more on any of the system carriers other than f2, the test failed | EUT Tx on f2    | PASS    |
| Apply interference to the EUT on $f$ i at a level of $TL + UM - 6$ dB and on $f$ 2 at a level of $TL + UM + 1$ dB. Initiate transmission. If the EUT transmits on f1, terminate the connection. Repeat five times. If the EUT transmits once or more on any of the system carriers other than f1, the test        | EUT Tx on f1    | PASS    |

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 41 of 52



Prepared for: | Bosch Security Systems, LLC

#### 4.14 REACTION TIME AND MONITORING INTERVAL

**Test Method**: ANSI C63.17, Section 7.5

Test setup:

Details can be found in section 3.4 of this report.

#### **EUT** operating conditions:

Details can be found in section 2.1 of this report.

#### **Test Procedure:**

- a) restrict operation of the EUT to transmit carrier frequencies *f*1 and *f*2. Verify that the EUT can establish a connection either *f*1 or *f*2 with no interference applied on *f*1 or *f*2.
- b) Apply time-synchronized, pulsed interference on *f*1 at the pulsed level *TL* + *UM* to the receive port of the EUT. Specific pulse lengths/amplitudes further described in ANSI 63.17 Section 7.5
- c) Additionally apply a CW signal on f2 at the level TL to the receive port of the EUT. Verify that the EUT establishes a connection only on f2 when the width of the interference pulse exceeds the largest of 50  $\mu$ s and  $50^*\sqrt{(1.25/B)}$   $\mu$ s, where B is the emission bandwidth of the EUT in megahertz.
- d) Change the time-synchronized, pulsed interference on f1 to the level TL + UM + 6 dB. Verify that the EUT establishes a connection only on f2 when the width of the interference pulse exceeds the largest of 35 µs and  $35*\sqrt{(1.25/B)}$  µs, where B is the emission bandwidth of the EUT in megahertz.

#### Test results:

| Test Pulse Width (μs) | Reaction from EUT    | Result |
|-----------------------|----------------------|--------|
| $50*\sqrt{1.25/B}$    | Transmission only f2 | PASS   |
| $35*\sqrt{1.25/B}$    | Transmission only f2 | PASS   |

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 42 of 52



Prepared for: | Bosch Security Systems, LLC

## 4.15 DUAL ACCESS CRITERIA

Test Method: ANSI C63.17, Section

Test setup:

Details can be found in section 3.4 of this report.

**EUT operating conditions:** 

Details can be found in section 2.1 of this report.

**Test Procedure:** 

See C63.17 Section 8.3.2 for test procedure.

#### Test results:

| Test Reference C63.17 Sec<br>8.3.2                | Reaction from EUT                                   | Result |
|---------------------------------------------------|-----------------------------------------------------|--------|
| Transmission on interference free receive window  | EUT Connected with companion during receive window  | PASS   |
| Transmission on interference free transmit window | EUT Connected with companion during transmit window | PASS   |

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 43 of 52



Prepared for:

Bosch Security Systems, LLC

#### **APPENDIX A: SAMPLE CALCULATION**

#### **Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB $_{\mu}V$  is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added.

The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB<sub>µ</sub>V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \, dB\mu V/m$$

The 48.1 dB<sub>μ</sub>V/m value can be mathematically converted to its corresponding level in μV/m.

Level in  $\mu$ V/m = Common Antilogarithm [(48.1 dB $\mu$ V/m)/20]= 254.1  $\mu$ V/m

AV is calculated by taking the 20\*log(T<sub>on</sub>/100) where T<sub>on</sub> is the maximum transmission time in any 100ms window.

#### **EIRP Calculations**

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation.

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] $^2$  / 30

Power (watts) =  $10^{Power} (dBm)/10 / 1000$ 

Voltage  $(dB\mu V)$  = Power (dBm) + 107 (for 50 $\Omega$  measurement systems)

Field Strength (V/m) =  $10^{field}$  Strength (dB $\mu$ V/m) / 20] /  $10^{6}$ 

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$  for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ 

10log( 10^9) is the conversion from micro to milli

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 44 of 52



| Report Number: | R20240829-00-E5             | Rev | 0 |
|----------------|-----------------------------|-----|---|
| Prepared for:  | Bosch Security Systems, LLC |     |   |

## **APPENDIX B - MEASUREMENT UNCERTAINTY**

NCEE Labs does not add uncertainty levels to measurement levels

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

| Test                        | Frequency Range | Uncertainty Value (dB) |  |
|-----------------------------|-----------------|------------------------|--|
| Radiated Emissions, 3m      | 30MHz - 1GHz    | ±4.31                  |  |
| Radiated Emissions, 3m      | 1GHz - 18GHz    | ±5.08                  |  |
| Emissions limits, conducted | 30MHz – 18GHz   | ±3.03                  |  |

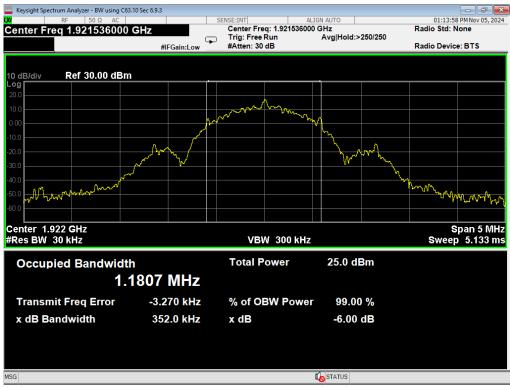
Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 45 of 52



0


Prepared for:

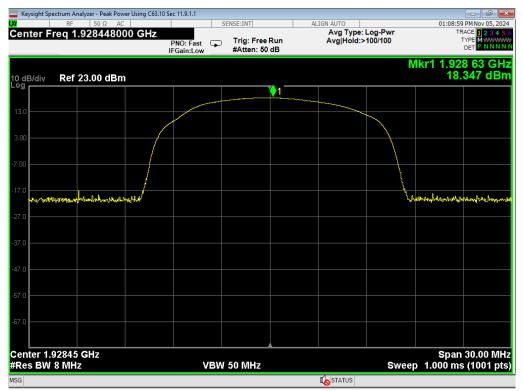
Bosch Security Systems, LLC

#### APPENDIX C - GRAPHS AND TABLES

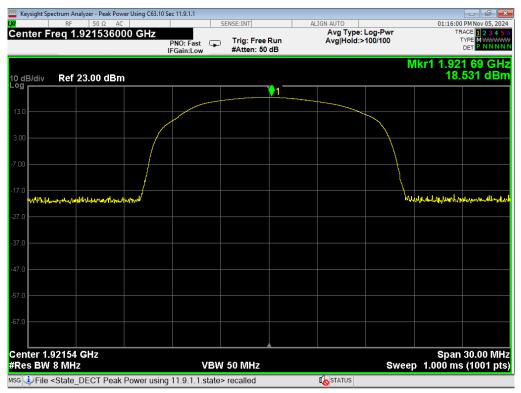


01 OBW, DECT, Antenna 1, High




02 OBW, DECT, Antenna 1, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 46 of 52

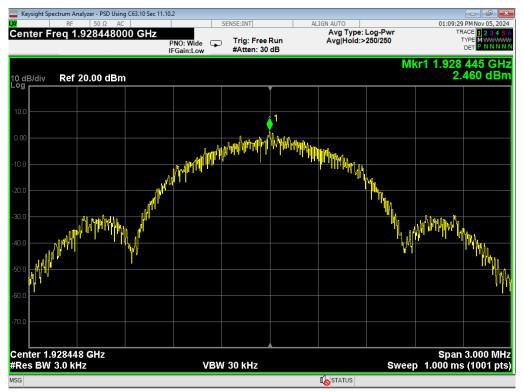


Prepared for: | Bosch Security Systems, LLC

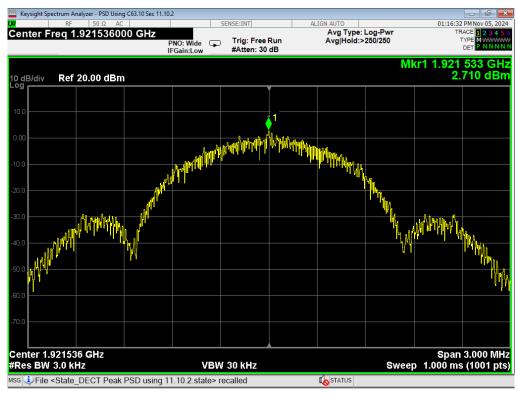


03 Peak Power, DECT, Antenna 1, High




04 Peak Power, DECT, Antenna 1, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 47 of 52



Prepared for: | Bosch Security Systems, LLC

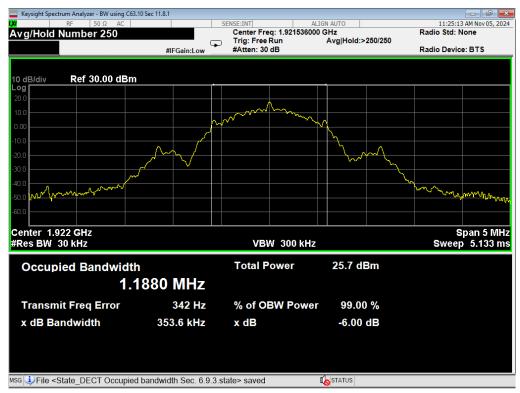


05 Peak PSD, DECT, Antenna 1, High



06 Peak PSD, DECT, Antenna 1, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 48 of 52

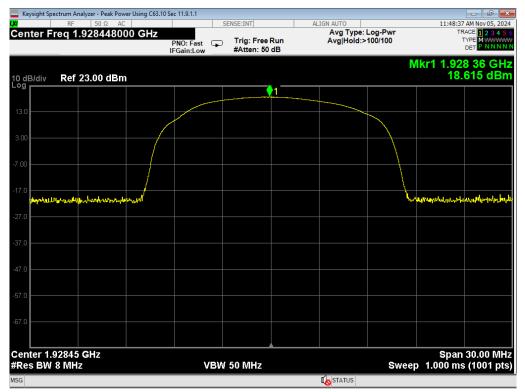


Prepared for: | Bosch Security Systems, LLC

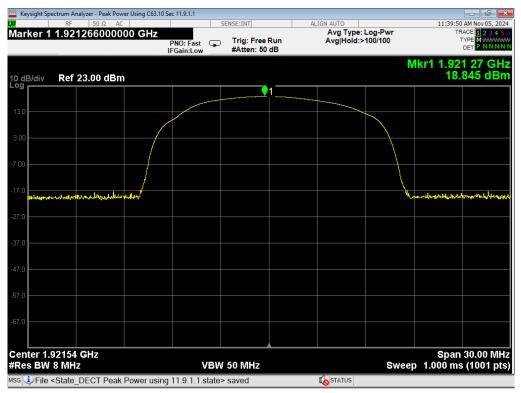


07 OBW, DECT, Antenna 2, High




08 OBW, DECT, Antenna 2, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 49 of 52

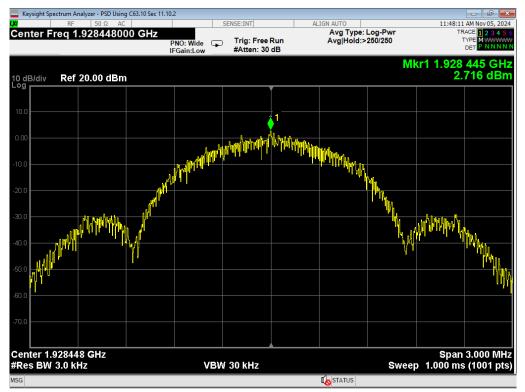


Prepared for: | Bosch Security Systems, LLC

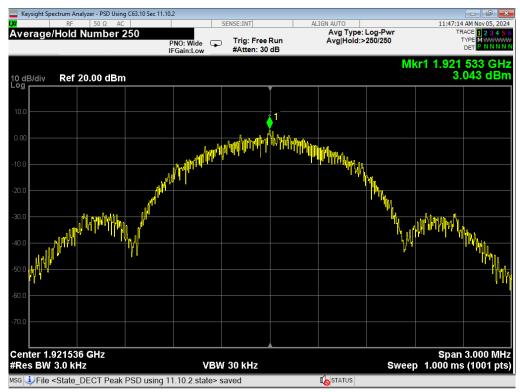


09 Peak Power, DECT, Antenna 2, High




10 Peak Power, DECT, Antenna 2, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 50 of 52



Prepared for: | Bosch Security Systems, LLC



11 Peak PSD, DECT, Antenna 2, High



12 Peak PSD, DECT, Antenna 2, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 51 of 52



 Report Number:
 R20240829-00-E5
 Rev
 0

 Prepared for:
 Bosch Security Systems, LLC

## REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 52 of 52