APPLICANT

X-10 (USA), Inc.

400 Forge Way, Suite 412 Rockaway, NJ 07866-2033 MANUFACTURER

X-10 Electronics Shenzhen Co. Ltd.

X-10 Building

Labour Industrial District Shenzhen, Xixiang, Bao An Guang Dong, China, 518102

TEST SPECIFICATION:

FCC Rules and Regulations Part 15, Subpart C, Para. 15.231

TEST PROCEDURE:

ANSI C63.4:1992

TEST SAMPLE DESCRIPTION

BRANDNAME:

X-10 (USA), Inc.

MODEL: VT38A

TYPE:

Pulsed Transmitter

POWER REQUIREMENTS: 120 VAC, 60 Hz

FREQUENCY OF OPERATION:

310 MHz

TESTS PERFORMED

Para. 15.207(a), **Conducted Emissions**

Radiated Emissions. Fundamental and Harmonics Para. 15.231(b)(1),

Para. 15.231(b)(3), Radiated Emissions, Spurious Case

Para. 15.35(b)(2), **Duty Cycle Determination**

Para. 15.231(c), Occupied Bandwidth

REPORT OF MEASUREMENTS

Applicant: X-10 (USA), Inc.

Device: Pulsed Transmitter

FCC ID: B4SVT38A

Power Requirements: 120 VAC, 60 Hz

Retlif Testing Laboratories

Applicable Rule Section:	Part 15, Subpart C, Section	15.231
		Retlif Testing Laboratories
		Retlif Testing Laboratories Test Report No. R-9159-1

FCC ID: B4SVT38A

REPORT OF MEASUREMENTS (continued)

TEST RESULTS

15.207(a): The radio frequency voltage that was conducted back on to the AC power line on any frequency/frequencies within the bandwidth of 450kHz to 30MHz did not exceed 250 microvolts.

15.231 (a): This device is used as a security alarm transmitter, which transmits when activated

by a motion sensor.

15.231 (a)(1) & The transmitter is automatically operated by the motion detector and ceases

15.231(a)(2): transmission within 5 seconds after the alarm condition ceases.

15.231 (a)(3): The transmitter does not perform periodic transmissions.

15.231 (b): The fundamental field strength did not exceed 5833 μ V/M (Average) at a test

distance of 3 meters. In addition, the requirements of section 15.35 for averaging

pulsed emissions and for limiting peak emissions were met.

The field strength of harmonic and spurious emissions did not exceed 583 μ V/M

(AVERAGE).

DETERMINATION OF FIELD STRENGTH LIMITS

The field strength limits shown below are found in Section 15.231.

F	requen	cy	Limit	
F1	=	260	3750 =	L1
Fo	=	312	Lo	
F2	=	470	12500 =	1.2

The formula below was utilized to determine the limits:

$$Limit = L1 + [(Fo-F1)(L2-L1)/(F2-F1)]$$

Solving yields:

Fundamental Limit = 5833 μV/M (AVERAGE) @ 3 Meters Retlif Testing Laboratories

Harmonic Limit = 583 μV/M (AVERAGE) @ 3 Me	eters
	Retlif Testing Laboratories
	Test Report No. R-9159-1

FCC ID: B4SVT38A

REPORT OF MEASUREMENTS (continued)

DUTY CYCLE DETERMINATION

The unit's RF output was directly coupled to the input of the spectrum analyzer. The analyzer was set for a frequency span of 0Hz. The sweep time was then adjusted in order to display one full pulse train. The transmitter on time was then summed and compared to the time for one full cycle in order to obtain the duty cycle. (See plots for additional information)

Transmitter On Time = 28.9 milliseconds

Transmitter Cycle Time = 105.5 milliseconds

Transmitter Duty Cycle = 28.9 %

CALCULATION:

1 Large Pulse = 9.1 milliseconds

 $33 \times 600 \,\mu s \,(\text{small pulse}) = 19.8 \,\text{milliseconds}$

10.5 + 19.8 = 28.9 milliseconds

Duty Cycle = 28.9 %

Correction Factor = $20 \log(0.288)$ = -10.8

SPECTRUM ANALYZER DESENSITIZATION CONSIDERATIONS

Due to the nature of the emissions being measured, care was taken to ensure that the resolution bandwidth of the spectrum analyzer was adequate to provide accurate measurements. The following formula was utilized:

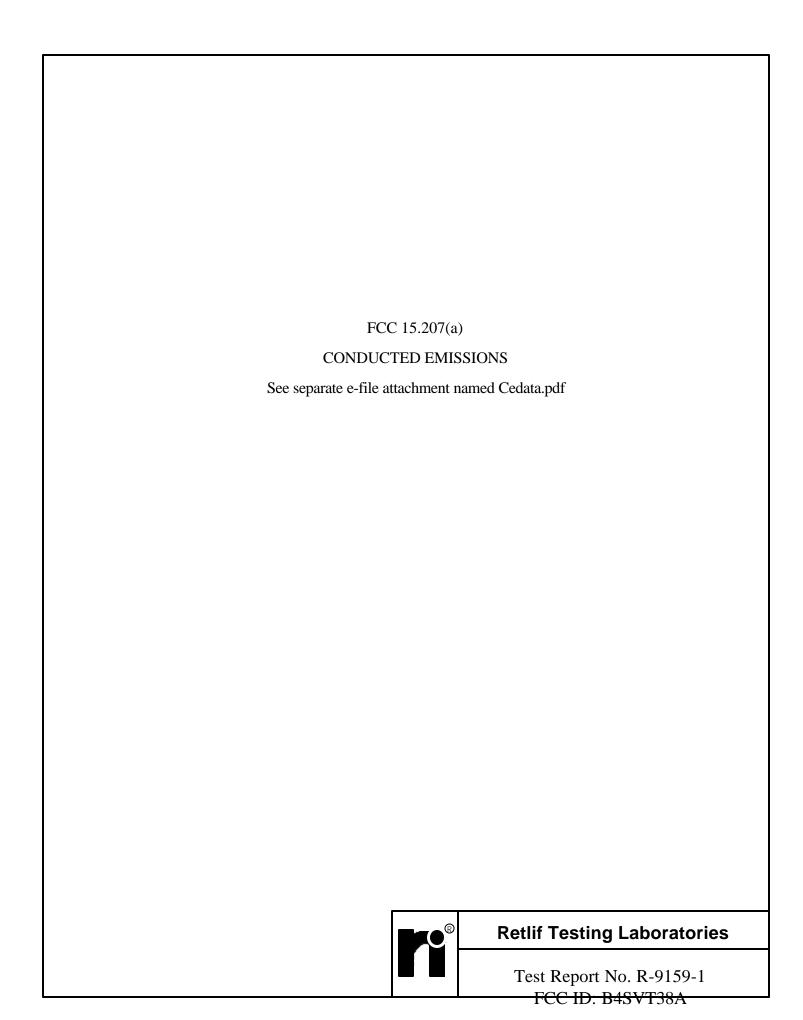
Setting pulse desensitization equal to zero and utilizing the minimum observed pulse width of 600µs yields a minimum required bandwidth of 1.111 kHz. FCC specified bandwidths of 100kHz and 1MHz were utilized below and above 1GHz, respectively.

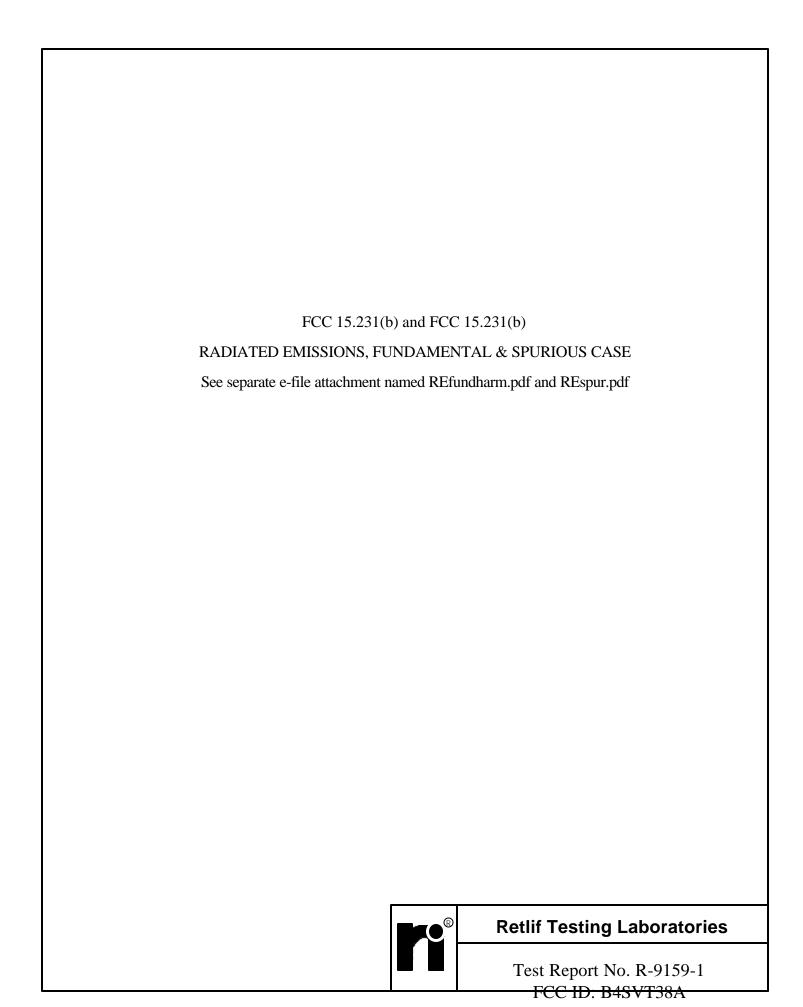
Retlif Testing Laboratories

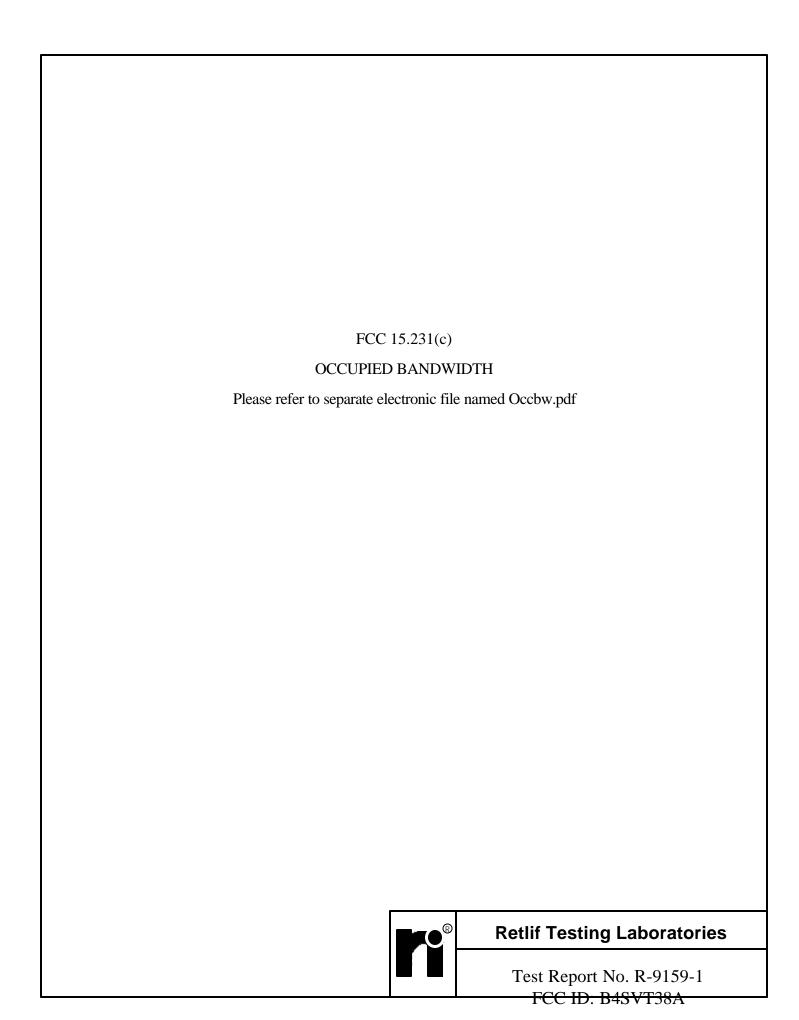
GENERAL NOTES

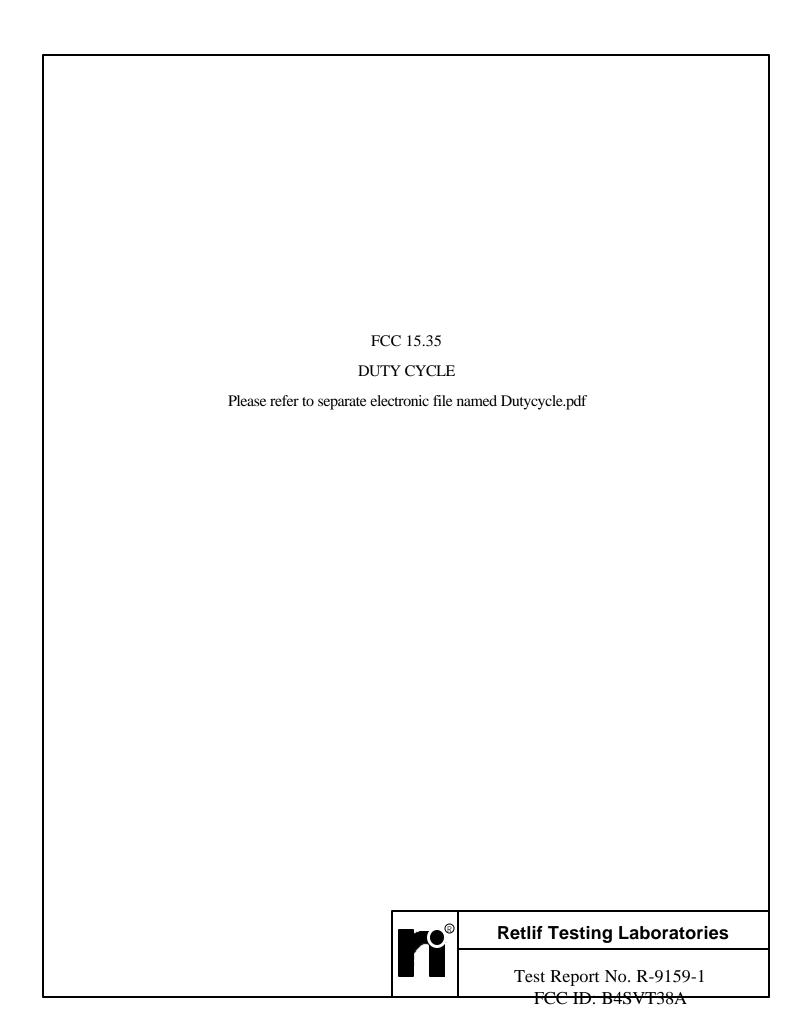
- 1. All readings were taken utilizing a peak detector function at a test distance of 3 meters.
- 2. The duty cycle was applied to the peak readings in order to determine the average value of the emissions.
- 3. The frequency range was scanned from 30 MHz to 3.1 GHz. All emissions not reported were more than 20 dB below the specified limit.

Retlif Testing Laboratories

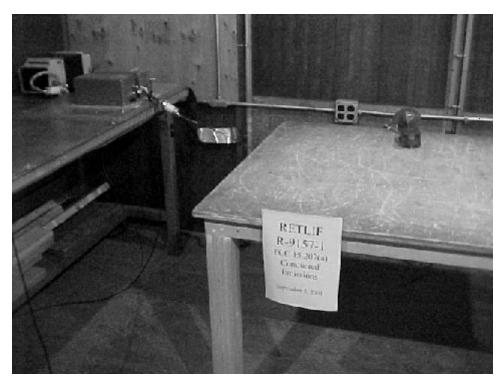

EQUIPMENT LIST


FCC Part 15 Subpart C Compliance Testing


EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
062	High Gain Horn Antenna	Microlab/FXR	1.7 GHz - 2.6 GHz	R638A	10/11/00	10/11/01
067	Open Area Test Site	Retlif	3 Meter	RNY	9/20/00	9/20/03
077	LISN	Solar Electronics	10 kHz - 30 MHz	8028-50-TS24BNC	2/9/01	2/9/02
079	LISN	Solar Electronics	10 kHz - 30 MHz	8028-50-TS24BNC	5/2/01	5/2/02
091	Shielded Enclosure	Retlif	10 kHz - 1 GHz	Room 6	8/20/01	8/20/02
128C	Double Ridge Guide	Eaton Corporation	1 GHz - 18 GHz	96001	9/18/00	9/18/01
129E	High Gain Horn Antenna	Microlab/FXR	18 GHz - 26.5 GHz	K638A	9/18/00	9/18/01
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	6/13/01	6/13/02
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	7/2/01	1/2/02
141A	Graphics Plotter	Hewlett Packard	N/A	7470A	3/5/01	3/5/02
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	2/20/01	1/2/02
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	6/13/01	6/13/02
420	Amplifier	Hewlett Packard	2.0 GHz - 18 GHz	11975A	9/29/00	9/29/01
421	Harmonic Mixer	Hewlett Packard	18 GHz - 26.5 GHz	11970K	9/29/00	9/29/01
512	Graphics Plotter	Hewlett Packard	N/A	7470A	11/13/00	11/13/01
523	Biconilog	Electro-Mechanics	26 - 2000 MHz	3142B	6/8/00	9/8/01
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	6/27/01	6/27/02
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	2/27/01	2/27/02
7016	EMC Analyzer	Hewlett Packard	9kHz - 1.8GHz	8591EM	3/6/01	3/6/02
7017	Transient Limiter	Hewlett Packard	9kHz - 200MHz	11947A	4/9/01	4/9/02

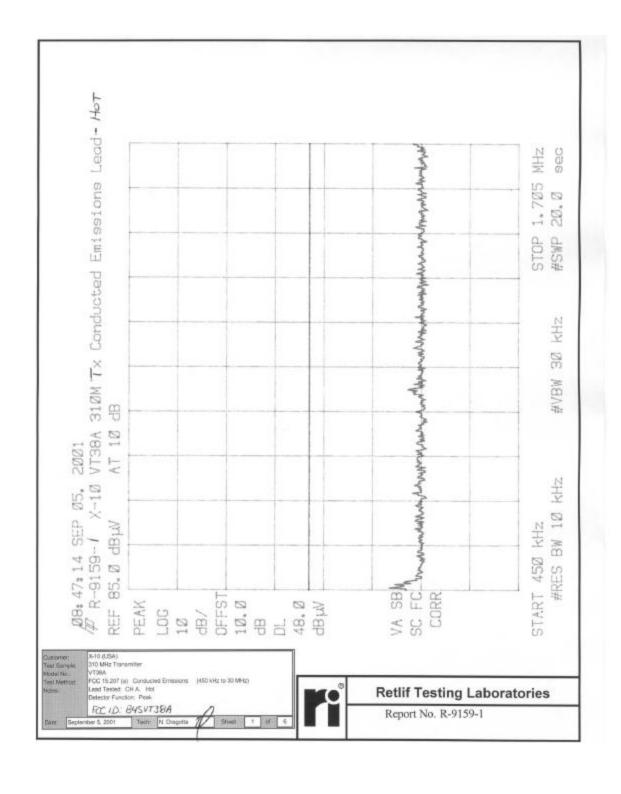


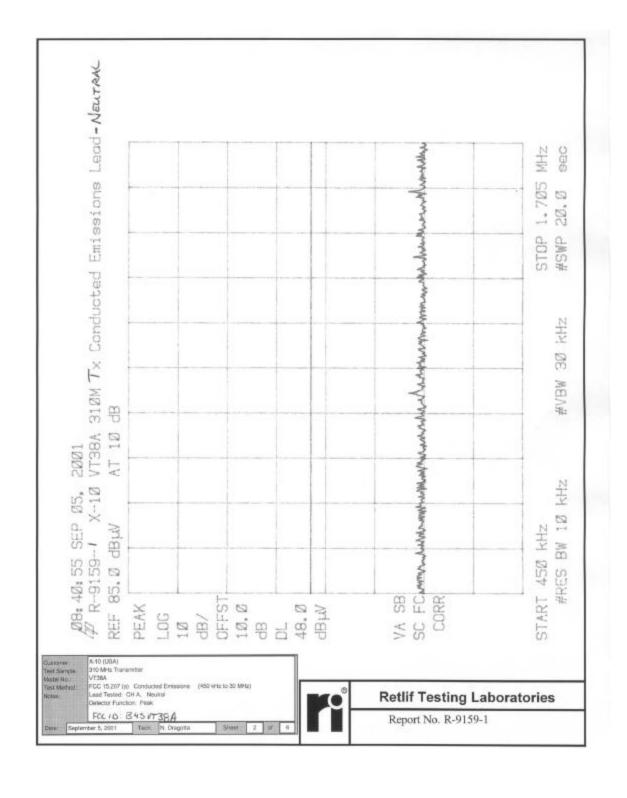
Retlif Testing Laboratories

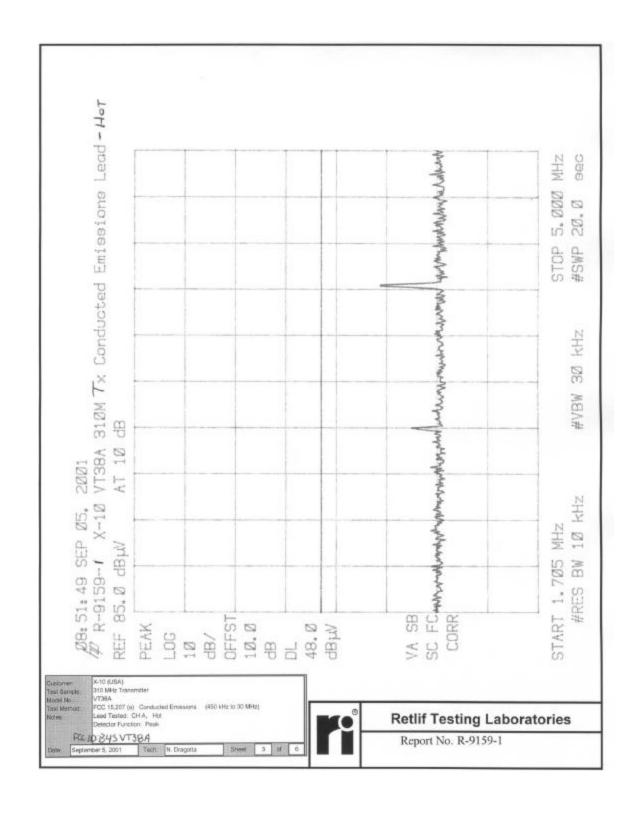


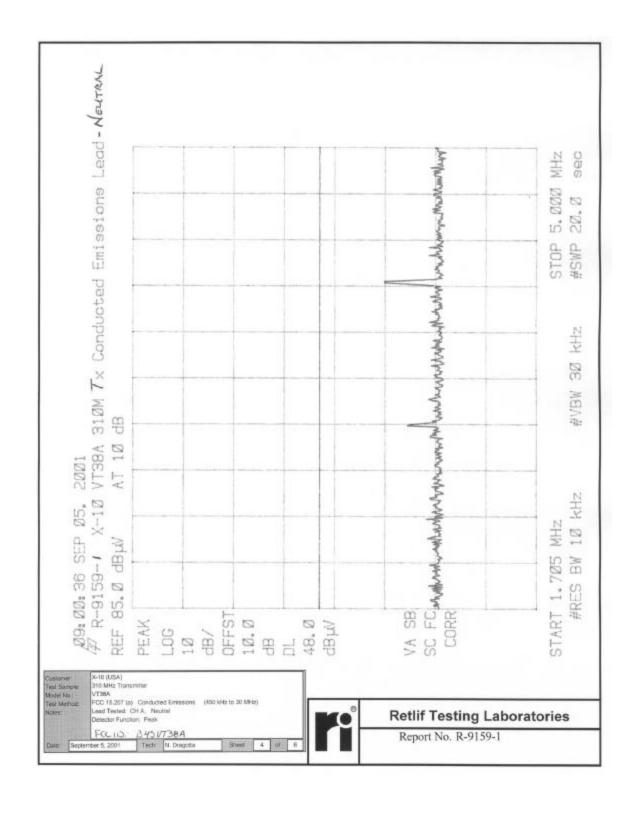


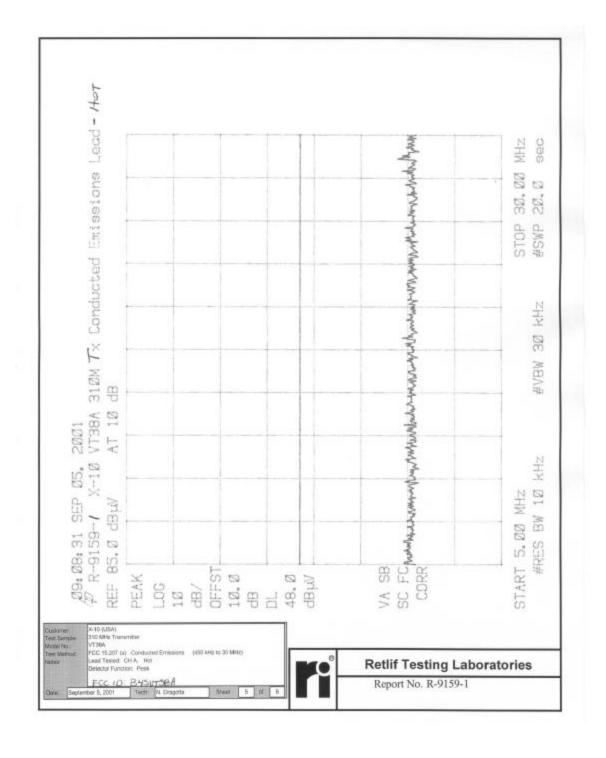
Test Setup Photographs

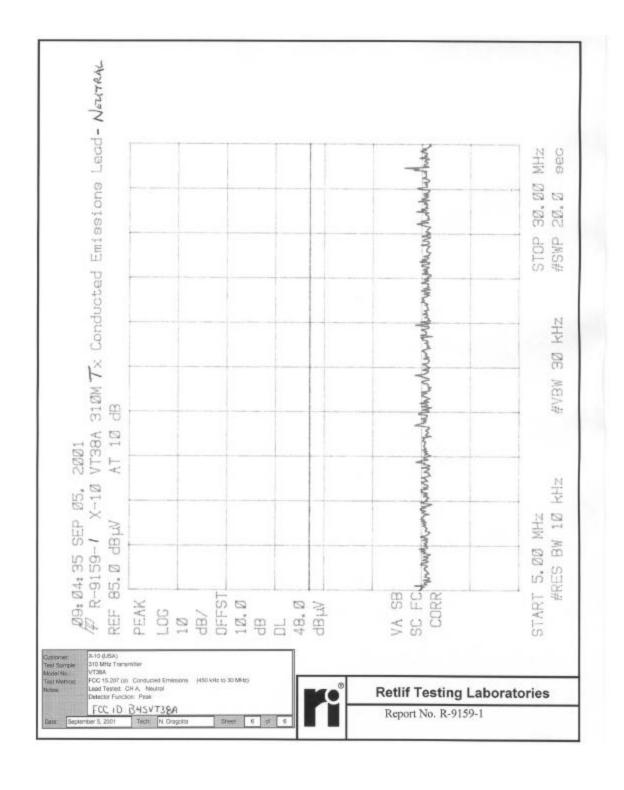

Retlif Testing Laboratories

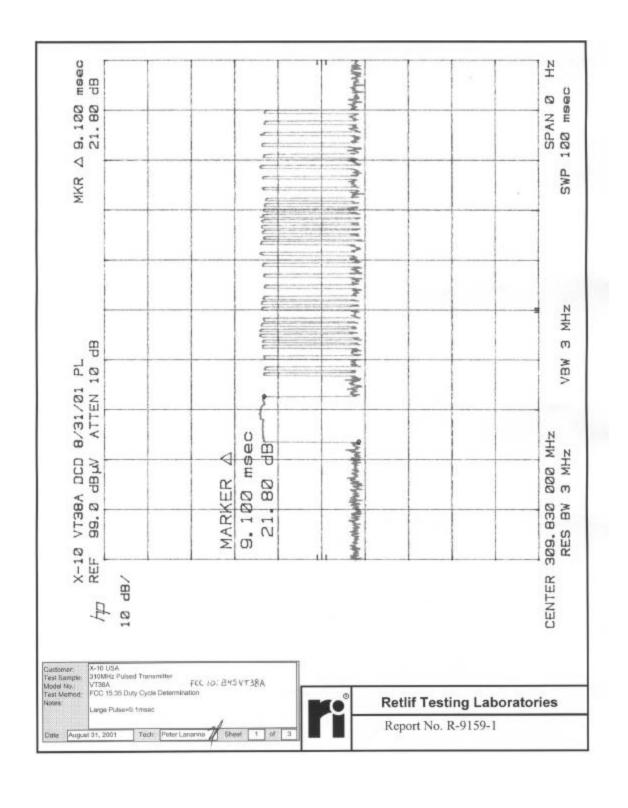

Test Setup Photographs



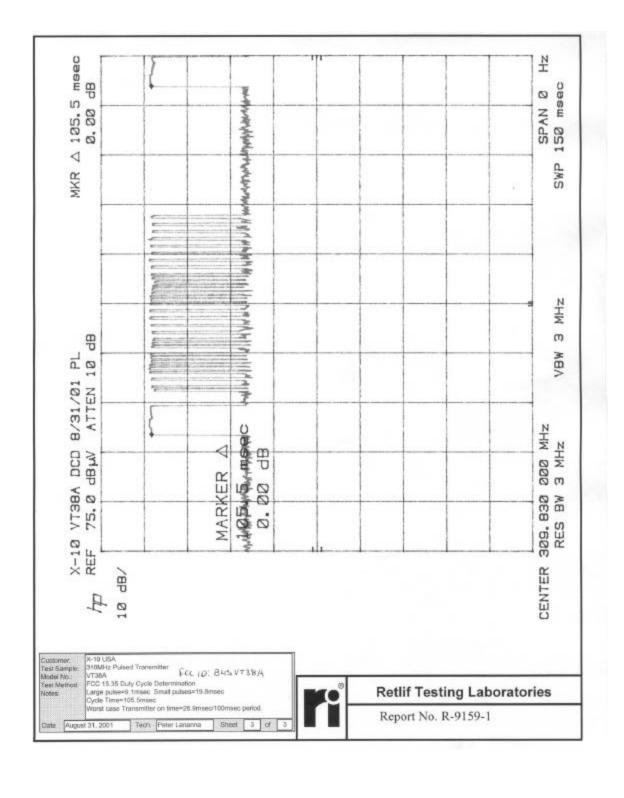


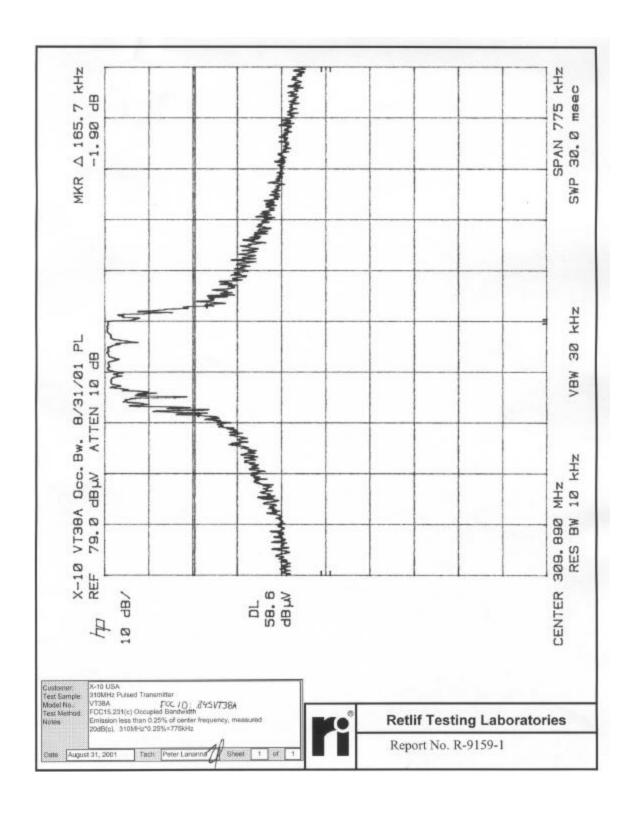

Retlif Testing Laboratories











Test Method:	FCC Part 15 Subpart C Radiated Emissions, Fundament	tal & Harmonic Eı	missions
Customer:	X-10 (USA)	Job No.	R-9159-1
Test Sample:	RF remote	Paragraph:	15.231
Model No.:	VT38A	FCC ID:	B4SVT38A
Operating Mode:	Continuously Transmitting a 310 MHz Signal		
Technician:	Peter Lananna	Date:	September 5, 2001
Notes: Test Dis	stance: 3 Meters		

Detector: Peak, Unless otherwise specified

	Detector: Peak, Unl		cified				
Test Freq.	Antenna	EUT	Meter	Correction	Corrected	Converted	Peak
rest rieq.	Pol./Height	Orientation	Reading	Factor	Reading	Reading	Limit
MHz	(V/H)/Meters	X/Y/Z	dBuV	dB	dBuV/m	uV/m	uV/m
310	H / 1.5	X	65.1	-4.0	61.1	1135.0	58300
	H / 2.5	Y	64.5	-4.0	60.5	1059.3	
	H / 1.0	Z	70.8	-4.0	66.8	2187.8	
	V / 1.0	X	64.8	-4.0	60.8	1096.5	
	V / 1.0	Y	70.1	-4.0	66.1	2018.4	
310	V / 2.0	Z	65.6	-4.0	61.6	1202.3	58300
620	H / 1.3	X	47.5	3.9	51.4	371.5	5830
	H/3.8	Y	45.7	3.9	49.6	302.0	
	H / 1.3	Z	51.9	3.9	55.8	616.6	
	V / 1.0	X	49.0	3.9	52.9	441.6	
	V / 1.5	Y	50.5	3.9	54.4	524.8	
620	V / 1.5	Z	46.6	3.9	50.5	335.0	5830
020	77.11.0		•	0.0	20.7	00.4#	7020
930	H/1.0	X	29.9	8.8	38.7	86.1*	5830
<u> </u>	H/1.0	Y	29.9	8.8	38.7	86.1*	
<u> </u>	H/1.0	Z	29.9	8.8	38.7	86.1*	
<u> </u>	V/1.0	X	29.9	8.8	38.7	86.1*	
	V / 1.0	Y	29.9	8.8	38.7	86.1*	
930	V / 1.0	Z	29.9	8.8	38.7	86.1*	5830
1240	H / 1.0	X	41.7	-2.8	38.9	88.1*	5000
	H / 1.0	Y	41.7	-2.8	38.9	88.1*	
İ	H / 1.0	Z	41.7	-2.8	38.9	88.1*	i
i	V /1.0	X	41.7	-2.8	38.9	88.1*	İ
i	V / 1.0	Y	41.7	-2.8	38.9	88.1*	
1240	V / 1.0	Z	41.7	-2.8	38.9	88.1*	5000
1550	H / 1.0	X	39.7	0.9	40.6	107.2*	5000
	H / 1.0	Y	39.7	0.9	40.6	107.2*	
	H / 1.0	Z	39.7	0.9	40.6	107.2*	
	V /1.0	X	39.7	0.9	40.6	107.2*	
	V / 1.0	Y	39.7	0.9	40.6	107.2*	
1550	V / 1.0	Z	39.7	0.9	40.6	107.2*	5000
	The frequency range						
	Than 10 dB below				t exceed the spec	cified limits.	
	*=Noise Floor Me	asurements (Mini	mum system se	nsitivity)			

Retlif Testing Laboratories

Test Method:	FCC Part 15 Subpart C Radiated Emissions, Fundamenta	al & Harmonic Eı	missions
Customer:	X-10 (USA)	Job No.	R-9159-1
Test Sample:	RF remote	Paragraph:	15.231
Model No.:	VT38A	FCC ID:	B4SVT38A
Operating Mode:	Continuously Transmitting a 310 MHz Signal		
Technician:	Peter Lananna	Date:	September 5, 2001
	•		

Notes: Test Distance: 3 Meters

Detector: Peak unless otherwise specified

	Detector: Peak, unle	ess otherwise spec	cified				
Т4 Г	Antenna	EUT	Meter	Correction	Corrected	Converted	Peak
Test Freq.	Pol./Height	Orientation	Reading	Factor	Reading	Reading	Limit
MHz	(V/H)-Meters	X/Y/Z	dBuV	dB	dBuV/m	uV/m	uV/m
1860	H / 1.0	X	38.7	3.0	41.7	121.6*	5830
	H / 1.0	Y	38.7	3.0	41.7	121.6*	
	H / 1.0	Z	38.7	3.0	41.7	121.6*	
	V /1.0	X	38.7	3.0	41.7	121.6*	
	V / 1.0	Y	38.7	3.0	41.7	121.6*	
1860	V / 1.0	Z	38.7	3.0	41.7	121.6*	5830
2170	H / 1.0	X	39.2	0.4	39.6	95.5*	5830
	H / 1.0	Y	39.2	0.4	39.6	95.5*	
	H / 1.0	Z	39.2	0.4	39.6	95.5*	
	V /1.0	X	39.2	0.4	39.6	95.5*	
	V / 1.0	Y	39.2	0.4	39.6	95.5*	
2170	V / 1.0	Z	39.2	0.4	39.6	95.5*	5830
2480	H / 1.0	X	39.7	3.8	43.5	149.6*	5830
2400	H / 1.0	Y	39.7	3.8	43.5	149.6*	3030
l l	H / 1.0	Z	39.7	3.8	43.5	149.6*	
<u> </u>	V /1.0	X	39.7	3.8	43.5	149.6*	
	V / 1.0	Y	39.7	3.8	43.5	149.6*	
2480	V / 1.0	Z	39.7	3.8	43.5	149.6*	5830
2400	V / 1.0	L	37.1	3.0	43.3	149.0	3630
2790	H / 1.0	X	38.2	5.8	44.0	158.5*	5000
	H / 1.0	Y	38.2	5.8	44.0	158.5*	
	H / 1.0	Z	38.2	5.8	44.0	158.5*	
	V /1.0	X	38.2	5.8	44.0	158.5*	
	V / 1.0	Y	38.2	5.8	44.0	158.5*	
2790	V / 1.0	Z	38.2	5.8	44.0	158.5*	5000
2100	11/10	37	40.0	C 4	40.4	200.0*	5020
3100	H / 1.0	X	40.0	6.4	46.4	208.9*	5830
	H / 1.0	Y	40.0	6.4	46.4	208.9*	
	H/1.0	Z	40.0	6.4	46.4	208.9*	
	V /1.0	X	40.0	6.4	46.4	208.9*	
2100	V / 1.0	Y	40.0	6.4	46.4	208.9*	5020
3100	V / 1.0	Z	40.0	6.4	46.4	208.9*	5830
	The frequency rang						
	Than 10 dB below				t exceed the spec	cified limits.	
	*=Noise Floor Me	asurements (Min	ımum system se	ensitivity)			

Retlif Testing Laboratories

Test Method:	FCC Pa	rt 15 Subpart C Ra	diated Emission	s, Fundamental	& Harmonic En	nissions	
Customer:	X-10 (U	SA)			Job No.	R-9159-1	
Test Sample:	RF remo	ote			Paragraph:	15.231	
Model No.:	VT38A				FCC ID:	B4SVT38A	
Operating Mo	ode: Continu	ously Transmittin	g a 310 MHz Si	gnal			
Technician:	Peter La	•			Date:	September 5, 2001	
	Test Distance: 3 M			D	uty Cycle:28.9	•	
	Detector: Peak, un		cified		uty Cycle Corre		
	Antenna	EUT	Peak	Correction	Corrected	Converted	Avg.
Test Freq.	Pol./Height	Orientation	Reading	Factor	Reading	Reading	Limit
MHz	(V/H)-Meters	X/Y/Z	dBuV	dB	dBuV/m	uV/m	uV/m
310	H / 1.5	X	61.1	-10.8	50.3	327.3	5830
1107	H / 2.5	Y	60.5	-10.8	49.7	305.5	.3630
	H / 1.0	Z	66.8	-10.8	56.0	631.0	
<u> </u>	V / 1.0	X	60.8	-10.8	50.0	316.2	1
1	V / 1.0	Y	66.1	-10.8	55.3	582.1	1
310	V / 1.0 V / 2.0	Z	61.6	-10.8	50.8	346.7	5830
310	V / 2.0	L	01.0	-10.0	30.0	340.7	3630
620	H / 1.3	X	51.4	-10.8	40.6	107.2	583
020	H/3.8	Y	49.6	-10.8	38.8	87.1	303
	H / 1.3	Z	55.8	-10.8	45.0	177.8	
l	V / 1.0	X	52.9	-10.8	42.1	127.4	
	V / 1.5	Y	54.4	-10.8	43.5	149.6	
620	V / 1.5	Z	50.5	-10.8	39.7	96.6	583
020	, , 110		33.3	10.0		33.5	
930	H / 2.0	X	38.7	-10.8	27.9	24.8*	583
	H / 1.3	Y	38.7	-10.8	27.9	24.8*	
İ	H / 1.5	Z	38.7	-10.8	27.9	24.8*	İ
i	V / 1.0	X	38.7	-10.8	27.9	24.8*	
İ	V / 1.5	Y	38.7	-10.8	27.9	24.8*	İ
930	V / 1.5	Z	38.7	-10.8	27.9	24.8*	583
1240	H / 1.0	X	38.9	-10.8	28.1	25.4*	500
	H / 1.0	Y	38.9	-10.8	28.1	25.4*	
	H / 1.0	Z	38.9	-10.8	28.1	25.4*	
	V /1.0	X	38.9	-10.8	28.1	25.4*	
	V / 1.0	Y	38.9	-10.8	28.1	25.4*	
1240	V / 1.0	Z	38.9	-10.8	28.1	25.4*	500
1550	H / 1.0	X	40.6	-10.8	29.8	30.9*	500
	H / 1.0	Y	40.6	-10.8	29.8	30.9*	
	H / 1.0	Z	40.6	-10.8	29.8	30.9*	
	V /1.0	X	40.6	-10.8	29.8	30.9*	
	V / 1.0	Y	40.6	-10.8	29.8	30.9*	
1550	V / 1.0	Z	40.6	-10.8	29.8	30.9*	500
	The frequency ran						
	Than 10 dB below				ot exceed the sp	pecified limits.	
	*=Noise Floor Me	easurements (Min	imum system se	ensitivity)			

Retlif Testing Laboratories

Test Method:	FCC Pa	rt 15 Subpart C Ra	diated Emission	s, Fundamental	& Harmonic Er	nissions	
Customer:	X-10 (U	(SA)			Job No.	R-9159-1	
Test Sample:	RF remo	ote			Paragraph:	15.231	
Model No.:	VT38A				FCC ID:	B4SVT38A	
Operating Mo		ously Transmittin	g a 310 MHz Sig	gnal			
Technician:	Peter La	•	8 4 5 1 0 1/1112 51	5	Date:	September 5, 2001	
	Test Distance: 3 M			D	Outy Cycle: 28.99		
110005	Detector: Peak, un		cified		outy Cycle Corre		
	Antenna	EUT	Peak	Correction	Corrected	Converted	Ava
Test Freq.	Pol./Height	Orientation	Reading	Factor	Reading	Reading	Avg. Limit
MHz			dBuV	dB			
	(V/H)-Meters	X/Y/Z	41.7		dBuV/m 30.9	uV/m 35.1*	uV/m
1860	H / 1.0	X Y	41.7	-10.8		35.1*	583
	H / 1.0			-10.8	30.9		
	H / 1.0	Z X	41.7 41.7	-10.8	30.9	35.1* 35.1*	
l	V / 1.0			-10.8			
1970	V / 1.0	Y	41.7	-10.8	30.9	35.1*	502
1860	V / 1.0	Z	41.7	-10.8	30.9	35.1*	583
2170	H / 1.0	X	39.6	-10.8	28.8	27.5*	583
	H / 1.0	Y	39.6	-10.8	28.8	27.5*	
	H / 1.0	Z	39.6	-10.8	28.8	27.5*	
	V / 1.0	X	39.6	-10.8	28.8	27.5*	
	V / 1.0	Y	39.6	-10.8	28.8	27.5*	
2170	V / 1.0	Z	39.6	-10.8	28.8	27.5*	583
2480	H / 1.0	X	43.5	-10.8	32.7	43.2*	583
	H / 1.0	Y	43.5	-10.8	32.7	43.2*	
l	H / 1.0	Z	43.5	-10.8	32.7	43.2*	İ
İ	V / 1.0	X	43.5	-10.8	32.7	43.2*	İ
	V / 1.0	Y	43.5	-10.8	32.7	43.2*	İ
2480	V / 1.0	Z	43.5	-10.8	32.7	43.2*	583
2790	H / 1.0	X	44.0	-10.8	33.2	45.7*	500
	H / 1.0	Y	44.0	-10.8	33.2	45.7*	
	H / 1.0	Z	44.0	-10.8	33.2	45.7*	İ
	V / 1.0	X	44.0	-10.8	33.2	45.7*	
	V / 1.0	Y	44.0	-10.8	33.2	45.7*	
2790	V / 1.0	Z	44.0	-10.8	33.2	45.7*	500
3100	H / 1.0	X	46.4	-10.8	35.6	60.3*	583
	H / 1.0	Y	46.4	-10.8	35.6	60.3*	
	H / 1.0	Z	46.4	-10.8	35.6	60.3*	
	V / 1.0	X	46.4	-10.8	35.6	60.3*	
	V / 1.0	Y	46.4	-10.8	35.6	60.3*	
3100	V / 1.0	Z	46.4	-10.8	35.6	60.3*	583
	The frequency ran	•					
	Than 10 dB below	•			not exceed the sp	pecified limits.	
	*=Noise Floor Me	easurements (Min	imum system se	ensitivity)			

Retlif Testing Laboratories

Customer				art o, opane	ius Case Naula	ted Emissions, P	<u> </u>		
) (USA)			Job N	lo. R-9159)-1	
Test Sam			Remote			1			
Model No		VT3				FCC	D : B4SVT	38A	
Operating		Con	tinuously trans	mitting a pul	sed signal at 3	10MHz.			
Technicia	n:	Pete	er Lananna			Da	te: Septen	nber 5, 20	001
Notes:			: 3 Meters asi-Peak Below	Temp:30 / 30 MHz to	0C Hum 1 GHz, Peak at	nidity:18% pove 1 GHz			
Test	Antenr	a	EUT	Meter	Correction	Corrected	Conv	erted	
Freq.	Positio		Orientation	Readings	Factor	Reading	Rea		LIMIT
MHz	(V/H) / Me	ters	Degrees	dBuV	dB	dBuV/m	i	//m	uV/m
			-						
30.00									100
į									i
i									i
i									İ
									i
i									i
88.00									100
88.00									150
l									1
									i
NΙα			_						
INO	emis	SSi	ons de	tected	d at spe	ecified t	est di	stan	ce.
	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	ce.
 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	150
	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	
 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	150
 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	150
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200
216.00 216.00 	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200
 1 216.00 216.00 1 960.00 960.00	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200 500
 1 216.00 216.00 1 960.00 960.00	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200 500
 1 216.00 216.00 1 960.00 960.00	emis	SSI	ons de	tected	d at spe	ecified t	est di	stan	 150 200 1 200 500
 1 216.00 216.00 1 960.00 960.00			scanned from			ecified t	est di	stan	 150 200 1 200 500
 1 216.00 216.00 1 960.00 960.00	The EUT	was	scanned from :	30 MHz to 3.	1 GHz				 150 200 200 500 1 500
 1 216.00 216.00 1 960.00 960.00	The EUT The emis	was	scanned from :	30 MHz to 3.	1 GHz	e specified limits.			 150 200 1 200 500 1 500

Retlif Testing Laboratories